7. Show that the equation of the right circular cylinder whose guiding curve is the circle through the points $(1,0,0)$, $(0,1,0),(0,0,1)$ is $x^{2}+y^{2}+z^{2}-y z-z x-x y=1$.

First B.Sc. Examination, 2019

(1st Year, 1st Semester, Old Syllabus)

Mathematics (Honours)

Paper-1.2

(Geometry)
Time: Two hours
Full Marks: 50
Use a separate answerscript for each Part.

Part -I (20 Marks)

Answer any two questions

1. a) Show that the necessary and sufficient conditions that the general equation of second degree in x, y should represent a pair of straight lines is

$$
\left|\begin{array}{lll}
\mathrm{a} & \mathrm{~h} & \mathrm{~g} \\
\mathrm{~h} & \mathrm{~b} & \mathrm{f} \\
\mathrm{~g} & \mathrm{f} & \mathrm{c}
\end{array}\right|=0
$$

b) Prove that the transformation of rectangular axes which converts $\frac{x^{2}}{p}+\frac{y^{2}}{q}$ into $a x^{2}+2 h x y+$ by 2, will convert

$$
\frac{x^{2}}{p-\lambda}+\frac{y^{2}}{q-\lambda} \text { to }
$$

$$
\frac{a x^{2}+2 h x y+b y^{2}-\lambda\left(a b-h^{2}\right)\left(x^{2}+y^{2}\right)}{1-(a+b) \lambda+\left(a b-h^{2}\right) \lambda^{2}} \quad 6+4
$$

2. a) Show that the straight lines joining the origin to the points of intersection of the curves $a x^{2}+2 h x y+b y^{2}+2 g x=0$ and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$ will be at right angle if $g\left(a^{\prime}+b^{\prime}\right)=g^{\prime}(a+b)$.
b) If the equation of the conic be $a x^{2}+2 h x y+b y^{2}+c=0$, show that origin is the centre.
c) Reduce the equation $x^{2}-6 x y+9 y^{2}+4 x-12 y+4=0$ to the canonical form and determine the type of the conic represented by it.
$3+2+5$
3. a) Find the general equation of conics confocal with the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$
b) Prove that equation to the hyperbola, passing through the points on the ellipse whose eccentric angle is α and which is confocal with the ellipse, is $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=a^{2}-b^{2}$
c) If PSP^{\prime} and QSQ^{\prime} be any two focal clords of a conic which are at right angles to one another, prove that $\frac{1}{\mathrm{SP}^{\mathrm{SP}}}{ }^{\prime}+\frac{1}{\mathrm{SQ} . \mathrm{SQ}^{\prime}}=\mathrm{a}$ constant. Where S is the focus.

$$
2+4+4
$$

Part - II (30 marks)

Answer any six questions
$6 \times 5=30$

1. A variable plane passes through a fixed point (α, β, γ) and meets the axes of reference in $\mathrm{A}, \mathrm{B}, \mathrm{C}$ show that the locus of the point of intersection of the planes through A, B, and C parallel to the coordinate plane is $\frac{\alpha}{x}+\frac{\beta}{y}+\frac{\gamma}{z}=1$.
2. Show that the four points $(0,-1,0),(2,1,-1),(1,1,1)$ and $(3,3,0)$ are coplanar and obtain the equation of the plane.
3. Prove that the distance of the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=5$ from the point $(-1,-5,-10)$ is 13 .
4. Find the equations of the image of the line $\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{4}$ in the plane $3 x+y-4 z+21=0$.
5. Find the equation of the sphere which passes through the origin and touches the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=56$ at the point $(2,-4,6)$.
6. Find the locus of the vertices of the right circular cones that passes through the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1, \mathrm{z}=0$.
