Ex/IM/III/12/19(Old)

[6]

- 4. i) Apply Descarte's rule of signs to find the nature of the roots of the equation $x^6 + x^4 + x^2 + x + 3 = 0$ 2
 - ii) Solve the equation $x^3 12x + 65 = 0$ by Cardan's method. 3

FIRST B. Sc. EXAMINATION, 2019

(1st year, 1st Semester, Old Syllabus)

MATHEMATICS

PAPER: 1.3 (ALGEBRA - I)

Time : Two hours

Full Marks : 50

(25 marks for each part)

Use a separate Answer-Script for each part

PART - I

Answer any five questions.

Let \mathbb{R} denotes the field of all real numbers.

1. Define a vector space.

Let $V = \mathbb{R}^2$. For $(a,b), (c,d) \in \mathbb{R}^2$ and $\alpha \in \mathbb{R}$, define

(a,b) + (c,d) = (a + 2c, b + 3d) and $\alpha(a,b) = (\alpha a, \alpha b)$.

Is V a vector space over \mathbb{R} with these operations ? Justify your answer. 5

2. Define a subspace of a vector space. Show that \mathbb{R}^n is the direct sum of subspaces

$$\mathbf{w}_1 = \{(\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n) \in \mathbb{R}^n \mid \mathbf{a}_n = 0\}$$

and
$$w_2 = \{(a_1, a_2, \dots, a_n) \in \mathbb{R}^n \mid a_1 = a_2 = \dots = a_{n-1} = 0\}.$$

5

[Turn over

3. Solve the following system of linear equations :

$$a_1 + 2a_2 + a_3 - a_4 = 0$$

$$3a_1 + 2a_2 - 3a_3 = 0$$

$$-4a_1 - 4a_2 + 2a_3 + a_4 = 0$$

$$2a_1 \qquad -4a_3 \qquad = 0$$

5

5

- 4. Define a linearly independent subset of a vector space. Let S be a linearly independent subset of a vector space V and let v be a vector in V that is not in S. Then SU{v} is linearly dependent if and only if v ∈ span (S).
- 5. Define a basis of a vector space. Prove that the set of solutions to the system of linear equations :

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_1 - 3x_2 + x_3 = 0$$

is a subspace of \mathbb{R}^3 over \mathbb{R} . Find a basis for this subspace.

6. Define a linear transformation of vector spaces.

Let V and W be vector spaces of equal (finite) dimension and let $T: V \rightarrow W$ be a linear transformation. Prove that the following are equivalent :

a) T is one-to-one

ii) If the system of equations x = cy + bz, y = az + cx, z = bx + ay has a non-zero solution then show that $a^2 + b^2 + c^2 + 2abc = 1.$

- 11. i) Show that the eigenvalues of a real symmetric matrix are all real. 2
 - ii) Let λ be eigen value of a real skew symmetric matrix A. Show that $\left|\frac{1-\lambda}{1+\lambda}\right| = 1$ 3
- 12. i) If for given A and B, the matrix equation AX = B has more than one solution then show that it has infinitely many solutions. 2
 - ii) Let A be a real square matrix of order 2 with trace 5 and determinant value 6. Find the eigen values of the matrix A^{-1} .
- 13. i) What is the multiplicity of the root x = 1 of the equation $x^n - nx + ((n-1) = 0(n > 1)$? Justify your answer. 2
 - ii) If α, β, γ are the roots of $f(x) = x^3 px^2 + qx r = 0$, where p, q, r are positive integers and α is the harmonic mean of the roots of f'(x) = 0 then show that $\alpha^2 = \beta \gamma$.

[Turn over

3

PART - I

[4]

Answer *any five* questions. 5×5=25

- 8. i) Let A be a real skew-symmetric matrix of order n such that $A^2 + I_n = 0$. Show that A is an orthogonal matrix. 2
 - ii) Let A and B be two square matrices of the same order n such that $AB = I_n$. Show that $BA = I_n$. 2
 - iii) Let $A = (a_{ij})_{n \times n}$ be a nipotent matrix of index k. Show that $I_n - A$ is invertible, where I_n be the identity matrix of order n. 1
- 9. i) Let A be a square matrix of order n. Show that $A(adjA) = (det A)I_n$. Hence show that $det(adjA) = (det A)^{n-1}$ if $det A \neq 0$. 2
 - ii) By using Laplace's expansion, show that

$$\begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{vmatrix} = (af - be + cd)^2$$

10. i) Let A be a square matrix of order 3 such that A is not a symmetric matrix. Show that rank of the matrix $A-A^{T}$ is 2.

- [3]
- b) T is onto
- c) $\operatorname{rank}(T) = \dim(V)$. 5
- 7. Let A and B be two n × n real matrices such that det $B \neq 0$. Show that A and BA B⁻¹ have some eigen values. 5