B.E. PRODUCTION ENGINEERING SECOND YEAR FIRST SEMESTER - 2019

Subject: ANALYSIS & SYNTHESIS OF MECHANISMS

Time : Three Hours Full Marks: 100

Answer any five questions

- Q1.a) Prove that i) minimum number of binary links in a constrained mechanism with simple hinges is four, ii) maximum number of hinges on one link in a constrained mechanism with N links is N/2 2X5
- b) Explain the following (any two): i) Aronhold Kennedy theorem, ii) Coriolis component, iii) Chebyshev's spacing
- Q2.a)Determine the DOF of the three linkages shown in Fig.I

6

- b) What is an 'Equivalent Linkage'? Draw an equivalent linkage of the linkage shown in Fig.II 7
- c) What is 'Kinematic Inversion'? Make sketch of two kinematic inversion of Slider-Crank mechanism. 7
- 3. . Determine the angular velocity at point B,C & D of the mechanism shown in Fig.III . Also evaluate the Angular velocity of link $5\ \&\ 6$
- 4. Construct the profile of a disk Cam with translating roller follower undergoing S.H.M. using the following data: Base Circle diameter = 15 cm, Roller diameter = 1.5 cm, lift = 5 cm in 180° of cam rotation & return in 135° and rest is dwell. Cam rotates in clockwise direction at 300 rpm.
- 5.Design a slider crank mechanism such that the displacement of the slider is proportional to the square of the crank rotation in the interval 30° < θ < 150° . Use three point Chebyshev spacing.
- 6.a) With suitable examples classify gears on the basis of : i) position of shafts, ii) form of tooth profile.

 What is a 'Reverted Gear Train'?
 - b) Two straight teeth bevel gears having 32 and 48 teeth are to be mounted on shafts whose axes are at an angle of 120° with each other. Determine the pitch angles of the gears.
- c) In a machine, a wide roller, 250 mm in diameter is mounted on shaft A which is driven by a motor carrying a pulley B of 150 mm diameter. The pulley in turn drives another pulley of 1200 mm diameter mounted on shaft C. On the same shaft a spur gear of 20 teeth is mounted, which is meshed with a spur gear of 160 teeth mounted on shaft D. The shaft D also carries a spur gear of 20 teeth which drives a 30 teeth gear on shaft A through an idler of 112 teeth mounted on shaft E. Sketch the arrangement and determine the speed of a belt conveyor running on the wide roller.

20

B.E. PRODUCTION ENGINEERING SECOND YEAR FIRST SEMESTER - 2019

Subject: ANALYSIS & SYNTHESIS OF MECHANISMS

Time: Three Hours Full Marks: 100

Answer any five questions

- 7. For the Linkage shown in Fig.IV determine the acceleration of the slider 6 and angular acceleration of Link 3 and 5.
- 8.a) Classify Cam followers with (suitable diagrams) according to : i) it's movement w.r.t. the Cam & ii) Nature of its surface in contact with the Cam surface.
- b) For the same Cam Follower combination of Q.4, determine the Displacement, Velocity, Acceleration & Jerk of the follower for Cam rotation of 30°, 60°, 90° & 120°. Draw the degree of Cam rotation Vs. Velocity and Acceleration graph.
- 9. The three conditions to be satisfied by a Four-bar linkage are : $\theta_2 = 60^\circ$, $\theta_4 = 120^\circ$, $\phi_2 = 4$ radian/second, $\phi_4 = 3$ radian/second, $\phi_2 = -2$ radian/sec.², $\phi_4 = 0$. Determine the link length ratios.

Full Marks: 100

B.E. PRODUCTION ENGINEERING SECOND YEAR FIRST SEMESTER - 2019 Subject: ANALYSIS & SYNTHESIS OF MECHANISMS

Time: Three Hours

Answer any five questions

B.E. PRODUCTION ENGINEERING SECOND YEAR FIRST SEMESTER - 2019 Subject ANALYSIS & SYNTHESIS OF MECHANISMS

Time: Three Hours

Full Marks: 100

Answer any five questions

02 A = 6 cm AB = 30 cm 04 B = 12 cm BC = 30 cm 02 04 = 32 cm \(\psi_2 = 150 \) RPM

FIGJV