BACHELOR OF SCIENCE EXAMINATION, 2019

(1st Year, 2nd Semester, Old Syllabus)
MATHEMATICS (HONOURS)
Differential Equation - I
Paper: $\mathbf{2 . 2}$
Time : Two hours

Symbols and Notations have their usual meanings.
Answer any five questions.

1. (a) Find one solution of a second order linear differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=X(x)$ by charging the independent variable x to z such that $z=f(x)$.
(b) Find general and singular solution of the differential equation $y=2\left(\frac{d y}{d x}\right) x+\left(\frac{d y}{d x}\right)^{2}$.
2. (a) Solve the system of equation $\frac{d x}{d t}+\frac{d y}{d t}+2 y=0$

$$
\frac{d x}{d t}-3 x-2 y=0
$$

(b) Reduce the differential equation
$(x+2)^{2} \frac{d^{2} y}{d x^{2}}+(x+2) \frac{d y}{d x}+4 y=2 \sin \{2 \log (x+2)\}$
to Euler-Cauchy form and hence solve it. $5+5$
3. (a) Reduce the differential equation
$\sin y \frac{d y}{d x}=\cos x\left(2 \cos y-\sin ^{2} x\right)$
to a linear form and hence solve it.
(b) Solve : $x^{2} y^{\prime \prime}+x y^{\prime}+y=\log x \cdot \sin (\log x)$
4. (a) Define integrating factor of a differential equation $M(x, y) d x+N(x, y) d y=0$.
If an integrating factor does exist, is it unique? Justify your answer.
(b) Show that the solution of $\frac{d y}{d x}+P(x) y=\phi(x)$ can be written in the form

$$
y=\frac{\phi}{P}-e^{-\int P d x}\left[c+\int e^{\int P d x} d\left(\frac{\phi}{P}\right)\right]
$$

(C is an arbitrary constant).
(c) State a sufficient condition for existence of the solution of $\frac{d y}{d x}=f(x, y)$.
$(1+3)+5+1$
5. (a) Show that $\frac{1}{F(D)}\left(e^{m x} V(x)\right)=e^{m x} \frac{1}{F(D+m)} V(x)$
(b) Find the orthogonal trajectories of $\frac{x^{2}}{a^{2}}+\frac{b^{2}}{b^{2}+\lambda}=1$, where λ is a parameter.
6. (a) Find particular integral of $\left(D^{2}-1\right) y=x^{2} \cos x$.
(b) Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}+a^{2} y=\tan a x$
7. (a) Solve : $\frac{d x}{m z-n y}=\frac{d y}{n x=\ell z}=\frac{d z}{\ell y-m x}$
(b) Solve : $x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1$
(c) State a necessary and sufficient condition for a differential equation of first order and first degree to be exact.

