BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) 3RD YEAR 2ND SEMESTER EXAMINATION, 2019

HIGH VOLTAGE ENGINEERING

Time: Three hours

Full Marks: 100 (50 marks for each part)

Use a separate Answer - Script for each part.

Part I

Answer *any three* questions.

Two marks are reserved for neat and well organized answers.

1.	a)	State the advantages of suspension insulators. Define string efficiency.	4
	b)	State the advantages of glass insulators.	3
	c)	There is a string of 5 identical disc units, each of which can be subjected to a power frequency voltage of 30 kV (peak) safely. If the ratio of the pin to earth capacitance to the self – capacitance of each disc is 0.17, find the permissible string voltage, permissible line voltage and string efficiency.	3+3+3
2.	a)	Arcing horns protect the insulators from damage due to flashover - justify.	4
	b)	Corona is a self-checking process – explain.	4
	с)	A three phase 220 kV, 50 Hz, 150 km long overhead line consists of three conductors, each of 1.05 cm radius spaced 5 m apart in equilateral formation. Assuming an irregularity factor of 0.9, calculate corona power loss. Given temperature = 27° c and pressure = 740 mm of Hg. Deduce the expression for V_d .	8
3.	a)	Comment on mechanism of lightning discharge.	5
	b)	An overhead transmission line having a surge impedance of 450 Ω runs between two substations A and B; at B it branches into two lines C and D, of	7

surge impedances of 400 Ω and 50 Ω respectively. If a traveling wave of magnitude 50 kV travels along the line AB, calculate the magnitude of voltage and current waves which enters the line C and D. Deduce the formulae those have been used.

Explain what you mean by direct and indirect lightning strikes. c) 4 4. a) State why solidly grounded system is not very popularly used in practice. 3 b) A transmission line has a capacitance of 0.1 µF per phase. Determine the inductance of Peterson coil to neutralize the effect of capacitance of (i) complete length of line, (ii) 97% of the line and (iii) 90% of the line. Supply frequency is 50 Hz. Deduce the formula you have used. c) Explain what you mean by insulation co-ordination. 4 5. a) Discuss how ground wire protects line conductors from damage due to 4 lightning overvoltage. b) Explain the working principle of a gas filled protector tube. 4 c) In a co-axial cable the conductor diameter is 10 mm and the inner sheath 8 diameter is 50 mm. There are two layers of insulation, the inner layer with dielectric constant 4 and a maximum working gradient of 6 kV/mm has a radial

thickness of 4.6 mm; the outer layer has dielectric constant 2.5 and the maximum voltage gradient 5 kV/mm. Calculate the maximum working voltage

for the cable.

BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING (EVENING) EXAMINATION, 2019

(3rd Year, 2nd Semester)

HIGH VOLTAGE ENGINEERING

Time: Three Hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-script for each Part

PART-II

Answer any three questions

(Two marks are reserve for neatness and well organized answers)

- 1. a) With the help of a schematic, explain the working principle of a Cockcroft-Walton voltage doubler circuit. Find the expression of output voltage.
 - b) A Cockcroft-Walton voltage doubler circuit is used to test a cable at 150 kV. The insulation resistance of the cable is $2 \times 10^7 \Omega/m$ and the length of the cable is 15 m. Stage capacitances are 0.15 μ F and 0.20 μ F respectively. The doubler is supplied from a 300V/250 kV testing transformer. Calculate the voltage to be applied to the input of the transformer at 50Hz.
- 2. a) Give comparative analysis between a high voltage power transformer and a high voltage testing transformer.
 - b) With a neat sketch, explain the principle of a three-stage cascade connection in testing transformer for producing high ac power frequency voltage. Why the lowest unit is loaded more?
- 3. a) Draw the circuit diagram of a peak voltmeter that contain a bleeder resistance. Describe the principal of operation of such a peak voltmeter and discuss about the errors associated with peak voltage measurement.
 - b) With a neat sketch, explain the operation of Electrostatic voltmeter 6
- 4. a) With a neat sketch explain the operation of a multi stage impulse generator circuit.
 - b) Discuss the functions of damping and discharge resistance in an impulse voltage generator. 3
 - c) Why triggering is required in an impulse voltage generator? Describe a typical triggering arrangement for the same.

Turn over

- 5. a) With the help of circuit and phasor diagrams explain why capacitive voltage transformers are used in resonant condition.
 - b) Explain with a neat sketch the operation procedure of a vacuum tube diode. 4
 - c) Why series resonance circuit is advantageous for high voltage testing of cables?