BACHELOR OF ENGINEERING (MECHANICAL ENGINEERING) THIRD YEAR SECOND SEMESTER EXAM 2019 Ref. No.: Ex/ME/5/T/323C/2019 ## **Elements of Computational Fluid Dynamics** Time:-Three Hours Full Marks:-100 ## Answer any five Questions | | | Answer any nive Questions | | |----|-----------|---|---------------------------| | 1. | , | The analysis of fluid flow and heat transfer can be done better by CFD tools, explain to basic idea of CFD by an example. | horoughly (10) | | | b)
pro | By a pictorial diagram explain the role of a computer in solving fluid flow and heat trabblems in CFD. | ansfer
(10) | | | 2. | a) What is the canonical form of a partial difference equation? Explain in details parabol and hyperbolic PDEs. | ic, elliptic
(15) | | | ide
3. | b) What do you understand by discretisation of the domain or the grid generation? How a entified by indices? Explain thoroughly different types of boundary conditions used in solving PDEs. | a grid is
(05)
(20) | | , | | Explain thoroughly what do you understand by central, forward and backward different scheme. When they are used? With a neat diagram show the neighboring points $(a_p, a_E, a_w, a_N, a_S)$ used in this schemes. (20) | | | | 5. | What is discretisation of PDE equation? Find second order accurate discretisation equation $\partial \phi / \partial x$ and $\partial^2 \phi / \partial x^2$. | (20) | | | 6. | a) Explain Gauss-Elimination method.b) Write a computer program to solve Laplaces equation. | (10)
(10) | | | 7. | Explain different errors in numerical algorithm. What are convergence and stability? | (20) | | | 8. | Write down Laplace's equation and the algorithm for solving the same in FORTRAN. | (20) |