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Abstract 

Condition monitoring of structures is significantly important from the safety and 

durability consideration. Parameter identification and subsequent damage detection 

techniques, using inverse static or dynamic approaches, are important tools to improve 

the mathematical models for monitoring the condition of structure. However, noise in the 

measured data might lead to unreliable identification of damage in a structural system. 

The measurement of static and dynamic responses at all degrees of freedom of a structure 

is also not feasible in practice. Five different numerical models for damage detection of 

structures are developed for condition monitoring of truss, beam and framed structures in 

the framework of finite element model with limited static or dynamic responses. The 

structural properties viz. axial rigidity and bending rigidity are identified at the element 

level in the updated models of the structural system. Damage at the element level is 

identified, by comparing the identified structural parameters of the updated model of the 

system with those of the undamaged state. Proposed numerical models are suitable for 

practical problem, as it is able to identify the structural parameters with limited static and 

modal data of first few modes experimentally measured at selected degrees of freedom. 

Different numerical examples with various damage scenarios are explored to demonstrate 

the applicability of the proposed models. The models are able to identify the structural 

damage with greater accuracy from the noisy dynamic responses even if the extent of 

damage is small. Experimental validation on simple cantilever beams and portal frames, 

establish the potential of the proposed methods for its practical implementation. 

 
Keywords: Condition Monitoring, Damage, Inverse Static and Dynamic  
                     Approach, Modal data, Noise 
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Chapter – 1 

Introduction 
 

1.0 General 

Condition monitoring and damage detection in civil, mechanical and aerospace 

engineering communities has become one of the most important technique in 

maintaining the integrity and safety of structure. The objective of structural condition 

monitoring is to provide a continuous diagnosis of the state of the structure during its 

life span. 

 

Distress of different forms occurs frequently within the life of structures due to its    

aging, action of the environment, improper design, inferior construction and 

accidental loading etc. Damage may also accumulate incrementally over a period of 

time such as that associated with fatigue or corrosion. Natural disasters such as 

earthquake, flood, cyclone etc. leaves behind their sign on structures in terms of 

damages. Damage in elements of some structures may also result from the scheduled 

discrete events such as aircraft landings. Monitoring of health for assessing the 

condition of age-old structures, disaster driven damaged structures has become an 

essential requirement for the safety of structures. Fast development of risk-based 

design and modern construction techniques inevitably invited some risks due to lack 

of adequate knowledge in understanding the structural behavior. Many a times the 

casual approach adopted in execution of a project is also responsible for occurrence of 

premature damage besides natural causes. Several existing structures may have 

inadequate capacities in compare to the demand with the latest provision of codal 

stipulations. Thus, the concern for assessment of structural health, repairing and 

maintenance of existing structures has gained tremendous impetus in recent times.  

 

Condition monitoring (CM) of structure is useful in improving the safety and for 

better utilization of the structure, effective maintenance strategy and avoidance of 

catastrophic failure. The benefits of condition assessment include optimal 
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Chapter 1 

maintenance cost and constant reliability of the structure. Condition monitoring is a 

management issue of the structural system involving integration of sensors, smart 

materials, data transmission and computational cost with processing ability within the 

structure itself. But, in the present context considering the most important part, the 

diagnosis, CM may be stated as the improved version of Non-Ddestructive evaluation 

of structures for efficient diagnosis. It may be compared with the clinical monitoring 

of human body to diagnose illness, to assess the damage.  

 

Various Non-Destructive techniques commonly adopted are based on experimental 

methods such as ultrasonic or acoustic testing, magnetic field procedure, radiography 

etc. which are local techniques, inspected in a piece-wise manner are most 

importantly location dependent. The accessibility criteria also pose difficulty in many 

situations. Condition monitoring technique based on dynamic responses seems to be a 

better proposition by addressing the global assessment. Rudimentary techniques of 

structural damage detection based on dynamic responses are a very old practice, such 

as practices of sounding of clay pots to reveal cracks and tapping along the surface of 

a material to detect voids. These methods are constrained with individual power of 

observation and seem to be subjective. However, the promising utility of these simple 

techniques are exploited by the researchers with more sophisticated inspection 

methods. Sophistication is provided in combination with sensitive & accurate 

instrumentation and detailed numerical modeling using acquired response data.  

 

The existing techniques used in structural damage detection can be categorized into 

two main groups. Finite-element model (FEM) update algorithms are used in one 

group for damage detection, as a special case of the general model update problem. 

The goal of damage detection with FEM update method indicates those elements, and 

their material properties which vary independently from their desired values.  
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It is assumed that the damage will change the structural characteristics considerably 

and subsequently the static and dynamic responses which are influenced by these 

changed parameters. Therefore, the static and dynamic responses may be useful to 

identify the damage. The schematic diagram of the damage detection technique 

adopting both inverse static and dynamic approaches are used for condition 

monitoring, are shown below. 

 
 

 
 

Fig 1.1: Schematic diagram of  forward and inverse  problem for condition monitoring 
 
Structural damage detection algorithms are developed in this study based on the 

change of the elemental structural deflection and strain modal strain energy before 

and after the incorporation of damage in the structure. The degrees of freedom 

(DOFs) of the analytical model (FEM) of the structure are very large in practice and 

also only a limited number of the lower vibration modes of the structure can be 

measured accurately for damage detection. Moreover, it is known that the lower 

modes of a structure can be accurately modeled using the finite-element method, but 

substantial modeling errors exist in the higher modes. The proposed algorithm only 

uses few lower analytical and experimental modes in damage detection by the 

inclusion of the system stiffness. This improvement reduces significantly the 
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truncation and modeling errors in the higher modes with improvement in the 

convergence properties of the algorithm. 

1.1 Objective of the present investigation 

The objective of the present investigation is to monitor the condition of different types 

of structures using limited randomly measured dynamic responses adopting frequency 

domain techniques. 

The detail of the objective of the present investigation to develop a numerical model 

using limited static and modal data measured at selected degrees of freedom for 

damage detection is represented schematically in Fig 1.2 and Fig 1.3 

 

 
 
 

Fig 1.2: Inverse static approach with experimental test data    
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Fig 1.3: Inverse dynamic approach with experimental modal testing 

 

1.2    Scope of work 

To fulfill the objective of the present study the scope of work is categorized as: 

a. Finite element model generation for beam, frame and plane truss structure. 

b. Laboratory experiment to obtain the static displacement and bending strain 

data for different model structures. 

c. Modal testing and subsequent extraction of modal parameters like natural 

frequencies, mode shapes and their derivatives, modal strain energy of 

different model structures. 

d. Condition assessment of different structures using inverse approach both with 

static and dynamic responses. 

1.3 Structure of the thesis 

The thesis is subdivided into six chapters. In Chapter 1 discuss the 

introduction to structural condition monitoring and the objective & scope of 
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work of the present investigation. In Chapter 2 review of relevant literature 

and critical observations are discussed. Chapter 3 is devoted to the theoretical 

formulations for different developed numerical models of condition 

monitoring of structures. The details of the experimental study for the 

validation of the developed numerical techniques are presented in Chapter 4. 

Results of numerical examples as well as experimental studies are discussed in 

Chapter 5. The conclusions from the present investigations & future scope of 

work are outlined in Chapter 6.  There are relevant referred papers, which are 

indexed subsequently. 
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Chapter – 2 

Literature Review 
 

2.0 General 

Review of existing literature is quite important to understand the present state of art of 

the particular area of research. Various approaches have been attempted by different 

researchers to address the condition monitoring (CM) of structure based on static and 

dynamic responses.  

More researchers are involved in developing efficient, reliable and low-cost damage 

diagnosis approaches using static and dynamic parameters measured from a structural 

system in aerospace, mechanical, and civil engineering disciplines According to the 

extent of acquirable damage information, the process of damage diagnosis can be 

broken down into four levels (Rytter A., 1993) 

 
  Level-1 Alarm of damage existence 

  Level-2 Identification of damage location 

  Level-3 Identification of damage severity and 

 Level-4 Prediction of the remaining life of the structure 

 

To detect damages in structural systems in terms of the structural parameters the 

measurement techniques that are adopted may be categorized into two groups e.g., 

measured excitation and ambient excitation. Similarly,there are two types of dynamic 

response data which are generally used for damage detection, namely, time domain 

response and frequency domain response. 

Most of the condition monitoring approaches is based on the system identification 

technique adopting inverse dynamic methods. It is observed that the accurate and 

repeatable dynamic response measurements on complex structures are often difficult 

and thus pose a challenging problem to develop an efficient model for condition 

assessment. In addition, environmental and operational variations e.g., varying 

temperature, moisture, and loading conditions also affect the dynamic response of 
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structures and greatly influence the identification of damage or condition monitoring 

of the system. Thus, effect of noise of the system identification is important to address 

the condition assessment of structural system in more effective way to account for the 

uncertainties associated with the limited observations, data irregularities, model 

assumed and all other environmental and operational variations. 

 
2.1 Damage detection using static response data 

 
Sanayei et al. (1996) proposed a method for structural parameter identification 

utilizing elemental strain measurements. Sanayei  et al. (1996) presented a method for 

the parameter estimation of structures using subsets of static applied forces and strain 

measurements and successfully identified structural stiffness in element level. It was 

also observed that in presence of measurements, the selection of these subsets 

drastically affects the accuracy of the parameter estimates. Sanayei et al. (1997) 

performed experiments on a small scale steel frame model to support the displacement 

based equation error function, displacement output error function, and strain output 

error function methods of structural parameter estimation using static nondestructive 

test data. Both static displacement and static strain measurements were used to 

successfully evaluate the unknown stiffness parameters of the structural components. 

On the other hand Hjelmstad and Shin (1997) developed a damage detection and 

assessment algorithm based on parameter estimation with an adaptive parameter 

grouping scheme. Liu and Chian (1997) proposed a method for identifying the 

element properties of a truss. The axial strains of the truss elements measured in static 

tests were used in the identification process. The finite-element method was used to 

derive the equilibrium equation of the truss. Oh and Jung (1998) developed an 

improved damage detection and assessment algorithm based on the method of system 

identification. Yeo et al. (2000) presented a damage assessment algorithm for framed 

structures based on a system identification scheme with a regularization technique. 

Wang et al. (2001) developed a structural damage identification algorithm using static 

test data and changes in natural frequencies. After obtaining the possible damage 

location, an iterative estimation scheme for solving non-linear optimization 

programming problems was used. Jang et al. (2002) examined damage assessment 
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algorithms based on the system identification (SI) method through laboratory 

experiments of static displacements from static loading and modal data from impact 

vibration were measured through laboratory experiments on a grid-type model bridge. 

Changes in the static response of a structure are characterized as a set of non-linear 

simultaneous equations that relate the changes in the static response to the location 

and severity of damage Sanayei et al. (2005) proposed a multi-response parameter 

estimation method, including an error function normalization procedure, to allow 

simultaneous estimation of stiffness and mass parameters for model updating.  

Muthumani et al. (2010) proposed a first stage condition monitoring methodology 

using natural frequencies and static deflections as damage indicators. The idea was 

that the first stage monitoring can be done for a large number of bridges and 

vulnerable structures in a remote manner and the features extracted from the data 

should help in determining whether any second stage detailed investigation may be 

warranted. Kourehli et al.  (2012) presented an algorithm for damage detection and 

estimation in structures using incomplete static responses.  

 
2.2. Damage detection using dynamic response data 

 
Lifshitz and Rotem (1969) possibly published the first journal paper discussing 

damage detection using vibration measurements. Vibration based damage detection 

methods normally assume that structural vibration parameters are functions of its 

physical parameters. It is possible to identify the physical change of the structure due 

to damage by tracking its vibration parameters change (Doebling et al., 1998). Unlike 

other disciplines, the damage detection problems for large civil structures such as 

bridges are complex. The main challenges and difficulty come from large scale of the 

structures, great degree of uncertainties, and inability for exciting higher order modes. 

Although much literature has proven that observing outliers in a continuously 

monitored vibration parameter may alarm the existence of damage, it is still difficult 

to locate and quantify, as further damage detection levels, the damage directly from 

these data (Alampalli et al. 1997). According to different analytical processes, the 

reviewed vibration-based damage detection methods in this chapter were reviewed in 
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two categories (Hejll, 2004). One category was the forward identification methods, 

and the other was the direct§ identification methods. The forward type methods 

attempt to solve the damage detection as an inverse problem; in this inverse problem, 

the identification is sought by error minimization between the predicted vibration 

parameter change and the measured vibration parameter change (Zhang and Kumar, 

2011). Firstly, the theoretical vibration parameter of a structure is obtained by 

numerical modal analysis to its undamaged FE model. Secondly, a damage candidate 

is randomly introduced; and the change in the vibration parameter after this damage 

occurrence is calculated. Thirdly, comparing to the measured vibration parameter 

change, the analyst may decide whether the damage candidate tried in the numerical 

analysis matches the real damage in terms of the correlation of the theoretical 

parameter change and measured parameter change. In this manner, a damage 

detection process is seen as an optimization problem. The direct type methods as of 

another category are often developed being able to detect structural damage without 

optimization iterations. The relation between structural damage and natural frequency 

change, or in other words, the input, is explicitly described in the algorithm of a direct 

method. Therefore, an effective damage indicator in direct methods should be highly 

sensitive and robust to the damage-induced change in physical matrices of the 

underlying structure. The direct methods normally aim at identifying the location 

and/or severity of the damage at the same time after the existence of damage is 

certain. Therefore, they are expected to have the ability of solving Level-3 problems. 

 
2.3. Damage detection using basic vibration parameters 

 
Basic vibration parameters, including natural frequencies, mode shapes, and damping 

ratios, are deemed as a basic structural characteristic; they are to be identified in 

priority in most experimental or field modal tests. In this context, the techniques using 

these fundamental parameters are reviewed at first. 
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2.3.1 Natural frequency 

 
Natural frequency is one of the most convenient characteristics in modal analysis; it 

has absorbed wide damage detection investigation (Biswas et al., 1990; Juneja et al., 

1997; Kanazawa, 2006). This section highlighted the early leading work and the 

representative papers analyzing different structure cases, and publications considered 

as a key contribution to knowledge in this field. As pioneers in this area, Cawley and 

Adams (1979) developed an optimization based method by calculating similarity ratio 

of natural frequency change. It was found that the method is sensitive to damage in 

aluminum and carbon-fibre reinforced plastic plate. Messina et al. (1996) proposed 

damage localization assurance criterion (DLAC) that compared the normalized 

natural frequency change in theory before and after damage occurrence with regard to 

the normalized natural frequency change identified from measurement. The DLAC 

method was proven to have ability of damage location, but it is only applicable to the 

scenarios where damage happens at a single location. Later, Messina et al. (1998) 

differentiated a frequency-to-damage sensitivity matrix for the DLAC method in order 

to consider local element information. The revised method, namely multiple damage 

localization assurance criterions (MDLAC), enables the DLAC’s applicability for 

multiple-damage cases. In addition, they investigated the second order sensitivity 

matrix for the MDLAC method but found no obvious improvement. Many 

applications of forward methods have been made; however, they mainly answered the 

1st level problems, that is, the existence of structural damage. Still, very few of them 

have successfully solved higher level problems of multiple damage locations (Hejll, 

2004). One of the possible restrictions prohibiting this is the sensitivity and reliability 

of natural frequency (Doebling and Farrar, 1996) as a global parameter in 

complicated damage detection cases. There were many other applications of natural 

frequencies, such as offshore structures (Begg et al., 1976; Vandiver and Hole, 1976), 

a concrete cantilever beam (Gudmundson, 1982), a concrete cantilever plate (Friswell 

et al., 1998), a truss bridge (Juneja et al., 1997), and the steel girder of a highway 

bridge (Biswas et al., 1990).Particularly, since the natural frequency-based damage 

indicators can hardly provide damage location information, therefore, the change of 
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natural frequencies in different multiple-damage cases can be the same. For example, 

Farrar et al. (1994) demonstrated insensitivity of the method using natural 

frequencies to detect damage on I-40 Bridge in the U.S. When the stiffness at the 

centre of a main span decreased by more than 90%, accordingly, the bridge’s overall 

bending stiffness reduced by more than 20%, they did not observe significant change 

in the identified natural frequencies. In addition, to make structural damage detectable 

in practice by using these forward methods, the necessity of obtaining highly accurate 

modal measurement becomes another limit (Doebling et al., 1998). For instance, the 

frequency change should be measured precisely and in a controlled environment 

 

2.3.2 Mode shape 

 
Mode shapes reflect the information of geometry, materials, mass, and stiffness. It is, 

therefore, another popular parameter incorporated in forward damage detection 

methods (Li et al., 2005; Ndambi et al., 2002). West (1984) and Wolff and Richardson 

(1989) presented early work making use of mode shapes in damage detection. The 

authors proposed modal assurance criterion (MAC) to detect the existence and the 

location of structural damage, defined as 

MAC (i,j) = 
 

  

2
{ } { }

{ } { } { } { }

A T B
i j
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 

   
                                         (2.1) 

Where A
i  is the ith mode safe of a structure before damage whilst B

j  is the jth mode 

shape of the structure after damage. MAC is a scale factor from zero to one. Bigger 

the MAC values closer the relation between the two evaluated mode shape vectors. In 

addition, Fox (1992) found that, if the MAC value at a measurement point of one 

mode is close to the node points, the MAC indicator is sensitive to damage. In their 

findings, graphical comparison between the mode shapes before and after damage 

occurrence is perhaps a better way where only the natural frequencies and mode 

shapes are available to use. Another issue for MAC evaluation is that, as it only uses 

one pair of mode shape vectors in judgement, how to choose the appropriate mode for 

MAC calculation becomes determinant. To overcome this, Lieven and Ewins (1988) 



 
 

 
 

 
13 

 

Literature Review 
Formulation 

proposed a coordinate modal assurance criterion (COMAC) (that was later used by 

many other scholars. The COMAC coefficient is defined as 

COMAC (i) = 

2

1

1 1
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

 
                        (2.2) 

 

Where { }A
i r  is the ith component of the rth undamaged mode shape; { }B

i r  is the ith 

component of the rth damaged mode shape; md is the highest mode number of 
interest. Structural damage can be possibly identified at the location where the 
COMAC is close to zero. Ko et al. (1994) combined MAC and COMAC-based 

sensitivity in damage detection for steel-framed structures and argued that the 

performance of the combined method still depends on the selection of most sensitive 

mode pairs. Shi et al. (2000) extended the MDLAC method by using incomplete noisy 

mode shapes in damage localization assurance criterion. With incorporating the 

derived mode shape sensitivity matrix, they found that the index of mode shape 

correlation has considerable potential in damage detection for a truss model. 

