Name of the Examinations: BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FOURTH YEAR FIRST SEMESTER (Old) - 2019

Subject: THEORY OF STRUCTURES-III

Time :3 hr

Full Marks:100

No. of		Marks
Questi		
on		
	Answer any four question.	
1	i) Explain 'Flexibility Matrix' & 'Stiffness Matrix'.	5+10+10=25
	ii) A cantilever beam AB having length L is subjected to force P1 (vertical force) & p2	3+10+10=23
	(moment) at free end. The corresponding displacement is denoted by D1 & D2. Proof that the	
	multiplication of flexibility matrix' & stiffness matrix is unit matrix. iii) Find out joint load matrix and stiffness matrix in structure oriented system for continuous	
	beam. El is constant for the whole span. (Fig-1)	
ļ	66 KN/ m	
	18 KN	
	$A \longrightarrow A \longrightarrow$	-
	3.0000 3.0000 3.0000 3.0000	
	Flg~1	
,	Compute the regation forces and more and value (Garillitan day) for day	25
2	Compute the reaction forces and moment using 'flexibility method' for the continuous beam. (fig-2) Also find the member end forces for span AB. EI is constant for the whole span.	
	() the the money out forces for spain 745. In is consumit for the whole spain.	
	@5 KN/m 15 KN	
	A B	
	3.0000	
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
3		25
	Compute the support reaction and member force using 'Stiffness method' of the truss shown	25
1	fig-3. EA is constant for all members	
	10 KN	
	E 3 KN	
}		
	зм	
		-ii
ĺ	A B L	
	<u>pu</u> 3W <u>Au</u>	
-	Fig-3	
ĺ	·	

5

Draw I.L. for R_A , R_B , & B.M at mid-point of AB of a two span continuous beam ABC having length L of each span (fig-2) Also find out maximum reaction at A & B due to two wheel loads 10t and 5t spaced 1m apart (passage from A to B). Considering length of span is 5m (L=5m).

25

Fig-4

a) Determine the component of reactions at A & E and shape for the cable shown in Fig-5 for which dip at B is known.

12+13=25

FIG-5

b) The cables of a suspension bridge have a span of 60m and central dip of 7.5m. Each cable is stiffened by hinged at the end and also at the middle so as retain a parabolic shape for the cable. The girder is subjected to a dead load of 10 KN/m & a concentrated load of 50 KN is place at a distance 20 m from the right support. Find the maximum tension in the cable and draw S.F. & B.M. diagram for the girder.