Ex./UG/Sc/CORE-1/MATH/TH/50/2019
BACHELOR OF SCIENCE EXAMINATION, 2019
(1st Year, 1st Semester) MATHEMATICS(Honours)

Mathematics - I
Paper : CORE - I
(Algebra, Geometry and Calculus)
Time : Two hours
Full Marks : 50

Use a separate Answer-Script for each part.

```
PART - I (15 marks)
(Algebra)
Answer all questions.
```

1. Define orthogonal matrix.

$$
\text { If }(I+A)^{-1}(I-A)
$$

is a real orthogonal matrix prove that A is skew symmetric.

OR
show that

$$
\left|\begin{array}{llll}
1 & a & a^{2} & a^{3}+b c d \\
1 & b & b 2 & b^{3}+c d a \\
1 & c & c 2 & c^{3}+d a b \\
1 & d & d 2 & d^{3}+a b c
\end{array}\right|=0
$$

2. If

$$
i^{i} i^{\text {to } \infty}=A+i B
$$

prove that

$$
\tan \frac{\pi A}{2}=\frac{B}{A} \text { and } A^{2}+B^{2}=e^{-\pi B}
$$

[Assume only principal values].

OR

solve by Cardan's method

$$
\mathrm{t}^{3}+15 \mathrm{t}^{2}-33 \mathrm{t}-847=0
$$

3. Find integers a, b, c for which

$$
(x+a)(x+1991)+1=(x+b)(x+c)
$$

OR

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive real numbers such that

$$
\mathrm{abc}(\mathrm{a}+\mathrm{b}+\mathrm{c})=3
$$

Prove that

$$
(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(\mathrm{c}+\mathrm{a}) \geq 8
$$

8. (a) Find the conditions for a straight line $y=m x+c$ to be an asymptote of the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$
(b) Define centre and circle of curvature of the curve $y=f(x)$. Also find the equation of circle of curvature.
$2+3$
9. State Leibnitz's theorem on nth order derivative of product of two functions and hence show that
$\frac{d^{n}}{d x^{n}}\left(\frac{\log x}{x}\right)=(-1)^{n} \frac{\mid n}{x^{n+1}}\left(\log x-1-\frac{1}{2}-\frac{1}{3}-\ldots-\frac{1}{n}\right) 1+4$
(f) Show that the equation $x^{2}-2 y^{2}+3 z^{2}-4 x y+5 y z$ $-6 z x+8 x-19 y-2 z-20=0$ represents a cone with vertex $(1,-2,3)$.

PART - III (15 marks)

(Calculus) A nsw er any three questions.
5. (a) Show that $\int_{0}^{\pi / 2} \cos ^{n} x \cos n x d x=\frac{\pi}{2^{n+1}}\left(n \in Z_{+}\right)$.
(b) Show that the curve $y=\frac{1-x}{1+x^{2}}$ has three points of inflexion which lie on a straight line.
6. (a) Define hyperbolic sine of x and then show that $\cosh ^{2} \mathrm{x}+\sinh ^{2} \mathrm{x}=\cosh 2 \mathrm{x}$.
(b) Find the volume of the solid obtained by revolving the cardioide $r=a(1+\cos \theta)(a>0)$ about the initial line.
$1+4$
7. (a) Find the envelope of a family of curves $F(x, y, \alpha)$ $\equiv \mathrm{A}(\mathrm{x}, \mathrm{y}) \alpha^{2}+\mathrm{B}(\mathrm{x}, \mathrm{y}) \alpha+\mathrm{c}(\mathrm{x}, \mathrm{y})=0$, where α is a parameter.
(b) Trace the curve $\mathrm{x}^{3}+\mathrm{y}^{3}=3$ axy with proper justification.

PART - II (20 marks)

(Geometry)
4. Answer any four questions :
$4 \times 5=20$
(a) Show that the straight line $r \cos (\theta-\alpha)=p$ touches the conic

$$
\frac{1}{r}=1+e \cos \theta \text { if }(l \cos \alpha-e p)^{2}+l^{2} \sin ^{2} \alpha=p^{2}
$$

(b) Reducing the equation $x^{2}+2 x y+y^{2}-4 x+8 y-6$ $=0$ to its canonical form, show that it is a parabola and determine the coordinates of its vertex.
(c) Prove that the shortest distance between the lines and $\frac{x-1}{-1}=\frac{y-3}{3}=\frac{z-1}{2}$ is $15 / \sqrt{238}$ and the equation of the line of shortest distance is $7 x-37 y-10 z+117=0=5 x+13 y-17 z-27$.
(d) Find the equation of the sphere which passes through the circle $x^{2}+y^{2}=4, z=0$ and is cut by the plane $\mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=0$ in a circle of radius 3 .
(e) Find the equation of a cylinder generated by the lines parallel to the line $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$, the guiding curve being the conic $\mathrm{z}=0, \mathrm{ax}^{2}+\mathrm{by}^{2}=1$.

