Full Marks : 100

Time: Three hours

Part - I

Answer any four questions
$12.5 \times 4=50$

Symbols / Notations have their usual meanings.
1.(a) Find the Z-Transformation of the following functions:

$$
\text { (i) } f(n)=n \quad \text { (ii) } f(n)=a^{n}
$$

(b) Solve the equation using Z-Transformation

$$
f(n+1)+2 f(n)=n, \text { given }: f(0)=1 .
$$

2. Find the Laplace Transformation of the following functions:

$$
\begin{aligned}
& \text { (i) } f(t)=t^{3} \\
& \text { (ii) } f(t)=\sin \sqrt{t} \text {. } \\
& \text { (iii) } f(t)=\frac{t}{T}, \quad 0<t<T \\
& =1, \quad t>T
\end{aligned}
$$

3. (a). Find the Fourier Transformation ϕ of the following function

$$
e^{-|t|}
$$

(b) Solve the equation using Laplace Transformation:

$$
\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+2 x=0 \text { given }: x(0)=x^{\prime}(0)=1
$$

4. Find the Fourier series of the function

$$
f(x)=x \sin x, \quad \text { when }-\pi<x<\pi
$$

Deduce also

$$
\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\ldots \ldots .
$$

5.(a) Find $L\left[F^{\prime \prime}(t)\right]$, where L stands for Laplace Transformation.
(b)Find

$$
L^{-1}\left(\frac{1}{\sqrt{2 s+3}}\right) .
$$

Part-II

Answer any two questions:
$15 \times 2=30$
6. Solve the equations:
(i) $\frac{d y}{d x}=\sin (x+y)$
(ii) $x d y-y d x=\sqrt{\left(x^{2}+y^{2}\right)}$
7. (a). Find general solution and singular solution of the following equation.

$$
p=\ln (p x-y), \text { where } p=\frac{d y}{d x}
$$

(b). Find the general solution of the following equation.

$$
\left(D^{2}+D-6\right) y=x^{2}, \text { where } D=\frac{d}{d x}
$$

8. Find the series solution near the ordinary point $x=1$ of the equation

$$
\frac{d^{2} y}{d x^{2}}+(x-1)^{2} \frac{d y}{d x}-4(x-1) y=0
$$

Part-III

Answer the following questions:
$10 \times 2=20$
10.Solve the following equation.

$$
\begin{gathered}
(i)(y+z) p+(z+x) q=x+y, \quad\left(\text { ii) } z^{2}-p z+q z+(x+y)^{2}=0\right. \\
{\left[\text { where } p=\frac{\partial z}{\partial x}, \quad q=\frac{\partial z}{\partial y}\right]}
\end{gathered}
$$

11. Solve the Heat flow equation using the method of separation of variables.
