6. a) Is $\mathrm{H}-\mathrm{Cl}$ bond covalent? Explain your answer.
b) Draw the structures of $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and XeF_{6}. Explain the difference in terms of VSEPR theory. 3
c) Draw the hybrid orbitals of $\mathrm{B}-\mathrm{H}-\mathrm{B}$ motif using p_{x} function of B and 1 s function of H. Arrange qualitatively in the energy axis.

3

First B. Sc. Examination, 2019

(2nd Semester, Old Syllabus)

Chemistry (Honours)

Paper - III

Time: Two hours
Full Marks : 50

Use a separate answerscript for each Group.

GROUP-A

1. Answer any three :
a) Classify the following as extensive or intensive properties :
(i) heat capacity; (ii) chemical potential, (iii) density, (iv) mole fraction.

Adiabatic free expansion of an ideal gas must be isothermal : Justify/Criticize.
$2+2$
b) For an ideal gas show that adiabatic curve is steeper than isothermal curve on a P-V indicator diagram.
Find coefficient of volume expansion (α) and coefficient of compressibility (β) for an ideal gas at 298 and 1 atm .
c) Show that $(\partial \mathrm{P} / \partial \mathrm{T})_{\mathrm{v}}=\alpha / \beta, \alpha=$ coefficient of volume expansion and $\beta=$ coefficient of compressibility.
84 g of nitrogen initially at 300 K and 10 atm pressure expands adiabatically against a constant pressure of 1 atm. Assuming ideal behaviour calculate the final temperatue. $\quad 2+2$
d) For ideal gas one can always write ; $\mathrm{dU}=\mathrm{C}_{\mathrm{v}} \mathrm{dT}$: Justify/ criticize.
e) For a reversible polytropic process described by the general relation $\mathrm{PV}^{\mathrm{n}}=$ Constant, show that for ideal gas

$$
\begin{equation*}
\mathrm{W}=\frac{\mathrm{RT}}{(\mathrm{n}-1)}\left\{1-\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{n}-1}{\mathrm{n}}}\right\} . \tag{4}
\end{equation*}
$$

2. Answer any one:
a) Show that for a reversible adiabatic change involving an ideal gas $\mathrm{TV}^{\gamma-1}=$ constant ; where the symbols have their usual meaning.

One mole of a mono-atomic ideal gas at 300 K is compressed adiabatically and reversibly to one fourth of its original volume. What is the final temperature of the gas? Also calculate $\Delta \mathrm{H}$.
b) Show that $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\left[\mathrm{V}-(\partial \mathrm{H} / \partial \mathrm{P})_{\mathrm{T}}\right](\partial \mathrm{P} / \partial \mathrm{T})_{\mathrm{V}}$.

Show that dP is an exact differential for the relation $\mathrm{P}(\mathrm{V}-\mathrm{b})=\mathrm{RT}$
$3+2$

GROUP - B

3. a) Answer anytwo of the following questions:
i) " $(2 R, 3 R)$-3-Bromo-2-butanol, on treatment with HBr produces racemic 2, 3-dibromobutane" - Justify the statement mechanistically.

GROUP-C

Answer any Two Questions

4. a) Draw the structures of $\mathrm{CH}_{3}{ }^{-}$and $\mathrm{CF}_{3}{ }^{+}$and comment on the difference, if any.
b) Explain the bonding in Na metal and explain its conductivity.
c) Define dipole moment and comment on the dipole moment of the ozone.

2
d) Explain why two 's' orbitals cannot form a pi bond although two p-orbitals can form.
5. a) Calculate the electron affinity of chlorine from the BornHaber cycle, given the following data : lattice energy $=-$ $774 \mathrm{~kJ} / \mathrm{mole}$, I.P. of $\mathrm{Na}=495 \mathrm{~kJ} / \mathrm{mole}$, heat of sublimation of $\mathrm{Na}=108 \mathrm{~kJ} /$ mole, energy for bond dissociation of chlorine $\left(\mathrm{Cl}_{2}\right)=240 \mathrm{~kJ} / \mathrm{mole}$, heat of formation of $\mathrm{NaCl}=410 \mathrm{~kJ} / \mathrm{mole}$.

4
b) Predict the bond orders of $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{2-}, \mathrm{O}_{2}$ using MO theory.
c) The B-F bond energy in BF_{3} is $646 \mathrm{~kJ} /$ mole but that of NF_{3} is only $280 \mathrm{~kJ} / \mathrm{mole}$. Explain.
c) i) Optical rotation of a solution of enantiopure molecule F in the presence of catalytic amount of a base slowly changes to zero - Justify the observation. 2

ii) Draw the wedge structure of L-2-aminobutyric acid.
d) Predict the product(s) with plausible mechanism (any two) :
$1 \frac{1}{2} \times 2$
i)

ii)

iii) threo-1-Bromo-1, 2-diphenylpropane
(for this reaction, mechanism is not necessary).
ii) Draw the conformers in Newman projection of active 2, 3- butanediol, and comment on the most stable conformer with justification.
iii) An organic compound of molecular weight 100 has specific rotation $+120^{\circ}$ (observed at $27^{\circ} \mathrm{C}$ and sodium D-line).

Its optical rotation, measured in a 10 cm cell is $+1.2^{\circ}$. Calculate the molar concentration of the compound.
b) i) Draw the structure of an R-configured modecule in Fischer projection in which the asymmetric carbon is attached with the following four groups :
$\mathrm{CH}_{2} \mathrm{CD}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CHO} \& \mathrm{C} \equiv \mathrm{N}$. 1
ii) Find out the symmetry elements present in the following molecules :
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$;

B

C
iii) Assign R / S or E / Z (as applicable) to the following examples:

