BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FIRST YEAR FIRST SEMESTER – 2019

SUBJECT: - CIRCUIT THEORY

Time: Three hours

Full Marks: 100 (50 marks for this part)

No. o			
		PART-I	Marks
Ques	tion	Answer any Three (Two marks reserved for well organized answers)	
1)		Explain the following:	(16)
-,		(i) Static and Dynamic Systems.	(16)
		(ii) Linear and Non-Linear Systems.	
		(iii) Passive and Causal Network.	
		(111) I assive and Causai Network.	
2)	a)	Define a unit step function and unit ramp function. What is the	(8)
_,	,	relationship between the two singularity functions?	(6)
		Total of the two singularity functions:	
	b)	Write a short note on the concept of complex frequency.	(8)
	-,	wasse wasses and an observer complex nequency.	(0)
3)	a)	"The capacitor can be represented as a short circuit at $t = 0^{+}$ " –	(8)
	,	Explain.	(0)
	b)	For the circuit shown in Fig.Q.3 (b), if the switch is closed at t= 0, find	(8)
		the values of $i(0^+), \frac{di}{dt}(0^+)$ and $\frac{d^2i}{dt^2}(0^+)$	
		the values of $t(0)$, $\frac{dt}{dt}(0)$ and $\frac{dt^2}{dt^2}(0)$	
•)	a)	Fig.Q.3(b) For the circuit shown in Fig.Q.4.(a) find $i_L(t)$ $i_L(t) \longrightarrow 10 \Omega$	(10)
		Fig.Q.4.(a)	
		(Please turn over)	

Ref No:

Ex/EE/5/T/112/2019

BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FIRST YEAR FIRST SEMESTER – 2019

SUBJECT: - CIRCUIT THEORY

Time: Three hours

Full Marks: 100 (50 marks for this part)

BACHELOR OF ENGINEEERING (ELECTRICAL ENGINEERING) FIRST YEAR FIRST SEMESTER EXAMINATION, 2019

SUBJECT: CIRCUIT THEORY

Time: Three hours

Full Marks -100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of	Part II	Marks
question	Answer any three questions. Two marks reserved for neatness and well organized answer.	
1.a)	Define tree, twig, link and co-tree of a graph of any electrical network with suitable examples.	8
b)	Find the no of possible trees of the given graph. Also write down the reduced incidence matrix, tie-set matrix & cut-set matrix of the graph shown below:	8
	$ \begin{array}{c c} A & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 5 & \downarrow & \downarrow & \downarrow \\ D & \downarrow & \downarrow & \downarrow \\ D & \downarrow & \downarrow & \downarrow \\ \end{array} $	
2.a)	Derive equilibrium equations of a network on loop basis using the tie-set matrix of the network.	8
b)	Determine current in all the branches of the circuit using graph theory: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8
	+ 3 i ₂	
3.a)	Explain with suitable example what is meant by (a) incidence matrix, (b) cut-set and (c) fundamental tie-set.	6
b)	State and explain Norton's Theorem.	2

BACHELOR OF ENGINEEERING (ELECTRICAL ENGINEERING) FIRST YEAR FIRST SEMESTER EXAMINATION, 2019

SUBJECT: CIRCUIT THEORY

Time: Three hours

Full Marks -100 (50 marks for each part)

Use a separate Answer-Script for each part

