c) If
$$u_n > 0 \forall n \in \mathbb{N}$$
 and $\lim_{n \to \infty} n \left(\frac{u_n}{u_{n+1}} - 1 \right) = l$,

[4]

show that $\sum u_n$ is convergent if l > 1. 4+3+3

11. a) Find the region of Convergence of the series

$$x + \frac{2^{2}x^{2}}{\underline{|2|}} + \frac{3^{3}x^{3}}{\underline{|3|}} + \frac{4^{4}x^{4}}{\underline{|4|}} + \dots (x > 0).$$

b) If $\{x_n\}$ is a sequence of non-zero real numbers and

$$\lim_{n \to \infty} x_n = x_* (\neq 0) \text{ then prove that } \lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{x_*}.$$

c) Define limit of a sequence.

d) Show that
$$\lim_{n \to \infty} \left(\frac{\sin n}{n} \right) = 0.$$
 5+3+1+1

FIRST B. Sc. EXAMINATION, 2019

(1st Year, 2nd Semester)

MATHEMATICS (HONOURS)

Core - 3

REAL ANALYSIS

Time : Two hours

Full Marks: 50

Use a separate Answer-Script for each part

(25 marks for each part)

PART - I

(Answer any five questions)

- 1. i) Let X be any set. Then show that Card $X \le Card P(X)$.
 - ii) Show that (a, b] and [c, d) have the same cardinality, where a, b, c d are real numbers and a < b, c < d. 3+2
- Let F be an Archimedean ordered field. Show that if F satisfies Cantor's nested interval property then F satisfies lub property.
 5
- 3. Find the derived set of the following sets in R :

i)
$$\left\{ \frac{1}{2^{n}} + \frac{1}{3^{m}} + \frac{1}{5^{p}} : m, n, p \in N \right\};$$

ii) $\left\{ m + n\sqrt{2} : m, n \in Z \right\}$ 2+3

[Turn over

- 4. Let $A, B \subset R$. Then prove that $\overline{A \cap B} \subset \overline{A} \subset \overline{B}$. Give example to show that $\overline{A \cap B} \neq \overline{A} \subset \overline{B}$. 3+2
- Prove that in R finite intersection of open sets is open. Give examples to show that arbitrary intersection of open sets may not be open.
 3+2
- 6. Let S be a non-empty subset of R. If S is a clopen set then show that S = R. 5
- 7. Show that if a subset F of R is compact then every sequence in F has a convergent subsequence in F. Using this justify that the set Q of rationals is not compact. 3+2

PART - II (25 Marks)

Answer Q. No. 8 and any two from the rest

- 8. a) Show that the series $1 + \frac{1}{2} \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \frac{1}{6} + ...$ is divergent.
 - b) Give an example of an unbounded above, bounded below sequence but does not diverge to +∞. Justify your answer.
 3+2
- 9. a) State and prove Cauchy's general principle of convergence of a sequence.

b) If
$$u_n > 0 \forall n \in \mathbb{N}$$
 and $\lim_{n \to \infty} n \log\left(\frac{u_n}{u_{n+1}}\right) = l$,

then show that $\sum u_n$ is divergent if l < 1.

c) Test the Convergence of the series
$$\sum_{n=2}^{\infty} \frac{1}{\log n} = 5+3+2$$

- 10. a) If $\{u_n\}$ is a decreasing sequence of positive real numbers with $\lim_{n \to \infty} u_n = 0$, then show that $\sum (-1)^{n+1} u_n$ is convergent.
 - b) A sequence $\{u_n\}$ is defined by $u_{n+2} = \frac{1}{2}(u_{n+1} + u_n)$ $\forall n \ge 1 \text{ and } 0 < u_1 < u_2$. Show that the sequence $\{u_n\}$

converges to
$$\frac{u_1 + 2u_2}{3}$$
.

[Turn over