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1. VARIABLES IN MATRIX FORM 
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[KT] Tangent stiffness matrix  
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respectively. 
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T

u
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ABSTRACT 

The aesthetically appealing shell roofs have gained wide popularity in civil engineering 

applications due to their ability to cover large column free unsupported areas with lesser 

thicknesses compared to those required for plates. In several civil engineering projects, apart 

from regular shell geometries (cylindrical and spherical), complicated shell forms like elliptic 

paraboloids, skewed hypars and conoids have been preferred by the practicing engineers. In 

recent years, the laminated composite shell structures have achieved immense popularity in 

aerospace, offshore, mechanical and especially in civil engineering applications. Due to their 

superior mechanical properties such as high strength to weight ratio and high stiffness to weight 

ratio, excellent corrosion and thermal resistances, ease of fabrication, these shell structures have 

drawn special attention from the practicing engineers. It is observed from the detailed review of 

literature that the first ply failure strengths of industrially preferred and aesthetically appealing 

doubly curved synclastic spherical and doubly ruled anticlastic skewed hypar shell forms have 

not been studied in depth by the researchers. Thus, it is felt that failure characteristics of these 

forms with different laminations need to be studied in details to apply them efficiently as 

roofing units and to popularize their use further in the industry. 

In the present work, the finite element method is employed to study the first ply failure 

behaviour of laminated composite shell roofs considering geometrically linear and nonlinear 

strains. An eight noded curved quadratic Serendipity element having five degrees of freedom at 

each node is used to model the shell surface. The nonlinear static equilibrium equation is 

satisfied through the Newton – Raphson iteration process. Different well-established failure 

criteria like maximum stress, maximum strain, Hoffman, Tsai-Hill, Tsai- Wu, Hashin and Puck 

failure criteria are used to obtain the linear and nonlinear first ply failure load values. 

The finite element code developed for assessing the first ply failure load is validated 

through solutions of benchmark problems before applying it to generate new results. 
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Furthermore, a set of author’s own problems are taken up with different parametric variations to 

arrive at some meaningful conclusions regarding the first ply failure behaviour of laminated 

composite spherical and skewed hypar shell roofs. Apart from failure criteria governed by 

strength, the author also studies the failure characteristics of composite shells employing the 

serviceability criterion of deflection. Failure modes or tendencies, failed plies and failure zones 

are furnished in different chapters of this thesis. The results obtained are analyzed and post-

processed from different engineering standpoints to extract meaningful conclusions regarding 

failure behaviour of the composite shells and to arrive at important design guidelines which are 

expected to be beneficial for practicing engineers. 

The literature review, mathematical formulation, details of investigations are presented 

systematically as different chapters in the thesis. Scope of future research work are also 

included in the end of this thesis.  
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ORGANISATION OF THE THESIS 

The thesis is divided into nine chapters and one appendix. Chapter 1 contains the general 

introduction and some of the salient features of the present investigation. In Chapter 2, the 

review of the existing literature is reported meticulously. The available literature is thoroughly 

analyzed and critically discussed to identify the lacunae present therein. Based on the elaborate 

review exercise, the actual scope of the present work is outlined and presented in Chapter 3. 

Having defined the scope, Chapter 4 contains the mathematical formulation employed in the 

present analysis. Results are obtained for some specific benchmark problems solved by earlier 

investigators to establish the validity of the present formulation. A wide spectrum of author’s 

own problems are taken up and solved with different practical parametric variations and are 

discussed in details in Chapters 5 to 8. Chapter 5 deals with first ply failure problems of 

clamped laminated composite spherical shells using geometrically linear strains. Chapter 6 

contains first ply failure problems of clamped skewed hypar shells using geometrically linear 

and nonlinear strains with varying planform and thickness. In Chapter 7 linear and nonlinear 

first ply failure of clamped hypar shells with varying curvature including guidelines to non-

destructive test monitoring are presented systematically. Chapter 8 furnishes the nonlinear first 

ply failure characteristics of simply supported hypar shell roofs. The future scope of research is 

indicated in Chapter 9. The references are presented in the Appendix. 
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Chapter 1 

INTRODUCTION 

 
1.1 GENERAL 

 

An arbitrarily curved structural surface which is capable of resisting superimposed 

loads by combined in-plane thrust and bending of the surface is a shell. Eggs, nuts, animals 

skulls are natural examples of shell units and man came to understand the load carrying 

potentialities of shell surfaces from very early days. Naturally, many manmade constructions 

use the shell surfaces starting from the earliest examples of Chou vases and Greek urns 

followed later by the submarine in 1620, the earliest pressure cooker in 1688 and thin walled 

pressure vessels and pneumatic tyres in the eighteenth and nineteenth centuries. As the course 

of civilization went on flowing, the civil engineers use shells as parts of roof covers, chimneys, 

water tanks, cooling towers etc. getting the idea from very old structures like the Pantheon of 

Rome built in AD 125, the Mosque of Santa Sophia, Istanbul, built in AD 538. 

