Ex/ED/Math/2.1/1/56/2019(OLD)

BACHELOR OF SCIENCE EXAMINATION, 2019(OLD)

(2nd Year, 2nd Semester)

MATHEMATICS

MATHEMATICS - I

ED - 2.1.1

Time : Two hours

Full Marks : 50

Use a separate Answer-Script for each part

PART - I (15 Marks)

Symbols and notations have their usual meanings.

Answer any three questions.

1. Of A, B, C bu, any three subjects of a set, then prove that

 $A \times (B \cup C) = (A \times B) \cup (A \times C)$ 5

2. Define an equivalence relation on a set S.

Suppose I bu, a defined by a & b if and only if (a-b) is divdsible bay 6. Then prove that () is an equivalence relation.

5

3. Define one-one and onto mapping with two example of each category.

Let $f : R \rightarrow R$ and $g: R \rightarrow R$ bu two mapping defined by $f(x)=x^2$ and g(x)=x+3, for all x t R,

[Turn over

Show that $fog \neq gof$.

Define group. Prove that z₄ the classes of residence of integers modulo 4, forms an () group with respect to 't' addition (module 4)

5

5

5. Let () and equivalence relation on the set A, Then prove that fol all a, b, c A

cl(a)=cl(b) if and only if a b.

PART - III (15 Marks)		
Answer any three questions.		
6.	Show that the function $f(x) = x \sin \frac{1}{x}, x \neq 0 = 0, x = 0$ in continous at x=0 5	1
7.	A function $f(x)$ is defined in [0,2] by	
	$f(x) = x^{2} + x, 0 \le x < 1$ = 2, x = 1 = 2x ³ -x+1, 1 < x ≤ 2 Examine differentiability of f(x) at x=1	
8.	Examine dimerentiability of (x) at $x = 1$. If $y = sin(m sin^{-1} n)$ show that i) $(1-x^2)y_2-xy_1+m^2y=0$ ii) $(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2-m^2)y_n=0$ 2+3	
9.	State and prove Canchy's Mean value thorem.	
10.	Expand sin x in a finite series in powers of x, with remainder in lagrange's form. 5	r

PART - II (20 Marks)

Answer any two questions.

6. a) Find the polar equation of the ellipse $\frac{x^2}{64} + \frac{y^2}{28} = 1$; if the pole be at its right hand focus and positive direction of the x-axis be the positive direction of the polar axis. 5

- b) PS P' is a focal chord of the conic. Prove that the angle between the tangents at P and P' is $\tan^{-1} \frac{2e\sin\alpha}{1-e^2}$, where ' α ' is the angle between the chord and the major axis.5
- 7. a) Reduce the following equation to its canonical form and determine the nature of the conic.

$$4x^{2} + 4xy + y^{2} - 12x - 6y + 5 = 0.$$
 5

- b) Find the equation of the sphere which touches the sphere at the point (1, 1, -1) and passes through the origin. 5
- 8. a) Find the directional derivatives of

$$f(x, y, z) = x^2yz + 4xz^2$$

at the point (1, 2, -1) in the direction of the vector

$$2\hat{i} - \hat{j} - 2\hat{k}.$$
 5