for all $\mathrm{f}, \mathrm{g}, \in \mathrm{C}$ and for all $\mathrm{x} \in \mathbb{R}$. Show that ($\mathbb{R},+,$.) is a ring under the binary operations defined above.

BACHELOR OF SCIENCE EXAMINATION, 2019

(1st Year, 2nd Semester, Old Syllabus) MATHEMATICS (SUBSIDIARY)

Algebra - II
Paper: 5S
Time : Two hours

Symbols and Notations have their usual meanings.
Answer any five questions.

1. (a) Solve, if possible the system of equations

$$
\begin{gathered}
\mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{3}=10 \\
-\mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}=2 \\
2 \mathrm{x}_{1}+\mathrm{x}_{2}-3 \mathrm{x}_{3}=2
\end{gathered}
$$

(b) Obtain the fully reduced normal form of the matrix

$$
\left[\begin{array}{cccc}
2 & -1 & 1 & 0 \\
1 & 2 & -1 & 2 \\
1 & -8 & 5 & -6
\end{array}\right]
$$

2. (a) If $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)$, then verify that A satisfies its own characteristic equation. Hence find A^{-1}.
(b) Investigate for what values of λ and μ the following equations.
$x+y+z=6$
$x+2 y+3 z=10$
$x+2 y+\lambda z=\mu$, have (i) no solution (ii) a unique solution, (iii) an infinite number of solutions. $4+6$
3. (a) If $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$ then find the eigen values and the corresponding eigen vectors of A .
(b) If λ be an eigen value of a non-singular matrix A, then prove that λ^{-1} is an eigen values of A^{-1}. $\quad 6+4$
4. (a) Expand by Laplace's method to prove that

$$
\left|\begin{array}{cccc}
a & b & c & d \\
-b & a & d & -c \\
-c & -d & a & b \\
-d & c & -b & a
\end{array}\right|=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}
$$

(b) Determine the values of α, β, γ such that the matrix

$$
\left(\begin{array}{ccc}
0 & 2 \beta & \gamma \\
\alpha & \beta & -\gamma \\
\alpha & -\beta & \gamma
\end{array}\right) \text { is orthogonal. }
$$

5. (a) For any three non empty sets A, B, C prove that

$$
A \cap(B \Delta C)=(A \cap B) \Delta(A \cap C)
$$

where $\mathrm{A} \Delta \mathrm{B}=$ symmetric difference of two sets A and B.
(b) Describe all the permutations on the set $\{1,2,3\}$ and find their respective orders. $4+6$
6. (a) Prove that every cyclic group is an abelian group. Is an abelian group necessarily a cyclic group? Illustrate with an example.
(b) Let $\alpha=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 7 & 5 & 2 & 3\end{array}\right)$ and $\beta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right) 7$ (

Determine whether the permutation β and α^{-1} are even or odd.
$5+5$
7. (a) Solve by matrix inversion method

$$
\begin{aligned}
& x+2 y+z=4 \\
& x-y+z=5 \\
& 2 x+3 y-z=1
\end{aligned}
$$

(b) Let \mathbb{R} be the set of real numbers and C be the set of all real valued continuous functions defined on \mathbb{R}. Define $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})(\mathrm{f} . \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x})$,

