B.E (CIVIL ENGG.) 2nd YEAR 1st SEMESTER EXAMINATION 2019 (OLD) SURVEYING - II Time: Three hours Full Marks 100 (50 marks for each part) Use a separate Answer-Script for each part #### Part-I Question no. 1 is compulsory Answer any two from the rest (Assume any data, if required, reasonably) Write short notes on the following (any four): 1. $(4 \times 5) = 20$ - I. Chromatic aberration in a theodolite telescope - Relations between the fundamental axes to be a proper condition theodolite Π. - Prove 'D = k.S + C' (with usual notations) in fixed hair stadia method of tacheometry III. - Temporary adjustment in theodolite survey IV. - V. Least count of a theodolite - Bowditch method of closing error adjustment of a traverse VI. - Different parts of a telescope of a theodolite VII. - The tangential method of tacheometric survey VIII. - Below are the particulars of a part of a traverse survey: | Line | Lengths in m | Bearing | |------|--------------|------------------| | AB | 170 | 20 ⁰ | | BC | 360 | 130 ⁰ | | CD | 480 | 210 ⁰ | Find the distance between a point 'P' on AB, 100 m from 'A' and a point 'R' on CD, 280 m from 'C'. Also compute the bearing of line PR. Following is the data related to observations made on a vertically held staff with a tacheometer fitted with an anallactic lens. The constant of the instrument was 100. | | | | | | Staff readings in m. | | |---|---------|---|-----------------|----------|----------------------|------------| | 0 | 1.56 m. | A | 15 ⁰ | 000 00 | | R.L. of O | | | ÷ | В | 63° | + 150 10 | 1.83, 2.15, 2.47 | = 130.25 m | Calculate the distance AB, and the reduced levels of A and B. 15 The bearings of PQ and QR are 20° 33' and 62° 19', respectively. The coordinates of P and R are as follows (in meters) | Point | Northing | Easting | |---|-----------|---------| | P | 300.0 | 400.0 | | R 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | .1400.0 : | 1250.0 | Compute the length PQ and QR. Ref No.: Ex/CE/5/T/202/2019 (Old) ## B.E. CIVIL ENGINEERING 2nd YEAR 1st SEMESTER EXAMINATION, 2019 (OLD) $\textbf{(1}^{\text{st}}\,/\,2^{\text{nd}}\text{-}\textbf{Semester}\,/\,\text{-}\textbf{Repeat-/}\,\,\textbf{Supplementary}\,/\,\text{-}\textbf{Annual}\,/\,\textbf{-}\textbf{Biannual}\textbf{)}$ ## SUBJECT: SURVEYING-II (Name in full) Full Marks: 100 Time: Two hours/Three hours/Four hours/ Six hours (50 marks for each part) Use a separate Answer-Script for each part | Question | | | |----------|---|-------| | No. | Part-II | Marks | | | Answer Question-1 and 2 and any Two questions from the rest | | | Q.1) A) | Fill in the blanks with appropriate word(s): | 1*6=6 | | | a. The distance between the mid-point of the long chord and the apex of a simple curve is called b. A vertical curve of | | | | both transition and circular curve is called | | | В) | State whether the under-mentioned statements are True or False with necessary justifications: | 2*3=6 | | | a. Reverse curve is not suited for meandering path of hilly areas.b. Direct line method is recommended for locating the sounding stations when they are scattered over the water body.c. Weisbach triangle method is followed for transference of levels in the tunnel. | | | Q.2) | a) Establish the fundamental expression for computing the deflection angle for nth.peg on a simple circular curve required for "Double Theodolite Method" of setting out of simple curve. | 7 | Ref No.: Ex/CE/5/T/202/2019 (Old) ## B.E. CIVIL ENGINEERING 2nd YEAR 1st SEMESTER EXAMINATION, 2019 (OLD) $(1^{st} / 2^{nd}$ -Semester / Repeat-/ Supplementary / Annual / Biannual) #### SUBJECT: SURVEYING-II (Name in full) Full Marks: 100 Time: Two hours/Three hours/Four hours/ Six hours (50 marks for each part) Use a separate Answer-Script for each part | No. of Question | Part-II | Marks | |-----------------|--|-------| | | c) Deduce the necessary expression for forward tangent length (Tr) of a reverse curve comprising two simple circular arc bending in opposite direction? c) What are the conditions to be satisfied by a transition curve when | 4 | | · | inserted at both ends of a circular curve? | | | Q.3) | Calculate the reduced levels (RLs) of various station pegs on a vertical curve connecting two uniform grades of (0.73%) and (-0.55%). The chainage and the reduced level at the point of intersection are 446m and 313.57m respectively. Consider the rate of change of grade as 0.1% per 30m. | 10 | | Q.4) | An observer taking soundings from a boat (O) wished to locate his position and measured with a sextant the angles subtended at (O) by three points A, B and C on the shore. The length AB and BC were scaled from the map and found to be 227m and 239m respectively and the angle ∟ABC was 122°36′. The observed angles ∟AOB and ∟BOC were 38°45′ and 39°25′ respectively. What are the distances of (O) from A, B and C? | 10 | | Q.5) | a. Describe the "Simm's Method" of transferring the surface centerline underground with the help of pertinent sketch. | 5 | | | b. A vertical shaft was excavated and two plumb wires (A & B) were suspended into it at a distance of 3.693m. A theodolite was set up at C, within the tunnel, slightly off the line AB at a distance of 6.79m from the wire B. The angle ACB was found to be 2'40". Calculate the coordinates of the point C with respect to the line AB produced. | 5 |