b) Find the equation of the plane which contains the straight

line $x = \frac{y-3}{2} = \frac{z-5}{3}$ and perpendicular to the plane 2x+7y-3z=1. 4+6

8. a) Find the shortest distance between the straight lines

 $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-5}{4} = \frac{y-4}{4} = \frac{z-5}{5}$.

Hence show that the lines are coplanar.

- b) Find the equation of the sphere described on the join of P(2, -3, 4) and Q(-5, 6, -7) as diameter. 7+3
- 9. Find the centre and the radius of the circle

$$x^{2} + y^{2} + z^{2} - 2y - 4z - 11 = 0$$

and $x + 2y + 2z = 15$. 10

Ex/IM/3S/13/19(Old)

FIRST B. Sc. EXAMINATION, 2019

(1st year, 1st Semester, Old Syllabus)

MATHEMATICS

(ANALYTICAL GEOMETRY)

PAPER : 3S

Time : Two hours

Full Marks: 50

The figures in the margin indicate full marks.

Group - A (20 marks)

Answer *any two* questions. 2×10

- a) Prove that a homogeneous second degree equation always represents a pair of straight lines passing through the origin.
 - b) Find the condition that one of the straight lines given by $ax^{2} + 2hxy + by^{2} = 0$ may coincide with one of the straight lines given by $a'x^{2} + 2h'xy + b'y^{2} = 0$. 5+5
- 2. Reduce the equation $x^2 3xy + y^2 + 10x 10y + 21 = 0$ to its canonical form and determine the nature of the conics. Hence find the centre, eccentricity if any. 10
- 3. a) If a pair of diameters be conjugate with respect to a hyperbola, then they are also conjugate with respect to its conjugate hyperbola.

Group - B(30 marks)

Answer **any three** questions.

- 5. a) The projections of a line segment on the axes are 3, 4, 12. Find the length and the direction cosines of the line.
- b) If (l_1, m_1, n_1) , (l_2, m_2, n_2) be the direction cosines of two mutually perpendicular straight lines, then show that the direction cosines of the straight line perpendicular to both of them are $\frac{\pm (n_1n_2 n_2n_1)}{\pm (n_1n_2 n_2n_1)}$ and 4+6
- 6. a) Find the value of h for which the planes $\frac{3x - 2y + hz - l = 0}{perpendicular to each other.}$
- b) Find the angle between the planes x y + 2z = 9 and 2x + y + z = 7.
- c) A variable plane which is at a constant distance 3p from the origin O cuts the axes in A, B, C. Show that the locus of the origin O the centroid of the triangle ABC is $2+2+\sqrt{-2}+\sqrt{-2}+\sqrt{-2}$
- 7. a) Find the distance of the point (1, -2, 3) from the plane x y + z = 5 measured parallel to the straight line

$$\frac{9}{z} = \frac{\xi}{\lambda} = \frac{7}{x}$$

b) Find the equation of the diameter of the ellipse

 $3x^{2} + 4y^{2} = 5$ conjugate to the diameter y + 3x = 0. 6+4

4. a) Show that the following circles cut each other other

-	$(\lambda + \frac{1}{2}x)$	$\overline{x_{t}} + \frac{1}{2}$	$= 6 + \sqrt{2} - $	pue 0 =	$+z^{X}$	$z + z^{\Lambda}$	$\sqrt{2} + x_{7}$
[(q	pui7	əqt	radical	sixb	fo	əqt	owi
?	_z x puv	$z^{\hat{\Lambda}+z}$	= 9 — JB2 +	0 =			
	$z^{\mathbf{X}}$	$-z^{\Lambda}+$	= 3 + xq7 -	0 =			

 $\overline{x^2 + y^2 - 8x - 10y + 5} = 0.$

() Find the limiting points of the co-axial system defined
$= \varsigma - \Lambda \varsigma + x \zeta + z \Lambda + z \Lambda$ put $0 = 6 + \Lambda \zeta - x \tau + z \Lambda + z \Lambda$

the pair of circles $x^2 + y^2 - 6x - 8y + 5 = 0$ and

3+7+2

circles

[Turn over

3×10