Similarly, Koh and Dyke (2007) also presented a method, noted as stacked mode 

shape correlation (SMSC), to report structural damage using mode shapes but without 

using mode shape sensitivity. In this method, the mode shapes evaluated in the 

correlation criterion is stacked together as a column vector. The feasibility of SMSC 

method was validated through simulations on a flexible cable-stayed bridge model 

where some errors were found in damage severity prediction. Skjaerbaek et al. (1996) 

studied the issues of optimal sensor location for damage detection based on the 

change in mode shapes and natural frequencies using a substructure iteration method. 

Cobb and Liebst (1997) demonstrated their work on optimal sensor locations based on 

an eigenvector (mode shapes) sensitivity analysis. Ratcliffe (1997) presented a 

technique for locating beam damage using the finite difference approximation of a 

Laplacian operator on mode shape data. Rahai et al. (2006) characterized the mode 

shapes of a structure as a function of stiffness, where the mode shapes are divided into 

measured and unmeasured sets in equations. From the simulations on a truss and 
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frame, they evidenced the capability of the proposed optimization criterion of 

locating, quantifying the damage by solving few sets of equations. Apparently, the 

downside of a forward method using mode shapes is that the mode shapes are more 

uncertain and can be contaminated by environmental noise in practical testing 

comparing to natural frequency-based methods. For large structures, on the other 

hand, it is hard to capture accurate and reliable mode shapes using a limited number 

of sensors, especially when it comes to meet the belief in some literature (Cempel et 

al., 1992) that the higher modes are deemed more favorable in damage detection than 

the lower modes. 

 
2.3.3 Modal flexibility 

 
There is also plenty of literature studying other modal derivatives: for example, modal 

flexibility, mode shape curvatures, modal strain energy and strain mode shapes. The 

damage indicator using modal flexibility matrix, which is made up of natural 

frequencies and mode shapes, is defined as 
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



                                                                         (2.3) 

Where ωi is the ith natural frequency and iФ  is the ith mode shape vector. 
The motivation of using modal flexibility in damage detection is that it does not 

require complete vibration parameters in damage detection (Pandey and Biswas, 

1994, 1995) and this feature is welcomed in practical measurement since only the 

parameters of limited modes can be captured. Reich and Park (2000) investigated a 

local flexibility method using substructure techniques. Their experimental comparison 

of the proposed damage indicator on a bridge column before and after damage 

showed the method’s ability of damage localization. Bernal (2002) concluded by two 

numerical examples that the change in a flexibility-based damage locating vector 

(DLV) can reflect damage; also, the DLV indicator is independent on the model or 

sensor availability. Wang et al. (2000) examined the modal sensitivity indices of 

different vibration parameters to detect simulated damage scenarios on Tsing Ma 

Bridge and found that the modal flexibility has better performance than natural 

frequencies and mode shapes. Gao and Spencer (2006) studied an extended modal 
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flexibility-based DLV method for long-term monitoring purpose. They conducted 

ambient and forced vibration tests on a 14-bay truss; it was proven that the improved 

method is useful to detect damage with limited sensor information. However, the 

feasibility of the flexibility-based methods was doubted by Huth et al. (2005), from 

the analysis of a prestressed concrete bridge, they argued the parameter’s difficulty of 

locating early stage damage because of the stiffness recovery after cracks close in 

prestressed concrete, and also the environmental influence on vibration parameters. 

 
2.3.4 Mode shape curvature 

 
Mode shape curvatures have a direct relation with bending strains. Pandey et al. 

(1991) proposed a curvature-based method in damage detection for a cantilever beam 

and a simply-supported beam model. The curvature is calculated by central difference 

approximation to mode shapes 

 
1 1

2

( 2 )'' i i i

h
  

   
                                                                         (2.4) 

Where   the mode shape component at two adjacent elements and h is is the length 

of the element. They found that the curvature change is a useful indicator for damage. 

Chance et al. (1994) investigated the relation of the measured strain time-series with 

curvature used for neural network training purpose. They found that, in this way, the 

inaccuracy problems in traditional curvature approximation can be overcome. 

Maeck and De Roeck (1999) applied a direct stiffness approach to damage detection, 

location, and quantification for the prestressed concrete bridge Z24 in Switzerland. 

They found that the curvature change is rather small for the side spans. 

Wang et al. (2000) presented a numerical damage detection simulation on Tsing Ma 

Bridge in Hong Kong; and they concluded that the mode shape sensitivity (curvature) 

is less sensitive to damage than modal flexibility. In a comparison investigation, Maia 

et al. (2003) compared various methods by the raw data measured in an operational 

test. As all tested methods were frequency response function (FRF)-based, they do not 

require modal identification. Simulation results on a numerical beam showed that the 

curvature-based method outperforms the others. However, some false damage alarms 
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still need attention. Hamey et al. (2004) examined four methods on a carbon/epoxy 

composite model: they are the absolute difference of curvature mode shape method 

(ADM), the curvature damage factor method (CDF), the damage index method 

(DIM), and the FRF curvature method (FCM). In contrary to most existing curvature-

based damage detection methods, the curvature used in their study was directly 

measured by piezoelectric sensors. The DIM method was proclaimed to be the best 

method. Lestari and Qiao (2005) demonstrated that using curvature mode shapes can 

be useful in damage quantification of fibre reinforced polymer (FRP) honeycomb 

sandwich structures. Other scholars, such as Doebling et al. (1997); Wahab and Roeck 

(1999); Lestari et al. (2006); Xu and Wu (2007); Qiao et al. (2007); Tomaszewska 

(2010), and Yoon et al. (2009), also attempted mode shape curvature in damage 

detection indices, but most of these applications only referred to basic laboratory 

models. 
 
2.3.5 Slope of mode shapes 
 
Most of the existing methods using this parameter in damage detection still focused 

on simple structures, such as beams or plates. Abdo and Hori (2002) used slope of the 

mode shape in damage detection. Through their numerical analysis on a simple steel 

plate model, it was found that, comparing to traditional mode shapes, the change in 

absolute values of mode shape rotations (slopes) is useful to locate damage 

efficiently. Kim and Kwak (2001) compared various crack detection criteria using 

COMAC, Enhanced COMAC (ECOMAC), and Absolute Difference of Strain Mode 

Shape (ADSM), along with their newly proposed method using strain mode shapes. 

They proved the superiority of the proposed method in most simulations. 

Sazonov et al. (2003) also justified the feasibility of using the change of strain energy 

mode shapes in damage detection activity for a complex bridge structure without 

using baseline data. 
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2.3.6 Modal Strain Energy 

 
Modal strain energy (MSE) is acknowledged as sensitive variable to element location 

and has been widely used in investigating modal participation of structural elements 

(Lim and Kashangaki, 1994) and Stubbs et al. (1992) presented a pioneering work of 

using modal strain energy for damage localization. The MSE of a structure on the rth 

mode can be demonstrated as 

 

1
2 rr

T
rФMSR KФ                                                                            (2.5) 

Where, K is the stiffness matrix of a structure. 

Stubbs and Kim (1996) verified the feasibility of a practical modal strain energy 

method for damage localization and severity estimation with only the post-damage 

information available. Carrasco et al. (1997) discussed using modal strain energy 

change to find damage location and extent for a space truss model and claimed that 

the magnitude change of the indicator is related with the damage’s overall magnitude. 

Result of the test showed that this method works well at locating damaged elements. 

Also, Park et al. (2001) examined another damage index using modal strain energy. 

The index was extracted from the periodical measurement data of the prior visually 

inspected cracks on a concrete box-girder bridge. They found that the environmental 

factors are likely to affect the accuracy of the proposed. Wang et al. (2010) studied 

MSE as a correlation indicator, called modal strain energy correlation (MSEC) to 

identify damage for truss bridge structures. The MSE based damage sensitivity was 

derived from theory. The capacity of MSEC was verified through several damage 

scenarios. It was found that the method has high computational efficiency, however, 

when measurement noise is considered, the method may report false alarms. Cornwell 

(1999) examined the application of a modal strain energy method on a plate-like 

model. The method only requires mode shape data before and after damage. From the 

experimental validation, the method is effective even for the damage whose extent is 

as low as 10%.Shi et al. (1998) proposed a method based on modal strain energy for 

locating damage in a Structure. This method makes use of the change of modal strain 

energy in each structural element before and after the occurrence of damage. Some 
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properties of this Modal Strain Energy Change are given to illustrate its sensitivity in 

locating the structural damage. Information required in the identification is the 

measured mode shapes and elemental stiffness matrix only without knowledge of the 

complete stiffness and mass matrices of the structure.  Shi et al. (2000) derived the 

sensitivity of the MSE with respect to damage is derived. The sensitivity is not based 

on any series expansion and is a function of the analytical mode shape changes and 

the stiffness matrix. Only incomplete measured mode shapes and analytical system 

matrices are required in this damage localization and quantification approach. 

Damage quantification of two damages is successful with a maximum of 14% error 

under a 5% measurement noise. 

  

2.3.7 Damping Ratios 

 
Damping ratio is a significant vibration characteristic that is directly related to how 

the vibration energy can be dissipated along a structure. Unlike the extensively 

researched natural frequencies or mode shapes-based parameters, very few dynamic 

parameter based condition monitoring methods employing modal damping as damage 

indicators were found in the literature. The main reason denouncing modal damping 

being adopted as damage indicators is probably the uncertainties and errors in 

experimental damping estimation. One of the early studies making use of modal 

damping as damage indicator was done by Tsai et al. (1985). The authors investigated 

a cross random decrement method for early damage detection. The change in modal 

damping ratios was used to identify damage in an offshore platform structure. They 

found that, under random excitation, the proposed method is related with progressive 

damage severity. Williams and Salawu (1997) suggested that damping ratios maybe 

advantageous and feasible in some damage detection scenarios, particularly when 

both natural frequencies and mode shapes are found to be insensitive. Kawiecki 

(2001) used surface-bonded piezo elements to determine modal damping 

characteristics of a beam and found that structural or material damage is frequently 

associated with damping change. However, the author suggested that the proposed 

method is only practically useful for damage detection of light-weight or small scale 

structures. Kyriazoglou et al. (2004) measured the specific damping capacity (SDC) 
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of a composite flexural beam. They applied quasi-static loading to test a beam under 

the undamaged/damaged state and observed that the SDC is a promising damage 

indicator for the similar structures. 

 
2.3.8 Frequency response function (FRF) 
 
Frequency response function (FRF) quantitatively measures a system’s output 

spectrum in response to its imposed excitation. Therefore, it is popularly used in 

dynamic characterization for time-invariant systems. As a traditional and well-studied 

parameter, nowadays FRF can be readily obtained in many ways. There are quite a 

few researchers who have proposed frequency domain-based damage detection 

methods using FRF. Lew (1995) used a coherence algorithm to exploit the change of 

transfer functions of a nine-bay truss example and successfully detected the damage 

type and location. Wang et al. (1997) validated a FRF-based damage indicator that is 

useful to locate and quantify damage on a 3-bay frame model using incomplete 

measurement. Zang and Imregun (2001) employed the size-reduced FRF data to train 

an ANN in the damage detection of a rail wheel. The outcomes showed the potential 

of this method in damage detection with noise contaminated data. Wu and Xu (2006) 

proposed a new acceleration response energy method by relating the FRF of the 

structural acceleration responses with mode shape data. The simulations on a long-

span cablestayed bridge indicated the accuracy advantages of the method by 

comparison to the mode shape curvature method. Yoon et al. (2010) derived another 

parameter called operating deflection shape from the measured FRF from a plate. By 

comparing the experimental analysis using global fitting method and directing 

subtracting method, they found that the proposed method is more accurate and less 

sensitive to noise in the damage detection case of a notched beam. Hsu et al. (2011) 

developed a FRF change method supported by the wireless sensing system; the 

method was then verified to detect the damage of a six-story laboratory frame. The 

experimental casestudy demonstrated the proposed method’s efficiency improvement 

and the capability of locating and quantifying damage when no environmental factors 

are considered.  
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On the other hand, the applicability and robustness of FRF-based indices for detecting 

damage is still suspected by some researchers. For example, Mares et al. (1999) 

simulated a crack damage in a cantilever beam and found that if the load is applied 

right on the damaged elements, there is no observable difference of FRF for the 

damaged element from its intact state; if the load is applied on the damage-free 

elements, the FRF will change. A later argument is from Agneni (2000) who 

investigated the influence of the truncation in measured time-series data that are to be 

transferred to frequency domain on FRF. He found that the truncation can cause 

significant FRF change even there is no damage at all. Moreover, Crema and 

Mastroddi (1998) correlated the FRF measurement with physical parameters of the 

structure and found that the noise can corrupt the frequency resolution of the FRF 

when it is used for damage inspection. Based on these facts, therefore, using FRF to 

derive damage identification methods requires attention. The use of FRF curvature 

was also studied by Maia et al. (1997) and Sampaio (1999). Rather than just using 

resonant frequencies as done in Pandey et al. (1991), their methods were an extension 

work to consider all the identified frequency range. Also, the mode shape has been 

replaced by FRF data. The FRF curvature is defined as 
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Where αi,j is the receptance FRF measured at the ith location excited by an input force 

at location j.α” is the second-order derivation of α. Then the summation of the 

difference between the undamaged and damaged FRF curvatures along the frequency 

range at all exciting locations becomes a damage indication for the ith   location 
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Where, d and ud denote damaged and undamaged states, respectively. 
 
Experimental data from the American I-40 Bridge showed considerable potential of 

using FRF curvature for its simplicity. Also, this damage indicator does not require 

natural frequencies or mode shape to be identified. As already been mentioned in 
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Section 2.2.3, FRF-based mode shape damage indices were investigated by Maia et 

al. (2003). 

 
2.3.9 Operational modal analysis 
 
Operational modal analysis (OMA) simply known as output-only modal analysis, has 

recently prevailed in structural vibration test and monitoring. OMA technique use 

unmeasured ambient excitations, such as moving traffic, wind, and other natural 

loads. Therefore, these methods overcome the difficulties of applying a traditional 

artificial excitation-based modal testing method in the real world civil structures. 

Since an engineer only needs to record output time-series in OMA techniques, the 

testing procedure is more affordable and feasible in practical civil structure 

applications. R.B. Randall et al., (2004) compared several curve-fitting methods for 

extraction of the modal parameters from response vibration measurements, and in 

particular the best damping estimates. De-Wen Zhang and Fu-Shang Wei (2007) 

shown that the dynamic flexibility (DF) and improved dynamic flexibility (IDF) 

methods can be applied to extract constrained structural modes from free-free modal 

test data. An analytical comparison between three techniques for the identification of 

modal properties of structures when subjected to ambient vibrations is performed by 

Diego F. Giraldo et al., (2011) explained that an accurate estimation of the modal 

parameters of a structure, including modal frequency and damping ratio, is crucial for 

many practical engineering problems. Rune Brincker and Palle Andersen have done 

some further work following the idea introduced by Parloo et al. where they proposed 

that the scaling factor should be estimated by repeated testing introducing mass 

changes in different points on the structure.  

 

2.3.9.1 Study of time domain techniques 

 
Zhang et al. (2002) established a common mathematical framework  for a unified 

two-stage time domain (TD) modal identification, based on a formula of modal 

decomposition of the time response function (TRF), represented as impulse response 

function, free decay response, or correlation function, as well as data correlation of 
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the TRF. The Structural Time Domain Identification (STDI) toolbox for use with 

MATLABTM is developed by P.H. Kirkegaard; P. Andersen and R. Brincker (1997) at 

Aalborg University, Denmark, based on the system identification research performed 

during recent years. Reza D. Nayeri et al., (2009) explained that while numerous 

studies have been published concerning the application of a variety of system 

identification techniques in conjunction with vibration measurements from civil 

infrastructure systems. 

 
2.3.9.2 Modal Parameter extraction by Frequency Domain 
Decomposition 

R. Brincker and P.Andersen introduced a new frequency domain technique for the 

modal identification from ambient responses Jorge Rodrigues, Rune Brincker and 

Palle Andersen explored the idea of estimating the spectral densities as the Fourier 

Transform of the random decrement functions for the application of frequency 

domain output-only modal identification methods. Brincker et al. (2001) did their 

research on identification and damage detection of a highway bridge by Frequency 

Domain Decomposition method.  

 
2.3.9.3 Modal Parameter extraction by Empirical Mode Decomposition 

  

Xingyu Song et al. (2017) developed modal parameter identification method based on 

empirical mode decomposition and Natural Excitation Technique (NEXT) .A 

methodology is presented by Paul J. Fanning and E. Peter Carden (2004) for 

detecting added mass in structural systems maintaining a linear response. A single 

frequency response function measured at several frequencies along with a correlated 

analytical model of the structure in its original state are used to detect and quantify the 

added mass.  J.C. Asmussen and R. Brincker (1996) discussed a method for estimating 

frequency response functions by the Random Decrement technique.  R. Brincker et 

al., (1996) discussed that the dynamic analysis of Queensboro Bridge data recorded 

by EDI Ltd., based in Vancouver (Canada), under environmental excitation, is a 

chance to involve a few different research groups already working in this field. Moller 
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N. et al (2001) performed modal testing of mechanical structures subject to 

operational excitation forces. For operational modal analysis two different estimation 

techniques are used: a non-parametric technique based on frequency domain 

decomposition (FDD), and a parametric technique working on the raw data in time 

domain, a data driven Stochastic Subspace Identification (SSI) algorithm. Carlos E. 

Ventura et al (2001) in their paper describes results of a model updating study 

conducted on a 15-storey reinforced concrete shear core building. The output-only 

modal identification results obtained from ambient vibration measurements of the 

building were used to update a finite element model of the structure. Experimentally 

identifying vibration characteristics of a structure has been widely studied in 

engineering disciplines in the past half century. As one of the earliest milestones made 

in this area, Kennedy and Pancu (1947) introduced the accurate identification of 

natural frequencies and damping levels for aircraft structures and even their methods 

had not been out-dated for many years (Ewins, 2000). Traditionally, the experimental 

modal analysis approaches are developed on the basis of forced vibration test (FVT). 

