## BACHELOR OF SCIENCE EXAMINATION, 2019

(1st Year, 2nd Semester, Old Syllabus)

## MATHEMATICS (HONOURS)

## Mechanics - I

Paper: 2.1
Time : Two hours
Full Marks : 50

Answer q.no. 6 and any three from the rest.

1. (a) If three co-planar forces acting on a rigid body be in equilibrium, then prove that the forces must meet at a point or else all must be parallel to one another. 7
(b) A heavy uniform rod of length $a$ rests with one end against a smooth vertical wall, the other end being tied to a point of the wall by a string of length $l$. Prove that the rod may remain in equilibrium at an angle $\theta$ to the wall, given by

$$
\begin{equation*}
\cos ^{2} \theta=\frac{l^{2}-a^{2}}{3 a^{2}} \tag{8}
\end{equation*}
$$

2. (a) State the laws of statical friction.
(b) A uniform ladder is in equilibrium with one end resting on the ground and the other end against a vertical wall. If the ground and wall both be rough and the co-efficients of friction be $\mu$ and $\mu^{\prime}$ respectively and if the ladder is on the point of slipping
at bothends, show that the inclination of the ladder to the horizon is given by $\tan \theta=\frac{1-\mu \mu^{\prime}}{2 \mu}$.
3. (a) Find the centre of gravity of the homogeneous area bounded by the parabola $y^{2}=4 a x$, the $x$-axis and the ordinate $\mathrm{x}=\mathrm{h}$.
(b) Find the centre of gravity of a uniform solid hemisphere.

7
4. (a) A uniform chain of length $2 l$ is tightly stretched between two points in the same horizontal line at a distance 2a apart. Show that the sag of the chain at its lowest point is $\frac{1}{2} \sqrt{6 a(\ell-a)}$ approximately. 10
(b) Obtain the intrinsic equation of common catenary. 5
5. (a) A body consisting of a cone and a hemisphere on the same base rests on a rough horizontal table, the hemisphere being in contact with the table. Show that the greatest height of the cone, for the stable equilibrium, is $\sqrt{3}$ times the radius of the hemisphere.
(b) A hemisphere rests in equilibrium on a sphere of equal radius. Discuss the stable and unstable equilibrium of the system.
6. Obtain the equation of the central axis of a system of forces acting on a rigid body.

