Ex/UG/Sc./CORE/GEOL/TH/04/2019

BACHELOR OF SCIENCE EXAMINATION, 2019

(1st Year, 2nd Semester)

GEOLOGICAL SCIENCES

Structural Geology

Paper: CORE: 4

Time: Two hours Full Marks: 50

Use separate Answer Script for each part.

PART - I (25 marks) Answer any *five* questions.

- 1. (a) State the fundamental concept in continuum mechanics.
 - (b) Using examples express the displacement and temperature gradients at a point in a continuum.
 - (c) Is the eleasticity of an anisotropic crystal a scalar quantity? Justify the answer. 2+2+1
- 2. (a) With illustrations explain the difference between a pathline and a streamline in fluid flow.
 - (b) Describe the principal types of rigid body motion with appropriate geological examples. 2+3
- 3. (a) Would you consider deformation of a body as a scalar quantity? Explain the answer.

(Turn Over)

- (b) Show that a straight line will remain a straight line after homogeneous deformation in a continuum space.
- (c) In a Cartesian space a deformable body is subjected to a displacement field. What is the condition required for rotational deformation in the body? 2+2+1
- 4. (a) A soft object is dropped in vacuum under the Earth's gravity field. Can the object undergo distortion? Explain with a dynamic analysis.
 - (b) Express the stress on a plane.
 - (c) Prove that the stress at a point is not a vector quantity. 2+1+2
- 5. (a) Two rectangular objects in 2D space are subjected to normal and stresses. Show the differences in their deformed shapes.
 - (b) A stress matrix is written as : $\begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{yy} \end{bmatrix}$. Derive equations to show the normal and the shear stresses on a plane at an angle of θ to x-axis.
 - (c) Find the orientations of the principal axes of stress, and the plane of maximum shear stress. 1+2+2

- (b) What is the mean stress?
- (c) Comment on this state of stress. Is it reasonable? Explain your answer. 2+1+2
- 12. Write short note on (any *two*): (a) Fault gauge; (b) Splay fracture; (c) Transcurrent fault; (d) Transform fault.
- 13. What is meant by the term Griffith cracks, and how do they affect the rock strength?
- 14. Define the following terms with proper figures (any *two*) : (a) Net-slip (b) Net-Separation (c) Nappe complex (d) Domino fault. 2.5+2.5
- 15. What is the difference between displacement vector and displacement field (describe with suitable figures)? 5

____ X ____

(3)

PART - II (25 marks)

Answer any *five* questions.

- 9. The following questions apply to the "ramp & flat" model in thrust belts:
 - (a) Draw a cross section of a hanging wall (or fault-bend fold) anticline and its associated fault. Also label the ramps and flats. Show the amount of dip separation.
 - (b) Assuming that Anderson's Law holds and that the coefficient of internal friction is 0.73, what angle would you expect the fault ramps to form at and why?

 3+2
- 10. What are the different modes of fractures (describe with Mohr circle)? 2+2+1
- 11. The stress tensor at the Earth's surface, referred to a North-East-Down coordinate system, is given by the following matrix:

$$\sigma_{ij} = 30 \ 20 \ 40$$

(a) What are the normal and shear stresses on a plane that is parallel to the surface of the Earth?

- 6. (a) A two-dimensional body is subjected to the following linear transformations: x = ax + by and y = cx + dy. Derive the equation to prove that the body will not experience any rigid rotation when b = c.
 - (b) Using the same transformation equations, determine the orientation of the principal axes of strain ellipse.

 3+2
- 7. (a) With the help of a sketch explain the principal curvatures of a fold surface.
 - (b) How would you define a cylindrical curvatures?
 - (c) Does a crest point always coincide with the hinge point? Justify the answer.
 - (d) Describe the principal geometrical parameters used in Ramsay's classification of folds. 1+1+3
- 8. (a) A rock layer is buckled to produce folds. Describe the characteristic features of these folds.
 - (b) A layer is folded by pure flexural deformation. Show the strain distributions in the folded layer.
 - (c) Using sketches explain the following phenomena: cleavage fanning and cleavage refraction. 2+1+2