FVT requires both the excitation force and the structural response are required to be 

measured simultaneously. The theory and application of the traditional methods have 

been well-established and extensively investigated in the aerospace and automotive 

communities (He and Fu, 2001; Maia and Silva, 1997). However, the methods 

employing FVT encounter many challenges when they are applied to identifying 

modal characteristics of civil structures. For instance, a large dimension bridge will 

require an appropriate equipment to produce adequately large, but non-destructive 

excitations. Furthermore, the normal traffic on the bridge has to be closed in the 

duration of a FVT session. These limitations have obviously made the traditional 

modal identification methods inconvenient and inappropriate in modern long-term 

continuous SHM tasks. Shama et al. (2001) conducted an ambient vibration test for 

North Grand Island Bridge in West New York. The identified modal properties were 

utilised for FE model validation. Jaishi et al. (2003) applied an ambient vibration test 

to identify the modal properties of a historic structure in Nepal and evaluated the 

seismic safety of the structure using an updated FE model. 
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2.3.10 Time-frequency analysis  

The time-frequency analysis is based on spectrogram, which is the basic short term 

Fourier transform, Wigner-Wille transform, wavelet and empirical mode 

decomposition. Various wavelets such as coifet, daubechies, symmlet and 

vaidyanathan were used by the researchers to decompose an impact-type waveform 

and the wavelet coefficients were compared. Staszewski (1998) reported a summary of 

advances and applications of wavelet analysis for damage detection. It included time-

frequency analysis, wavelet spectrum, orthogonal or discrete wavelet decomposition, 

wavelet-based data compression, de-noising and feature extraction, linear and 

nonlinear system identification and image processing. The wavelet analysis provides 

new insight in non-stationary signal analysis with respect to classical time-invariant 

approaches and seems to be promising of its wider range of applications. Kitada 

(1998) also adopted wavelet technique for the non-linear identification of the dynamic 

system. Zabel (2005) presented an algorithm for the parameter identification of a 

finite element model. The author utilised wavelet coefficient of the measured data and 

their integrals or derivatives respectively. The application of discrete wavelet analysis 

and correction coefficient to parametric system identification was demonstrated with 

numerical and experimental investigations. 

2.3.11 Singular value decomposition (SVD)  

Ruotolo and Surace (1997) reported that the structures under test could be subjected 

to alterations during normal operating conditions, such as changes in mass. Damage 

detection method based on singular value decomposition (SVD) can able to 

distinguish between changes in the undamaged and damaged conditions. Initially it 

was able to detect and analyze the stress waves, but could not dissociate the stress 

waves generated from damage and those from the acoustic emissions of the test 

apparatus. Thus the results were inconclusive for damage detection at that time.  

2.3.12 Principal component analysis (PCA)  

Principal component analysis (PCA) is a method of multivariate statistics which was 

adopted to overcome many limitations. Kullaa (2003) studied the condition 

monitoring of Z24 Bridge in Switzerland for three types of damage configurations. 
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Stochastic subspace identification technique and stabilization diagram were used for 

automated modal parameter identification. Principal Component Analysis (PCA) was 

also incorporated to reduce the computational cost. Yan et al. (2005) proposed a 

damage detection method based on Principal Component Analysis (PCA) for 

condition monitoring under varying environmental and operational condition.  

2.3.13   Soft computing tools for SHM 

Tee et al. (1990) studied the application of Fuzzy logic for assessing the condition of 

concrete slab bridges. Pande and Barai (2000) presented an application of multilayer 

perceptron in the damage detection of steel bridge structures adopting Artificial 

Neural Network (ANN). The Author reported that the performance of the network 

with two hidden layers was better than that of single-layer architecture in general. 

Barai and Pande (1997) adopted Traditional neural networks (TNN) and the time-

delay neural networks (TDNN) for detecting the damage in bridge structure using 

vibration signature analysis. The authors carried out a comparative study for the 

various cases of complete and incomplete measurement data. It is reported that TDNN 

performed better than TNN. Routolo and Surace (1997) presented a method for non-

destructive detection of cracks in beam employing genetic algorithm. Bani-Hani et al. 

(1999) presented an experimental study of identification and control charts using 

neural network. Further, Barai and Pande (2000) presented damage assessment 

paradigms integrated on blackboard platforms with special reference to steel bridge 

structures.  

      2.3.14 Artificial neural networks 
 
There are development of mathematical models with new technologies. ANN is the 

system inspired from the operations of biological neural networks, in other words, it 

emulates biological neural system. 

One of the important applications of ANN is pattern recognition, with which many 

researchers have proposed statistical damage detection methods. After an ANN is 

trained by sample data, the network can associate output patterns with input patterns. 

Therefore, a basic idea of employing ANN in damage detection activities is to train a 
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network being able to recognize assorted damage scenarios resulting from various 

inputs, such as the reviewed dynamic parameters that can found in prior subheadings. 

Therefore, a promising potential of ANN techniques in structural damage detection is 

that, by adapting the network to highly complex relations between the input and 

output patterns (namely supervised learning), an ANN is expected to correctly or 

nearly correctly predict damage information for future incomplete or even partially 

incorrect inputs. Such highly non-linear capability is normally not available in the 

traditional techniques (Balageas et al., 2006).Worden (1997)’s feed-forward network 

with multi-layer perceptron is a representative application of ANN in structural 

damage detection. An important benefit of this network is the use of bottleneck, 

where the patterns can be transferred from the bottom input layer through the hidden 

layers and reach higher layers that have fewer nodes than input layer. The scheme 

drives the network to learn the significant features of the corresponding patterns 

efficiently. Although Worden’s work only responded to Level-1 diagnosis problems, 

there are still attractive novelties. Theoretically, the model not only fits any global 

damage detection problems, but also does not depend on the structure or damage type. 

In addition, it can feature with any excitations; this is especially welcome for real 

structures where usually only ambient vibration is available. Besides Worden, Wu et 

al. (1992) studied another ANN to detect member damage in a 3-storey frame model; 

Pande and Barai (1997) built up a detailed ANN architecture in their study to identify 

damage in a 21-bar bridge truss. Zhao et al. (1998) investigated a counter-propagation 

neural; Zapico et al. (2001) developed an ANN-based procedure for damage 

assessment of steel structures. Xu and Humar (2005, 2006) studied the feasibility of a 

multi-step ANN approach for Level-3 damage detection problem of a girder bridge 

using energy-based damage indices. Recently, some new ANN types, such as fuzzy 

neural networks, were incorporated in numerical damage detection study for multi-

storey structures (Wen et al., 2007; Jiang et al., 2011).Most of the studies proved that 

ANN can provide correct damage information in the numerically simulated structural 

damage scenarios without considering error. The research in ANN techniques that are 

predominantly driven by experimental data is still desirable. In addition, the 

experimental measurement error should be considered in ANN-based methods. 
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2.3.15 Genetic algorithm in structural damage detection 
 

 The damage detection is an inverse problem, the solution of which is normally sought 

by various optimization algorithms. Apart from the methods that have been used in 

the model updating methods mentioned in the previous section, other optimization 

techniques that have been involved in damage detection include the following: 

constrained least-squares (Luber, 1997; Pothisiri and Hjelmstad, 2003), linear matrix 

inequality (Abdalla et al., 2003), multi-criteria non-linear optimization (Hassiotis and 

Jeong, 1993, 1995; Hassiotis, 2000), and most popularly, genetic algorithms (GA). 

The popularity of GA in damage detection realm lies in the fact that, most often, the 

damage detection problem for a practical structure associates with a large number of 

damage candidate elements. Therefore, directly applying conventional optimization 

algorithms for damage detection becomes inefficient and inaccurate. As a widely 

investigated optimization process, GA is a search heuristic that imitates the 

mechanisms of biological evolution by the repetitive process of encoding, selection, 

crossover and mutation (Goldberg, 1989). The optimization strategy of the algorithm 

borrows the ideas from the biological evolution principle ‘survival of the fittest’. The 

advantage of GA over the traditional optimization algorithms is that it does not 

require knowledge of the relation between the objective function and design variables. 

This feature gives a higher chance to explore the entire design space (Erbatur et al., 

2000; Lagaros et al., 2002). To date, many studies have applied GA successfully in 

the realm of structural damage identification. 

Guo and Li (2009) investigated a two-stage approach using the information fusion 

technique with micro-search genetic algorithm (MSGA) and included both the natural 

frequencies and mode shapes. The results from simulations on a cantilever beam 

showed validity and effectiveness of the two-stage approach. Other representative 

publications on this topic were made by Chou and Ghaboussi (2001), Friswell et al. 

(1998), Perera et al. (2009), and Lingmi Zhang et al. (2002). 

Among these investigations, it seems that few researchers have discussed in detail the 

effect of using different setting-up parameters in GA for damage detection 

applications. Carlin and Garcia (1996) published the work particularly on parameter 
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setting issues of GA, but the recommendations were made with a three-DOF 

springmass system example. Their conclusions still need verifications by practical 

complicated structures. 

 
2.4 Critical observation 

 
Based on the extensive review of the existing literature the following are observed. 

1. Different approaches have attempted by several researchers to address the 

problem of condition monitoring based on static and dynamic responses. 

2. Most of the researches show that damage is the change in stiffness mainly. 

However, other researchers have considered damage as the changes in mass and / 

or damping also, in addition to the changes in stiffness. However, material non-

linearity and geometric non-linearity were not considered in most of the 

approaches. 

3. Damage is typically a local phenomenon and may not significantly influence the 

lower-frequency global response of a structure that is normally measured during 

vibration tests. Thus, measurement of natural frequency alone for the first few 

modes may not be sufficient to identify the structural parameters with great 

accuracy.  

4. It is noted that among the identification techniques using measured data in 

frequency domain, The model using derivatives of modal parameters performed 

better in many situations.  

5. Frequency domain and time domain analyses both have been employed for 

condition monitoring with specific advantages and limitations. Truly, time-domain 

and frequency-domain mathematical models complement each other and describe 

the structural behaviour from different perspective. 

6. The deterministic models are able to accurately predict the structural parameter 

provided sufficient accurate measured data are available. However, the noisy data 

decreases the accuracy of the numerical model.  

7. A few numerical models have limitations of the requirement of measured 

responses at all nodal degrees of freedom. However, for practical feasibility 
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damage detection is required to be performed where all data from damaged 

systems are not available.  

8. In addition, lack of accurate and repeatable static and dynamic responses 

measurement on complex structures in real life situation is a challenging problem 

to develop an efficient model for condition assessment. 

9. It has been observed that the environmental and operational variations such as 

varying temperature, moisture, and loading conditions affect the dynamic 

response of the structures and subsequent accuracy of the models. 

10. Damage detection is required to be performed where all data from damaged 

systems are not available. The formulation with noise limited data seems to be 

practically feasible. 

11. It is noted that lack of accurate and repeatable dynamic response measurements on 

complex structures in real life situation is a challenging problem to develop an 

efficient model. 
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3.0 General 
 
Different approaches have been attempted by several researchers to address condition 

monitoring of structures based on both static and dynamic responses. Structural 

condition monitoring is a management issue of the structural system involving 

integration of sensors, smart materials, data acquisition and computational cost etc. In 

most of the damage detection methods, it is assumed that the damage may alter the 

stiffness, mass or energy dissipation properties of the structural elements, which in 

turn alter the measured dynamic response of the system. The objective is, therefore to 

detect the location and the extent of damage in structure by observing the changes in 

the static and dynamic responses. In the proposed models, least square method is used 

to optimize the equation error in a finite element platform. In  static models measured 

static displacement and static strain at few locations are used to detect damage using 

inverse static approach .Natural frequencies with corresponding modal vectors and 

their derivatives of first few modes are used to identify the damage in terms of 

reduction in bending rigidity at the element level in the proposed dynamic models. 

  

3.1 Damage Identification 
 
In general, damage may be defined as the changes developed in a structure that 

adversely affects the current or future performance of the structure. Therefore, this 

definition of damage is not meaningful without a comparison between two different 

states of a system, one of which is assumed to represent the initial and often 

undamaged state. Damages are limited to changes to the material and/or geometric 

properties of the structural systems, including changes of the boundary conditions and 

system connectivity, which adversely affect the current or future performance of these 

systems. The proposed model is assumed that accurate modal data are available to 

predict the structural parameters in the initial model. But in practice, the presence of 
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noise in the measured data is inevitable. Thus, the effect of the noise in measured 

modal data on the identified structural properties is also studied. The applicability of 

the proposed model for multiple damage scenario are also examined. The availability 

of large number of modal data is difficult in real situation. Thus, the effect of number 

of measured mode data on the accuracy of the identified properties is also studied.  

 
3.2  Mathematical models 
 
3.2.1 Generation of mathematical model of beam 

 

The two dimensional beam element has a total of two possible nodal displacements at 

each unconstrained joint: one translation components along the Y axes and one 

rotational component about these axes. The elemental stiffness matrix [K] of two 

noded beam element in the finite element framework is  
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where E: Modulus of elasticity: Length of element; I: Moment of inertia of element 

Also the elemental consistent mass matrix  M  is
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where m = mass per unit length.  

The local coordinate of stiffness matrix and mass matrix can be converted to the 

global coordinate stiffness matrix and mass matrix by using the transformation 

matrix  T .  Here the transformation matrix is 
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 

cos sin 0 0
sin cos 0 0
0 0 cos sin
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T
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 

 
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 
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So the global stiffness matrix[ ]K  and the global mass matrix [ ]M can be calculated 

by the following equation. 

                                            [ ] [ ]TK T K T  

       [ ] [ ]TM T M T                                               (3.4) 

 
3.2.2 Generation of mathematical model of frames 

 
The stiffness matrix corresponding to the nodal coordinates for the frame segment is 

obtained by combining the stiffness matrix for axial effects with the beam and final 

elemental stiffness matrix is formed as shown below. 
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where A: Cross-sectional Area; E: Modulus of Elasticity: Length of the element 

Also the lumped mass matrix at element level is  
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where m is the mass per unit of length. 
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Combining the mass matrix for flexural effects with axial effects, we obtain the 

consistent mass matrix for a uniform frame element in reference to the nodal 

coordinates as 

 
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3.2.3 Generation of mathematical model of plane truss 

 
The elemental stiffness matrix [K] of two noded truss element as 
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where E: Modulus of elasticity: Length of element and elemental consistent mass 
matrix  M  is 
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Where m = mass per unit length.  

3.3 Damage detection models 
 
The inverse damage detection approaches are classified into the following groups in 

compliance with the sequence of model development. 

a)  Static approach with limited deflection data (SLD) 

b) Static approach with limited strain data (SSD)  

c)  Dynamic approach with limited natural frequencies and mode shape data (DFS) 
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d) Dynamic approach with limited natural frequencies, slope and curvature of mode 

shape data (DFC)   

e) Dynamic approach with modal strain energy data (DMS)  

 
3.3.1 Static approach with limited deflection data (SLD)  

 
The static condensation technique can be adopted to identify the damage of a structure 

as proposed by Sanayei and Onepede (1991). 
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                                                                          (3.10) 

where  mf  is force sub vector at measured d.o.f.   

             uf  is force sub vector at unmeasured d.o.f. 

             mU  is displacement sub vector at  measured d.o.f. 

             uU  is displacement sub vector at unmeasured d.o.f. 

 mmK , mnK , umK  and uuK are the partitioned stiffness matrices with respect to different 

combination of measured and unmeasured d.o.f . For example  mmK  stands for a sub 

matrix corresponding to measured d.o.f with respect to force and response. 

 
Then, 

       m mm m mu uf K U K U   
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[ ],[ ],[ ]m u mf f U  are known from the static test data and [ ],[ ],[ ],[ ]mm mu um uuK K K K  

are stiffness sub matrices which are the functions of the sectional properties assumed 

primarily.  The input force error matrix, [E(p)] can be formed with the difference 

between the [fm], evaluated from the Eqn. (3.10)  

1 1[ ( )] [[ ] [ ][ ] [ ]][ ] [ ][ ] [ ] [ ]mm mu uu um m mu uu u uE p K K K K U K K f f                      (3.12) 
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If the structure is undamaged, then the global stiffness matrix, [K] remains 

unchanged. In that case, the error matrix should be a null matrix. Otherwise, it must 

not be a null matrix. The error matrix [E(p)] can be converted into an error vector 

{E(p)} of size NM (Number of Measurements) by 1. The {p} is a vector containing 

the unknown parameter’s values. The size of {p} is NUP (Number of unknown 

parameters) by 1. For adjusting the parameters {p} in [E(p)], a first order Taylor 

Series expansion have been applied. It is necessary for the linearization of the vector 

as follows: 

{ ( )} { ( )} [ ( )]{ }E p p E p S p p                                                                  (3.13) 

Where,  { ( )}[ ( )]
{ }
E pS p

p



 
  
 

                                                                       (3.14) 

Which is termed as sensitivity matrix.  

For the analytical evaluation of the sensitivity matrix [S(p)], [E(p)] is differentiated 

with respect to each parameter as follows 

1 1 1 1[ ] [ ] [ ] [ ]
[ ( )] [ ] [ ] [ ][ ] [ ][ ] [ ] [ ] [ ]mm mu mu uu

j uu um mu uu mu uu uu um m
j j j j

K K K K
S p K K K K K K K K U

p p p p
   

    
    

     
 

1 1 1[ ] [ ][ ] [ ][ ] [ ] [ ]mu uu
uu mu uu uu u

j j

K KK K K K f
p p

  
  

  
   

                                        (3.15) 

 

The sensitivity coefficient, [ ( )]jS p is evaluated for j=1 to NUP. Similar to [E(p)], the 

elements of [ ( )]jS p are assembled into a vector of size NM by 1. These vectors are 

horizontally concatenated for j=1 to NSF to form the sensitivity matrix [S(p)] of size 

NM by NUP. In most of the cases this formulation for determination of sensitivity 

coefficient gives a consistent and acceptable result. But a different formulation using 

displacement as the measured response instead of force can give a more feasible and 

practical solution for the problem of system identification since measurement of 

displacement at different d.o.f is relatively easier than the measurement of force 

responses at those locations. Subsequently an alternative formulation is given below 

which takes displacement as the measured response during the static condensation. 
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Linear Minimization 

The scalar performance error function, ( )J p p can be defined as, 

( ) { ( )} { ( )}TJ p p E p p E p p           (3.16) 

Least square technique is applied by minimizing the scalar performance error function 

with respect to stiffness parameter of each element to identify the change on stiffness. 

( ) {0}
{ }

J p p
p





                                                                                       (3.17) 

From this it can be derived that 

[[ ( )] [ ( )] [ ( )]{ }] {0}TS p E p S p p          (3.18) 

The different sets of forces are applied to the feasible nodes & the measurements are 

taken for each sets of force at sensitive d.o.f with the information gathered from the 

sensitivity analysis. The number of independent measurements may be lesser than or 

equal to or greater than the number of unknown parameters. For the first case, there is 

no unique solution. For the next case, the direct inversion method can be used as 

1{ } [ ( )] { ( )}p S p E p           (3.19) 

For the last case, the sensitivity matrix [S(p)] is a rectangular matrix. So, the 

following pseudo inverse technique is adopted for the determination of {Δp}. 

