B. E. ELECTRICAL ENGINEERING (PART TIME) 1ST YEAR 2ND SEMESTER EXAMINATION, 2019 Subject: Electronics-II Time: 3.0 Hours Full Marks: 100

No. of questions	Answer any Five (5) question: 5×20	Marks
1.	(a) Convert the following numbers: (i) $(1101.1011)_2 = ()_{10}$ (ii) $(75.15)_{10} = ()_2$ (iii) $(125)_{10} = ()_8$ (iv) $(68)_8 = ()_{10}$ (v) $(3A.2F)_{16} = ()_2$	(5x1)+3+3+4+5
	 (b) Represent (-17)₁₀ in (i) Sign-magnitude, (ii) 1's complement and (iii) 2's complement representation. (c) Explain how an OR gate can be implemented with AND and NOT gates. (d) Implement the Boolean function X=AB+A'C with NAND gates. (e) Design a two input XOR gate exclusively with the help of (i) NAND gates (ii) NOR gates 	
2.	 (a) (i) Simplify the following Boolean function in product of sums: F (A, B, C, D) = Σ (0, 1, 2, 5, 8, 9, 10) (ii) What is the simplified sum of products form of F? (b) (i) Implement the expression using a multiplexer F (A, B, C, D) = ∑m (0, 2, 3, 6, 8, 9, 12, 14) (ii) Implement the following multi-output combinational logic circuit using a 4-to-16-line decoder F₁ = ∑m (1, 2, 4, 7, 8, 11, 12, 13) 	(5+5)+(5+5)
3.	 (a) What is meant by race-around condition? How can it be avoided by using master-slave JK flip-flops? (b) Show that a T flip-flop can be used as a divide by 2 circuit. (c) How can you design a 4-to-1 multiplexer using basic gates? (d) Show that a JK flip-flop can be converted into a D flip-flop and a T flip-flop. 	(2+3)+5+5+5
4.	 a) Give the expression of diode current. What do you meant by diode dynamic resistance? Draw and explain the diode I-V characteristic. (b) Calculate the efficiency and ripple factor of a full wave diode rectifier circuit. (c) Draw a suitable circuit with diode to reduce the ripple factor and explain how this circuit reduces the ripple? (d) Why Zener diode provides a constant voltage across it? 	(2+2+3)+(3+2)+(3 +3)+2

Ref No. Ex/EE/5/ET/T/123/2019

B. E. ELECTRICAL ENGINEERING (PART TIME) 1ST YEAR 2ND SEMESTER EXAMINATION, 2019 Subject: Electronics-II Time: 3.0 Hours Full Marks: 100

5.	 (a) Explain clearly the Early effect and punch through condition of a BJT. (b) Give a comparative study of CB, CE and CE configuration of BJT for the following parameters. Input and output impedance, current and voltage gain. (c) Explain with a suitable circuit the BJT can be used as a switch. (d) Derive the expression for current gain of a Darlington Pair transistor. (e) Differentiate between current source and current mirror. 	(2+2)+4+4+4+4
6.	 (a) Mention the advantages of potential divider bias scheme compared to the other biasing scheme. Derive the expression for stability factor for this circuit with respect to I_{CEO}. (b) Give the circuit of a BJT CE amplifier. Sketch and explain the gain versus frequency response curve. Derive the expression for input impedance, output impedance, current gain and voltage gain. 	(2+5)+(2+3+8)
7.	 (a) Describe how a transistorised shunt voltage regulator provides a steady state output voltage against the input voltage fluctuation? Write down the output voltage expression for this circuit. (b) Derive the condition of oscillation for a circuit. (c) Classify the different oscillator in accordance with the frequency range. Explain how the condition of oscillation of a COLPITTS oscillator using OPAMP is satisfied. How the frequency of oscillation for this circuit is determined. 	(6+2)+4+(2+4+2)
8.	 (a) Explain how the output of a 2 input TTL NAND gate becomes high. (b) Give the schematic diagram of CMOS. Mention the areas of application of CMOS. Explain the operation of a CMOS Inverter. (c) Give the operation of an astable multivibrator using 555 IC. 	5+(3+2+4)+6

^{**} The symbol ' indicates the complement.