4. i) Apply Descarte's rule of signs to find the nature of the roots of the equation $x^{6}+x^{4}+x^{2}+x+3=0 \quad 2$
ii) Solve the equation $x^{3}-12 x+65=0$ by Cardan's method.

First B. Sc. Examination, 2019

(1st year, 1st Semester, Old Syllabus)

Mathematics

Paper: 1.3 (Algebra-I)
Time: Two hours
Full Marks: 50
(25 marks for each part)
Use a separate Answer-Script for each part

PART - I

Answer any five questions.
Let \mathbb{R} denotes the field of all real numbers.

1. Define a vector space.

Let $V=\mathbb{R}^{2}$. For $(a, b),(c, d) \in \mathbb{R}^{2}$ and $\alpha \in \mathbb{R}$, define
$(\mathrm{a}, \mathrm{b})+(\mathrm{c}, \mathrm{d})=(\mathrm{a}+2 \mathrm{c}, \mathrm{b}+3 \mathrm{~d})$ and $\alpha(\mathrm{a}, \mathrm{b})=(\alpha \mathrm{a}, \alpha \mathrm{b})$.
Is V a vector space over \mathbb{R} with these operations? Justify your answer.
2. Define a subspace of a vector space. Show that \mathbb{R}^{n} is the direct sum of subspaces

$$
\begin{gathered}
\mathrm{w}_{1}=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{n}}\right) \in \mathbb{R}^{\mathrm{n}} \mid \mathrm{a}_{\mathrm{n}}=0\right\} \\
\text { and } \mathrm{w}_{2}=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{n}}\right) \in \mathbb{R}^{\mathrm{n}} \mid \mathrm{a}_{1}=\mathrm{a}_{2}=\cdots=\mathrm{a}_{\mathrm{n}-1}=0\right\} .
\end{gathered}
$$

3. Solve the following system of linear equations :

$$
\begin{array}{r}
a_{1}+2 a_{2}+a_{3}-a_{4}=0 \\
3 a_{1}+2 a_{2}-3 a_{3}=0 \\
-4 a_{1}-4 a_{2}+2 a_{3}+a_{4}=0 \\
2 a_{1} \quad-4 a_{3}=0
\end{array}
$$

4. Define a linearly independent subset of a vector space. Let S be a linearly independent subset of a vector space V and let v be a vector in V that is not in S . Then $\mathrm{SU}\{\mathrm{v}\}$ is linearly dependent if and only if $v \in \operatorname{span}(S)$.
5. Define a basis of a vector space. Prove that the set of solutions to the system of linear equations:

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{3}=0 \\
& 2 x_{1}-3 x_{2}+x_{3}=0
\end{aligned}
$$

is a subspace of \mathbb{R}^{3} over \mathbb{R}. Find a basis for this subspace.
6. Define a linear transformation of vector spaces.

Let V and W be vector spaces of equal (finite) dimension and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Prove that the following are equivalent:
a) T is one-to-one
ii) If the system of equations $x=c y+b z, y=a z+c x$, $z=b x+a y$ has a non-zero solution then show that $a^{2}+b^{2}+c^{2}+2 a b c=1$.
11. i) Show that the eigenvalues of a real symmetric matrix are all real.
ii) Let λ be eigen value of a real skew symmetric matrix A. Show that $\left|\frac{1-\lambda}{1+\lambda}\right|=1$
12. i) If forgiven A and B, the matrix equation $A X=B$ has more than one solution then show that it has infinitely many solutions.
ii) Let A be a real square matrix of order 2 with trace 5 and determinant value 6 . Find the eigen values of the matrix A^{-1}.
13. i) What is the multiplicity of the $\operatorname{root} x=1$ of the equation $\mathrm{x}^{\mathrm{n}}-\mathrm{nx}+((\mathrm{n}-1)=0(\mathrm{n}>1)$? Justify your answer.
ii) If α, β, γ are the roots of $f(x)=x^{3}-p x^{2}+q x-r=0$, where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are positive integers and α is the harmonic mean of the roots of $f^{\prime}(x)=0$ then show that $\alpha^{2}=\beta \gamma$.

PART - I

Answer any five questions.
 $5 \times 5=25$

8. i) Let A be a real skew-symmetric matrix of order n such that $A^{2}+I_{n}=0$. Show that A is an orthogonal matrix. 2
ii) Let A and B be two square matrices of the same order n such that $A B=I_{n}$. Show that $B A=I_{n}$.

2
iii) Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{n}}$ be a nipotent matrix of index k . Show that $I_{n}-A$ is invertible, where I_{n} be the identity matrix of order n.

1
9. i) Let A be a square matrix of order n . Show that $A(\operatorname{adj} A)=(\operatorname{det} A) I_{n}$. Hence show that $\operatorname{det}(\operatorname{adj} \mathrm{A})=(\operatorname{det} \mathrm{A})^{\mathrm{n}-1}$ if $\operatorname{det} \mathrm{A} \neq 0$. 2
ii) By using Laplace's expansion, show that

$$
\left|\begin{array}{cccc}
0 & a & b & c \tag{3}\\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right|=(a f-b e+c d)^{2}
$$

10. i) Let A be a square matrix of order 3 such that A is not a
symmetric matrix. Show that rank of the matrix $A-A^{T}$ is 2 .

3
b) T is onto
c) $\operatorname{rank}(T)=\operatorname{dim}(V)$.
7. Let A and B be two $\mathrm{n} \times \mathrm{n}$ real matrices such that $\operatorname{det} \mathrm{B} \neq 0$. Show that A and BAB^{-1} have some eigen values.