1{ } [[ ( )] [ ( )]] [ ( )] { ( )}T Tp S p S p S p E p        (3.20) 

After evaluating the vector {Δp}, the change in structural properties an iterative 

process is used to identify the damaged parameter as, 

1{ } { } { }r rp p p              (3.21) 

 
3.3.2 Static approach with limited strain data (SSD)  

 
Strain displacement relationship 

The finite element model is based on the stiffness relationship between forces and 

displacements. To utilize strain measurements, a mapping between displacements and 

strains is developed as suggested by Sanayei and Salentik (1996).A relationship   is 

developed in the form of an element mapping vector  nB  in the global co-ordinate 
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system. At first the mapping vector  nB  is formulated in the local co-ordinate 

system, such that the following relationship is satisfied for the elemental strain n  

and displacement nU
. 

 

                          n n nB U                                                                                  (3.22)                                                                                                    

Then  nU is transformed from the local coordinates to the global coordinates as 

            n n nU T U                                                                               (3.23) 

 
And finally the global strain displacement relationship is developed as 

                                                     B U                           (3.24) 

Finite-Element Model 

The static element equation for a constrained structural system is 

    ( )F K p U      (3.25) 

By substituting Eqn. 3.23 in Eqn. 3.24 it gives  

      1( )B K p F 
     (3.26) 

      1( )B K p F 
      (3.27) 

It is not require all the strain of a system; therefore Eqn. 3.27 is first partitioned based 

of measured strains (subscript “a”) and unmeasured strains (subscript “b”)   

 

   1( )a a

b b

B K p F
B




   
   

        (3.28)
 

Since there is no need of unmeasured strain s,  b is eliminated as 

      1( )a aB K p F      (3.29) 

Output Strain Error Function 

 
To measure the difference between analytical strain and measured strain an error 

function is formed. The output strain error function is defined as  

     ( ) ( ) a m
a ae p e p e      (3.30) 
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“a” subscript implies analytical values; and “m” implies measured values. On 

substituting Eqn. 3.29 in Eqn. 3.30.  

        1( ) ( ) m
a ae p B K p F e

         (3.31) 
 

Finally the error is expanded using Taylor Series expansion to develop the sensitivity 
matrix 

    

        1 1( ) ( ) ( ( ) ) ( )j a
j

S p B K p K p K p F
p

           (3.32)  
 
 
3.3.3 Dynamic approach with limited natural frequencies and mode 
shape data (DFS)  
 

The dynamic equilibrium equation of motion of finite element model can be expresses 

as, 

    m u [k] u {f}                                  (3.33) 

Where, [k] and [m] are the stiffness and consistent mass matrices of the element 

respectively. {u} and {f} are the nodal displacements and force vectors. Assembling 

the element equations and applying boundary conditions, one can obtain the following 

equilibrium equation for damped forced vibration 

[ ]{ } [ ]{ } [ ]{ } { ( )}M U C U K U F t   
                 (3.34)   

The same equation for the undamped forced vibration shall be  

 

[ ]{ } [ ]{ } { ( )}M U K U F t                                                        (3.35) 

             

Where [ ]M ,[ ]K , [ ]C ,{ }U  and { ( )}F t  indicates the global mass matrix, global 

stiffness matrix, global damping matrix, nodal displacement and force vector 

respectively.  

For free vibration, substitution of { ( )} 0F t   and  {U} exp(i t  in equation (3.35) 

gives,  
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             2[ ] [ ] {0}K M    i.e.    [ ] [ ]K M    where 2  .        (3.36) 

Equation (3.36) is a generalized eigenvalue problem that can be solved for   and 

  . The eigenvector    is the mode shape and eigenvalue   is the square of the 

associated natural frequency in radians per seconds. The identification of the 

structural parameters can be formulated as minimization of a nonnegative error 

function  which is defined according to Hajela, and  Soeiro (1990), 

      
2p

k k k
k 1

Minimize,  [K]{φ } [M]{φ }


                                          (3.37) 

Where, k and {φk} are the kth measured modal data; p is the total number of 

measured modes. The characteristics equation for the motion can be partitioned in 

terms of mode shapes at measured and unmeasured d.o.f for each measured frequency 

as shown below as suggested by Hajela and Soeiro(1990). 

aa ab a aa ab a
i

ba bb b ba bb bi i

K K M M| |
K K M M
        

               
                                                 (3.38) 

By condensing out the unmeasured mode shapes the following equation can be 

obtained. 

               

               

1
aa a ab bb i bb ba i ba ai i

1

i aa a i ab bb i bb ba i ba ai i

K K K M K M

M M K M K M





      

      
          (3.39) 

         

The modal stiffness based error function   e(p)  is defined as the residual of the 

equation no (3.39) for each mode, where p  is the unknown parameter. 

 
         
         

 
aa i aa ab i ab

a1
bb i bb ba i ba

K M K M .
e(p)

K M K M


    
  
   

                                   (3.40)       

The modal error function is inverse of stiffness and the mass matrix and therefore it is 

non-linear. Using Taylor Series expansion it has been approximated to linear function. 
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The analytical sensitivity coefficients  jS p   associated with the “modal stiffness –

based error function” are derivative of Eqn. (3.40)   for each unknown parameter jp . 

 

 

       

         

                       

             

aa aa ab ab

j j j j

1
bb bb ba ba

j 1 1bb bb
ab ab bb bb bb bb ba ba

j j

1 ba ba
bb bb ab ab

j j

K M K M
p p p p

* K M K M

S p K M
K M K M * . K M . K M

p p

K M
K M . K M

p p



 



       
               


 

                 
            

 a













    (3.41) 

A Gauss -Newton method is used to find the change of the parameters  p  for each 

iteration k.      k 1 kp p p      Iteration continues till estimation of the parameters 

is found. The convergence is specified by the desired tolerance level with the relative 

change in  p  on the order of 3 610 ,10   etc. 

 
3.3.4 Dynamic approach with limited natural frequencies, modal 
slope and curvature mode shape data (DFC)  

 
From this model error is formed based on mode shpaes and  slopes and curvature of 

mode shapes as suggested by Pandey and Biswas(1991), Pandey and 

Biswas(1994).Generalized eigenvalue equation is to be differentiated two times 

successively to develop an equation consisting of slope and the curvature of the mode 

shapes and subsequently a non negative error  function is developed for the 

identification of damages in structural properties. 

 
([ +2 ) =0                  (3.42) 

 

where   k  and   M  are stifness and mass matrices  of the structure  

 k  and  M  are the first order differential and 
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 k  and  M  are the second  order differential  

  and    are mode shape curvature and modal slope respectively 

Also   is the eigen value vctor and    is mode shape vector   

Similarly the error function shall be divided into three parts as shown in equation  
 

+                                                            (3.43) 

 

The mode shapes, slope and modal curvature of mode shapes based error function 

is defined as the residual of each mode, where {p} is the vector of the 

unknown parameters. Unknown parameters are the axial, bending, and torsional 

rigidities of the structure. 

 

=(([ ]- ) 

+                     (3.44)                                               

 

}=(([ ]-

)+(      (3.45)                                               

                                                                                                                                   

And 

(([

    (3.46)                                               

                                                                                                                                

Using the Taylor Series expansion, the mode shape and modal slope and curvature of 

mode shapes based error function is approximated linearly by 

 
= 

([( [ (

-

(

)                    (3.47)                                               
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=([( [ (

-

(

)                           (3.48) 

 
 

([( (

-

(

)                     (3.49) 

 
Finally the sensitivity matrix shall be developed considering contribution of all three 

sensitivity matrices. 

([(

[ (

-

(

) ([( 

[ ( 

-

(

) ([(

(

-

(

)                    (3.50) 
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 Similar optimization technique is adopted  as described in chapter 3.3.1 to minimize 

the error developed and also for the updating the structural parameter of each element 

in each iteration. 

 
3.3.5 Dynamic Approach with Modal Strain Energy data (DMS)  

 
Elemental modal strain energy (MSE) is defined as the product of the elemental 

stiffness matrix and the second power of its mode shape component (Shi et al. 1998). 

For the jth element and ith mode, the elemental MSE before and after the occurrence of 

damage are given as 

 

T
ij i j iMSE K       ,    d Td d

ij i j iMSE   
                                                    

(3.51) 

Where MSEij and MSEijd= jth elemental modal strain energy corresponding to the ith 

mode shape for the undamaged and damaged states, respectively; Kj is the jth 

elemental stiffness matrix, and ɸ =the ith mode shape. The superscript d denotes the 

damaged state. Since the damage elements are not known, the undamaged elemental 

stiffness matrix Kj is used instead of the damaged one as an approximation in MSEijd. 
The elemental modal strain energy change ratio (MSECR) has been verified to be a 

good indicator for damage localization and is defined as (Shi et al.1998). 

                         

d
ij ij

ij
ij

MSE MSE
MSECR

MSE


                                           (3.52) 

A structural damage often causes a loss of stiffness in one or more elements of a 

structure but not a loss in the mass. In the theoretical development that follows, 

damage is assumed to affect only the stiffness matrix of the system. When damage 

occurs in a skeletal structure, it can be represented by a small perturbation in the 

original system. Thus, the stiffness matrix Kd, the ith modal eigenvalue λid, and the ith 

mode shapes ɸi d.o.f the damaged system can be expressed as follows: 

 
L L

d
j j j j

j=1 j=1

K =K+ ΔK =K+ α K ,(-1<α <<0)                                                      (3.53) 
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d
i i i                                                                                             (3.54) 

 
d
i i i                                                                                           (3.55)       

Where αj= coefficient defining a fractional reduction in the jth elemental stiffness 

matrices; and L=total number of elements in the system. 

The elemental modal strain energy change (MSEC) for the jth element in the ith mode 

is expressed as 

 
Td d T

ij i j i i j iMSEC K K                                                                      (3.56) 

Substituting Eqn. (3.53) into Eqn. (3.56) and neglecting the second-order terms, the 

MSECij becomes 

 

2 T
ij i j iMSEC K                                                                                (3.57) 

For a small perturbation in an undamped d.o.f dynamic system, the equation of 

motion becomes 

 

[( ) ( ) ]( ) 0i i i iK K M                                                             (3.58) 

Neglecting second-order terms, Eqn. (3.58) leads to 

( )i i i i iK M M K                                                                    (3.59) 

ΔΦi in Eqn. (3.59) can be expressed as a linear combination of mode shapes of the 

original system (Fox and Kapoor 1968) 

 

1

n

i ik k
k

d


                                                                                          (3.60) 

Where dik =scalar factors and n=total number of modes of the original system. 
Substituting Eqn. (3.59) into Eqn. (3.60), and pre multiplying Φr

T to both sides of 

Eqn. (3.59), it can be modified as  
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1

( )
n

T T T
ik r i k i r i r i

k
d K M M K



                                                            (3.61) 

With the orthogonal relationship, it can be simplified into the following when r is not 

equal to i: 

 

, ,
T
r i

ir
r i

Kd where r i  
  

 
                                                                           (3.62) 

For the case of r=i, ird equals 0.0 from the orthogonal relationship Φi
TMΦi=I. 

Therefore, Eqn. (3.60) can be written as 

 

1

, ,
Tn
r i

i r
r r i

K where r i


  
    

                                                                       (3.63) 

Substituting Eqn. (3.63) into Eqn. (3.57), the MSECi j becomes 

 

1

2 ( ), ,
Tn

T r i
ij r j r

r r i

KMSEC K where r i


  
    

                                                   (3.64) 

Substituting Eqn. (3.53) into Eqn. (3.64), one can obtain 

 

1 1

2 , ,
TL n
r p iT

ij p i j r
p r r i

K
MSEC K where r i

 

 
     

                                               (3.65) 

 

The term on the left-hand side of Eqn. (3.65) is the elemental modal strain energy 

change of the jth element in the ith mode, which can be calculated from Eqn. (3.56) 

by using the experimental mode shape of the undamaged and damaged states. And all 

the terms on the right-hand side of Eqn. (3.65) except αpare all known information of 

the undamaged system. Solving Eqn. (3.65) can be used to quantify the damage 

magnitude. 

If we assume the number of damaged elements to be identified is q, and the number of 

the measured elements for the computation of MSEC in Eqn. (3.56) is J, Eqn. (3.65) 

can be expressed in the following form for the ith mode: 
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qi

qi
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MSEC
MSEC

MSEC

       
                              

                                                         (3.65) 

in which the element βst (s=1,2,...,J; t=1,2,...,q)=the sensitivity coefficient of MSEC 

for the suspected damaged element, and it is given by 

 

1

2 , ,
Tn

T r t i
st r s r

r r i

KK where r i


 
     

 
                                                       

(3.67) 

 
 

3.4 Application Technique 
 
Several examples are considered for the validation of different models adopted. The 

summary of the examples are given below. However, the details of these examples are 

described in Chapter 5. 

Example I: Acrylic cantilever beam 

Example II: Steel cantilever beam 

Example III: Steel fixed-fixed  beam  

Example IV: 13 member steel pratt truss 

Example V: RCC gable frame 

Example VI: Steel portal frame. 

 
A.  Static approach with limited deflection data (SLD) 

 

i) Numerically generation of static deflection data of first few d.o.f of rigid 

frame structure based on finite element method. 

ii) Identification of structural parameters with analytical and experimentally 

measured deflection data of the structure with different damage conditions  

( Example II as mentioned in  chapter 5.2  and  Example IV as mentioned in 

chapter 5.4). 
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B. Static approach with limited strain data (SSD) 

 

i) Numerically and experimentally generation of static strain data of few d.o.f of 

rigid frame structure based on finite element method. 

ii) Identification of structural parameters with analytical and experimentally 

measured strain and deflection data of the structure with different damage 

conditions. (Example II as mentioned in chapter 5.2 , Example IV as 

mentioned in chapter 5.4). 

 

 

C.  Dynamic approach with limited natural frequencies and mode shape data (DFS) 

 

i) Numerically generation of set of modal data for rigid framed structure of first 

few modes mixed with random noises of specified level. 

ii) Identification of structural parameters with analytical and experimentally 

measured modal data of the structure with different damage conditions. 

iii) Various degrees of damaged states to study the effect of damage severity on 

the modal parameters and identification (Example II as mentioned in chapter 

5.2  ,Example IV as mentioned in chapter 5.4  ). 

 

D. Dynamic  approach with limited natural frequencies, modal slope and curvature 

mode shape data (DFC)  

  

i) Numerically generation of set of modal data for rigid framed structure of first 

few modes mixed with random noises of specified level. 

ii) Identification of structural parameters with analytical modal data of the     

structure with different damage condition. (Example III as mentioned in 

chapter 5.3 ). 

 

 

E. Dynamic approach with modal strain energy data (DMS) 
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i) Numerically  and experimentally generation of set of modal data for rigid 

framed structure of first few modes mixed with random noises of specified 

level. 

ii) Identification of structural parameters with analytical and experimentally 

measured modal data of the structure with different damage conditions. 

(Example V as mentioned in chapter 5.5  and Example VI as mentioned in 

chapter 5.6  ). 
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Experimental Study 
 
4.0 General 
 
Experimental studies are essential and helpful to understand the effect of various 

uncertainties, inherently present in real situations. It is also important for validation of 

the proposed numerical model. In the present study experimentation on simple 

structure has been performed. Most importantly, the feasibility of the developed 

numerical model for the structural condition monitoring is studied using 

experimentally obtained data. The experimental investigation may be divided into 

four parts as follows. 

 
A. Static testing to measure the static deflection and bending strain at selected 

d.o.f. developed in the structure. 

B. Dynamic testing of structures to acquire vibrational responses in time domain 

with the impact hammer loading and with the response only data using one 

directional shake table. 

C. Extraction of the modal data from phase change of FRF in case of experiment 

modal analysis or by singular value decomposition in case of operational 

modal testing 

D. Validation of the proposed numerical model on condition monitoring with the 

experimentally obtained from both static and dynamic data. 

 
4.1 Experiment for static data: 
 
Two no of experiments are performed for the collection of static test data. 

Displacements and static strains are measured at limited degrees of freedom. 

4.1.1 Different instruments for static testing: 
a) Strain gauges and strain indicator: 

 

To record the bending strain data at specified nodes strain gauges are attached with 

the test specimen. Strain gauges are attached properly and then applied soldering 
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process for connection with wire & strain gauges. Single strand wires are connected 

with the strain gauges very carefully. All wire connections are checked by multi-

meter. To record the strain data at specified nodes strain gauges are satisfactorily 

bonded to almost any solid material with the test material by adhesive. The soldering 

point has to be homogeneous, smooth and shiny. Gauge factor is defined as unit 

change in resistance per unit change in length of strain wire. The gauge factor of the 

strain gauges which are used for the experiment purpose is 2.1. 

The digital strain indicator and the different Wheatstone Bridges diagrams are shown 

in Fig. 4.1.1 and Fig. 4.1.2. 

 
 

      
Fig 4.1.1: Digital strain indicator, Kristech Automation, India 

 

 
 

Fig 4.1.2: Different Wheatstone Bridge configurations used for the static bending strain measurement 
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b) Dial gauge and Magnetic stand 
 
A dial gauge is a precision measurement commonly used to measure machined parts 

for production tolerances or displacement. Dial gauges are capable of producing 

extremely fine measurement values; increments of 0.00005 inch (0.001mm) are 

possible with some gauges. Measurement inputs are transferred to the gauge via 

a plunger, hinged lever, or the jaws of a veneer. Plunger instruments are generally 

used in conjunction with a clamp or stand which holds the gauge in a fixed position in 

relation to the work piece. The work piece is then rotated or moved to take the 

measurements.  The dial gauge used for the experiment is shown in Fig. 4.1.3. 

A magnetic base is a magnetic fixture based on a magnet that can effectively be 

turned "on" and "off" at will; they are often used to hold a dial indicator. A magnetic 

base can therefore be attached in a variety of positions to any attractive surface, 

allowing the base to be positioned in the best orientation for the part to be tested. 

Combine this with the flexibility of movement allowed by the arms gives the operator 

a large range of options in positioning the dial indicator. The magnetic base stand 

used for the experiment is shown in Fig. 4.1.4.  

 

                       
                                                                                  

Fig 4.1.3: Dial gauge                                        Fig 4.1.4: Magnetic base stand  

 
 
 
 



 
 
 
 

 

52 
 

  

Chapter 4 

Several other instruments used for the experiment like multimeter, clamps, scale, 

different weights etc. are shown in Fig 4.1.5.     

