Ref No. : Ex/ EE/5/T/413/2019 B.Electrical Engg (Evening), 4TH Year 1ST Semester Exam. 2019

SUBJECT: POWER ELECTRONICS

Full Marks: 100 (50 each part) Time: Three Hours

Use a separate Answer-Script for each part

Question	PART - I	Marks
No.		
	Answer any Three questions	
	Two marks are reserved for neat and well organized answer.	
1.	a) Write a short notes on SCR.	8
	b) Explain the reverse recovery effect in power diode.c) Show how average power loss in a power diode is calculated	4
	from its V-I characteristic?	4
2.	a) State the main characteristics of an IGBT.	6
	b) State the important parameters of power MOSFET.	6
	c) Why power MOSFET can not block any reverse voltage?	4
3.	(a) Explain the working principle of a power MOSFET.	8
	(b) Explain why negative base drive is used in power BJT.	8
4.	(a) Explain the working principle of a step up chopper using the relevant circuit and necessary wave.a) The input of a step up chopper is 180 volts and is feeding a	8
	resistance load of 8 ohms. What is the duty ratio if the load current is 40A? What is the blocking voltage of the chopper?	8
5.	 a) Explain the working principle of a half bridge inverter with the help of necessary circuit and relevant waveform. 	8
	b) Explain the working principle of a Boost chopper using necessary circuit diagram and also derive the expression of its	
	output voltage.	8

BACHELOR OF ENGINEERING IN

ELECTRICAL ENGINEERING (EVENING) EXAMINATION, 2019

(4th Year, 1st Semester)

POWER ELECTRONICS

Time: Three Hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-script for each Part

PART-II

Answer any three questions

Two marks are reserved for neatness and well organized answer script

- 1.a) Explain the operation of a single phase half wave rectifier feeding a RL load. Give necessary circuit diagram and waveforms. Also explain the operation of above rectifier in the presence of a freewheeling diode across the load.
 - b) A single phase half-wave uncontrolled rectifier with RL load is fed from 230 V at 50 Hz, R = 10Ω , L = 5mH, extinction angle= 210° . Find average values of output voltage and output current for the following conditions.
 - i) With freewheeling diode
 - ii) Without freewheeling diode

6

- 2. Explain the operation of a three phase half wave rectifier circuit with resistive load R and obtain the following:
 - Average output voltage, RMS output voltage, form factor, voltage ripple factor, transformer utilization factor and PIV.
- 3. a) Explain the operation of a Single Phase Full Wave Bridge Converter with R-L Load. Draw the output voltage and current waveforms. Also calculate the average and rms output voltage across the load.
- b) A resistive load of 10Ω is connected through a half wave SCR circuit fed from a 220 V, 50 Hz single phase source. Calculate the power delivered to the load for a firing angle of 60°. Find the value of input power factor.
- 4. a) A single phase half-wave diode rectifier is designed to supply DC output voltage of 230V to a load of $R = 10\Omega$. Calculate the ratings of the diode and transformer for this circuit arrangement.

- b) Draw the output voltage and current waveform of single phase half-wave diode rectifier circuit with inductive load L.
- c) A three phase half wave rectifier operates from a line voltage supply of 400Vrms. A resistive load of 20Ω is connected at the output of the rectifier. Calculate the average and rms current through the load.
- 5. Write short notes on any two of the following

8×2

- a) Single phase, mid-point type step-up cycloconverter
- b) Single phase semiconverter with RLE load
- c) Three phase full-wave converter with resistive load

