## Bachelor of Science Examination, 2019(OLD)

(2nd Year, 2nd Semester)
MATHEMATICS
Mathematics - I
ED - 2.1.1
Time: Two hours
Full Marks : 50
Use a separate Answer-Script for each part

## PART - I (15 Marks)

Symbols and notations have their usual meanings.
Answer any three questions.

1. Of A, B, C bu, any three subjects of a set, then prove that $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
2. Define an equivalence relation on a set $S$.

Suppose I bu, a defined by a \& b if and only if (a-b) is divdsible bay 6 . Then prove that () is an equuvalence relation.
3. Define one-one and onto mapping with two example of each category.

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ bu two mapping defined by $f(x)=x^{2}$ and $g(x)=x+3$, for all $x t R$,

Show that fog $\neq$ gof .
4. Define group. Prove that $z_{4}$ the classes of residence of integers modulo 4, forms an () group with respect to ' t ' addition (module 4)
5. Let () and equivalence relation on the set A, Then prove that fol all $a, b, c A$
$\operatorname{cl}(a)=\operatorname{cl}(b)$ if and only if $a b$.

## PART - III (15 Marks)

## Answer any three questions.

6. Show that the function $f(x)=x \sin \frac{1}{x}, x \neq 0=0, x=0$ in continous at $\mathrm{x}=0$ 5
7. A function $f(x)$ is defined in $[0,2]$ by
$f(x)=x^{2}+x, 0 \leq x<1$
$=2, x=1$
$=2 \mathrm{x}^{3}-\mathrm{x}+1,1<\mathrm{x} \leq 2$
Examine differentiability of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=1$.
8. If $y=\sin \left(m \sin ^{-1} n\right)$ show that
i) $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$
ii) $\left(1-\mathrm{x}^{2}\right) \mathrm{y}_{\mathrm{n}+2}-(2 \mathrm{n}+1) \mathrm{xy}_{\mathrm{n}+1}-\left(\mathrm{n}^{2}-\mathrm{m}^{2}\right) \mathrm{y}_{\mathrm{n}}=0$
9. State and prove Canchy's Mean value thorem.
10. Expand $\sin x$ in a finite series in powers of $x$, with remainder in lagrange' s form.

## PART - II (20 Marks)

Answer any two questions.
6. a) Find the polar equation of the ellipse $\frac{x^{2}}{64}+\frac{y^{2}}{28}=1$; if the pole be at its right hand focus and positive direction of the $x$-axis be the positive direction of the polar axis. 5
b) $\mathrm{PS} \mathrm{P}^{\prime}$ is a focal chord of the conic. Prove that the angle between the tangents at P and $\mathrm{P}^{\prime}$ is $\tan ^{-1} \frac{2 \mathrm{e} \sin \alpha}{1-\mathrm{e}^{2}}$, where ' $\alpha$ ' is the angle between the chord and the major axis. 5
7. a) Reduce the following equation to its canonical form and determine the nature of the conic.

$$
\begin{equation*}
4 x^{2}+4 x y+y^{2}-12 x-6 y+5=0 \tag{5}
\end{equation*}
$$

b) Find the equation of the sphere which touches the sphere at the point $(1,1,-1)$ and passes through the origin. 5
8. a) Find the directional derivatives of

$$
\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2} \mathrm{yz}+4 \mathrm{xz}^{2}
$$

at the point $(1,2,-1)$ in the direction of the vector

$$
2 \hat{i}-\hat{j}-2 \hat{k}
$$

