EX/PROD/T/314/2019

B.PRODUCTION ENGINEERING EXAMINATION, 2019.

(3rd Year, 1st Semester)

PLANT LAYOUT AND PRODUCT HANDLING

<u>Time: 3hrs.</u> <u>Full marks: 100.</u>

(Attempt any one from (a), (b) and (c) in Question-1.)

1.(a) Describe the following charts and diagrams and state their applications

In layout planning: (i) REL diagram;

(ii) space-Relationship diagram;

(iii) From-To Chart.

(3X5=15)

- (b) Briefly **explain** the following type of layouts stating their characteristics and applications with **neat sketches**:
 - (i) Fixed /Static layout;

(iii) Product layout;

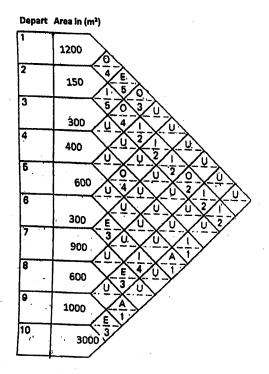
(ii) Group/Cellular layout;

(3X5=15)

- (c) From the given REL-Chart as shown in FIGURE-1,
 - (i) Evaluate the TCR of all the departments;
 - (ii) Construct activity relationship diagram.

(7+8=15)

[Turn over


(Attempt any two from (a), (b), (c) and (d) in Question-2.)

- 2.(a) From the given REL Chart as shown in <u>FIGURE-2</u>, make a layout usingCORELAP. (20)
 - (b) Based on the data given in <u>FIGURE-3 (i),(ii) and (iii)</u>, Use the **CRAFT** pairwise interchange techniques to obtain the final **CRAFT layout**, Department **C and E** are to be **fixed** in location. (20)
 - (c) Use ALDEP procedure to determine the Layout vector, Construct and evaluate the layout for the facility based on the REL Chart as shown in FIGURE-4, with the department dimensions. The dimensions of the facility are 10X18. Use the sweep width of 2 and the minimum acceptable level of importance 'E'. The closeness values: A=64, E=16, I=4, O=1, U=0 and X=-1024.

(Attempt any two from (a), (b) and (c) in Question-3.)

- 3.(a) (i) **Draw neat sketch** of a **Suction type Pneumatic conveying** system and **explain** its operation. Explain the significance of "pick up velocity". (8)
 - (ii) Discuss the advantages and applications of a Hydraulic conveying System. (7)
 - (b) **Discuss** the operation and **application** of the following product handling equipments:
 - (i) Upward Roller Conveyor;

(i	i) Scre	ew Conveyors;			
(i	ii) Belt	t Conveying Sy	stem.	(3X5=15)	
			centrifugal discha ading and unloadir	rge type Bucket Eleva ng. (7.5)	tor and
	(iii)	With the help	of neat sketches ((7.5)	explain the operation	of Roller
		(Attempt any	one from (a) and	(b) in Question-4.)	
4.(a) (i)	What is	an AGVS ? Exp	lain its routing sys t	tem	(7)
(ii) Briefly (Transfe	-	ferent methods of	Automated Workpart	(8)
(b) (i)	State a r	nd explain the	principles of prod u	uct handling.	(7)
(ii)		how Robots ang application.	re applied in differ	ent product	(8)
					[Turn over

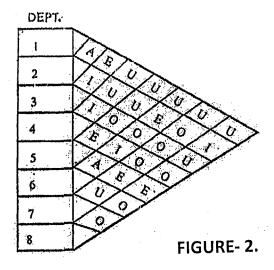
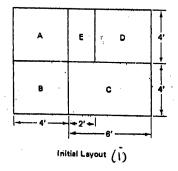



FIGURE- 1.

K	-					
From	1 A	.B	С	۵	ε	
A	1	1	2	2	0	
В	0		2	0	0	
С	2	0		0	0	
D	3	٥	١,1		٥.	
E	0	0	0	0	1	
		Flow	Data	(īij	•	•

To From	A	8	С	D	E
, A		1	1	1	1
В	1		1	t.	1
С	1	1		1	1
D	1	1 -	1		1
E	1	1	1	17	
		Cost	Data	(111)	د

FIGURE- 3.

	Dept.	Area
	1	12,000
	2	8000
	3	6000
	4	12,000
	5	8000
	. 6	12,000
Į	7	12,000
-		

FIGURE- 4.