 

 
 

Fig 4.1.5: Different instruments used for the experiment 

 

 
4.1.2 Example I (Acrylic cantilever beam)  
 
A cantilever beam of 350 mm span length is prepared from 25 mm wide and 8 mm 

thick rectangular acrylic strip. Edge of the beam is rigidly fixed with three numbers of 

clamps to the supporting frame. The clamps are tightened to the maximum extent to 

ensure adequate rigidity. The statistical variations in length, width and thicknesses are 

measured. The specimens are intentionally not machined perfectly to have the 

variations as expected in the structures in practice. Firstly the damage was introduced 

with 5% reduction of thickness in element no 9 and subsequently thickness reduction 

was increased to 10%, 20%, 30%, and 50% in the element no 9 to perform different 

single damage cases (1D9). After performing the experiment on single damage cases, 

the double damage case (2D9,17) have been created by reducing the thickness by 

5%,10%, 20%, 30%, and 50% in the element no 17  keeping a fixed reduction(50%)  

of thickness in the element no 9 . The schematic diagram of the undamaged beam is 

shown in Fig.4.1.6 and also single damage and double damage states of the beams are 

shown in Fig.4.1.7 and Fig. 4.1.8. 
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Fig 4.1.6: Plan and elevation of the undamaged cantilever beam 

 
 

 
 

 
 

Fig 4.1.7: Plan and elevation of damaged (single element-1D9) cantilever beam. 
 

 

 
 

Fig 4.1.8: Plan and elevation of damaged (double element-2D9, 17) cantilever beam. 
 

4.1.2.1  Mechanical properties of the specimen 
 
The mechanical properties of the test specimen are evaluated based on the tensile test and 

bending test in accordance to IS: 1608 (1995). The tensile test of the material is 

conducted by the load controlled, 600 KN capacity universal testing machine (Model 

AMT-60 Remote Display and Control System), ASI Sales Pvt. Ltd, India make to 

evaluate the modulus of elasticity, yield stress, ultimate stress, percentage elongation. The 
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test specimen for the tensile test is shown in Fig. 4.1.9 and setup for test during bending 

test is shown in Fig. 4.1.10. 

 
 

Fig 4.1.9: Different dimensions for the test specimen (all dimensions are in mm) 

 
 
 
 

    
 

Fig 4.1.10: Setup for tensile test and bending test in universal testing machine 

 
 

The dimensions are made in accordance with IS: 1608, 1995. The gauge length is kept 

as 151.60 mm. The Poisson Ratio of the acrylic material which is used for test 

purpose is 0.35 and mass density of the material is 1.18 g/cm3. 
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Fig 4.1.11: Schematic diagram of the experimental set up 

 
 

 
 

 
 

 
Fig 4.1.12: Strain gauges attached with the experimental acrylic beam 
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Different measured dimensions of the acrylic beam for UD, 1D1 and 2 D9-17 cases 

are reflected in Table 4.1.1. 

 
Table 4.1.1: Measured dimensions of cantilever beam 

 
Element 

Number 

Length 

( mm ) 

Width 

(  mm ) 

Thickness 

(  mm ) 

Damaged 

Condition 

UD 1D9 2D9-17 UD 1D9 2D9-17 UD 1D9 2D9-

17 

Case I 350 350 350 25 25 25 8 7.6 7.6 

Case II 350 350 350 25 25 25 8 7.2 7.2 

Case III 350 350 350 25 25 25 8 6.4 6.4 

Case IV 350 350 350 25 25 25 8 5.6 5.6 

Case V 350 350 350 25 25 25 8 4.0 4.0 

 
UD: Undamaged; 1D: Single element (9) damaged; 2D: Double element damage (9, 17) 

. 

4.1.2.2 Physical Properties of the specimen 
 

The details of the different structural parameters based on the measurement of the 

undamaged and damaged beams are indicated in Table 4.1.2. 
Table 4.1.2: Measured structural parameters of cantilever beam 

 

Element 

Number 

Cross Sectional Area 

(mm 2 ) 

Moment of Inertia 

( mm 4 ) 

Mass Density 

(10-6 X Ns 2/mm 2 ) 

Damaged 

Condition 
UD 1D9 

2D9-

17 
UD 1D9 2D9-17 UD 1D9 

2D9-

17 

Case I 200 190 190 1066.667 914.533 914.533 1180 1180 1180 

Case II 200 180 180 1066.667 777.600 777.600 1180 1180 1180 

Case III 200 160 160 1066.667 546.133 546.133 1180 1180 1180 

Case IV 200 140 140 1066.667 365.867 365.867 1180 1180 1180 

Case V 200 100 100 1066.667 133.333 133.333 1180 1180 1180 
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Fig 4.1.13: Graphical representation of various cases of single damage (1D9) 

 
 

      
 

Fig 4.1.14: During testing of undamaged (UD) and single damage (1D9)  
 

Measured dial gauge data as well as measured stain gauge data for different damage 

cases of undamaged (UD) and single damaged (1D9) are tabulated in Table 4.1.3 to 

Table 4.1.7. 

 
Table 4.1.3 Deflection and strain data at specified nodes for undamaged case 

Load(g) 
Dial gauge reading (mm) Strain indicator reading (µ strain) 

DG1 

GG1 
DG2 DG3 SG 1 SG2 SG3 

Initial 0 2.5 13.00 0.00 0.00 0.00 
50 1.24 2.95 13.01 21.00 23.00 27.00 
100 2.14 3.23 13.02 34.00 44.00 44.00 
150 3.43 3.7 13.04 49.00 67.00 73.00 
200 4.69 4.15 13.06 60.00 90.00 100.00 
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Load(g) 
Dial gauge reading (mm) Strain indicator reading (µ strain) 

DG1 

GG1 
DG2 DG3 SG 1 SG2 SG3 

250 5.8 4.54 13.07 75.00 112.00 125.00 
300 7.21 5.00 13.10 95.00 135.00 156.00 
350 8.55 5.55 13.12 115 158 186 

DG=Dial Gauge; SG=Strain Gauge 

 
Table 4.1.4: Deflection and stain data for single damage Case-I 

Load(g) 
Dial gauge reading(mm) strain indicator reading (µ strain) 

DG1 DG2 DG3 SG 1 SG2 SG3 

Initial 0 0 23 0 0 0 

50 1 0.33 23.025 14 22 27 

100 2.36 0.85 23.045 28 47 52 

150 4.65 1.32 23.075 42 69 78 

200 5.03 1.85 23.11 56 93 110 

250 6.24 2.28 23.13 70 116 135 

300 7.49 2.76 23.16 82 137 163 

350 8.8 3.24 23.19 96 159 191 
 

 
Table 4.1.5: Deflection and stain data for single damage Case-II 

Load(g) Dial Gauge Reading (mm) Strain Indicator (µ Strain) 

Initial DG1 DG2 DG3 SG 1 SG2 SG3 

0 0 0 12 0 0 0 

50 1.06 0.34 12.01 12 21 21 

100 2.46 0.89 12.04 25 43 54 

150 3.73 1.36 12.075 37 64 81 

200 4.69 1.67 12.09 51 86 100 

250 5.83 2.14 12.12 66 108 125 

300 7.36 2.67 12.15 80 132 159 

350 8.78 3.19 12.18 94 156 190 
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Table 4.1.6: Deflection and stain data for single damage Case-III 

Load(g) 
Dial Gauge Reading (mm) Strain Indicator Reading (µ Strain) 

DG1 DG2 DG3 SG 1 SG2 SG3 

Initial 0 0 12 0 0 0 

50 1.46 0.46 12.03 19 20 31 

100 2.63 0.86 12.05 24 42 53 

150 3.88 1.3 12.08 32 65 77 

200 5.27 1.79 12.11 45 88 105 

250 6.14 2.31 12.14 56 111 137 

300 7.28 2.75 12.17 63 131 159 

350 9.09 3.23 12.2 77 154 185 

 
Table 4.1.7: Deflection and stain data for single damage Case-IV 

Load(g) 
Dial Gauge Reading (mm) Strain Indicator Reading (µ Strain) 

DG1 DG2 DG3 SG 1 SG2 SG3 

Initial 1 0 12 0 0 0 

50 2.12 0.34 12.01 16 21 20 

100 3.79 0.93 12.05 27 45 54 

150 5.9 1.25 12.07 33 66 73 

200 6.2 1.69 12.09 51 86 99 

250 7.74 2.18 12.13 64 110 128 

300 10.2 2.67 12.16 80 133 156 

350 10.79 3.18 12.19 94 157 187 

 
 
For double element damage case element no. 9 and 17 of the cantilever beam are 

damaged. Different damage cases are graphically represented in the Fig.  4.1.15. The 

test set up is shown in Fig. 4.1.16. Measured dial gauge reading and measured stain 

gauge reading for different damage cases (case I to case V) for 2D9-17 are presented 

in Table 4.1.8 to Table 4.1.12. 
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Fig 4.1.15: Graphical representation of various cases of double damage (2D9, 17) 

                         

     
 

Fig 4.1.16: During testing of double damage (2D9, 17) of acrylic cantilever beam  
 

Table 4.1.8: Deflection and stain data for double damage (2D9, 17) Case-I 

Load(g) 
Dial Gauge Reading (mm) 

Strain Indicator Reading (µ 

Strain) 

DG1 DG2 DG3 SG 1 SG2 SG3 

Initial 1 8 12 0 0 0 

50 2.29 8.41 12.02 17 23 24 

100 3.51 8.79 12.04 25 43 46 

150 4.88 9.22 12.07 36 66 73 

200 6.4 9.71 12.095 56 88 102 

250 7.77 10.14 12.12 79 110 126 

300 9.36 10.66 12.15 97 133 156 
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Load(g) 
Dial Gauge Reading (mm) 

Strain Indicator Reading (µ 

Strain) 

DG1 DG2 DG3 SG 1 SG2 SG3 

350 10.67 11.08 12.18 117 154 181 

 
Table 4.1.9: Deflection and stain data for double damage (2D9, 17) Case-II 

Load(g) 

Dial Gauge Reading (mm) 
Strain Indicator Reading (µ 

Strain) 

DG1 DG2 DG3 
SG 

1 
SG2 SG3 

Initial 1 8 7 0 0 0 

50 2.21 8.35 7.015 15 21 22 

100 3.61 8.84 7.04 26 41 49 

150 4.79 9.18 7.06 36 62 68 

200 6.47 9.74 7.095 53 86 102 

250 7.9 10.21 7.12 74 108 127 

300 8.87 10.74 7.16 85 132 156 

350 10.03 11.23 7.185 96 155 184 

 

 
Table 4.1.10: Deflection and Stain data for double damage (2D9, 17) Case-III 

Load(g) 

Dial Gauge Reading (mm) 
Strain Indicator Reading (µ 

Strain) 

DG1 DG2 DG3 
SG 

1 
SG2 SG3 

Initial 1 8 8 0 0 0 

50 2.35 8.43 8.02 15 21 22 

100 3.77 8.88 8.05 25 43 44 

150 5.23 9.36 8.08 43 64 69 

200 6.86 9.89 8.11 52 87 96 

250 8.48 10.44 8.14 60 109 125 

300 10.15 11 8.18 78 133 154 

350 11.67 11.48 8.21 118 155 178 
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Table 4.1.11: Deflection and Stain data for double damage (2D9, 17) Case-IV 

Load(g) 

Dial Gauge Reading (mm) 
Strain Indicator Reading (µ 

Strain) 

DG1 DG2 DG3 
SG 

1 
SG2 SG3 

Initial 1 8 7 0 0 0 

50 2.51 8.49 7.018 16 19 21 

100 4.04 8.96 7.035 25 41 43 

150 5.7 9.5 7.06 42 63 68 

200 7.53 10.14 7.09 56 87 97 

250 9.22 11.69 7.12 72 109 123 

300 11.03 12.31 7.16 83 132 152 

350 12.41 12.75 7.18 96 150 170 

 
Table 4.1.12: Deflection and Stain data for double damage (2D9, 17) Case-V 

Load(g) 

Dial Gauge Reading (mm) 
Strain Indicator Reading (µ 

Strain) 

DG1 DG2 DG3 
SG 

2 
SG3 SG4 

Initial 1 8 8 0 0 0 

50 2.92 8.63 8.015 13 19 16 

100 4.17 9.39 8.035 27 40 37 

150 7.81 10.32 8.07 41 63 65 

200 9.89 11.03 8.09 54 81 84 

250 12.18 11.83 8.12 68 101 106 

300 14.8 12.75 8.16 82 123 131 

350 17.18 13.58 8.19 96 144 156 
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4.1.3 Example II (Steel cantilever beam) 
 
A cantilever beam of 500 mm span length is prepared from 50 mm wide and 15 mm 

thick rectangular steel bar. One edge of the beam is rigidly fixed. The statistical 

variations in length, width and thicknesses are measured. To have the variations as 

expected in the structures the specimens are intentionally not machined perfectly. 

Firstly the single element damage was introduced with 10% reduction of width of 

third element. Then the double element damage was introduced by 10% reduction of 

the width of third and fourth element. The details of the undamaged beam is shown in 

Fig. 4.1.17. 

 

 
 

Fig 4.1.17: (a) Plan; and (b) Elevation of the undamaged steel cantilever beam 

 
The details of the damaged test specimens for both single element (member 3) and 

double element (member 3 & 4) damage are shown in Fig 4.1.18 and Fig 4.1.19. 
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Fig 4.1.18: (a) Plan; and (b) Elevation of damaged (Single element) steel cantilever beam. 

 

 
 Fig 4.1.19: (a) Plan; and (b) Elevation of damaged (Multiple elements) steel cantilever beam 

 

Different instruments like multimeter, strain indicator, dial gauges and also the test 

specimens are shown in Fig. 4.1.20 and Fig.4.1.21. 

 

   
Fig4.1.20: Instruments used for the experiment          Fig 4.1.21: Strain gauges attached with beam 
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4.1.3.1  Physical Properties of the Specimen 
 
The details of the measured geometric dimensions of the undamaged and damaged 

beams are shown in Table 4.1.13.  

 
Table 4.1.13: Measured Dimensions of Cantilever Beams 

Element 

Number 

Length 

( mm ) 

Width 

( mm ) 

Thickness 

( mm ) 

Damaged 

Condition 
UD 1D3 2D3,4 UD 1D3 2D3,4 UD 1D3 2D3,4 

1 500 500 500 50 50 50 15 15 15 

2 500 500 500 50 50 50 15 15 15 

3 500 500 500 50 45 45 15 15 15 

4 500 500 500 50 50 45 15 15 15 

5 500 500 500 50 50 50 15 15 15 

 
 
The details of the structural parameters like area of cross section and area moment of 

inertia based on the measurement of the undamaged and damaged beams are indicated 

in Table 4.1.14. 

 
Table 4.1.14: Measured Structural Parameters of Cantilever Beams 

Element 

Number 

Cross Sectional Area 

(mm 2 ) 

Moment of Inertia 

( 104 X mm 4 ) 

Damaged 

Condition 
UD 1D3 2D3,4 UD 1D3 2D3,4 

1 750 750 750 1.4062 1.4062 1.4062 

2 750 750 750 1.4062 1.4062 1.4062 

3 750 675 675 1.4062 1.265 1.265 

4 750 750 675 1.4062 1.4062 1.265 

5 750 750 750 1.4062 1.4062 1.4062 

 
Experimental setup for undamaged and single damaged beam during testing are 

shown in Fig.4.1.22. 
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Fig 4.1.22: Schematic diagram of the Experimental Setup 

The dial gauge reading and the strain indicator readings are represented in Table 

4.1.15 for UD case. Similarly the dial gauge reading and the strain indicator readings 

for 1D3 case and 2 D 34 case are tabulated in Table 4.1.16 and in Table 4.1.17. 

 
 

Table 4.1.15: Deflection and strain at specified nodes for undamaged case 

Load(N) 
Dial gauge reading (mm) Strain indicator reading (µ Strain) 

DG1 DG2 SG1 SG2 SG3 

Initial 0 0 0 0 0 

0.302 0.04 0.02 0 0 0 

3.929 0.52 0.20 5 4 0 

6.425 0.85 0.34 7 6 1 

10.051 1.34 0.52 11 10 1 

11.490 1.54 0.61 12 11 2 

12.929 1.74 0.69 13 12 2 

15.872 2.14 0.85 14 15 2 

18.687 2.53 1.00 17 18 3 

21.474 2.96 1.15 21 20 3 

22.871 3.11 1.24 22 22 3 

24.371 3.32 1.33 22 23 4 

25.506 3.49 1.39 23 24 4 

26.083 3.56 1.42 24 25 4 
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Load(N) 
Dial gauge reading (mm) Strain indicator reading (µ Strain) 

DG1 DG2 SG1 SG2 SG3 

27.131 3.72 1.48 25 26 4 

27.836 3.82 1.53 26 26 4 

 

 

Table 4.1.16: Deflection and strain at specified nodes for single damaged case (1D3) 

Load(N) 

Dial Gauge Reading (mm) Strain Indicator Reading (µ Strain) 

DG1 DG2 SG1 SG2 SG3 

0 0 0 0 0 0 

0.302 0.04 .01 0 0 0 

3.929 0.54 0.21 6 4 1 

6.425 0.90 0.35 9 7 1 

10.051 1.42 0.56 16 11 1 

11.490 1.65 0.64 18 13 1 

12.929 1.86 0.78 20 15 1 

15.872 2.31 0.91 25 18 2 

18.687 2.74 1.10 29 21 2 

21.474 3.24 1.29 34 24 2 

22.871 3.48 1.40 36 25 2 

24.371 3.74 1.50 38 27 2 

25.506 3.94 1.59 40 28 2 

26.083 4.04 1.64 41 29 2 

27.131 4.22 1.71 43 30 2 

27.836 4.34 1.77 44 31 2 
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                Table 4.1.17: Deflection and strain at specified nodes for double damage case (2D3, 4) 

Load(N) 
Dial Gauge Reading (mm) Strain Indicator Reading (µ Strain) 

DG1 DG2 SG1 SG2 SG3 

0 0 0 0 0 0 

0.302 0.04 0.01 1 0 0 

3.929 0.55 0.20 6 4 0 

6.425 0.92 0.34 11 7 1 

10.051 1.45 0.51 16 10 1 

11.490 1.70 0.59 18 12 2 

12.929 1.90 0.67 21 14 2 

15.872 2.33 0.84 27 17 2 

18.687 2.76 1.20 32 20 3 

21.474 3.26 1.30 36 23 3 

22.871 3.51 1.41 39 25 4 

24.371 3.76 1.52 41 26 4 

25.506 3.97 1.61 43 28 4 

26.083 4.06 1.65 44 28 5 

27.131 4.24 1.74 46 29 5 

27.836 4.37 1.80 47 30 5 

 

 
4.2 Dynamic  testing 

 
 Experimental modal test with excitation is carried out on laboratory model of the test 

structure. The responses are measured simultaneously along with the excitation force 

in time-domain and the real time data are acquired in a computer based data 

acquisition system in case of Experimental modal analysis(EMA). Operational modal 

testing (OMA) is also performed without measuring the time signal of forcing 

function.The measured data in time-domain are immediately transferred to frequency 

domain by the in-built software of real time Fast Fourier Transformation (FFT). The 

frequency response function (FRF) is then evaluated through the post processing 

technique. The modal parameters are extracted at the selected degrees of freedoms by 

curve fitting method on the evaluated frequency response functions. This chapter 
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presents the details of experimental set up, measurement technique adopted and the 

post analysis of the acquired dynamic response data for the extraction of modal 

parameters. 

