b) Find an integrating factor and hence

$$
\text { solve }\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0
$$

9. Find the angle between the lines

$$
\frac{x+4}{3}=\frac{y-1}{5}=\frac{z+3}{4}
$$

and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$
OR

If $\vec{a}=5 t^{2} \vec{i}+t \vec{j}-t^{2} \vec{k}$ and $\vec{b}=\sin t \vec{i}-\cos t \vec{j}$ then find $\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})$ and $\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$

Bachelor of Engineering in Electrical Engineering

Examination, 2019

(1st Year, 1st Semester)

Mathematics - IIF

Time: Three hours
Full Marks: 100
Answer question no. 9 and any six from the rest.

1. a) Find the inverse of the matrix

$$
\mathrm{A}=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \tag{6}\\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

b) Find the rank of the matrices

$$
\mathrm{A}=\left(\begin{array}{lll}
2 & 3 & 1 \\
4 & 5 & 2
\end{array}\right) \text { and } \mathrm{B}=\left(\begin{array}{llll}
2 & 3 & 1 & 4 \\
4 & 5 & 2 & 3
\end{array}\right) .
$$

Use this to conclude that the system of equations

$$
\begin{aligned}
& 2 x+3 y+z=4 \\
& 4 x+5 y+2 z=3
\end{aligned}
$$

is consistent.
Why does the system have infinitely many solutions ?
$(3+2)+2+3$
2. a) Find the eigenvalues and corresponding eigenvectors of the matrix $\mathrm{A}=\left(\begin{array}{cc}0 & 6 \\ -1 & 5\end{array}\right)$.

Also verify Caley Hamilton theorem for A and hence find the inverse of A .
$6+3+3$
[Turn over
b) Find the direction ratios and direction cosines of the line joining the points $(1,2,3)$ and $(2,-3,4)$ $2+2$
3. a) Find the equation of the plane passing through the point ($3,-3,1$) and perpendicular to the line joining the points $(3,4,-1)$ and $(2,-1,5)$
b) A line is given by $x-2 y+z=0, x+2 y-2 z=0$. Find its equation in symmetric form.

5
c) Show that the line $\frac{x-2}{-1}=\frac{y-1}{6}=\frac{z-3}{-6}$ lies in the plane that passes through the points $\mathrm{A}(1,-2,3), \mathrm{B}(1,1,1)$ and $\mathrm{C}(0,1,-1)$.

6
4. a) If $\vec{f}=\left(3 x^{2}+6 y\right) \vec{i}-14 y z \vec{j}+20 x z^{2} \vec{k}$, evaluate $\int_{C} \vec{f} \cdot d \vec{r}$ where C is given by $x=t, y=t^{2}$ and $z=t^{3}$ and t varies from 0 to 1 .
b) Evaluate $\int\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the square formed by the lines $y= \pm 1, x= \pm 1$ traversed anticlockwise.

5
c) Find the work done in moving a particle in the force field $\vec{f}=3 x^{2} \vec{i}+(2 x z-y) \vec{j}+z \vec{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$.

6
5. a) Evaluate $\iint_{S} \overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{n}}$ ds where $\overrightarrow{\mathrm{f}}=18 z \overrightarrow{\mathrm{i}}-12 \overrightarrow{\mathrm{j}}+5 y \overrightarrow{\mathrm{k}}$ and S is the surface $2 \mathrm{x}+3 \mathrm{y}+6 \mathrm{z}=12$ surface in the 1 st octant.
b) Evaluate $\oint_{C}[(3 x-y) d x+(2 x+y) d y]$ where C is the curve $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$.
6. Verify Green's theorem in the plane for $\oint_{C}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where C is the boundary of the region bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.
7. a) Using Gauss's Divergence theorem evaluate $\iint_{S} \overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{n} d s}$ where $\vec{f}=4 x z \vec{i}-y^{2} \vec{j}+y z \vec{k}$ and S is the surface of the cube $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
b) Evaluate $\oint_{\mathrm{C}} \overrightarrow{\mathrm{F}} \cdot \mathrm{dr}$ by Stoke's theorem where $\vec{F}=y^{2} \vec{i}+x^{2} \vec{j}-(x+z) \vec{k}$ and C is the boundary of the triangle $(0,0,0),(1,0,0)$ and $(1,1,0)$ transversed anticlockwise.
8. a) Solve $\left(D^{3}-6 D^{2}+11 D-6\right) y=e^{-2 x}+e^{-3 x}$

