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BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester, Old Syllabus)

MATHEMATICS (HONOURS)

Analysis - II

Paper : 4.3

Time : Two hours Full Marks : 50

Symbols and Notations have their usual meanings.

Answer any five questions.

1. (a) Suppose f be derivable in [a,b] such that f /(a)  f /(b)

and r be any number between f /(a) and f /(b). Prove

that, there exists c[a,b] such that f /(c) = r.

(b) Evaluate :
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(ii) Find a and b such that
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2. (a) Let f : [a,b]    be bounded function which has
infinite number of points of discontinuities in [a,b]
such that the set of all points of discontinuities of f in
[a.b] has finite number of limit points. Show that f is
Riemann integrable on [a,b].
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7. (a) Using first MVT of integral calculus prove that
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(b) Let the function f be defined by
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then show that f is derivable at x = 0. Also determine
m, when f /(x) is continuous at x = 0. 5+5
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(b) Suppose f be a function defined as
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Is f Riemann integrable on [0,1]? – Justify. 5+5

3. (a) Use Dirichlet’s test to prove that
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(b) Test the convergence of
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4. (a) Show that
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(b) Show that the integral  
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convergent if m > 0, n < –1. 4+6

5. (a) Prove that a function f : [a,b]   is of bounded
variation on [a,b] if and only if f(x) can be expressed
as the difference of two increasing functions. Is a
function f : [a,b]   of bounded variation,
R-integrable on [a,b] ? Justify your answer.

(b) The function f : [0,1]   is defined by
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Is f bounded variation on [0,1] ? 6+4

6. (a) Let f(x+y) = f(x) . f(y),  x, y  and f be derivable at
x = 0. If f /(0) = l  and f(c) = m  0, then show that f is

derivable at c  and f /(c) = lm.

(b) Let P and P/ be two partitions of [a,b] and P/ is a

refinement of P. If f : [a,b]  is a function of
bounded variation on [a,b], then prove that

                   V (P, f)  V(P /,f) 5+5


