SUBJECT: POWER ELECTRONICS

Time: Three Hours

Full Marks: 100 (50 each part)

Use a separate Answer-Script for each part

Question	PART - I	Marks
No.		
	Answer any Three questions	TATE
	Two marks are reserved for neat and well organized answer.	
1.	a) Write a short notes on Schottky diode.	4
	b) Classify power diodes according to their reverse recovery time.	4
	c) Show how average power loss in a power diode is calculated	
	from its V-I characteristic?	8
2.	a) State the main characteristics of a power BJT.	6
	b) State the important parameters of power MOSFET.	6
	c) Why power MOSFET can not block any reverse voltage?	4
3.		
	(a) Explain the working principle of an IGBT with the help of its	0
	equivalent circuit.	8
	(b) State the important characteristic of power MOSFET.	8
4.	(c) Explain the working principle of a step up chopper using the relevant circuit and necessary wave.	o
	a) The input of a step down chopper is 140 volts and is feeding a	8 -
	resistance load of 8 ohms. What is the duty ratio if the load current is 30A? What is the blocking voltage of the chopper?	o ·
5.	a) Explain the working principle of a full bridge inverter with the	
	help of necessary circuit and relevant waveform.	8
	b) Explain the working principle of a Buck-Boost chopper using necessary circuit diagram and also derive the expression of its	
	output voltage.	.8
		<u> </u>

BACHELOR OF ENGINEERING IN

ELECTRICAL ENGINEERING (EVENING) EXAMINATION, 2019 (OLD)

(4th Year, 1st Semester)

POWER ELECTRONICS

Time: Three Hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-script for each Part

PART-II

Answer any three questions

Two marks are reserved for neatness and well organized answer script

- 1. a) Explain the operation of a three phase half wave rectifier circuit with resistive load R and obtain the following:
 - Average output voltage, RMS output voltage, form factor, voltage ripple factor, transformer utilization factor and PIV.
 - b) A single phase 230 V, 0.5 kW heater is connected across 230 V, 50 Hz supply through a diode. Calculate the power delivered to the heater element. find also the peak diode current and input power factor.
- a) Explain the operation of a single phase half wave converter feeding a RL load. Give necessary circuit diagram and waveforms. Also explain the operation of above converter in the presence of a freewheeling diode across the load.
 - b) Draw the output voltage and current waveform of single phase half-wave diode rectifier circuit with inductive load L.
- 3. a) A three phase half wave rectifier operates from a line voltage supply of 400Vrms. A resistive load of 20Ω is connected at the output of the rectifier. Calculate the average and rms current through the load.
 - b) Briefly explain the operation of three phase full wave converter with resistive load with necessary circuit diagrams and operation.
- 4. a) Explain the operation of a Single Phase Full Wave Bridge Converters with R-L Load. Draw the output voltage and current waveforms.

- b) SCR with peak forward voltage rating of 1000 V and average on state current rating of 40 A are used in single phase midpoint converter and single phase bridge converter. find the power that these two converters can handle. Use a factor of safety 2.5.
- 5. Write short notes on the following

8×2

- a) Single phase, mid-point type step down or step up cycloconverter
- b) Single phase semi converter with RLE load