d) An urn contains n tickets, numbered 1 to n and m tickets are drawn at a time. Find the mathematical expectation of the sum of numbers on the tickets drawn.

5
7. a) If r be the distance of $P(x, y, z)$ from the origin and \vec{r} be the position vector of P relative to the origin, then find $\vec{\nabla}^{2}\left(\frac{1}{\mathrm{r}}\right)$.
b) Two unbiased dice are thrown. Find the conditional probability that two fives occur if it is divisible by 5 .
c) Evaluate $\iint_{S}\left(y^{2} z^{2} \hat{i}+z^{2} x^{2} \hat{j}+z^{2} y^{2} \hat{k}\right) \cdot \hat{n} d S$ where S is the part of the sphere $x^{2}+y^{2}+z^{2}=1$, above the $x y$-plane and boundary of this plane. 8
d) Show that $\vec{\nabla} \times(\vec{\nabla} \times \vec{F})=\overrightarrow{0}$.

Bachelor of Engineering (Electrical Engineering)

Examination, 2019

(1st year, 1st Semester, Old)

Mathematics-IVF

Time: Three hours
Full Marks: 100
(Symbols and notations have their usual meanings)
Answer any five questions.

1. a) Evaluate $\iint_{S} \overrightarrow{\mathrm{~F}} \cdot \hat{\mathrm{n}}$ dS where $\overrightarrow{\mathrm{F}}=4 x z \hat{\mathrm{i}}-\mathrm{y}^{2} \hat{\mathrm{j}}+\mathrm{yz} \hat{\mathrm{k}}$ and S is the surface of the cube bounded by $x=0, x=1, y=0$, $\mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
b) Show that the vector $\vec{F}=\left(4 x y-z^{3}\right) \hat{1}+2 x^{2} \hat{j}-3 x z^{2} \hat{k}$ is irrotational. also show that $\overrightarrow{\mathrm{F}}$ can be expressed as the gradient of some scalar point funcion φ.
c) Find the directional derivatives of the function $f=x y^{2} z+4 x z^{2}$ at the point $(-2,1,2)$ in the direction $2 \hat{i}+\hat{j}-2 \hat{k}$.
2. a) Show that

$$
\begin{equation*}
\bar{\nabla} \times(\bar{\nabla} \times \stackrel{\rightharpoonup}{\mathrm{F}})=\bar{\nabla}(\bar{\nabla} \cdot \stackrel{\rightharpoonup}{\mathrm{F}})-\bar{\nabla}^{2}-\bar{\nabla}^{2} \stackrel{\rightharpoonup}{\mathrm{~F}} \tag{7}
\end{equation*}
$$

b) Verify Stoke's theorem for the vector function $\vec{F}=\left(x^{2}-y^{2}\right) \hat{i}+2 x \hat{j}$ around the rectangle bounded by straight lines $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$.
ς

$$
\left(\frac{\tau}{I}<X\right) d
$$

əұnduo๐ pue uo!̣oung Kұ!

әәәчмәsןə	'0	
$\underline{I}>\mathrm{X}>0$	'($\mathrm{x}-\mathrm{I}$) $\mathrm{x} \boldsymbol{7}$	

 9

$\varsigma \quad(g \cup V)_{d}-(g)_{d}+(\forall)_{d}=(g \cap V)_{d}$

ς

[\&]

วఎฺ!

ҰеЧł MOUS (

$$
{ }_{\tau} Z=(Z) f
$$

8
L

$$
\cdot \frac{\mathcal{E}}{\psi}>\mathrm{zp} \frac{(\varepsilon+\mathrm{z})(\mathrm{z}-\mathrm{z})}{\tau^{Z}} \mathrm{j}
$$

