12. a) Expand sinhx in an infinite series in powers of x.

b) Evaluate
$$\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$$
. 5+5

13. a) If $u = f(x^2 + 2yz, y^2 + 2zx)$, prove that

$$(y^{2}-zx)\frac{\partial u}{\partial x}+(x^{2}-yz)\frac{\partial u}{\partial y}+(z^{2}-xy)\frac{\partial u}{\partial z}=0.$$

b) If $u = \cos^{-1}\{(x+y)/(\sqrt{x} + \sqrt{y})\}$, show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0$$
 5+5

14. a) Find the maximum and minimum values of

$$x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$
.

b) If $y = x^{n-1}l n x$, then show that

$$y_n = \frac{(n-1)!}{x}$$
. 5+5

BACHELOR OF ENGINEERING IN PRODUCTION ENGINEERING Examination, 2019

(1st Year, 1st Semester, Old)

MATHEMATICS - I

Time: Three hours

Full Marks: 100

(50 marks for each Part)

Use a separate Answer-Script for each Part

PART - I

(Symbols/Notations have their usual meanings)

Answer any five questions.

1. a) Determine the conditions for which the system

$$x+y+z=1$$

$$x+2y-z=b$$

$$5x+7y+az=b^{2}$$

admits of (i) only one solution, (ii) no solution, (iii) many solutions.

b) Use Laplace method to prove the identity

$$\begin{vmatrix} a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a \end{vmatrix} = (a^2 + b^2 + c^2 + d^2)^2.$$
 5+5

[Turn over

[7]

2. a) State Caley-Hamilton theorem and use it to find A^{100} ,

II - TAAA

Answer any five questions.

8. a) Find
$$y_n$$
 when $y = x^4 \cos 3x$.

b) If
$$y = \log(x + \sqrt{x^2 + 1})$$
, then show that

$$0 = {}_{n}\chi^{2}n + {}_{1+n}\chi x(1+n\zeta) - {}_{2+n}\chi(1+{}_{2}x)$$

- 9. a) State and prove Leibnitz's theorem on successive differentiation.
- b) Are the conditions of Rolle's theorem satisfied in the

noitant gaiwollof

 $[[l,l-] \text{ in } \frac{\frac{2}{\xi}}{\xi}x - l = (x)]$

7+9

10. a) Prove that
$$x \le \sin^{-1} x \le \frac{x}{\sqrt{1-x^2}}$$
, if $0 \le x \le 1$.

- b) Expand the function $\sin^3 x$ in power of x in a finite form with Lagrange's form of remainder. 5+5
- I. a) Show that $\frac{4^x 8x \log_e 2}{2 \log_e 3}$ is a minimum when x = 1.
- b) Find the value of p, q, r so that

$$(p+q\cos x) - r\sin x \longrightarrow 1 \text{ as } x \to 0.$$

$$5+5 \qquad \qquad 5+5$$
I Turn over

b) If λ is an eigenvalue of A, where A is a real orthogonal matrix, then prove that $\frac{1}{\lambda}$ is also an eigenvalue of A.

 $\varsigma + \varsigma$

3. a) Obtain the row reduced Echelon form of the matrix

_	10	7	7	6	3
	8	7	7	9	7
	£	0	Ţ	£	I
	I	7	Ţ	0	0

where

- b) Prove that the eigenvalues of a real skew symmetric matrix are purely imaginary or zero. 5+5
- 4. a) Show that, in the pormetric curve

 $x = a \left(\cos t + \log \tan \frac{t}{2} \right)$, $y = a \sin t$, the portion of the

tangent intercepted between the curve and the x-axis is of constant length.

7. a) Find the eigenvalues and the corresponding eigenvectors of the following matrix:

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

b) If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of a non-singular matrix A of order n, find the eigenvalues of A^{-1} . 6+4

b) Find the range of values of x for which

$$y = x^4 - 6x^3 + 12x^2 + 5x + 7$$

is concave upwards or downwards. Find also the points of inflexion, if any.

5+5

5. a) If ρ_1 and ρ_2 be the radii of curvature at the ends of a focal chord of the parabola $y^2 = 4ax$ then show that

$$\rho_1^{-\frac{2}{3}} + \rho_2^{-\frac{2}{3}} = (2a)^{-\frac{2}{3}}.$$

b) Show that the points of inflexion of the curve

$$y^2 = (x-a)^2(x-b)$$

lie on the line 3x + a = 4b.

6. a) If the straight line lx + my = n touches the curve

$$\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^p = 1$$

then prove that

$$(al)^{\frac{p}{p-1}} + (bm)^{\frac{p}{p-1}} = n^{\frac{p}{p-1}}.$$

b) Find the radius of curvature of $y = xe^{-x}$ at a point where y is maximum. 5+5

[Turn over

5+5

b) Find the range of values of x for which

$$7 + x^2 + 5x^2 + 12x^2 + 5x + 7$$

is concave upwards or downwards. Find also the points of inflexion, if any. $\delta+\delta$

5. a) If p_1 and p_2 be the radii of curvature at the ends of a

focal chord of the parabola $y^2 = 4ax$ then show that

$$\frac{1}{5} - (62) = \frac{2}{5} - 4 + \frac{2}{5} = (23)^{-\frac{2}{5}}$$

b) Show that the points of inflexion of the curve

$$y^2 = (x - a)^2 (x - b)$$

lie on the line $\frac{2x+a=4b}{a}$

6. a) If the straight line lx + my = n touches the curve

then prove that

$$\frac{\frac{q}{1-q}}{n} = \frac{\frac{q}{1-q}}{(nd)} + \frac{\frac{q}{1-q}}{(ls)}$$

b) Find the radius of curvature of $y = xe^{-x}$ at a point where

[Turn over

7. a) Find the eigenvalues and the corresponding eigenvectors of the following matrix:

b) If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of a non-singular matrix A of order n, find the eigenvalues of A^{-1} . 6+4