Ref No: EE/5/T/514/2019(old) BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) 5TH YR 1ST SEMESTER EXAMINATION, 2019 (OLD)

SUBJECT: - PROCESS INSTRUMENTATION AND CONTROL

Time: Three hours			ll Marks: 100	
	An	swer any FIVE questions.	5×20	
1.	a)	Draw the circuit diagram of a simple electronic analog PID controller with two OPAMP.	4	
	b)	Find the transfer function of the controller.	6	
	c)	Realize a digital PI controller using incremental form.	5 5	
	d)	What is meant by Anti Integral Wind-up action? Illustrate a scheme for incorporating Anti Integral Wind-up action for PID controller.	5	
2.	a)	Realize P-I-D controller using flapper nozzle, bellows and restrictions. Find the transfer function, expression of proportional gain, derivative time and integral time in terms of system parameters.	7	
	b)	Describe a scheme for implementation of pneumatic P-controllers with direct acting relay.	3	
	c)	Why are relay valves employed in pneumatic proportional controllers?	5	
	d)	State the advantages and disadvantages of electronic process controller.	5	
3.	a)	Prove that in a digital controller $m_n' = k_p \left(1 + \frac{\tau}{T_i}\right) e_n - k_p e_{n-1} + m_{n-1}$ where	10	
		m_n is the controller output sequence and e_n is the error sequence. Show that input-output relation in block diagram form.		
•	b) c)	Specify the techniques of anti-integral wind up in a digital PID controller. Also explain the hard switching scheme which is used for anti-integral scheme.	7	
4.	a) b)	What is the function of final control element in a process control application? With a neat sketch describe the implementation of an electro-pneumatic	3 7	
	c)	actuator. Describe the working principle of rotary plug and butterfly valves with neat	5	
	d)	diagram. Compare the performance among quick opening, linear and equal percentage control valves.	5	
5.	a)	Derive the mathematical model interacting two tank system with linear	8	
	h)	resistance element. Derive the transfer function $\frac{H(S)}{O(S)}$ for the liquid level system shown in	8	
	U)			
		fig. [H and Qi are the deviation variables in 'h' and 'qi' respectively.		

Ref No: EE/5/T/514/2019(old)

4

BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) 5TH YR 1ST SEMESTER EXAMINATION, 2019 (OLD)

SUBJECT: - PROCESS INSTRUMENTATION AND CONTROL

Time: Three hours Full Marks: 100

Assume $A=0.75m^2$, $R_1=2$, $R_2=3$.

- c) What is integral windup?
- a) Discuss the advantage of applying cascade control in jacketed CSTR.
 b) Consider a closed loop system in which the process comprises of two first order systems connected in series with time constants 1min and ½
 - min, respectively. Measuring element is also a first order system with time constant of ½ min. Controller is of proportional mode with gain Kp.
 - (i) Draw the process control loop.
 - (ii) Using direct substitution method, comment on the stability with the limiting range of Kp.
- 7. c) Write the difference between servo and regulatory system.
 - a) Why feedforward control is preferred along with feedback control? 16 Explain feedforward control strategy for a typical process.
 - b) Discuss degree of freedom analysis in mathematical modeling. 4
- 8. a) Write the difference between servo and regulatory system.
 - b) Discuss Multivariable control structure (MVC) with 1-1/2-2 controller pairing and 1-2/2-1 controller pairing.