 
4.2.1 Experimental setup for the dynamic test: 
 

a)  Signal analyzer box (Dynamic data acquisition system) 
 

The A4404 - SAB is a pocket sized 4-channel vibration analyzer. The A4404 – SAB 

is to be connected to any computer by USB and generally used for data analyzing, 

collecting and the recording of vibration signals. The instrument is enhanced by 

modules for dynamic balancing, measurement of run up and coast down and acoustic 

measurement mode. The instrument is equipped with an expert system developed by 

Adash, which can also automatically detects structural faults. The instrument is 

powered directly by USB connection. So no external power is needed. A4404 Signal 

Analyzer Box is shown below in Fig. 4.2.1. 

      

 
 

Fig. 4.2.1: Signal analyzer box. 
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b) Acceleration transducer (CEMB) 

 

The TA18S transducer picks up seismically the absolute vibrations of the structure by 

being fitted directly to the supports of the vibrating part of the structure. It supplies an 

output signal directly proportional to the vibration of the point to which it is fastened. 

Such recorded signals are subsequently processed by one of the measuring channel of 

a CEMB serial “T” or “N” processing unit. Acceleration transducers details are shown 

in Fig. 4.2.2 and Fig. 4.2.3. 

 
 

  
 

Fig. 4.2.2: Accelerometer in different view. 

 

 
 

Fig. 4.2.3: All eight accelerometers. 
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c) ICP impact hammer (Model 086C03) 

 

The ICP impulse force test hammer  adapts  FFT analyzer for structural behaviour 

testing.Impulse testing of the dynamic behavior of mechanical structures involves 

striking the test object with the force-instrumented hammer. It is shown in Fig.4.2.4. 

 

 
 

Fig 4.2.4: Impact hammer model 086C03 
 
d) Unitronic liycy data cable 
 

Unitronic Liycy cable as shown in Fig. 4.2.5 is a screened data cable for low 

frequency applications. The cable is designed for fixed installation and for conditional 

flexible use. It is used in dry and damp interiors but not appropriate for outside usage. 

 

 
 

Fig 4.2.5: Unitronic Liycy Data Cable 
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e)  Unidirectional shaking table 

For the development in the field of earthquake engineering, experimental study is 

required. To study the effects of earthquake, laboratory facilities are needed. The 

development has reached to a stage where earthquake simulation is achieved in 

laboratory using shaking table. The shake table consist of three parts with motor, rpm 

control panel and table base. The schematic diagram of the shake table used for this 

experiment is shown Fig. 4.2.6 and Fig. 4.2.7. Position of holes to fix the test 

specimen and also the slots for roller are shown in Fig. 4.2.8. 

 
 

Fig 4.2.6: Schematic plan of the full set up (a) Shake table, (b) Motor, (c) Control panel 
 
 

 
 

Fig 4.2.7: Schematic Elevation of unidirectional shaking table 
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Fig 4.2.8: Holes arrangements and slots dimensions are in mm 
 
The shaking table is constructed in the laboratory and Fig. 4.2.9 reflects the casting of 

base slab and also the template for the positioning of anchor bolts. 

        
 

Fig 4.2.9: Reinforcement details and bolt for top plate fixing during concrete casting. 

 
The shaking table is operated by a 15HP motor with maximum of 1500 rpm and 
300mm amplitude is shown Fig. 4.2.10. Rpm of the motor is controlled by a control 
panel shown in Fig. 4.2.11. 
 

 
Fig 4.2.10: Plan of shaking table and motor with amplitude controller for the unidirectional shaking  
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Fig 4.2.11: Control panel for the shake table for rpm control 

 
4.2.2 Experimental modal analysis: 
 
For this experiment, a cantilever beam of steel of dimension 500mm × 50mm × 15mm 

is selected. One accelerometer is kept 30mm apart from fixed end and the 

corresponding measurement is noted. The excitation is produced by impact hammer at 

a distance of 40mm apart from the fixed end. In this experiment a single 

accelerometer is used to measure the response and hence it is called single response 

technique.  After measuring the readings as Fig 4.2.12, natural frequency against 

phase change of FRF are extracted.   

 

  
Fig. 4.2.12: a) During testing and b) coherence and phase change for the cantilever beam 
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       Although there is a lots of peak as shown in the Fig. 4.2.12, but the first three 

180⁰ phase change happened in 38Hz, 238Hz and 559Hz. So these are the natural 

frequency of the object tested and tabulated in Table 4.2.1. 

 
Table 4.2.1: Extracted Natural Frequency (Hz) 

Modes Natural Frequency(Hz) 

1 38 

2 238 

3 559 

 
4.2.3 Operational modal testing: 

a) Undamaged scenario (UD) 

 
Operational modal testing is performed on the same steel cantilever beam as described 

in the experimental setup for undamaged steel cantilever beam is shown in Fig. 4.2.13 

 

 
 

Fig4.2.13: Operational modal testing of undamaged (UD) cantilever beam  

The recorded time signals for all four accelerometers are shown in Fig.4.2.14 and 

subsequent extraction of natural frequencies using frequency domain decomposition 

(FDD) is shown in Fig. 4.2.15. 
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Fig. 4.2.14: Measured signals recorded in the data acquisition system by all four channels 

 

 
Fig. 4.2.15: Estimation from frequency domain decomposition (FDD) 
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b) Single damage scenario (1D3) 

The experimental setup for single element damaged steel cantilever beam is shown in 

Fig. 4.2.16. The recorded time signals for four channels are shwon in Fig. 4.2.17. The 

estimation of the natural frequencies is reflected in Fig. 4.2.18. 

 

 
Fig. 4.2.16: Experimental set up for the single damage (1D3) cantilever beam 

 

 
Fig. 4.2.17: Recorded acceleration time signals by all four sensors. 
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Fig. 4.2.18: Estimation from frequency domain decomposition (FDD) 

 

Extraction of the natural frequencies and mode shapes done after post processing of 

the time signals as recorded in ARTeMIS software and the extracted mode shapes are 

shown below in Fig. 4.2.19 and Fig. 4.2.20. 

 
 

             
 
               Fig. 4.2.19: Extracted first and second operational mode shapes. 
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Fig. 4.2.20: Extracted third operational mode shapes. 

 

c) Double damage scenario (2D34) 

 

The experimental setup for damaged cantilever beam of sample 2 is shown in Fig. 

4.2.21. In this specimen (10%) damage is in the 3rd and 4th element.  

 

 
Fig. 4.2.21: During experiment for the steel cantilever beam (double element damage) 

 
 
The change in acceleration against time obtained for all four accelerometers is shown 

below in Fig.4.2.22. 
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Fig. 4.2.22: Recorded acceleration time signals by all four sensors for double element damage case 

 
The estimation from frequency domain decomposition (FDD) method is given in Fig. 

4.2.23. 

 
 

Fig. 4.2.23: Estimation from frequency domain decomposition (FDD) for double element damage 
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The extracted mode shape for first three natural frequency are shown below in 

Fig.4.2.24 and Fig.4.2.25. Extracted first three natural frequencies are shown in Table 

4.2.2.  

  
        

 Fig. 4. 2.24: Extracted first and second operational mode shapes for double element damage. 
 

 
 

        Fig. 4.2.25: Extracted third operational mode shapes for double element damage. 
 
 

Table 4.2.2: Extracted first three natural frequencies of the cantilever for different damage states 
 

Modes 
Natural Frequency(Hz) 

Undamaged(UD) Single element 
damage(1D3) 

Double  element 
damage(2D34) 

1 38 37 39 
2 235 217 220 
3 556 552 542 
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4.2.4 Example VI (Steel portal frame) 
 
For this experiment a single bay two storey portal frame of steel of dimension 600mm 

× 300mm, having total height of 600mm is prepared as shown in Figure 4.2.26(a). 

Frame is properly fixed on the base plate of the unidirectional shaking table. In this 

experiment eight numbers accelerometers are placed to measure the response. The 

statistical variations in length, width and thicknesses are measured. Details of the 

frame with node numbers and member numbers are shown below. All the 

accelerometers are mounted on the frame as shown in the Fig 4.2.26 (b, c).The frame 

is excited mechanically to get the vibration data that to be analyzed for the modal 

data. Excitation is done in shake table. The base plate is vibrated at different rpm of 

the motor for forced vibration and vibration signals are recorded through all eight 

number of accelerometers.  

 

            
            

Fig 4.2.26: a) schematic portal frame b) schematic and c) actual position of accelerometers 
 
The schematic diagram for the test set up is shown in Fig.4.2.27 and also full 
experimental set-up during testing is shown in Fig.4.2.28. 
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Fig 4.2.27: Schematic diagram of the  uni directional shake table system 

 

 
 
Fig 4.2.28: Full setup for the experiment (Uni directional shake table system along with control panel 

and motor and experimental portal frame and accelerometers with other accessories) 
 
 
The measurement of time signals for all eight accelerometer are repeated for several 

times changing different motor RPM. The test is also performed for all three different 

damage cases. However, such typical time signal data for all accelerometers are 

shown in Fig.4.2.29 for undamaged case considering motor RPM as 15. 

The geometric properties of the undamaged portal frame is shown in Table 4.2.3 and 

also structural properties are described in Table 4.2.4. Undamaged and different 

damage scenario of the portal frame is represented in Table 4.2.5. 
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Table 4.2.3: Measured geometric data of the steel portal frame 

Member No.  
Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

1 300 19.16 6.05 

2 300 19.16 6.05 

3 6.05 300 19.16 

4 300 19.16 6.05 

5 300 19.16 6.05 

6 6.05 300 19.16 

  
 

Table 4.2.4: Different undamaged structural properties of the steel portal frame 

MEMBER TYPE Column Beam 

ELEMENT NO. 1,2,4,5 3,6 

C/S AREA 0.0001159 sqm 0.0001159 sqm 

MOMENT OF INERTIA 
3.546 x 10-9 

(m^4) 

3.546 x 10-9 

(m^4) 

 
Damage identification is performed for different damage cases as shown below 
 

UD      :  Undamaged state – No damage in any element. 
CASE I (1D3)  :  Single element damaged state at element nos. 3. 
CASE II (2D13)  :  Double element damaged state at element nos. 1 and 3. 
CASE III (3D134):  Multiple damaged state at element nos. 1, 3 and 4. 

 

Table 4.2.5: Details of damages (%) reduction in c/s for undamaged and damaged cases 

DAMAGE 

CASES 

ELEMENT NO 

1 2 3 4 5 6 

UD - - - - - - 

CASE – I - - 10 - - - 

CASE – II 10 - 10 - - - 

CASE – III 10 - 10 10 - - 
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Fig 4.2.29: Typical time signal for the undamaged case at a motor rpm 15 
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The extracted natural frequencies for first three modes and for UD and other damage 

cases (1D3, 2D 13 and 3D134) are presented in Table 4.2.6. 

 
Table 4.2.6: Extracted first three natural frequencies of the portal frame for different damage states 

 

Modes 

Natural Frequency(Hz) 

Undamaged(UD) 
Single element 

damage(1D3) 

Double  element 

damage(2D13) 

Triple   element 

damage(3D134) 

1 56 55 55 54 

2 189 184 182 174 

3 392 390 383 354 
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Results & Discussions 
 

5.0 General 

The validation of the proposed models for the detection of damage in structural 

systems is carried out with few numerical and experimental examples. The effect of 

the noise in measured static and modal data on the identified structural properties is 

also studied. The applicability of the proposed methods for various multiple damage 

scenarios with various degree of damage is explored. The effect of the number of 

measurements of modal data on the identified properties is also studied. Subsequently, 

various damage scenarios of different structures have been solved to demonstrate the 

applicability of the proposed different models. The following examples are studied to 

validate the proposed damage identification models based on equation error approach. 

 
Table 5.0.1: Details of example considered 

Sl No. Example No Structural Type Material 
Used for  

Numerical  Experimental 
1 Ex-1 Cantilever Beam Acrylic √ √ 
2 Ex-2 Cantilever Beam Steel  √ 
3 Ex-3 Fixed - Fixed Beam Steel  √   
4 Ex-4 13 Member Pratt Truss Steel √   
5 Ex-5 RCC Gable Frame RCC  √   
6 Ex-6 Portal Frame Steel  √ 

 
Table 5.0.2: Details of different numerical models validated with different examples 

Model Name   Forward 
Approach SLD SSD DFS DFC DMS Static 

Experimentation 
Dynamic 

Experimentation 
Examples 

        Ex-1 √      √  Ex-2 
 √ √ √   √ √ 

Ex-3 
    √    Ex-4 
 √ √ √     Ex-5 
     √   Ex-6      √  √ 
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5.1 Example - I (Acrylic cantilever beam) 

A Cantilever beam of uniform cross-section (350mm wide x 8 mm thick) of acrylic 

material discretized by 20 no of beam elements as shown in Fig.  5.1.1 is considered.  

 

 
Fig.  5.1.1: A 350 mm cantilever beam made of Acrylic material 

 
   The geometric properties of the beam are given in Table 5.1.1. The node no and 

element no of the beam are shown below in Fig 5.1.2 

 
Table 5.1.1: Geometric and material properties of the cantilever beam (Ex-1) 

Length (mm) Height (mm) Width (mm) Mass density 
(Kg/m3) 

Modulus of Elasticity 
(E)(GPa) 

350 8 25 1180  3.3 

 

 
Fig.  5.1.2: Schematic diagram showing the nodes and elements of the beam 

 

The d.o.f. of cantilever beam are shown in the Fig 5.1.2 and Fig 5.1.3. 

 
 

Fig.  5.1.3:  Schematic diagram showing the degrees of freedom of the beam 
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5.1.1 Damage Scenario:  

Single element damage: 

The reduction of thickness for element No. 9 is gradually increased from 5% to 50% 

for single damaged (1D 9) case. Undamaged and various single element damaged 

cases are shown in Table 5.1.2. 

 
Table 5.1.2:Details of damages (% Reduction of thickness) for single Element Damage at element no. 9 

 

Multiple element damage: 

In case of double element damage, the reduction of thickness for element no 17 is 

gradually increased from 5% to 50% keeping 50% thickness reduction for element no 

9. The various double element damage (2 D 9, 17) scenario is shown in Table 5.1.3  
 

Table 5.1.3: Details of damages (% Reduction of thickness) for double Element damage 

   
 

Static analysis is performed for all the damage cases and the change in the deflection 

for UD and different 1D9 cases are shown in Table no 5.1.4. 

 

 

 

 
 

Damage Case Reduction of thickness (%) 
Undamaged 0% 

Damage Case I 5% 
Damage Case II 10% 
Damage Case III 20% 
Damage Case IV 30% 
Damage Case V 50% 

Damage Case Reduction of thickness 
(%) at element 9 

Reduction of thickness 
(%) at element 17 

Case I 50% 5% 
Case II 50% 10% 
Case III 50% 20% 
Case IV 50% 30% 
Case V 50% 50% 
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Table 5.1.4: Deflection at various nodes for UD and 1 D 9 case 

Node UD 1D9 (5%) 1D9 (10%) 1D9 (20%) 1D9 (30%) 1D9 (50%) 

1 1.25763 1.25752 1.25813 1.26266 1.27456 1.35937 

2 1.17379 1.17351 1.17387 1.17749 1.18761 1.26173 

3 1.08999 1.08954 1.08964 1.09236 1.10071 1.16412 

4 1.00631 1.00569 1.00553 1.00735 1.01394 1.06665 

5 0.92293 0.92214 0.92172 0.92263 0.92745 0.96946 

6 0.84006 0.8391 0.83842 0.83843 0.84147 0.87279 

7 0.75797 0.75684 0.75591 0.75501 0.75629 0.7769 

8 0.67703 0.67573 0.67453 0.67273 0.67224 0.68215 

9 0.59762 0.59615 0.5947 0.59199 0.58974 0.58895 

10 0.52024 0.51875 0.51726 0.51428 0.5113 0.50534 

11 0.44541 0.44413 0.44284 0.44027 0.43771 0.43257 

12 0.37373 0.37265 0.37156 0.3694 0.36723 0.3629 

13 0.30586 0.30497 0.30408 0.3023 0.30052 0.29697 

14 0.24252 0.24181 0.2411 0.23969 0.23828 0.23545 

15 0.18449 0.18396 0.18342 0.18234 0.18127 0.17912 

16 0.13264 0.13225 0.13187 0.13109 0.13032 0.12878 

17 0.08787 0.08761 0.08736 0.08684 0.08633 0.08531 

18 0.05115 0.051 0.05085 0.05055 0.05026 0.04966 

19 0.02352 0.02345 0.02338 0.02325 0.02311 0.02284 

20 0.00608 0.00606 0.00605 0.00601 0.00598 0.00591 

 
It is observed that the deflections at various nodes are increasing with the increase of 

percentage of damage. 

The comparison of theoretical and experimental deflections at node no 8 of the 

cantilever beam for UD and different cases of single element damage (1D9) are 

shown in Fig 5.1.4 and Fig 5.1.5 below. 
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Fig 5.1.4:  Comparison of analytical and experimental deflection for UD case 
 

  
 

Fig 5.1.5: Comparison of analytical and experimental deflection for 1D9 case (case I and case V) 
 

Similarly the change of deflection at all nodes for the different double element 

damage cases are shown in table 5.1.5. 
Table 5.1.5: Deflection at various nodes for UD and 2 D 9-17 case 

Node UD 

2-D9 

(50%), 

D17 (5%) 

2-D9 (50%) 

,D17(10%) 

2-D9(50%) 

D17 (20%) 

2-D9(50%) 

D17 (30%) 

2-D9 (50%) 

D17(50%)D 

1 1.25763 1.38189 1.4097 1.48873 1.61998 2.3157 

2 1.17379 1.28288 1.30901 1.38324 1.50655 2.16012 

3 1.08999 1.18392 1.20836 1.2778 1.39314 2.00457 

4 1.00631 1.08508 1.10783 1.17248 1.27987 1.84915 

5 0.92293 0.98653 1.0076 1.06745 1.16689 1.69402 

6 0.84006 0.88849 0.90787 0.96294 1.05442 1.5394 
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Node UD 

2-D9 

(50%), 

D17 (5%) 

2-D9 (50%) 

,D17(10%) 

2-D9(50%) 

D17 (20%) 

2-D9(50%) 

D17 (30%) 

2-D9 (50%) 

D17(50%)D 

7 0.75797 0.79124 0.80893 0.85921 0.94273 1.38556 

8 0.67703 0.69513 0.71113 0.75662 0.83219 1.23287 

9 0.59762 0.60056 0.61488 0.65557 0.72319 1.08172 

10 0.52024 0.51559 0.52822 0.56412 0.62379 0.94017 

11 0.44541 0.44146 0.4524 0.48351 0.53522 0.80945 

12 0.37373 0.37043 0.37969 0.406 0.44976 0.68184 

13 0.30586 0.30313 0.3107 0.33223 0.36802 0.55796 

14 0.24252 0.24025 0.24613 0.26287 0.29071 0.4385 

15 0.18449 0.18255 0.18675 0.19869 0.21858 0.32422 

16 0.13264 0.13085 0.13336 0.14051 0.15244 0.21593 

17 0.08787 0.08602 0.08684 0.0892 0.09318 0.11452 

 

  
Fig 5.1.6: Comparison of analytical and experimental deflection for 2D9, 17 case (case I and case V) 

 

 

It is observed that the deflection at all the degrees of freedom are increasing with the 

increase of damage percentage in case of 1D9. Similar observations are also found for 

double element damage (2D9-17) cases. The increment in deflection for double 

element damage is much higher than the single element damage case.  

