7. (a) Using first MVT of integral calculus prove that

$$
\frac{1}{4} \leq \int_{0}^{1 / 4} \frac{d x}{\sqrt{1-x^{2}}} \leq \frac{1}{\sqrt{15}}
$$

(b) Let the function f be defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{m} \sin \frac{1}{x}, & \text { when } x \neq 0 \\
0, & \text { when } x=0
\end{array}\right.
$$

then show that f is derivable at $x=0$. Also determine m, when $f^{\prime}(x)$ is continuous at $x=0$.

BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester, Old Syllabus)

MATHEMATICS (HONOURS)

Analysis - II
Paper: 4.3
Time : Two hours
Full Marks : 50
Symbols and Notations have their usual meanings.
Answer any five questions.

1. (a) Suppose f be derivable in $[a, b]$ such that $f^{\prime}(a) \neq f^{\prime}(b)$ and r be any number between $f^{\prime}(a)$ and $f^{\prime}(b)$. Prove that, there exists $\mathrm{c} \in[\mathrm{a}, \mathrm{b}]$ such that $\mathrm{f}^{\prime}(\mathrm{c})=\mathrm{r}$.
(b) Evaluate :
(i) $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{1 / x^{2}}$
(ii) Find a and b such that

$$
\lim _{x \rightarrow 0} \frac{a \sin 2 x-b \sin x}{x^{3}}=1
$$

2. (a) Let $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ be bounded function which has infinite number of points of discontinuities in $[\mathrm{a}, \mathrm{b}]$ such that the set of all points of discontinuities of f in [a.b] has finite number of limit points. Show that f is Riemann integrable on $[a, b]$.
(b) Suppose f be a function defined as

$$
\begin{aligned}
& f(x)=\{ \frac{1}{2^{n}}, \text { when } \frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}}, \\
& 0, \text { when } x=0 \quad n=0,1,2,3, \ldots
\end{aligned}
$$

Is f Riemann integrable on $[0,1] ?-$ Justify. $\quad 5+5$
3. (a) Use Dirichlet's test to prove that
$\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{dx}$ is convergent
(b) Test the convergence of
(i) $\int_{1}^{\infty} \frac{x \tan ^{-1} x}{\sqrt[3]{1+x^{4}}} \mathrm{dx}$
(ii) $\int_{1}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x$
4. (a) Show that

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\sin a x \sin b x}{x} d x \\
& \quad=\frac{1}{2} \log \left(\frac{a+b}{a-b}\right),(a>b>0)
\end{aligned}
$$

(b) Show that the integral $\int_{0}^{1} x^{m-1}(1-x)^{n-1} \log \mathrm{x} \mathrm{dx}$ is convergent if $\mathrm{m}>0, \mathrm{n}<-1$. $4+6$
5. (a) Prove that a function $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$ if and only if $f(x)$ can be expressed as the difference of two increasing functions. Is a function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ of bounded variation, R-integrable on $[a, b]$? Justify your answer.
(b) The function $\mathrm{f}:[0,1] \rightarrow \mathbb{R}$ is defined by
$f(x)=\left\{\begin{array}{cll}x \sin (\pi / x) & \text { if } & x \in[0,1] \\ 0, & x=0\end{array}\right.$
Is f bounded variation on $[0,1]$?
6. (a) $\operatorname{Let} f(x+y)=f(x) . f(y), \forall x, y \in$ and f be derivable at $\mathrm{x}=0$. If $\mathrm{f}^{\prime}(0)=l$ and $\mathrm{f}(\mathrm{c})=\mathrm{m} \neq 0$, then show that f is derivable at $\mathrm{c} \in \mathbb{R}$ and $\mathrm{f}^{\prime}(\mathrm{c})=l \mathrm{~m}$.
(b) Let P and $\mathrm{P}^{/}$be two partitions of $[\mathrm{a}, \mathrm{b}]$ and P^{\prime} is a refinement of P. If $f:[a, b] \rightarrow \mathbb{R}$ is a function of bounded variation on $[\mathrm{a}, \mathrm{b}]$, then prove that

$$
\mathrm{V}(\mathrm{P}, \mathrm{f}) \leq \mathrm{V}\left(\mathrm{P}^{\prime}, \mathrm{f}\right)
$$