    The hunt in the search of advanced materials resulted in the introduction of laminated 

composite in the different weight sensitive disciplines of engineering and the civil engineers 

too started using these advanced materials for shell fabrication. The plastic domes at Benghazi 

and at Dubai Airport are earliest examples of composite shells built in the second half of the 

last century. In order to successfully apply these materials in the construction industry the 

characteristics of the composite are to be very clear to the practicing engineers. A look at the 

volume of literature on shells clearly shows that researchers on around the planet are engaged 

in characterization of the laminated composite.  
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1.2 PRESENT PROBLEM – ITS IMPORTANCE IN RESEARCH 

 

The laminated composites have a unique property of getting tailored by different 

prefixed fiber orientation which suits to the different specific requirements in different 

application areas. Despite having very high specific strength and stiffness properties, these 

materials are weak in transverse shear and fabrication defects may lead to failure at service 

which may also happen otherwise due to overloading. In laminated composites the first ply 

failure indicates initiation of failure no doubt but the structural units still retain sufficient 

reserve strength and so the first ply failure phenomenon may remain unnoticed. The failure 

may initiate at the fiber level or at the matrix and different researchers have proposed different 

failure theories which are stress based or strain based or interactive in nature. Failures of 

laminated composite plates have received some attention from researchers but similar studies 

on composite shells, particularly using the nonlinear strains, are very few in the published 

research reports. The linear first ply failure approach is easier to implement and proper choice 

of factor of safety may form a basis of design recommendation while on the other hand an 

analysis using the nonlinear strains is a more appropriate approach and is expected to yield 

improve results. The nonlinear approach requires greater involvement from implementation 

point of view. Most of the research reports that have been published on the analysis of 

composite shells utilize the finite element approach which are now become relatively easier to 

implement with the advent of high speed computers. Keeping the above mention development 

in view, it is felt that failure analysis of civil engineering composite shells is an area that needs 

greater attention and this defines the motivation behind the present research. 
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Chapter 2 

LITERATURE  REVIEW 

 
2.1 GENERAL 

 

Research related to shell structures have a long history and the literature that has 

accumulated in this area are vast. If one closely examines the published papers then it is found 

that the recent focus is on laminated composite shells. The journey that began with static 

analysis of isotropic shell surfaces gradually encompassed free and forced vibration studies 

using closed form solutions and numerical approaches like the finite element method. 

Numerical studies on laminated composite shells are published in different technical journals 

and failure characteristics is one of the areas which is focused on recently. The review of 

literature that is presented in this chapter discusses the historical review of shell research in 

Section 2.2, mentions the latest literature on shells in Section 2.3 and furnishes the papers on 

failure of laminated composites separately in Section 2.4. Section 2.5 discusses critically the 

entire body of literature to bring out the broad scope of research that is yet to be covered.   

 

2.2 HISTORICAL REVIEW OF SHELL RESEARCH 

 

Construction, design and research of shell structures have long history and research 

reports covering various parametric studies are vast. Sechler (1974) in his book presented the 

historical course of shell research and design. In this section the gradual course of shell research 

is presented. For clear understanding of the systematic and chronological development of the 

different aspects of shell research, this section is further divided into distinct parts. 
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2.2.1 Review on Thin Shell Theory 

 

Three dimensional structure, produced by two curved surfaces, thickness being small 

compared to plan dimensions, may be classified as shell. One of the most common ways of 

classifying shell theories is on the basis of thickness of shell. A thin shell is defined as a shell 

with a thickness which is small compared to its other dimensions and its radii of curvatures. A 

number of researchers were interested to analysis the thin shells from the first half of nineteenth 

century. Lame and Clapeyron (1833) analyzed shells of revolution under symmetric loading. 

Aron (1874) was the first to analyze the shell problem using the general theory of elasticity and 

obtained the components of bending and twist in a form that were independent of the tangential 

displacements, which was based on the Kirchhoff’s hypothesis (1876) for plates. However a 

new vista opened when Love (1888) formulated his theory of shells and observed that the 

Kirchhoff’s hypothesis, where normal to the middle surface before deformation was assumed 

to remain normal to the middle surface even after deformation was not strictly correct.  Love 

was the first investigator to present a good approximation of thin shell bending behaviour, 

based on the classical theory of elasticity. 