The comparison of numerically obtained eigen values and natural frequencies for 

different damage cases both for 1D9 and 2D9-17 are shown in Fig 5.1.6 and Fig 5.1.7. 

The change in numerically obtained first and second mode shapes at few selected 

d.o.f are presented in Table 5.1.8 and Table 5.1.9 for undamaged and different single 

and double element damage cases. 
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Table 5.1.6: Change of Eigen value and frequency for different damage (%) for 1D9 case (Numerical) 

DAMAGE 

(%) 

1D9 

1st Mode  2nd Mode  3rd  Mode  

Eigen value 

Frequency 

(Hz) Eigen value 

Frequency 

(Hz) Eigen value 

Frequency 

(Hz) 

0(UD) 101.03362 1.5998517 3945.6149 9.9977923 30776.904 27.922817 

5 100.99828 1.5995718 3897.6216 9.9368012 30651.346 27.865802 

10 100.90972 1.5988704 3837.7275 9.860157 30497.428 27.795749 

20 100.50106 1.5956296 3671.3153 9.644009 30082.135 27.605848 

30 99.582519 1.5883212 3419.2838 9.3070992 29480.207 27.328263 

50 93.805241 1.5415596 2533.8587 8.011945 27553.252 26.420023 

 
 

Table 5.1.7: Change of Eigen value and frequency for different damage (%) for 2D9-17 case 

(Numerical) 

DAMAGE 
(%) 

2D9 17 
1st Mode  2nd Mode  3rd Mode  

Eigen value  
Frequency 

(Hz) Eigen value 
Frequency 

(Hz) Eigen value 
Frequency 

(Hz) 
0(UD) 101.03362 1.5998517 3945.6149 9.9977923 30776.904 27.922817 

5 99.102991 1.5844923 3895.1558 9.9336574 30661.925 27.87061 

10 96.785427 1.5658557 3831.4133 9.8520422 30507.75 27.800452 

20 90.675137 1.5156219 3651.3954 9.61781 30049.943 27.591073 

30 81.970291 1.4410366 3373.5281 9.2446172 29329.146 27.258156 

50 54.139603 1.1711278 2367.0554 7.7437439 26811.65 26.062048 
 

 

Table 5.1.8: Change of first mode shape at selected d.o.f. for UD and different damage cases 

(Numerical) 

First mode shape measured at 5th   9th  13th  and 17th  degree of freedom 

UD  1D9 2D 9,17 

-0.219106251 -0.217709429 -0.218977775 

-0.184301802 -0.182903611 -0.184165005 

-0.150093899 -0.148689987 -0.149923377 

-0.117127073 -0.115707992 -0.116869926 
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Table 5.1.9: Change of second mode shape at selected d.o.f. for UD and different damage cases 

(Numerical) 

Second mode shape measured at 5th   9th  13th  and 17th  degree of freedom 

UD  1D9 2D 9, 17 

-0.037849593 -0.037586209 0.037648765 

-0.004753057 -0.004429654 0.004491099 

0.023411428 0.023955898 -0.023897259 

0.043173199 0.044229936 -0.044174051 

 
It is clearly found that the change of the first natural frequency is not so significant 

whereas, the change of the second and third natural frequency are substantial with the 

incorporation of damages. The change in first and second mode shapes are significant 

as measured in selected d.o.f.  

5.2 Example- II (Steel cantilever beam) 

A steel cantilever beam of uniform cross-section (50mm wide x 15 mm thick) of steel 

is discretized by 20 no of beam elements as shown in Fig.5.2.1 is considered. The 

schematic diagram of the steel cantilever beam is shown in the Fig.4.1.17 .The data 

considered for this example are, modulus of elasticity (E) =2.1x1011N/m2, mass per 

unit volume is =7850kG/cum. So, mass per length in Kg /m is (7850 X Cross 

sectional area). The schematic plan and elevation of the undamaged as well as 2D56 

and 4D5678 are shown in Fig. 4.1.17, Fig. 4.1.18 and Fig. 4.1.19. The details of the 

measured dimensions of the undamaged and damaged beams are shown in Table 

5.2.1. Structural parameters of the beam are shown in Table 5.2.2.  

 
Table5.2.1: Measured dimensions of steel cantilever beam 

 
Element 

Number 

Length 

( mm ) 

Width 

( mm ) 

Thickness 

( mm ) 

Damaged 

Condition 
UD 2D56 4D5678 UD 2D56 4D5678 UD 2D56 4D5678 

1 500 500 500 50 50 50 15 15 15 

2 500 500 500 50 50 50 15 15 15 

3 500 500 500 50 50 50 15 15 15 
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Element 

Number 

Length 

( mm ) 

Width 

( mm ) 

Thickness 

( mm ) 

Damaged 

Condition 
UD 2D56 4D5678 UD 2D56 4D5678 UD 2D56 4D5678 

4 500 500 500 50 50 50 15 15 15 

5 500 500 500 50 45 45 15 15 15 

6 500 500 500 50 45 45 15 15 15 

7 500 500 500 50 50 45 15 15 15 

8 500 500 500 50 45 45 15 15 15 

9 500 500 500 50 50 50 15 15 15 

10 500 500 500 50 50 50 15 15 15 

 
     UD: Undamaged; 2D: Double element (5, 6) damaged; 4D:  Multiple element damaged (5, 6, 7, 8) 
 

 
 

Fig 5.2.1: Graphical representation of various scenarios of UD and multiple damage 
 

The details of the measured structural parameters based on the measurement of the 

undamaged and damaged beams are indicated in Table 5.2.2. 
 

Table 5.2.2: Damaged structural parameters of steel cantilever beam 
 

Element Number 
Cross Sectional Area 

(mm 2 ) 

Moment of Inertia 

( 104 X mm 4 ) 

Damaged 

Condition 
UD 2D56 4D5678 UD 2D56 4D5678 

1 750 750 750 1.406 1.406 1.406 

2 750 750 750 1.406 1.406 1.406 

3 750 750 675 1.406 1.406 1.406 

4 750 750 675 1.406 1.406 1.406 
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Element Number 
Cross Sectional Area 

(mm 2 ) 

Moment of Inertia 

( 104 X mm 4 ) 

Damaged 

Condition 
UD 2D56 4D5678 UD 2D56 4D5678 

5 750     675 675 1.406    1.265       1.265 
6 750     675 675 1.406    1.265       1.265 
7 750 750 675 1.406 1.406       1.265 
8 750 750 675 1.406 1.406       1.265 
9 750 750 750 1.406 1.406 1.406 

10 750 750 750 1.406 1.406 1.406 

 

The experimental and analytical variation of the deflection for undamaged and 

different damage cases are plotted for Fig 5.2.2 to Fig 5.2.4. 
 

  
 

Fig 5.2.2: Comparison of analytical and experimental deflection for UD case 
 
 

  
 
 

Fig 5.2.3: Comparison of analytical and experimental deflection for 2D56 case 
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Fig 5.2.4: Comparison of analytical and experimental deflection for 4D5678 case 
 

It is noted that the deflection for both analytical results are quite close. It is also seen 

that both analytical and experimental deflection increases due to increase of load 

applied and also due to the increase of damage extent. 

The analytical eigenvalues and natural frequencies for UD and different damage cases 

are expressed from Table 5.2.3. Also a comparison between analytical and 

experimental natural frequencies are expressed in Table 5.2.4.  

 
Table 5.2.3: Change of Eigen value and frequency for different damage (%) cases 

 

Damage 

Case 

1st Mode 2nd Mode 3rd Mode 

Eigen 

Value Frequency(Hz) 

Eigen 

Value Frequency(Hz) 

Eigen 

Value Frequency(Hz) 

UD 87174.9 47.000 3599231 302.000 29391209 863.000 

2D56 83504.8 46.000 3273263 288.000 27779203 839.000 

4D5678 83504.8 46.000 3205425 285.000 26664872 822.000 

 
Table 5.2.4: Comparison of Eigen value for analytical and experimental for different damage  

 

Damage 

Case 

1st Mode 2nd Mode 3rd Mode 

Eigen 

Value 

(anl.) 

Eigen 

Value(exp) 

Eigen 

Value 

(anl.) 

Eigen 

Value(exp.) 

Eigen 

Value 

(anl.) 

Eigen 

Value(exp.) 

UD 87174.9 56985.300 3599231 1997841.000 29391209 12199596.000 

2D56 83504.8 60024.000 3273263 1910035.000 27779203 11592963.000 

4D5678 83504.8 54025.600 3205425 1858298.000 26664872 12024694.000 
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Table 5.2.5: Comparison of natural frequencies value for different damage 
 

First three natural frequencies(Hz) 
                                 UD 2D56                 4 UD5678 

Numerical Experimental Numerical Experimental Numerical Experimental 
40 38 39 37 38 36 
240 235 221 217 230 220 
570 556 560 552 554 542 

  
The change in the experimentally obtained mode shapes in few selected d.o.f for first 

mode shape is presented in Table 5.2.6 and the same for second mode shape is shown 

in Table 5.2.7. 

 
Table 5.2.6: Change of mode shapes at selected d.o.f. for different damage (%) cases (Experimental) 

 

First  mode shape measured at 5th   9th  13th  and 17th  degree of freedom 

UD  2D56 4D5678 

0.023077261 0.022535236 0.022284421 

0.083102102 0.081215822 0.080328423 

0.166798869 0.164231274 0.162495734 

0.262597955 0.260067527 0.257945799 

 
 

 
Table 5.2.7: Change of mode shapes at selected d.o.f. for different damage (%) cases (Experimental) 

 
Second mode shape measured at 5th   9th  13th  and 17th  degree of freedom 

UD  2D56 4D5678 

0.030823823 0.03098971 0.030385163 

0.070444782 0.071971311 0.071005306 

0.061810155 0.06390334 0.064494751 

-0.005216696 -0.00385707 -0.002188827 

 

The variation of the both analytical and experimental curvature for UD and different 

damage cases are plotted in Fig 5.2.5 and Fig 5.2.6.  
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Fig 5.2.5: Variation of analytical curvature for different damage conditions 
 

   
 

Fig 5.2.6: Variation of experimental curvature for different damage conditions 
 
It is also seen that both analytical curvature and experimental curvature increases 

from fixed end to the free end. However, the variation is not significant for the 

different damage cases. 

 

Measured static deflection and strain data at selected d.o.f. are mixed with the random 

noises and used for UD and different damage states to check the accuracy of the 

model SLD and SSD. The predicted error and estimated value for axial rigidity and 

bending rigidity of each element with various noise level are shown form Fig.5.2.7 to 

Fig.5.2.12 for UD and different damage conditions.  
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Fig 5.2.7: Predicted value of axial rigidity for UD case with different noise level 
 
 
 
 

 
 

Fig 5.2.8: Predicted value of axial rigidity for 1D3 case with different noise level 
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Fig 5.2.9: Predicted value of axial rigidity for 2D34 case with noise level 
 

It is noted that axial rigidity and bending rigidity of both undamaged and damaged 

elements are predicted element wise with higher accuracy for the various damage 

states of the beam, provided accurate measured deflection data are available. 

 

 

 
 

Fig 5.2.10: Predicted value of bending rigidity for UD case with noise level 
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Fig 5.2.11: Predicted value of bending rigidity for 1D3 case with noise level 
 
 
 

 
 

Fig 5.2.12: Predicted value of bending rigidity for 2D34 case with noise level 
 

It is observed that axial rigidity and bending rigidity of both undamaged and damaged 

elements are predicted with sufficient accuracy for the various damage states of the 

beam using available measured strain data. 

Measured modal data are mixed with the random noises and used for this model for 

undamaged and different damage state to check the accuracy of numerical model 

DFS. The predicted error and estimated value for axial rigidity and bending rigidity of 

each element with various noise level are shown form Fig.5.2.13 to Fig. 5.2.24 for UD 

and different damage level. It is found that the structural parameters like axial rigidity, 

bending rigidity of both undamaged and damaged elements are predicted with greater 
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accuracy for the various damage states of the beam provided accurate measured 

modal data are available. The prediction of structural parameters is effected by the 

presence of noise. However, the presence of noise in the measurement of modal data 

is inevitable. Thus the effect of the presence of noise in the measured data on the 

accuracy of the predicted structural properties is important to be studied. Similarly, 

the applicability of the proposed method in case of large structure with multiple 

damages is also important to be studied. It is seen that accuracy in the estimated axial 

rigidity and bending rigidity decreases for increased noise level. Also it is observed 

that the accuracy in prediction parameter for different element are varying due to the 

presence of random type noise. The random type noise also influence the error 

percentage to become a random one as the estimation of the parameter are associated 

with the iterative process and for different noise level the noisy modal parameters like 

frequencies and noisy mode shapes at selected d.o.f. are randomly varying. 

 

 

 
 

Fig 5.2.13: Error (%) for predicted axial rigidity with element for different noise in UD case 
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Fig 5.2.14: Predicted axial rigidity with measured noise for different element in UD case 
 
 

 

 
 

Fig 5.2.15: Error (%) for predicted axial rigidity with element for different noise in 1D3 case 
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Fig 5.2.16: Predicted axial rigidity with measured noise for different element in 1D3 case 
 

 

   
Fig 5.2.17: Error (%) for predicted axial rigidity with element for different noise in 2D34 case 
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Fig 5.2.18: Estimated axial rigidity with measured noise for different element in 2D34 case 

 
 

 
 

Fig 5.2.19: Error (%) in estimated bending rigidity with for different element for UD case 
 
 

 
 

Fig 5.2.20: Plot of bending rigidity with measured noise in mode shapes for different UD case 
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Fig 5.2.21: Error (%) in estimated bending rigidity with for different element for 1D1 case 
 
 

 
 

      Fig 5.2.22: Plot of bending rigidity with measured noise in mode shapes for different 1D3 case 
 
 

 
 

Fig 5.2.23: Error (%) in estimated bending rigidity with for different element for 2D34 case 
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     Fig 5.2.24: Plot of bending rigidity with measured noise in mode shapes for different 2D34 case 
 
 
It is found that the estimated error is lower in case of bending rigidity in comparison 

with the axial rigidity. The measurement of dynamic responses in the direction of 

bending may have contributed the greater accuracy of the bending rigidity prediction. 

It seems that error in prediction of axial rigidity may be reduced by putting 

accelerometers in horizontal direction. 

The error in the predicted parameters for each element with the no of measured modes 

are studied in Fig 5.2.25 to 5.2.30 for UD and different damage cases.  

 
 

  
Fig 5.2.25: Error and predicted axial rigidity with measured mode for different element for UD case 
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Fig 5.2.26: Error and predicted axial rigidity with measured mode for different element for 1D3 case 

 
 

     
 
Fig 5.2.27: Error and predicted axial rigidity with measured mode for different element for 2D34 case 

 
 

     
 
Fig 5.2.28: Error and predicted bending rigidity with measured mode for different element for UD case 
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Fig 5.2.29: Error and predicted bending rigidity with measured mode for different element for 1D3 case 
 
 

   
 
Fig 5.2.30: Error and predicted bending rigidity with measured mode for different element for 2D34 
 

It is clearly observed from Fig 5.2.25 to 5.2.30 that the accuracy of prediction of the 

structural parameters depend on the number of measurement of modal data. The 

model is able to accurately predict the structural parameters provided noise-free data 

of large number of measured modes are available as observed in Example II. But in 

practice, the availability of large number of modal data is difficult. The presence of 

noise, which is generally random in nature mixed with the measured data, is also 

inevitable in practice. It is also observed earlier that noisy data decreases the accuracy 

of the identified parameter by the proposed method. Hence this method may not be 

suitable for all type of large structures to identify the structural parameters precisely 

by the proposed deterministic approach using the limited measured data mixed with 

random measurement noise. 
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 5.3 Example-III: (Steel fixed-fixed beam) 

A uniform beam with the ends fixed against translation and rotation is considered for 

this example. For analysis, the beam has been divided into four equal elements in the 

finite element framework. The dimensions (meter) and the degrees of freedoms are 

shown in Fig. 5.3.1.The different geometric and mechanical properties of the 

undamaged beam is shown in Table 5.3.1. 

 

 
Fig 5.3.1: Different degrees of freedom of the fixed- fixed beam 

 
 

Table 5.3.1: Different undamaged properties of the beam: 
 

Member 

No 

Length 

(m) 
Width(m) Depth(m) 

Mass 

Density(Kg/m3) 

Modulus of 

Elasticity 

(E)kN/sqm 

1 0.125 0.05 0.015 7850 2.1 x 1011 

2 0.125 0.05 0.015 7850 2.1 x 1011 

3 0.125 0.05 0.015 7850 2.1 x 1011 

4 0.125 0.05 0.015 7850 2.1 x 1011 

 
Analysis performed for different undamaged and different damage cases as shown 
below: 
 

UD         :  Undamaged state – No damage in any element. 

CASE I (1D1) :  Single element damaged state element no. 1. 

CASE II (2D13)  :  Multiple damaged state element nos. 1 and 3. 

Two types of multiple damages in terms of reduced values of their original axial 

rigidity (AE), bending rigidity (EI) of different extent at various locations are 

0.125
m 
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m 
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m 
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m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 



 
 

 

112 
 

Results and Discussion 
 

considered. The details of damage extent for these damage cases are shown in Fig 

5.3.2 and Fig 5.3.3. 

