Inter B.Sc. Examination, 2019 (1ST SEMESTER) **CHEMISTRY (HONOURS) INORGANIC CHEMISTRY OLD SYLLABUS** Paper - VII

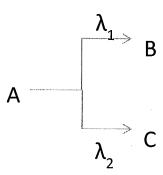
TIME: 2HRS.

FULL MARKS: 50

ATTEMPT ALL QUESTIONS

1. (a) Show:

$$t_{av} = \frac{1}{\lambda}$$


Where t_{av} is average half-life period and λ is the decay constant.

- [2]
- Explain the heavy ion projectile induced reactions in the light of nucleon transfer and (b) particle emission reactions. [2]
- (c) What is branching decay?

[2]

$$Showt_{\frac{1}{2}} = \frac{0.693}{\lambda_1 + \lambda_2}$$

For

- 'In the heavier nuclei the fission and spallation reactions may occur simultaneously— (d) explain with example. [2]
- (e) How would you determine the Avogadro's number (N) from radioactive decay measurement? [2]

[Turn over

(f)	The half-life of a radio element is 231 min. How long will it take for 9/10th frac sample of this element to decay?	ction of a 2½]	
2. (a)	$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O (E^0 = 1.23 \text{ V})$		
	$Cl_2 + 2e^- \implies 2Cl^- (E^0 = 1.36 \text{ V})$		
	The E ⁰ values suggest than MnO ₂ should not oxidize Cl ⁻ to Cl ₂ , but yet it happe Explain.	ns.	
		$[3\frac{1}{2}]$	
(b)	The E^0 value of the Cu^{2+}/Cu^0 half-cell is 0.34 V, and that of the Cu^{2+}/Cu^+ half-0.15 V. Find out the E^0 of the Cu^+/Cu^0 half-cell. [2]	-cell is	
	<u>OR</u>		
	State and explain Brönsted theory of acids and bases.	[2]	
(c)	Describe, with appropriate example, the basis of choosing a suitable redox indicated redox titration. [3]	cator for a	
(d)		½] ½]	
3.	(a) Explain the bonding pattern in [Mo ₂ Cl ₈] ⁴⁻ . why it is intense red in colour.	[3½]	
	(b) Draw MO diagram of O2. Mention its different molecular states, spin multiplicity and		
	chemical reactivity at different molecular states.	[3]	
	(c) CO is quite reactive and acts as a potential $pi(\pi)$ acid ligand - Justify	[3]	
	(d) Mention type of bonding, nodal plane and centre of inversion present in the	following	
	types of atomic orbitals overlapping		

[3]

(i) d_{xy} and d_{xy} (ii) p_y and p_y (iii) p_x and s

[2]		
	[2]	
ng filled $\pi_{ m d}$ orbi	tals. Give	
[2]	[2]	
solution Suga	rest a	
	,051 4	
2]		
[½	2]	
	ng filled π _d orbi [2] 4 solution. Sugg [2]	