 

2.2.2 Review on Membrane Theory 

 

The membrane theory proposed by Lame and Clapeyron (1833) neglected all moment 

expressions and the flexural strains were assumed to be zero or negligible compared to the axial 

strains. The general form of equations of this theory was proposed by Beltrami (1881). 
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2.2.3 Review on Membrane and Bending Theory  

  

The membrane theory used by earlier researchers had certain limitations that motivated 

Marguerre (1938), Vlasov (1947) and Reissner (1955) to develop the general theory of shell 

bending. Then onwards, both the membrane and bending theories were found to be applicable 

to analyze different problems depending upon the nature of the shell forms. Besides static 

analysis, vibration characteristics of shallow spherical shells were studied by Reissner (1946, 

1955) and other authors [Johnson and Reissner (1958), Kalnins and Naghdi (1960), Hoppmann 

(1961)] using analytical methods. Nazarov (1949) and Wang (1953) concentrated on the 

bending theories of shells, while Vlasov (1964) continued to work on the membrane theory. 

Flügge and Conrad (1956) proposed more suitable expressions for the set of differential 

equations and improved the bending theory of Marguerre (1938). The membrane theory of 

hyperbolic and elliptic paraboloid was extended by Parme (1956) to obtain the stresses 

expressing the shell surface in Cartesian co-ordinates. With the progress of shell research, 

different theories were proposed by Sanders (1959), Koiter (1960), Naghdi (1963) and 

Goldenveizer (1968). The theories due to Koiter (1960) and Budiansky and Sanders (1963) 

appeared to be more popular because they were consistent with the basic Love-Kirchhoff 

hypotheses. Among the other theories proposed, membrane theories of Fischer (1960), Flügge 

and Geyling (1957), Soare (1966), Ramaswamy and Rao (1961) and bending theories of 

Bongard (1959) and Chetty and Tottenham (1964) are some of the important mile stones. 

Investigations into the bending theory of shells were carried out by Iyengar and Srinivasan 

(1968) employing equations of Bongard (1959) by expressing the displacement functions 

satisfying the boundary conditions and by Ramaswamy (1971) expressing the problem in terms 

of three coupled differential equations. 
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2.2.4 Review on Shallow Shell Theory 

 

The development of shallow shell theory is principally credited to Marguerre (1938), 

Reissner (1946), Donnell (1933) and Vlasov (1964). Vlasov (1964) considered the shell as 

shallow if its rise is not more than one-fifth times of its smallest plan dimension. Munro (1961) 

derived a general heterogeneous equation for the linear analysis of thin shallow second order 

shells of positive, zero or negative Gaussian curvature. The bending analysis of translational 

shells of rectangular planforms and hypars was reported by Apeland and Popov (1961). Russel 

and Gerstle (1967, 1968) further extended the theoretical and experimental investigations of 

Brebbia (1966) related to umbrella-like hyperbolic paraboloid shells. Forced vibrations of 

axisymmetric shallow spherical shells were reported by Reisman and Culowski (1968). The 

performance of hypars in elastic and ultimate ranges was studied experimentally by 

Bandyopadhyay and Ray (1971, 1972). The buckling criterion of different shell forms was 

studied by Abel and Billington (1972), while Gergely (1972) used the energy principle to 

estimate the buckling load. Vibration and stability of laminated composite cylindrical and other 

shallow shell forms were reported by Dong (1968) and Dulaska (1969). Dynamic 

characteristics of doubly curved shells with triangular finite elements were studied by Olson 

and Lindberg (1968), while Brebbia and Hadid (1971) solved conoidal shell problems using 

rectangular finite element.  Leissa and his colleagues [Leissa et al. (1981, 1983), Narita and 

Leissa (1984) and Qatu and Leissa (1991a)] employed the Ritz method to determine the free 

vibration characteristics of shallow shells. Natural frequencies and mode shapes were presented 

for saddle, cylindrical and spherical shells of rectangular planform with different parametric 

variations. Vibrations of simply supported shells of elliptic planform were reported by Coleby 

and Majumdar (1982).  Xiang-Sheng (1985) studied forced vibrations of elastic shallow shells 

under moving loads. Ghosh and Bandyopadhyay (1989) worked on bending analysis of 
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isotropic conoidal shells while Qatu (1989) investigated bending and free vibrations of 

laminated shallow shells and Chao and Tung (1989) studied response of clamped orthotropic 

hemispherical shells subjected to step pressure and blast loads. Chandrashekhara (1989) used 

a nine noded isoparametric finite element for free vibration analysis of composite cylindrical 

and spherical shells by extending Sanders’ theory.  

