BACHELOR OF ENGINEERING (MECH. ENGG.) 1ST YR 1ST SEM EXAMINATION 2019

FLUID MECHANICS - II

Time: Three hours Full Marks: 100

Answer any **FIVE** questions. All the parts of a question should be answered together.

Assume any relevant data if necessary with suitable justifications.

Symbols carry their usual meanings.

- 1. (a) Derive velocity profile for steady laminar flow through pipe.
 - b) Show that laminar friction factor for pipe flow is given by f = 64/Re.

[12+8]

- 2. a) What are differences between ideal fluid and real fluid?
 - b) Show that stream function orthogonally intersects velocity potential function.
 - c) Finds stream functions and velocity components for ideal flow over a solid cylinder.

[3+7+10]

- 3. a) Discussion the growth of boundary layer over a plate flat.
 - b) Explain nominal, displacement and momentum thicknesses of boundary layer flow.
 - c) Compute displacement and momentum thicknesses using nominal thickness for the linear velocity profile. [7+7+6]
- 4. a) Write down the Prandtl's boundary layer equation, and derive von Karman's momentum integral equation. What is the use of this equation?
 - b) Discuss the development of flow separation.

[13+7]

- 5. a) Find the speed of propagation of weak pressure wave through a compressible fluid under adiabatic condition.
 - b) Establish area-velocity relationship of compressible flow. What is the use of convergent-divergent nozzle? [10+10]
- 6. a) Derive an expression between the Mach numbers of supersonic and subsonic flow for the normal shock.
 - b) Discuss the zone of silence and zone of action for different values of Mach number.

[10+10]

- 7. a) Classify different types of unsteady flow. Find an expression of flow velocity with time for the establishment of flow in the pipe connected at the bottom of a reservoir.
 - b) The drag force (F) resisting the motion of a sphere of diameter (D), moving with uniform velocity (V) through a fluid depends on the fluid viscosity (μ), fluid density (ρ), velocity (V) and diameter (D). Find from dimensional analysis the fundamental relationship between these variables. [(3+10)+7]
- 8. a) For laminar flow of an oil having dynamic viscosity $\mu = 1.766 \text{ Ns/m}^2$ in a 0.3 m diameter pipe, the velocity distribution is parabolic with a maximum point of 3 m/s at the centre of the pipe. Calculate the shearing stress at the pipe wall and within the fluid 50 mm from the pipe wall.
 - b) A normal shock wave takes place during the flow of air at a Mach number of 1.8. The static pressure and temperature of the air upstream of the shock wave are 100kPa (abs) and $15^{\circ}C$. Determine the Mach number, pressure and temperature downstream of the shock.
- 9. Write short notes on: (any **FOUR**)

 $[4 \times 5]$

- a) Couette flow
- b) Doublet flow
- c) Over-expanded nozzle flow
- d) Causes and effects of turbulence
- e) Water hammer
- f) Magnus effect
- g) von Karman vortex street