First B. Sc. Examination, 2019

(1st year, 1st Semester, Old Syllabus)

Mathematics

 Paper : IS (Calculus)Time: Two hours
Symbols / Notations have their usual meaning.
Answer any five questions.

1. a) State mean value theorem in Lagrange's form.

Let f be real valued function defined over $[-1,1]$ such that

$$
f(x)=\left\{\begin{array}{cc}
x \cos \frac{1}{x} & , \\
0 \neq 0 \\
0 & , x=0
\end{array}\right.
$$

Does the mean value theorem hold for f in $[-1,1]$?
b) Use mean value theorem of appropriate order to prove that
$\sin x>x-\frac{x^{3}}{3!}$, when $0<x<\pi / 2$.
2. a) State Leibnitz's theorem on successive - Differentiation.

Using this theorem prove that if $y=\cos \left(m \sin ^{-1} x\right)$, then

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0
$$

Also find y_{n} for $\mathrm{x}=0$.
3. a) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{1 / x^{2}}$
b) If $\phi(x)$ be a polynomial in x and λ be a real number, then prove that there exists a root of $\phi^{\prime}(x)+\lambda \phi(x)=0$ between any pair of roots of $\phi(x)=0$.
4. a) Show that the semi-vertical angle of the right cone of given total surface (including area of the base) and maximum volume is $\sin ^{-1}\left(\frac{1}{3}\right)$, when the volune is Maximum.
b) Show that the minimum value of $\frac{(2 x-1)(x-8)}{x^{2}-5 x+4}$ is greater that its local maximum value.
5. a) Find the asymptotes of the curve

$$
y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+y^{2}-x^{2}+2 x-3 y-1=0
$$

b) Find the radius of curvature at the origin of

$$
y^{2}=\frac{x^{2}(a+x)}{(a-x)}
$$

6. a) Test the convergence of the following:
i) $\int_{1}^{\infty} \frac{d x}{x(1+x)}$

$$
\text { i) } \int_{1} \overline{x(1+x)}
$$

ii) $\int_{1}^{\pi} \frac{d x}{1+\cos x}$
b) Define Beta function. Prove that $\mathrm{B}(\mathrm{m}, \mathrm{n})$ is convergent for $\mathrm{m}>0$ and $\mathrm{n}>0$.
7. a) Prove that $\mathrm{B}(\mathrm{x}, \mathrm{y})=2 \int_{0}^{\pi / 2} \sin ^{2 \mathrm{x}-1} \theta \cos ^{2 \mathrm{x}-1} \theta \mathrm{~d} \theta$, Also prove that $\mathrm{B}\left(\frac{1}{2}, \frac{1}{2}\right)=\pi$.
b) Evaluate $\iint_{R} \sin (x+y) d x d y$
over R: $\left\{\begin{array}{l}0 \leq x \leq \pi / 2 \\ 0 \leq y \leq \pi / 2\end{array}\right.$