 

2.2.5 Review on Laminated Composite Shells 

 

While the theory on shell structures was being simplified and improved from time to 

time by many researchers, another group of investigators started developing exotic materials 

with high strength and stiffness properties. As a result, laminated composites were introduced 

in engineering application from the second half of the last century. The popularity of composite 

laminates is mainly attributed to their high stiffness/strength to weight ratio, superior fatigue 

resistance, lesser susceptibility to be damaged by weathering actions and, most significantly, 

the flexibility to tailor its stiffness and strength properties by varying fiber orientations and 

lamina stacking sequences. This resulted in the use of laminated composite materials to 

fabricate shell forms. As a result, bending analysis of laminated composite shells emerged as a 

new field of research. Hildebrand et al. (1949) first applied shell equations to an anisotropic 

material. The first analysis that combined bending-stretching coupling was due to 

Ambartsumyan (1953). He looked into the behaviour of laminated orthotropic shells rather than 

laminated anisotropic shells. Subsequently, Dong et al. (1962) introduced a theory of thin shells 

laminated with anisotropic material and Stavsky (1963) also proposed this theory for plates of 

anisotropic material. A discussion on orthotropic shell theory was reported by Vlasov (1964). 

Widera and his colleagues (1970, 1980) derived a first-approximation theory for the 

unsymmetrical deformation of non-homogeneous, anisotropic, elastic cylindrical shells by 
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integrating the elastic equations asymptotically. For a homogeneous, isotropic material the 

theory reduced to that due to Donnell. Gulati and Essenberg (1967) and Zukas and Vinson 

(1971) incorporated the transverse shear deformation effects in composites. Whitney and Sun 

(1973, 1974) introduced a shear deformation theory which includes both transverse shear 

deformation and transverse normal strain together with the expansional strains.  

A number of researchers like Reddy and Chao (1981), Bert and Reddy (1982), Bert and 

Kumar (1982) and Reddy (1984) reported closed form solutions for laminated composite shells. 

Bert and Reddy (1982) and Bert and Kumar (1982) worked on simply supported cylindrical 

and spherical shells subjected to sinusoidal distribution of transverse load while Reddy (1984) 

reported exact bending and vibration solutions for moderately thick laminated composite 

cylindrical and spherical shells. The author extended Sanders’ shell theory and showed, unlike 

plates, antisymmetric angle ply laminates with simply supported boundaries do not admit exact 

solutions. Reddy (1984) and Vinson and Sierakowski (1986) first worked on anisotropic 

laminated composite shell structures including transverse shear deformation theories. Noor and 

Burton (1989, 1990), Kapania and Raciti (1989a, 1989b) and Kapania (1989) reported 

comprehensive review articles pertaining to composite laminated plates and shells. 

Vibration characteristics of thick cylindrical shallow shells of rectangular planform for 

various boundary conditions and shell geometries were analyzed using higher order shear 

deformation theory in the article of Lim et al. (1995). A simple higher order shear deformation 

theory of laminated composite shells was developed by Xiao-ping (1996). Using Love’s first 

order geometric approximation and Donnell’s simplification, the governing equations of 

shallow shells were established by him. A vibration and damping analysis based on individual 

layer deformation was presented by Khatri and Asnani (1996) for axisymmetric vibrations of 

laminated composite and fiber reinforced composite conical shells. In their study the shell 

forms which were discussed were mostly of non-civil engineering applications. Free vibration 
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analysis of laminated anisotropic shallow shells based on first order transverse shear 

deformation theory was done by Wang and Schweizerhof (1997). They used boundary domain 

element method. The effects of both in-plane and rotary inertia on the natural frequencies were 

included. Gendy et al. (1997) examined the effect of large spatial rotations on the geometric 

stiffness for stability analysis and inertia operators for vibration of laminated plates and shells, 

in conjunction with the recently developed mixed finite element formulation with lower order 

displacement/strain interpolation.  At the same time Aksu (1997) introduced a finite element 

formulation for the free, undamped vibration analysis of a shell of general shape with a curved 

isoparametric trapezoidal element, including thickness shear deformations and without 

neglecting z/R in comparison with unity. He considered the rotary inertia effects in consistent 

mass matrix. The shell element with eight nodes and forty degrees of freedom is applicable for 

both thin and moderately thick shell. Large amplitude free vibration behaviour of doubly 

curved shallow open shells with simply supported edges was presented by Shin (1997). The 

free vibration characteristics of isotropic and laminated orthotropic spherical caps were 

carefully examined by Gautham and Ganesan (1997). At the same time Sivasubramonian et al. 

(1997) reported free vibration of curved panels with cutouts and the free vibration of thin 

shallow shells with slits on rectangular planform was studied by Crossland and Dickinsion 

(1997). Chakravorty et al. (1995a, 1995b, 1996) studied free vibration of laminated composite 

conoidal, hyperbolic paraboloid and elliptic paraboloidal shells for varying boundary 

conditions, aspect ratios, thicknesses and lamination values. 

