12. a) Expand sinh x in an infinite series in powers of x.
b) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^{2}}}$.
13. a) If $u=f\left(x^{2}+2 y z, y^{2}+2 z x\right)$, prove that

$$
\left(y^{2}-z x\right) \frac{\partial u}{\partial x}+\left(x^{2}-y z\right) \frac{\partial u}{\partial y}+\left(z^{2}-x y\right) \frac{\partial u}{\partial z}=0 .
$$

b) If $u=\cos ^{-1}\{(x+y) /(\sqrt{x}+\sqrt{y})\}$, show that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+\frac{1}{2} \cot u=0
$$

14. a) Find the maximum and minimum values of

$$
x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x
$$

b) If $\mathrm{y}=\mathrm{x}^{\mathrm{n}-1} \ln \mathrm{x}$, then show that

$$
y_{n}=\frac{(n-1)!}{x}
$$

Bachelor of Engineering in Production Engineering

 Examination, 2019(1st Year, 1st Semester, Old)

Mathematics - I

Time: Three hours
Full Marks: 100
(50 marks for each Part)
Use a separate Answer-Script for each Part

PART - I

(Symbols/Notations have their usual meanings)
Answer any five questions.

1. a) Determine the conditions for which the system

$$
\begin{aligned}
& x+y+z=1 \\
& x+2 y-z=b \\
& 5 x+7 y+a z=b^{2}
\end{aligned}
$$

admits of (i) only one solution, (ii) no solution, (iii) many solutions.
b) Use Laplace method to prove the identity

$$
\left|\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
-\mathrm{b} & \mathrm{a} & \mathrm{~d} & -\mathrm{c} \\
-\mathrm{c} & -\mathrm{d} & \mathrm{a} & \mathrm{~b} \\
-\mathrm{d} & \mathrm{c} & -\mathrm{b} & \mathrm{a}
\end{array}\right|=\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+\mathrm{d}^{2}\right)^{2} .
$$

[Turn over

เəл๐ $\left.\operatorname{unn}_{L}\right]$

7. a) Find the eigenvalues and the corresponding eigenvectors of the following matrix :

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

b) If $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{\mathrm{n}}$ are the eigenvalues of a non-singular matrix A of order n , find the eigenvalues of A^{-1}. $6+4$
b) Find the range of values of x for which

$$
y=x^{4}-6 x^{3}+12 x^{2}+5 x+7
$$

is concave upwards or downwards. Find also the points of inflexion, if any.
5. a) If ρ_{1} and ρ_{2} be the radii of curvature at the ends of a focal chord of the parabola $y^{2}=4 a x$ then show that

$$
\rho_{1}^{-\frac{2}{3}}+\rho_{2}^{-\frac{2}{3}}=(2 a)^{-\frac{2}{3}} .
$$

b) Show that the points of inflexion of the curve

$$
y^{2}=(x-a)^{2}(x-b)
$$

lie on the line $3 x+a=4 b$.
6. a) If the straight line $l x+m y=n$ touches the curve

$$
\left(\frac{x}{a}\right)^{p}+\left(\frac{y}{b}\right)^{p}=1
$$

then prove that

$$
(\mathrm{a})^{\frac{\mathrm{p}}{\mathrm{p}-1}}+(\mathrm{bm})^{\frac{\mathrm{p}}{\mathrm{p}-1}}=\mathrm{n}^{\frac{\mathrm{p}}{\mathrm{p}-1}} .
$$

b) Find the radius of curvature of $y=x e^{-x}$ at a point where y is maximum.

- unu!xew sṭ κ

$\varsigma+\varsigma$

$$
\begin{aligned}
& \overline{(q-x)_{z}(\mathcal{e}-x)={ }_{\tau^{K}}}
\end{aligned}
$$

$$
\overline{L+x 乌+}{ }_{\tau} \mathrm{x} Z I+{ }_{\mathcal{E}} \mathrm{Xg} 9-{ }_{+} \mathrm{x}=\Lambda
$$

[\&]

[\downarrow]

