4. Attempt question (a) and give answer of *any four* from rest of the following questions: 4+(3×4)

a) Write electronic configuration of the following elements.

(i) Cr (ii) Cu (iii) Sc (iv) V 4

- b) Calculate the de Broglie wavelength of a bullet $(m = 2 \times 10^{-3} \text{ kg})$ moving with a speed of 300 ms⁻¹. 3
- c) What is the minimum uncertainty in the velocity determination of an electron if we want to locate it within 0.01 Å of the 1st Bohr radius in a hydrogen atom? 3
- d) The normal Ionization Potential (I.P) of hydrogen atom is 21.79×10^{-19} J. What will be the value of the I.P. when electron is raised to the 2s level?
- e) Find out the possible term symbols (L-S Scheme) for carbon atom.
- f) Calculate the exchange energy (in terms of K) for three p-electrons when (i) Hund's rule is obeyed (ii) maximum pairing occurs.

FIRST B. Sc. Examination, 2019

(1st Semester, Old Syllabus)

CHEMISTRY (SUBSIDIARY)

PAPER - IS

Time: Two hours Full Marks: 50

Use a separate answerscript for each group.

GROUP-A

- a) State two experimental evidences from which we can conclude that at moderate temperature and pressure no gases behave ideally.
 - b) Indicate the Kinetic theory postulates that must be modified to explain the behavior of real gas. 2
 - c) What do you mean by mean and root mean square velocity for a gas molecule?
 - d) Using the relation $PV = \frac{1}{3}mn\overline{c^2}$, prove that for an ideal gas the mean kinetic energy for a molecule is directly proportional to its absolute temperature.
 - e) What do you mean by critical temperature, pressure and volume of a gas?
 - f) Near critical temperature, a gas does not follow the van-der Waals' gas equation Explain or criticize. 2

[Turn over

g) For carbon dioxide $T_c = 300$ K and its critical density is 0.45 gm/c.c. Calculate van der Waals constants 'a' and 'b'.

GROUP-B

- 2. a) Draw the energy profile diagram of S_N^1 and S_N^2 type reactions and mention the starting material, intermediate, and product with proper example.
 - b) Explain the inertness of α -halocarbonyl compounds (R CO CH₂X) towards S_N^1 reaction.
 - c) Comment on the relative stabilities of the following pairs of carbocations (answer *any two*). 2×2
 - i) $\overset{\oplus}{C}(CH_3)_3$ and $\overset{\oplus}{C}H(CH_3)_2$
 - ii) $\left(\begin{array}{c} \\ \\ \end{array} \right)$ $\left(\begin{array}{c}$
 - iii) $\longrightarrow_{\mathrm{CH}_2}^{\oplus}$ and $\longrightarrow_{\mathrm{CH}_2}^{\oplus}$
 - d) Compare the acidic/basic strength of the given pairs of compounds with proper justification. (any two) 2×2
 - i) basicity of NH₂ and NEt
 - ii) acidity of CF₃CO₂H and CF₃CH₂COOH
 - iii) acidity of m- and p- nitrophenol.

e) Predict the product(s) with plausible mechanism (any one):

i)
$$H_3C$$
 CH_3 CH_2 $-OH$ \xrightarrow{HBr} CH_3

GROUP-C

Answer Question No. 3 or Question No. 4.

- 3. i) Calculate the exchange energy for d³ and p³ electronic configurations.
 - ii) Find the ground state Term Symbol for $_7N$ and $_{11}Na$. 3
 - iii) Show that Bohr's 2nd postulate involving the quantization of the angular momentum can be derived from de Broglie's hypothesis.
 - iv) Explain the presence of 10 lines in the Na spectrum in weak magnetic field.
 - v) Write the electronic configuration of isoelectronic Mn and Co²⁺ (Both having 25 electrons) 2
 - vi) Calculate the wave length of the 4th line in the Balmer series of He⁺ spectrum.

[Turn over