 

2.2.6 Review on Different Methods of Shell Analysis Including Finite Element Method 

 

To solve shell problems, different solution techniques including variational methods 

like Ritz, Collocation, subdomain (Biezeno-Koch), least squares, Galerkin, Kantorovich, 
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Trefftz method and finite element methods were proposed by shell researchers. The area of 

shell research received a new dimension when Greene et al. (1961) suggested the use of finite 

element method utilizing the flat elements. These elements were found to be good for a limited 

class of problems, but when the membrane-flexural stiffnesses were strongly coupled, the 

element failed completely. Singly curved element was first developed by Grafton and Strome 

(1963). Since then the finite element method also acquired a prominent position as an efficient 

analytical tool in the area of shell research. 

The finite element method, due to its ability to cater to any arbitrary geometry, loading 

and boundary conditions started being used for the analysis of laminated composite shells. 

Earlier works in this aspect were due to Lakshminarayana and Viswanath (1976) and Rao 

(1978) who developed a high precision triangular cylindrical and a rectangular shallow finite 

element respectively. Since then the finite element method began to be used widely and 

improved elements started being developed and used from time to time. It is interesting to note 

that researchers concentrated on parallel developments of refined theories as well as better 

finite elements. Greene et al. (1968) used a doubly curved finite element for the dynamic 

analysis of shells. A four noded rectangular shallow shell element having three radii of 

curvature and five degrees of freedom per node was used by Connor and Brebbia (1967).  The 

concept of isoparametric curved elements, where the displacement and co-ordinates are 

interpolated from the nodal values by the same set of shape functions, was first introduced by 

Ergatoudis et al. (1968) and applications of finite elements to the analysis of plates and shells 

were reported by Gallagher (1969). Ahmad et al. (1970) introduced the concept of treating shell 

element as a special case of three-dimensional analysis. Dhatt (1970) solved thin shell problems 

with curved triangular element using discrete Kirchhoff’s hypothesis and translational shells 

were analyzed by Choi and Schnobrich (1970) using the finite element method. Reddy (1981) 
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gave an elaborate presentation of the evolution of different elements used in shell analysis 

dealing with the finite element modeling of composite plates and shells.    

Simultaneous works were continued applying different analysis methods. Qatu and 

Leissa (1991a) obtained natural frequencies of cantilevered doubly curved laminated 

composite shells using Ritz method. The effects of various parameters including material, 

number of layers, fiber orientation and curvature on natural frequencies were studied. They 

also studied the vibrations of twisted composite cantilever plates having the radius of cross 

curvature [Qatu and Leissa (1991b)]. Here studies of first six mode shapes, each for seven fiber 

orientation angles and four angles of twist showed that all the mode shapes were symmetric or 

anti-symmetric about the x-axis (axis perpendicular to the clamped edge) at fiber orientation 

angle 0o and 90o. For other angles of fiber orientations the symmetry or anti-symmetry of the 

mode shapes was lost due to coupling between the modes. The work further showed that 

maximum fundamental frequencies were observed when the fibers were perpendicular to the 

clamped edge. The work acted as a strong foundation for further studies of mode shapes. Tsai 

and Palazotto (1991) reported the nonlinear free and forced vibrations of isotropic and 

composite shells using a curved quadrilateral finite element. Chia and Chia (1992) solved 

problems of nonlinear vibration of moderately thick composite spherical shells by the method 

of harmonic balance. Dey et al. (1994) investigated the bending analysis of laminated 

composite elliptic paraboloid and conoid. Sheinman and Reichman (1992) studied the buckling 

and vibration characteristics of shallow composite shell panels by employing Ritz method. 

Touratier (1992) developed a refined theory of composite shallow shells in which a simple 

shear deformation theory considered cosine distribution of transverse shear strains and 

tangential stress free boundaries. Bending and vibration of some isotropic and composite shells 

were studied. An excellent review work was done by Qatu (1992) discussing the developments 

of shallow shell vibration research. Hwang and Foster (1992) presented free vibration results 
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of axisymmetric shallow spherical shell with a circular hole. Both analytical and finite element 

solutions were obtained and mutually compared. A finite strip analysis of diaphragm supported 

composite shells was conducted by Mohd and Dawe (1993). Vibrations of isotropic shallow 

shells with two adjacent edges clamped and others free were investigated by Qatu and Leissa 

(1993), using Ritz method. Bhaskar and Varadan (1993) studied about inter-laminar stresses in 

composite shells under transient loading using Navier approach together with Laplace 

transform technique, while Ritz minimization procedure was used by Liew and Lim (1994) to 

analyze vibrations of perforated isotropic shallow shells. Kant et al. (1994) investigated shell 

dynamics with three dimensional degenerated finite elements. Cylindrical and spherical cap 

problems were solved. Sathyamoorthy (1994) reported vibrations of moderately thick spherical 

shells with large amplitudes using Galerkin method. Behaviour of spherical shells subjected to 

periodic load using a shear flexible element was investigated by Ganapathi et al. (1994). 