 
 

Fig 5.3.2: Graphical representation of various scenarios of UD and single element damage 
 
 

 

 
Fig 5.3.3: Graphical representation of various scenarios of UD and double element damage 

 

The variation of analytical vertical deflection at different nodes for UD, different 

single element and double element damages are plotted in Fig 5.3.4.  
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Fig 5.3.4: Variation of analytical deflection for different damage conditions (1D1 and 2D13) 

 

It is observed that deflection values increases significantly for the increase of damage. 

The change in the eigen values and the natural frequencies are studied in Table 5.3.2 

and Table 5.3.3 for UD, different single element and double element damages. The 

normalized first and second mode shapes are plotted in Fig 5.3.5 and Fig 5.3.6.   
Table 5.3.2: Change of Eigen values and frequency for different damage (%) for 1D1 case 

 

DAMAGE 

(%) 

1D1 

1st Mode 2nd Mode 3rd  Mode 

Eigen value 
Frequency 

(Hz) 
Eigen value 

Frequency 

(Hz) 
Eigen value 

Frequency 

(Hz) 

0(UD) 4029472.49 319.5 29269388.46 861.1 123890445.1 1771.6 

1% 4016870.551 319 29208237.18 860.2 123555001.8 1769.2 

2.5% 3999260.994 318.3 29120020.45 858.9 123052689.5 1765.6 

5% 3969163.182 317.1 28964271.53 856.6 122189994.5 1759.4 

10% 3909308.61 314.7 28640575.58 851.8 120349612.1 1746.1 

 
 

Table 5.3.3: Change of Eigen value and frequency for different damage (%) for 2D1, 3 case 
 

DAMAGE 

(%) 

2D13 

1st Mode 2nd Mode 3rd Mode 

Eigen value 
Frequency 

(Hz) 
Eigen value 

Frequency 

(Hz) 
Eigen value 

Frequency 

(Hz) 

0(UD) 4029472.49 319.5 29269388.46 861.1 123890445.1 1771.6 

1% 4009318.861 318.7 29120020.45 858.9 123261862 1767.1 

2.5% 4009318.861 318.7 29120020.45 858.9 123261862 1767.1 
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DAMAGE 

(%) 

2D13 

1st Mode 2nd Mode 3rd Mode 

Eigen value 
Frequency 

(Hz) 
Eigen value 

Frequency 

(Hz) 
Eigen value 

Frequency 

(Hz) 

5% 3926719.22 315.4 28526369.45 850.1 120722093.8 1748.8 

10% 3822835.821 311.2 27753170.52 838.5 117417707.5 1724.7 

 

   
Fig 5.3:5: Variation of analytical first and second mode shapes for different damage (1D1) 

 

   
Fig 5.3.6: Variation of analytical first and second mode shapes for different damage (2D13) 

 

It is observed that Eigen values and the first three natural frequencies are reduced for 

all different damage cases. However, there is very small variation in the normalized 

mode shapes for different damage conditions. 

The predicted error and estimated value for bending rigidity of each element with 

various noise level are shown form Fig.5.3.7 to Fig.5.3.9 for undamaged and different 

damage level using numerical model DFC. It is noted that the accuracy in prediction 

parameter for different element are different.  
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Fig 5.3.7: Error (%) in estimated bending rigidity with for different element for UD case for  

 

 
Fig 5.3.8: Error (%) in estimated bending rigidity with for different element for 1D1 case 

 

 
Fig 5.3.9: Error (%) in estimated bending rigidity with for different element for 2D13 case 
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The estimated value for bending rigidity of each element with various noise level are 

shown form Fig.5.3.10 to Fig.5.3.12 for UD and other different damage cases.  

 

 
 

Fig 5.3.10: Estimated bending rigidity with measured noise for UD case 
 
 
 

 
Fig 5.3.11: Estimated bending rigidity with measured noise for 1D1 case 
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Fig 5.3.12: Estimated bending rigidity with measured noise for 2D13 case 

 

It is noticed that accuracy in the estimated bending rigidity decreases for increased 

random measurement noise level in the mode shapes. 

The estimated error for bending rigidity of each element with no of measured mode 

shapes are shown form Fig.5.3.13 and Fig.5.3.14 for 1D1 and 2D13 cases. 

 
 

  
 
Fig 5.3.13: Error (%) in estimated bending rigidity for different mode shapes (1D1 and 2D13 case) 
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Fig 5.3.14: Estimated bending rigidity for different element with mode shapes (1D1 and 2D13 case) 
 
The errors in the estimation of axial rigidity, bending rigidity using the proposed 

deterministic parameter identification model seems to be smaller. The error is within 

4.5% even in the presence of high percentage of random noise like 2.0%, which may 

be more reliable. It is noted that the accuracy of the estimation increases in general 

with the use of increased number of measurement. The effect of measurement noise 

on the estimated structural parameters by this identification model is also studied. It is 

observed that the accuracy of the estimation decreases with the increase of the noise 

level. It is also noted that the accuracy of estimation further decreases with the 

decrease in the number of measurement. The errors in the estimations of structural 

parameters using modal data measured at the first three modes for different noise 

level are lesser and may be acceptable. 
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 5.4 Example-IV (13 member steel Pratt Truss) 

The schematic diagram of a thirteen (13) element symmetrical Pratt Truss as shown in 

Fig. 5. 4.1 is numerically demonstrated. The top chord and bottom chord is taken as 

ISMC 150. The other major and minor bracing members and also the vertical strut 

members are considered as ISA 90x90x8. 

 
Fig 5.4.1: 13 member steel Pratt Truss 

 
The modulus of elasticity and the density of the material of the truss are taken as 

2.0x1011 KN/sqm and 7.85x103 kg/cum respectively. The undamaged structural 

properties are described in Table 5.4.1. 

 
Table 5.4.1 : Undamaged structural properties of the structure 

MEMBER TYPE Top Chord Bottom Chord Diagonals Verticals 

ELEMENT NO. 1,2,3,4 5,6 7,9,11,13 8,10,12 

AREA ( SQM) 4.500x10-3 1.1250x10-2 5.625x10-3 7.200x10-3 

IXX  (M4) 1.215 x 10-5 3.600 x 10-5 1.400 x 10-5 3.240 x 10-5 

 

Four cases of multiple damage state along with the undamaged state are considered 

for identification of the structural parameters using analytically simulated modal data. 

The degree of damage from 10% is introduced in elements 2, 4,5,6,7 8, 9, 10, 12 &13.  

Case I: Undamaged state (UD) – No damage in any element. 

Case II: Damaged state (2D35) – Damages at element no 3 and 5. 

Case III: Damaged state (4D 2, 6, 9, 12) – Damages at element no 2, 6, 9 and 12. 

 



 
 

 

120 
 

Results and Discussion 
 

 
Fig 5.4.2: Graphical representation of various scenarios of UD and multiple element damage 

 

Pratt Truss is used to demonstrate the applicability of the proposed SLD, SSD and 

DFS model. The numerically obtained maximum deflection is plotted in Fig. 5.4.3 for 

UD and different damage conditions. 

 

 
 

Fig 5.4.3: Plot of static displacement(mm) vs load(N)   

The errors of estimation of the axial rigidity using SLD and SSD for different damage 

cases are studied and shown in Fig. 5.4.4 – Fig.5.4.6.   
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Fig 5.4.4:Error (%) in estimated axial rigidity with for different element without noise 

 
 

Fig 5.4.5: Error (%) in estimated axial rigidity with for different element for 2D35 case 

It is observed that using SLD and SSD  models  structuctural parametrs are identified 

with sufficient  accuracy if  the random mesurement noise is absent. But this model 

predict structural parameters  with some error using limited measured data even for 

small  presence of intrinsic random noise.  
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Fig 5.4.6: Error (%) in estimated axial rigidity with for different element for 4D2,6,9,12 case 

The errors of estimation of the structural parameters for different number of 

measurements are studied and shown in Fig. 5.4.7 – Fig.5.4.11.   

 
 

 
 

Fig 5.4.7: Error (%) in estimated axial rigidity with for different element for UD case 
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Fig 5.4.8: Error (%) in estimated axial rigidity with for different element for 2D34(10%) case 

 

 
 

 Fig 5.4.9: Error (%) in estimated axial rigidity with for different element for 4D2,6,9,12(10%) case 
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           Fig 5.4.10: Estimated axial rigidity with measured noise in mode shapes for UD case 
 
 

         

Fig 5.4.11: Estimated axial rigidity with measured noise in mode shapes for 1D4 (10%) case 
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     Fig 5.4.12: Estimated axial rigidity with measured noise in mode shapes for 2D 46 (10%) case 
 
 

 
 

     Fig 5.4.13: Estimated axial rigidity with measured noise in mode shapes for 3D 468 (10%) case 
 

It is observed that the accuracy of the estimation of structural parameters decreases 

significantly with the increase of noise level. In most of the elements the error in the 

estimated structural parameters are maximum of 8% for the noise level of maximum 

of 2.0% in measured mode shapes. 
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5.5 Example V (RCC gable frame) 

A gable frame is considered for the validation of the proposed numerical model DMS. 

The dimensions (in meter) are shown in Fig: 5.5.1 and the degrees of freedoms are 

shown in Fig: 5.5.2.  

 
 
 
 
 
 
 
 
 

 
 

 
 
             Fig. 5.5.1. Frame with node and member                 Fig.5.5.2.  Degrees of Freedom of the frame 
 
Geometric and structural properties of the gable frame is shown in Table 5.5.1 and 

also different damage scenario is described in Table 5.5.2. 

 
Table 5.5.1: Different undamaged properties of the frame 

 

Member 

No 

Length 

(m) 
Breadth(m) Depth(m) 

Mass 

Density(Kg/m3) 

Modulus of 

Elasticity 

(E)kN/sqm 

1 5 0.25 0.25 2500 2.236 x 1010 

2 4.2426 0.25 0.25 2500 2.236 x 1010 

3 4.2426 0.25 0.25 2500 2.236 x 1010 

4 5 0.25 0.25 2500 2.236 x 1010 

 
Analysis performed for different damage cases as shown below 
 

UD         :   Undamaged state – No damage in any element. 

CASE I: (1D3)      :   Single element damaged state at element nos. 3. 

CASE II: (2D34)      :   Double element damaged state at element nos. 3 and 4. 
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Table 5.5.2: Different damage percentage of the gable frame 
 

DAMAGE CASES 
ELEMENT NO 

1 2 3 4 

UD - - - - 

CASE – I - - 10 - 

CASE – II - - 10 10 

 
 

The proposed DMS model is employed initially at its undamaged state using limited 

modal data of the first three modes measured at selected three translation degrees of 

freedom. The measured limited data is coupled with unbiased normally distributed 

random noise up to 2 percent. The effect of the extent of damage on the accuracy of 

the proposed energy based method is studied. The errors of estimated axial rigidity, 

bending rigidity of the undamaged and different damaged state are shown in Fig 5.5.3 

to Fig 5.5.8.  

 

 
 

  Fig 5.5.3: Error (%) in estimated bending rigidity with measured noise in mode shapes for UD case 
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             Fig 5.5.4: Estimated bending rigidity with measured noise in mode shapes for UD case 
 
 

 
 

Fig 5.5.5: Error (%) in estimated bending rigidity with for different element for 1D3(10%) case 

 
 

        Fig 5.5.6: Estimated bending rigidity with measured noise in mode shapes for 1D3 (10%) case 
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Fig 5.5.7: Error (%) in estimated bending rigidity with for different element for 2D34(10%) case 

 
 

       Fig 5.5.8:  Estimated bending rigidity with measured noise in mode shapes for 2D34(10%) case 
 
It is encouraging to note that the errors in the estimation of the above structural 

parameters at different states of damages by the proposed model are less than 3.5% of 

the base value). 

The errors in the estimated bending rigidity by the proposed DMS model with various 

level of random noise in the limited modal data measured at the selected degrees of 

freedom are shown in Fig 5.5.9 to Fig 5.5.11. 
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Fig 5.5.9:  Error (%) and estimated bending rigidity with measured mode for UD case 

 
 

    
 

Fig 5.5.10: Error (%) and estimated bending rigidity with measured mode for 1D3 case 
 

  
 

Fig 5.5.11: Error (%) and estimated bending rigidity with measured mode for 2D3, 4 case 
 

It is noted that the % error in the estimation of the structural parameters decreases 

with the increase in number of measurement of modal data. The effect of 

measurement noise on the estimated structural parameters by this identification model 

is also studied.  
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5.6 Example VI (steel portal frame) 

A Single bay two storey steel portal frame is considered for the validation of the 

proposed damage detection model DMS using experimentally measured data. The 

dimensions (meter) and the degrees of freedoms are shown in Fig. 5.6.1. Different 

undamaged structural properties are described in Table 4.2.4. Details of the % 

reduction in cross section is tabulated in Table 4.2.5. 

                                               
Fig.  5.6.1:  Model of six element Portal Frame showing the d.o.f. (all dimensions are in meter) 

 
 

 Coefficient of elasticity of the material is 2.0 × 10 11 kN/ sqm and mass density is 

7.85 × 10 3 kg/cum.  Different undamaged structural properties are presented in Fig 

4.2.4 Different damage scenario are graphically represented in Fig. 5.6.2.                   
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Fig.  5.6.2:  Graphical representation of various case of multiple damage 
 

The comparison of the experimental and analytical natural frequencies for UD and 

different damage conditions are shown in Table 5.6.1. 
 

Table 5.6.1: Change of natural frequency for different damage cases for first few modes. 
 

Damage 

Case 

1st Mode 2nd Mode 3rd Mode 

Experimental Analytical Experimental Analytical Experimental Analytical 

UD 56 57.7 189 209.16 392 398.04 

1D1 55 56.54 184 204.71 390 389.33 

2D13 55 55.496 182 199.01 383 381 

3D134 54 55.25 174 194.926 354 373.705 

 

It is observed that the numerical and experimental natural frequencies are close to 

each other if the damage extent is less. However, few variation observed for higher 

damage. Fig.5.6.3 and Fig.5.6.4 are developed for showing the predicted structural 

parameters using DMS model. 

 
 

Fig.  5.6.3: Predicted axial rigidity to the member with noise and 10 (%) damage for 2D13 case 
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Fig.  5.6.4: Predicted axial rigidity and member with noise and 10 percentage damage for 3D134 case 

 

It is observed from Fig.5.6.3 and Fig.5.6.4 that axial rigidity are almost truly predicted 

using DMS in presence of the noise also.  

 

The results of various models developed and subsequent validation of those models 

with different examples both numerical as well as experimental problems with and 

without measurement random noises have been presented and discussed. Five 

numerical models have been developed based on inverse approach using static or 

dynamic responses with random noise. Several numerical examples have been studied 

with these identification models with incremental random noise and different numbers 

of measured modes. Experimentally obtained data have also used to validate these 

numerical models and to establish the feasibility of practical application. The 

maximum error (%) of axial & bending rigidity for different elements by various 

developed models using both numerically noisy data is also studied. 
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Conclusion & Future Scope of Study 
 
6.1 Concluding remarks 
 
Present study deals with the structural condition monitoring aspect, particularly the 

prediction of damage in terms of reduction of structural parameters e.g., axial rigidity, 

bending rigidity using limited static and dynamic responses measured at a few 

selected locations. Equation error approach is employed in a finite element framework 

adopting inverse static and dynamic technique. The uncertainty associated with the 

measurement is generally considered as measurement noise and it is duly considered 

and compared on the accuracy of the identification of parameters. Computational 

algorithms have developed and numerical examples are presented to establish the 

efficacy of the proposed method. Experimental study is also performed to have an 

insight on a few basic aspects of static and modal testing and subsequent extraction of 

the static and modal parameters. The experimental validation of the numerical models 

developed have been attempted with those extracted static and modal responses from 

measured data at few nodes. Based on the results of the examples studied, few 

important conclusions are as follows. 

 
1. Inverse static identification approach seems to be simple and able to predict 

damage in case of simple cantilever beams. However, for complex structure, 

huge static data may be required for accurate prediction of the structural 

parameters. 

2. The Experimental validation of the numerical models based on static 

responses shows satisfactory results of predicting bending rigidities with 6% 

error in SLD Model and 3% error in case SSD Model. 

3. Damage identification with inverse dynamic approaches (DFS, DFC and 

DMS) may address the condition monitoring aspect in a much better way, 

with limited measurement. 
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4. All these models are able to predict structural parameters and identify the 

damages with great accuracy even with minor measurement noise in case of 

numerical examples. 

5. The Experimental validation of the same problem considered in case of 

static models (Example II) by the dynamic model DFS shows further 

improvement on the accuracy of the identification with the error in tune of 

1.5%.The error is further reduced (< 1.0% ) in case of dynamic response 

used  obtained numerically. 

6. Dynamic models based on derivatives of the modal data e.g., DFC and DMS 

are able to identify the damage from limited noisy data with greater accuracy 

even at a very low damage level.  

7. The proposed model DFS and DMS are able to predict damage and may be 

feasible for practical problem as it is able to identify the structural 

parameters with first few modal data measured at selected degrees of 

freedom experimentally obtained. The identification of the axial rigidity 

seems to be further improved by the DMS model incorporating Modal strain 

energy concept as compared to DFS model. The error seem to  be < 1% and 

4.4% in case of two storey portal frame example by using numerical and 

experimental data respectively. 

8. However, much greater error is obtained in case of axial rigidities of the 

beam (Example II) & bending rigidity in case of portal frame (Example VI), 

which may be attributed to the constraints of selection of measured degree of 

freedom. These errors can be reduced to a minimum by using tri-axial 

accelerometer or by putting additional accelerometer in the orthogonal 

direction, in addition to the direction considered. 

9. It is noted that the accuracy of the predicted parameters increases with the 

increase of the number of measured modes and decreases with the increase 

of noise level in all the models developed. 
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Chapter 6 
 

10. The condition of all the elements may be monitored continuously if the 

measured data are available in a  continuos manner in case of practical 

application. 

11. The experimental study even with simple structures validates the proposed 

numerical models and demonstrate the potential of the proposed numerical 

models for their practical implementation. 

12. The encouraging results of the structural parameter identification by 

sequential improvement of the models andd subsequent validation by the 

experimental data may address the problem of condition monitoring for 

simple real life structures. 

 
6.2 Future scope of study 
 
The broad objective of the present investigation lies in applying the inverse static and 

dynamic approaches for condition monitoring of structures. In the present scope of 

work two-dimensional   beam, frame or truss structures are considered within the 

linear domain. Several other important aspects may be considered for future studies, 

which are as follows: 

i. Experimental validation of the model in case of large complex structure 

ii. Consideration of non-linearity in the formulation of structural behavior. 

iii. Consideration of damping parameters in the model formulation 

iv. Development of statistical based damage identification algorithm considering 

all the uncertainties. 

v. Effect  of selection of sensor location and performance of the models 

vi. Application and subsequent modification of the proposed model in case of real 

life structure  
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