7. a) Verify stokes theorem for
$\overline{\mathrm{F}}=\mathrm{y} \hat{\mathrm{i}}+\mathrm{z} \hat{\mathrm{i}}+\mathrm{x} \hat{\mathrm{k}}$ where S is the upper half surface of the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1$ and π is its boundary. 6
b) Byusing stoke's theorem
evaluate $\int_{\mu}\left(e^{x} d x+2 y d y-d z\right)$
where μ is the curve $\mathrm{x}^{2}+\mathrm{y}^{2}=4, \mathrm{z}=2$

Inter B. Sc. Examination, 2019

(1st Semester, Old)

Mathematics

Paper-7S (Vector Calculus)

Time: Two hours
Full Marks : 50

Answer any five questions

(Notation symbols have their usual meaning)

1. a) Prove that a necessary and sufficient condition that a. vector function \bar{u} has constant length is $\overline{\mathrm{u}} . \frac{\mathrm{d} \overline{\mathrm{u}}}{\mathrm{dt}}=0$
b) Given that $\overline{\mathrm{r}}=\operatorname{acost} \hat{\mathrm{i}}+a \sin t \hat{\mathrm{j}}+b t \hat{\mathrm{k}}$.
show that
(i) $\left(\overline{r^{\prime}}\right)^{2}=a^{2}+b^{2}$
(ii) $\left(\overline{\mathrm{r}^{\prime}} \times \overline{\mathrm{r}^{\prime \prime}}\right)^{2}=\mathrm{a}^{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$

Where $\overline{r^{\prime}}=\frac{d \bar{r}}{d t}$
2. a) Find the directional derivative of $f(x, y, z)=x y+y z+z x$ in the direction of the vector $\hat{i}+2 \hat{j}+2 \hat{k}$ at $(1,2,0) \quad 5$
b) Find $\operatorname{grad}\left((\overline{\mathrm{r}})^{\mathrm{m}}\right)$ where $(\overline{\mathrm{r}})^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ 5
3. a) If $\overline{\mathrm{F}}=\mathrm{x}^{2} \hat{\mathrm{i}}+\mathrm{y}^{2} \hat{\mathrm{j}}+\mathrm{z}^{2} \hat{\mathrm{k}}$
then find $\operatorname{div} \overline{\mathrm{F}}$ and $\operatorname{curl} \overline{\mathrm{F}}$
b) Determine the constant a so that the vector
$\overline{\mathrm{V}}=(x+3 y) \hat{\mathrm{i}}+(\mathrm{y}-2 \mathrm{z}) \hat{\mathrm{j}}+(\mathrm{x}+\mathrm{az}) \hat{\mathrm{k}}$
becomes solenoidal.
c) If $\overline{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$
and $\overline{\mathrm{C}}$ is any constant vector
$\overline{\mathrm{C}}=\mathrm{C}_{1} \hat{\mathrm{i}}+\mathrm{C}_{2} \hat{\mathrm{j}}+\mathrm{C}_{3} \hat{\mathrm{k}}$ then
then show that
$\operatorname{div}(\overline{\mathrm{r}} \times \overline{\mathrm{C}})=0, \operatorname{Curl}(\overline{\mathrm{r}} \times \overline{\mathrm{C}})=-2 \overline{\mathrm{C}}$,
4. a) Prove that

$$
\nabla \times(\nabla \times \overline{\mathrm{F}})=\nabla(\nabla \cdot \overline{\mathrm{F}})-\mathrm{F} \cdot\left(\nabla^{2} \mathrm{~F}\right)
$$

where $\overline{\mathrm{F}}$ is a vector function.
b) If $\bar{A}=x^{2} y \hat{i}-2 x z \hat{j}+2 y z \hat{k}$, find $\nabla \times(\nabla \times \mathrm{A})$
5. a) Consider the vector function

$$
\overline{\mathrm{F}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{i}-2 \mathrm{xyj}
$$

and C is the boundary of the rectangle obtained by
$y=0, x=a, y=b, x=0$.
Prove that $\int_{\mathrm{C}} \overline{\mathrm{F}} \cdot \mathrm{d} \overline{\mathrm{r}}=-2 \mathrm{ab}^{2}$
b) Evaluate $\int_{\mathrm{S}} \overline{\mathrm{F}} \cdot \mathrm{d} \overline{\mathrm{s}}$ for the vector field

$$
\overline{\mathrm{F}}=(\mathrm{y}+\mathrm{z}) \overline{\mathrm{i}}+(\mathrm{z}+\mathrm{x}) \overline{\mathrm{j}}+(\mathrm{x}+\mathrm{y}) \overline{\mathrm{k}}
$$

where s is the surface of the cube bounded by
$\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$.
6. a) State Gauss Divergence theorem. Express the theorem in Cartesian form.
b) Verify Gauss Divergence theorem for the vector function.

$$
\overline{\mathrm{F}}=\left(\mathrm{x}^{2}-\mathrm{yz}\right) \hat{\mathrm{i}}+\left(\mathrm{y}^{2}-\mathrm{zx}\right) \hat{\mathrm{j}}+\left(\mathrm{z}^{2}-\mathrm{xy}\right) \hat{\mathrm{k}}
$$

taken over the rectangular parallelopiped

$$
0 \leq x \leq a, \quad 0 \leq y \leq b, \quad 0 \leq z \leq c
$$