Different aspects of laminated composite shell behaviour were taken up by several 

investigators. Jing et al. (1995) studied bending behaviour while Ye and Soldatos (1995) 

investigated buckling characteristics. Mizusawa and Kito (1995), Sathyamoorthy (1995), 

Piskunov et al. (1994) and Tessler et al. (1995) put their emphasis on vibrations of laminated 

composite shells. Ye and Han (1995) used semi-analytical method to investigate a nonlinear 

bending and buckling behaviour of polar orthotropic shells of revolution. Noor and Burton 

(1989, 1990) and Burton and Noor (1995) presented excellent review work where they focused 

on the assessment of computational model used by different authors to analyze multilayered 

composite plates and shells and sandwich panels. The aspect of shear deformation was 

specially highlighted in one of their papers. The Ritz method with algebraic polynomials was 

used by Qatu (1996) and he obtained the natural frequencies of cantilevered shallow shells 

having triangular and trapezoidal planforms. Free vibrations of laminated composite, 

noncircular thick cylindrical shells by exact solution were analyzed by Suzuki, Shikanai and 
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Leissa (1996). Schokker et al. (1996) concentrated on dynamic buckling behaviour of 

composite shells. 

 

2.3 LITERATURES ON LATEST SHELL RESEARCH 

 

For last few years in the field of shell research, we see applications of different shell 

theories, different analytical methods applicable to different types of shell structures. 

Researchers like Chun and Lam (1998), Tan (1998), Korjakin et al. (1998), Lim et al. (1998), 

Laura et al. (1999), Sivakumar et al. (1999), Sivasubramonian et al. (1999), Reddy and 

Palaninathan (1999), Hu and Tsai (1999a), Yadav and Verma (2001), Anlas and Goker (2001), 

Korjakin et al. (2001), Lee and Han (2001) investigated different dynamic aspects of isotropic 

and composite plates and shells. Free and forced vibration analyses of laminated singly curved 

and doubly curved shells with concentric and eccentric cutouts were analyzed by Chakravorty 

et al. (1998). Free vibration problems of corner supported, simply supported and clamped 

cylindrical, saddle, hyperbolic paraboloid bounded by straight edges (commonly called skewed 

hypar), conoidal and spherical shells were carried out with the effects of concentric and 

eccentric cutouts. Forced vibration problems are solved for three different load time histories 

for corner supported hypar and conoidal shells. 

Kistler and Waas (1999) used static response characteristics as a tool for understanding 

transverse impact response of thin fiber reinforced composite cylindrical panels. The effect of 

impact velocity, panel curvature, thickness, both in-plane and out of plane boundary conditions 

and the validity of linear and nonlinear plate theory on the resulting impact force and panel 

displacement were investigated. Qatu (1999) derived accurate equations of elastic deformation 

for laminated composite deep, thick shells. The equations included shells with a pretwist and 

accurate force and moment resultants were derived, which were considerably different than 
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those used for plates. Günay (1999) worked on geometrically nonlinear static stiffened 

cylindrical shallow shell problems. 

 Toorani and Lakis (2000) worked on generalization of geometrically linear shear 

deformation theory for multilayered anisotropic plates and shells including transverse shear 

deformations, rotary inertia and initial curvature effects. These equations were applied to 

different geometries, such as revolution cylindrical, spherical and conoidal shells and as well 

as to rectangular and circular plates. Chang and Chang (2000) carried out geometrically 

nonlinear vibration analysis of shell structures adopting Green’s strains. Newton – Raphson 

method and Newmark’s method were adopted to solve the problems. Nonlinear free vibration 

characteristics of first and second vibration modes of laminated shallow shells with rigidly 

clamped edges were examined by Abe et al. (2000). Nonlinear equations of motion for the 

shells based on the first order shear deformation and classical shell theories were derived by 

means of Hamilton’s principle. The study of tapered laminated composite, formed by dropping 

of some of the plies was done by He, Hoa and Ganesan (2000). An excellent survey of recent 

shell finite elements was done by Yang et al. (2000).  

Zhang (2001) analyzed a clamped composite cylindrical shell for free vibration using 

wave propagation approach. The first eight frequencies obtained by wave propagation 

approach were compared with that obtained through finite element method and the results were 

in good agreement. A geometrically nonlinear bending analysis for functionally graded plates 

and shallow shells was carried out by Woo and Meguid (2001). The nonlinear transverse 

deflections, stresses and bending moments of thin plates and spherical shells were reported by 

the authors. 

