c) If $\mathrm{u}_{\mathrm{n}}>0 \forall \mathrm{n} \in \mathbb{N}$ and $\underset{\mathrm{n} \rightarrow \infty}{\mathrm{t}} \mathrm{n}\left(\frac{\mathrm{u}_{\mathrm{n}}}{\mathrm{u}_{\mathrm{n}+1}}-1\right)=l$, show that $\sum \mathrm{u}_{\mathrm{n}}$ is convergent if $l>1$.
11. a) Find the region of Convergence of the series

$$
x+\frac{2^{2} x^{2}}{\lfloor 2}+\frac{3^{3} x^{3}}{\lfloor 3}+\frac{4^{4} x^{4}}{\lfloor 4}+\ldots(x>0)
$$

b) If $\left\{x_{n}\right\}$ is a sequence of non-zero real numbers and

$$
\operatorname{lt}_{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{n}}=\mathrm{x}_{*}(\neq 0) \text { then prove that } \operatorname{lt}_{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{x}_{\mathrm{n}}}=\frac{1}{\mathrm{X}_{*}}
$$

c) Define limit of a sequence.
d) Show that $\operatorname{lt}_{\mathrm{n} \rightarrow \infty}\left(\frac{\sin \mathrm{n}}{\mathrm{n}}\right)=0$.

First B. Sc. Examination, 2019

(1st Year, 2nd Semester)

Mathematics (Honours)

Core - 3

Real Analysis
Time: Two hours

Use a separate Answer-Script for each part
(25 marks for each part)

PART - I

(Answer anyfive questions)

1. i) Let X be any set. Then show that $\operatorname{Card} \mathrm{X}<\operatorname{Card} \mathrm{P}(\mathrm{X})$.
ii) Show that (a, b] and [c, d) have the same cardinality, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ d are real numbers and $\mathrm{a}<\mathrm{b}, \mathrm{c}<\mathrm{d} .3+2$
2. Let F be an Archimedean ordered field. Show that if F satisfies Cantor's nested interval property then F satisfies lub property.
3. Find the derived set of the following sets in R :
i) $\left\{\frac{1}{2^{\mathrm{n}}}+\frac{1}{3^{\mathrm{m}}}+\frac{1}{5^{\mathrm{p}}}: \mathrm{m}, \mathrm{n}, \mathrm{p} \in \mathrm{N}\right\}$;
ii) $\{\mathrm{m}+\mathrm{n} \sqrt{2}: \mathrm{m}, \mathrm{n} \in \mathrm{Z}\}$
4. Let $\mathrm{A}, \mathrm{B} \subset \mathrm{R}$. Then prove that $\overline{\mathrm{A} \cap \mathrm{B}} \subset \overline{\mathrm{A}} \subset \overline{\mathrm{B}}$. Give example to show that $\overline{\mathrm{A} \cap \mathrm{B}} \neq \overline{\mathrm{A}} \subset \overline{\mathrm{B}}$.
$3+2$
5. Prove that in R finite intersection of open sets is open. Give examples to show that arbitrary intersection of open sets may not be open.
$3+2$
6. Let S be a non-empty subset of R. If S is a clopen set then show that $S=R$.
7. Show that if a subset F of R is compact then every sequence in F has a convergent subsequence in F. Using this justify that the $\operatorname{set} Q$ of rationals is not compact. $3+2$

PART - II (25 Marks)

Answer Q. No. 8 and any two from the rest
8. a) Show that the series $1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots$ is divergent.
b) Give an example of an unbounded above, bounded below sequence but does not diverge to $+\infty$. Justify your answer. $3+2$
9. a) State and prove Cauchy's general principle of convergence of a sequence.
b) If $\mathrm{u}_{\mathrm{n}}>0 \forall \mathrm{n} \in \mathbb{N}$ and $\mathrm{lt}_{\mathrm{n} \rightarrow \infty} \mathrm{n} \log \left(\frac{\mathrm{u}_{\mathrm{n}}}{\mathrm{u}_{\mathrm{n}+1}}\right)=l$, then show that $\sum \mathrm{u}_{\mathrm{n}}$ is divergent if $l<1$.
c) Test the Convergence of the series $\sum_{n=2}^{\infty} \frac{1}{\log n} \quad 5+3+2$
10. a) If $\left\{u_{n}\right\}$ is a decreasing sequence of positive real numbers with $\operatorname{lt}_{\mathrm{n} \rightarrow \infty} \mathrm{u}_{\mathrm{n}}=0$, then show that $\sum(-1)^{\mathrm{n}+1} \mathrm{u}_{\mathrm{n}}$ is convergent.
b) A sequence $\left\{u_{n}\right\}$ is defined by $u_{n+2}=\frac{1}{2}\left(u_{n+1}+u_{n}\right)$ $\forall \mathrm{n} \geq 1$ and $0<\mathrm{u}_{1}<\mathrm{u}_{2}$. Show that the sequence $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ converges to $\frac{\mathrm{u}_{1}+2 \mathrm{u}_{2}}{3}$.

