First B.Sc. Examination, 2019

10. Show that the Redal equation of the ellipse $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=1$ w.r.t a focus in $\frac{\mathrm{b}^{2}}{\mathrm{p}^{2}}=\frac{2 \mathrm{a}}{\mathrm{r}}-1$
11. Find the radius of curvature at any point P of the catenary $y=c \cosh \left(\frac{x}{c}\right)$ and show that $P C=P G$, where C is the centre of curvature at P and G is the point of intersection of the normal at P with the x -axis.
(1st year1st Semester)

Calculus

Paper - 1.1
Time: Two hours
Full Marks: 50
Use a separate answerscript for each Part.
Part -I (30 Marks)

Answer any three questions

(Symbols/Notation/have their usual meaning)

1. a) Does $\lim _{x \rightarrow 0}\left(\operatorname{Sin} \frac{1}{x}+x \operatorname{Sin} \frac{1}{x}\right)$ exist?
b) Let the function f be defined by

$$
f(x)=\left\{\begin{array}{c}
\frac{1-\cos x}{x^{2}}, \text { for } x \neq 0 \\
1, \quad \text { for } x=0
\end{array}\right.
$$

Is f contimuous at $\mathrm{x}=0$? Explain.
c) Find the nature of dis continuity of $f(x)=\frac{1}{x} \sin \frac{1}{x}$ at $x=0$

$$
4+4+2
$$

2. a) Use mean value theorem to prove that $0<\frac{1}{x} \log \frac{e^{x}-1}{x}<1$, for $x>0$

ฉəл๐ $\left.\operatorname{unn}_{L}\right]$

$$
0=\frac{x}{\mathrm{x}} \partial \mathrm{x}-\kappa \partial \Omega . \mathrm{In} \supset \partial \Psi
$$

$0 Z=\downarrow \times \varsigma$
suọsənb anof Кид ェəмsuУ

(syIrum 0z) II-1.IE \mathbf{d}

$\mathcal{S}+\varsigma$

$$
0=\mathrm{x} \ddagger \mathrm{P} \text { snonu!̣uos }
$$

$\mathcal{S}+\varsigma$

$\cdot\left(0^{`} 0\right)=\left(\Lambda^{\prime} \mathrm{x}\right) \quad{ }^{\prime} 0=$

$t+\varsigma$

-səqей

[]]