Ram and Babu (2002) studied fundamental frequencies of laminated composite 

spherical shell cap with and without cutout. The authors adopted higher order shear 

deformation theory and isoparametric finite element formulation to report frequencies for 
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simply supported and clamped shells of varying thickness. Application of linear shallow shell 

theory to frequency response of thin cylindrical panels with arbitrary lamination was done in 

the paper of Kabir (2002). An exhaustive review of the research advances in the dynamic 

behaviour of laminated shells during the years 1989-2000 was presented by Qatu (2002a, 

2002b). Turkmen (2002) in his paper presented the results from a theoretical and experimental 

investigation of the dynamic response of cylindrically curved laminated composite shells 

subjected to normal blast loading. The dynamic equations of motion for cylindrical laminated 

shells were derived using the assumptions of Love’s theory of thin shells. Ganapathi et al. 

(2002) did the dynamic analysis of laminated cross ply noncircular thick cylindrical shells 

subjected to thermal and mechanical loadings based on higher order theory. Ganapathi et al. 

(2003) continued research work on free and forced vibration subjected to the same type of 

transient loadings but with a different type of shell. The analysis, here, was concerned with the 

free vibration characteristics and transient dynamic responses of simply supported oval 

crossply cylindrical shells. The finite element technique for studying the dynamic behaviour of 

laminated noncircular thin and moderately thick elliptic cylindrical shells was also used by 

Ganapathi et al. (2004). The shells were supported with simply supported boundary condition 

and the analysis was based on first order shear deformation theory. Nayak and Bandyopadhyay 

(2002) studied free vibration of laminated composite clamped stiffened conoidal shells using 

eight noded doubly curved finite elements. The authors (2005) later used nine noded elements 

to report fundamental frequencies and mode shapes of simply supported stiffened shells. The 

nine noded elements showed better accuracy than the eight noded elements, and thus they 

(2006) used the nine noded ones to work on forced vibration of isotropic stiffened conoids.  

A review on geometrically nonlinear vibrations and dynamics of circular cylindrical 

shells and panels, with and without fluid-structure interaction was reported by Amabili and 

Païdoussis (2003). Djoudi and Bahai (2003) studied nonlinear displacements and natural 
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frequencies of shallow cylindrical shells. An advanced geometrically nonlinear shell theory for 

doubly curved shell panels with transversely compressible core was reported by Hohe and 

Librescu (2003). The proposed formulation was based on Kirchhoff’s hypothesis for face 

sheets and higher order power series for the core displacements. The model was developed by 

using von – Kármán nonlinearity and was capable to account for dynamic effects and initial 

geometric imperfections. According to Sze et al. (2004), most of the geometrically nonlinear 

finite element shell problems reported load – deflection curves in figure format until 2004. The 

authors realized that while solving benchmark problems, reconstructing those data points from 

a graphical measurement was a tedious and difficult job. Thus, they solved cantilever beam, 

isotropic and laminated plate, full cylindrical shell and cylindrical shell panel problems using 

Newton – Raphson method and furnished the results in tabular and graphical forms. Reddy 

(2004) explained the shear locking phenomenon. It generally occurs in thin plate and shell 

finite elements formulated using elements degenerated from three dimensional formulation and 

first order shear deformation theory. Since, the transverse displacement and rotation were 

treated as independent degrees of freedom in first order shear deformation theory, the 

transverse shear does not vanish when the element is subjected to pure bending. Consequently, 

in case of thin plates and shells, strain energy due to bending became negligibly small compared 

to the shear strain energy and the structure appeared to be infinitely rigid showing very small 

displacement values. Zienkiewicz et al. (1971) introduced selective or reduced integration as a 

remedy to this numerical problem for those elements formulated based on first order shear 

deformation theory. The transverse shear deformation was better represented using the non-

exact i.e. reduced numerical integration technique since, many incorrect shear terms present in 

the element formulation are not integrated [Parisch (1979)]. 

Sahoo and Chakravorty (2004) investigated the static bending characteristics i.e. 

transverse displacement, in-plane tensile and bending stress resultants of laminated composite 
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skewed hypar shells. Numerical results were obtained for uniformly loaded laminated 

composite hypar shells with six practical boundary conditions, where the edges were differently 

restrained. Eight different types of lamination including single layered and multilayered, cross 

ply and angle ply, symmetric and anti-symmetric stacking orders were chosen. Sahoo and 

Chakravorty (2005, 2006a) continued the research on composite skewed hypar shell roofs with 

and without stiffeners for its free vibration characteristics i.e. fundamental frequency and mode 

shapes. A detailed study on dynamic stiffness of hypar shells were studied with various 

practical combinations of support constraints and laminations. The bending behaviour of 

laminated composite stiffened hypar shell was also studied by the authors (2006b, 2008a) using 

geometric linear strain terms. 

Liew et al. (2006) studied stability analysis of composite laminated cylindrical shells. 

