BACHELOR OF PRODUCTION ENGINEERING EXAMINATION - 2019 (OLD)

(2ND YEAR 1ST SEMESTER, SUPPLEMENTARY, OLD)

MATHEMATICS - VS

FULL MARKS: 100 TIME: 3 HOURS

Answer any *six* questions. Four marks are reserved for neatness. (Notations have their usual meanings)

- 1. (a) Prove that the function $u = e^{-2xy}Sin(x^2 y^2)$ is harmonic. Find a function v such that f(z) = u + iv is analytic. Express f(z) in term of z.
 - (b) Determine the analytic function whose real part is $\sin 2x/(\cosh 2y \cos 2x)$. 9+6
- 2. (a) Show that the polar form as Cauchy-Riemann equations are

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

Hence deduce that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$.

(b) Find the analytic function whose real part is $y + e^x \cos y$

10+6

- 3. (a) State and prove Liouville's theorem.
 - (b) Show that the function $f(z) = \cos 2z$ satisfies Cauchy-Riemann equations. 9+7
- 4. (a) Prove that if f(z) is analytic in a region R and on its boundary C, then

$$\oint_c f(Z) \ dz = 0.$$

(b) Evaluate $\oint_{C} \frac{\cos z}{z^3 + z} dz$ over the circle |z| = 5 which is C

(c) Evaluate
$$\int_0^{1+i} (x^2 + iy) dz$$
 along the paths $y = x$ and $y = x^2$. 5+6+5

5. (a) Show that for a Legendre function $P_n(x)$

$$(1-2xh+h^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} h^n P_n(x)$$

(b) Prove that
$$(2n+1)x P_n(x) = (n+1)P_{n+1}(x) + nP_{n-1}(x)$$
. 10+6

Turn over

- 6. (a) Solve $\frac{d^2y}{dx^2} + (x-1)\frac{dy}{dx} + y = 0$, in powers of x.
 - (b) Express $f(x) = 4x^3 + 6x^2 + 7x + 2$, in terms of Legendre polynomials. 9+7
- 7. (a) Prove that

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$$

(b) Prove that

$$J'_n(x) = \frac{1}{2} [J_{n-1}(x) - J_{n+1}(x)]$$
 10+6

8. (a) Show that for a Legendre function $P_n(x)$

$$(1-2xh+h^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} h^n P_n(x)$$

(b) Prove that
$$x P'_n(x) = P'_{n-1}(x) + nP_n(x)$$
. 10+6