(b) Solve $\mathrm{x}^{7}=1$ and hence find the sum of 99th plowers of the roofs of the equation $x^{7}-1=0$ $3+2$

## BACHELOR OF SCIENCE EXAMINATION, 2019

(1st Year, 2nd Semester, Old Syllabus) MATHEMATICS (HONOURS)

Algebra - II
Paper: 2.3
Time : Two hours

The figures in the margin indicate full marks.
Symbols and Notations have their usual meanings.
Answer any five questions.

1. (a) (i) Define binary relation and binary operation on a nonempty set. Let $S$ be a set with $n$ elements. Find the number of binary relations and the number of binary operations defined on S .

3
(ii) Find the order of the permutation

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 9 & 6 & 3 & 2 & 1 & 8 & 7 \\
5
\end{array}\right)
$$

(b) (i) Let a and b be two integers and p be a prime such that $\mathrm{p} \mid \mathrm{ab}$. Show that $\mathrm{p} \mid \mathrm{a}$ or $\mathrm{p} \mid \mathrm{b}$.
(ii) Show that for any positive integer $n ; n(n+1)(n+2)$ is divisible by 3 . $2+3$
2. (a) Define group and subgroup of a group. Is union of two subgroups of a group also a subgroup of that group? Justify your answer. $\quad 2+1+2$
(b) (i) Let $G$ be a group such that every element of $G$ has its own inverse. Show that $G$ is a commutative group.
(ii)Let $a$ and $b$ be two elements of a group G such that $0(a)=5$ and $a^{3} b=b a^{3}$. Show that $a b=b a$.
3. (a) Define a cyclic group. Let $G$ be a group and $z(G)$ be the centre of $G$. If $G / z(G)$ is a cyclic group then show that $G$ is a commutative group. If $G$ is a non commutative group then show that $|Z(G)| \leq \frac{1}{4}|G|$.
$1+2+2$
(b) State and prove Lagrange's theorem on group. $2+3$
4. (a) State first isomorphism theorem of group. Show that $G L(n, \mathbb{R}) / S L(n, \mathbb{R})=\mathbb{R}^{*}$
(b) (i) When is a subgroup H of a group G said to be normal subgroup of $G$ ? Show that $Z(G)$ is a normal
(ii) Let H and K be two normal subgroups of a group G such that $H \cap K=\left\{e_{G}\right\}$. Show that $\mathrm{ab}=\mathrm{ba}$ for all $\mathrm{a} \in \mathrm{H}$ and $\mathrm{b} \in \mathrm{K}$.
5. (a) Define integral domain. Is $\mathrm{C}[0,1]$ an integral domain? Justify your answer.
$2+3$
(b) Define ideal of a ring. Give an example of a left ideal in a ring R which is not a right ideal of R . Let $I$ be an ideal of a ring $R$ with unity such that $1 \in I$. Show that $\mathrm{I}=\mathrm{R}$.
$2+2+1$
6. (a) Define Boolean ring. Show that a Boolean ring has characteristic 2 and also show that every Boolean ring is commutative.
$1+2+2$
(b) Define division ring. Show that the centre of a division ring is a field.
$2+3$
7. (a) (i) Show that the different values of $i^{i}$ are all real and they form a G. P.
(ii)Let n be a positive integer. Show that
$(1+i)^{n}+(1-i)^{n}=2^{\frac{n}{2}+1} \cos \frac{n \pi}{4}$

