Ex/CHEM/H/32/XVII/77/2019

FINAL B. SC. EXAMINATION, 2019

(2nd Semester)

CHEMISTRY (HONOURS)

PAPER - XVII

INORGANIC CHEMISTRY

Full Marks : 50

- 1. a) Write a brief account on *any two* of the following:
 - i) Cryptands and their utilities.
 - ii) Synthesis of [NMe₄]₂[Si(oxalate)₃] starting from SiCl₄.
 - iii) Synthesis and structure of tris (diethy ldithiocarbamato) arsenic (III).
 - b) Describe the structure of *any two* of the following :
 - i) Calcium oxalate dihydrate
 - ii) $[Pb(acac)_2]$

Time : Two hours

- iii) As₆Ph₆ $(2\frac{1}{2}+2\frac{1}{2})+(1\frac{1}{2}+1\frac{1}{2})$
- 2. a) Describe the general method of preparation for a cross linked two dimensional silicone clearly mentioning the starting materials involved.
 - b) What are silicone oils and how are they prepared?
 - c) How is N, N, N trimethyl borazine prepared?
 - d) What are the two structural forms of Boron Nitride ?

[Turn over

Mention the carbon analogues of these two forms. Under what condition does the form which is known to show electrical conductivity, convert to the harder form ? Compare the harder form of Boron Nitride to its carbon analogue in terms of mechanical strength.

- e) What happens when [NPCl₂]₃ reacts with catechol in the presence of Et₃N? Why is a similar reaction not known for resorcinol?
- f) Discuss structure and bonding in [NPCl₂]_{3.} $1\frac{1}{2}+1\frac{1}{2}+1+2+1\frac{1}{2}+1\frac{1}{2}$
- 3. a) Interpret the C-C and Pt C bond distances in Pt (C₂H₄)Cl₃ (d_{c-c}, 1.37 Å, d_{Pt-C}, 2.55 Å), and Pt (C₂H₄)(PPh₃)₂ (d_{C-C}, 1.43 Å, d_{Pt-C}, 2.11 Å) and Pt (C₂(CN)₄(PPh₃)₂ (d_{c-c}, 1.49 Å, d_{Pt-C}, 2.09 Å)
 - b) Give a brief account on the structure and bonding in metal-allyl complexes.
 - c) Give examples of η^1, η^3 and η^5 cyclopentadienyl complexes. Give an example of triple-decker cyclopentadienyl complex.
 - d) Give examples of 1,1 and 1,2- migratory insertion reactions.
 2+3+(2+1)+1

d) Determine the relative π -acidity order of L from the v_{co} value of the following [W(CO)₅L] complexes along with the illustration of π bonding for {OC–W–L} moiety.

The v_{CO} of **CO** lying *trans* to L.

e) Give a synthetic scheme of Me-C(O)Mn(CO)₅ starting from Mn₂(CO)₁₀ and provide the mechanistic aspect of the final reaction. 2+(2×3)

- b) Using 18-electron rule
 - i) find the value of 'x' of the following complexes (any one).

```
[Co_3(CO)_x(CH)] [Fe_4(CO)_x(Cp)_2]
```

ii) determine the number of metal—metal bonds (any one), $C_P = Cyclopentadiene$.

c) Match the v_{co} frequency with the relevant complex with justification and comment on the nature of bonding of CO (v_{co} of free CO : 2143 cm⁻¹)

Complex	$v_{co} \text{ cm}^{-1}$
$[Au(CO)_2]^+$	1836
[(Cp)Ni(CO)] ₂	2000
$[Cr(CO)_6]$	2217

- 4. a) Comment on the ligand field strength of dioxygen and its effect on magnetic behavior in the case of oxy-haemoglobin.
 - b) Draw the schemes and assign the different modes of dioxygen binding.
 - c) Write down Three chemical reasons of "As" poisoning.
 - d) Explain the prevention mechanism of carbon monoxide poisoning of haemoglobin.
 - e) Which properties of chlorophyll make it an antenna in the photosynthesis process ? $1\frac{1}{2}+2+1\frac{1}{2}+2+1$
- a) How does partial molal volumes of aquated lanthanoides (in 3 +oxidation states) vary with their fⁿ configurations? Explain.
 - b) Discuss lanthanoid contraction in terms of relativistic effect.
 - c) Between La³⁺ (aquated) and Lu³⁺ (aquated) which one is more acidic? Explain. $3+3\frac{1}{2}+1\frac{1}{2}$
- 6. Attempt 6a and any three from the rest :
 - a) Discuss the bonding of metal carbon bond in $[Fe(CO)_3(CN)_2]^{2-}$ from the IR spectrum and crystallographic data (Fe-CO: 1.78 Å, Fe–CN: 1.93 Å) and hence predict its structure. Justify your answer with the Bent's rule.