Kandasamy and Singh (2006) presented a numerical study for the free vibration of skewed 

open circular cylindrical deep shells using first order shear deformation theory of shells. This 

formulation includes rotary inertia and shear deformation so that thin to moderately thick shells 

can be analyzed. The Vlasov-Reddy higher order shear deformation theory of laminated 

orthotropic elastic shells was implemented by Ferreira et al. (2006) through a multi-quadrics 

discretization of governing equations and boundary conditions. Forced vibration response 

study for composite cylindrical and spherical shells were carried out by Lee et al. (2006). Both 

the thin and thick shells were considered in the analysis. The central displacement of shells 

subjected to uniformly distributed load was reported for varying radius, boundary condition 

and thickness values. The finite element formulation was developed using higher order shear 

deformation theory and Sanders’ nonlinear shell kinematics. The authors solved the time 

dependent governing equation combining Newmark’s direct time integration method and 

Newton – Raphson method.  
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Civalek (2007) presented a numerical study on the free vibration analysis of laminated 

conical and cylindrical shell using Love’s first approximation thin shell theory and discrete 

singular convolution (DSC) method. Free vibration analysis of laminated cylindrical shells 

with clamped-clamped, clamped-simply supported, clamped-free and simply supported-simply 

supported boundary conditions by using Fourier series expansion method were carried out by 

Shao and Ma (2007).  Das and Chakravorty (2007) reported a research paper on static bending 

characteristics of laminated conoidal shell using linear finite element method. The boundary 

condition for the conoidal shell consist of different combinations of clamped, simply supported 

and free edges which was not reported in any of the earlier research papers. Sahoo and 

Chakravorty (2007) reported static bending behaviour of composite hypar shells under the 

action of uniformly distributed load with three different arrangements of point supports. Both 

the static displacement and in-plane force and moment resultants were studied in the research 

paper. This report was based on geometrically linear finite element formulation. Nanda and 

Bandyopadhyay (2007, 2008) used the von-Kármán type geometric nonlinearity along with the 

first order shear deformation theory to study the nonlinear to linear fundamental frequency 

values of cylindrical panels with cutouts and backbone curves of spherical panels with cutouts 

considering simply supported boundary conditions. This approach was extended by the authors 

(2009) to study the geometrically nonlinear transient responses of laminated composite 

cylindrical, spherical and hyperbolic paraboloid shells with and without square cutouts and 

initial geometric imperfection. Kundu and Sinha (2007) reported geometrically nonlinear 

behaviour of laminated composite doubly curved shells and used arc-length method to solve 

the governing equation. Rougui et al. (2007) studied free and forced vibrations of simply 

supported circular cylindrical shells using Donnell’s nonlinear shell theory and transverse 

deformations. Arciniega and Reddy (2007) worked on tensor based geometrically nonlinear 
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finite element formulation considering transverse stretching, thus, establishing a three 

dimensional constitutive relationship. 

Shaoo and Chakravorty (2008b) continue their research work on point supported 

composite hypar shell roofs with its free vibration characteristics i.e. fundamental frequency 

and mode shapes. A detailed study on dynamic stiffness of hypar shells is studied with various 

practical combinations of laminations. Das and Chakravorty (2008) again reported about the 

vibration aspects and mode shapes of laminated conoidal shells with the same boundary 

conditions as in their previous paper reported in this section. In both the papers the authors 

carried out a detailed research work on the shell stiffness by varying the lamination angles and 

stacking sequences along with the boundary conditions. Free and forced vibration study of a 

clamped isotropic cylindrical shallow shell considering first order shear deformation theory 

was carried out by Ribeiro (2008). The author studied natural frequencies of cylindrical shell 

of various thicknesses and mode shapes were also plotted. Poore et al. (2008) reported the 

natural frequencies and mode shapes of laminated cylindrical shells containing a circular cutout 

and also investigated the effects of varying cutout size, shell radius and laminate layup as well 

as the effects of two types of boundary conditions on the shell vibration response. Pradyumna 

and Bandyopadhyay (2008) analyzed static bending behaviour of hypar shells using higher 

order shear deformation theory with simply supported and clamped boundary condition. The 

shell structure was subjected to uniform and sinusoidal loading. Free vibration analysis of 

hyperbolic paraboloid, hypar and conoidal shell was carried out with simply supported, corner 

supported and clamped boundary conditions. Fundamental frequencies were studied with 

various lamination schemes. A nonlinear zig – zag theory for highly shear deformable 

laminated anisotropic shells were reported by Chaudhuri (2008). The nonlinear finite element 

formulation was established using virtual work principle and total Lagrangian approach. The 

author considered the shells as transversely inextensible and fully nonlinear strain – 
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displacement relationship was applied for the remaining five degrees of freedom. Han et al. 

(2008) worked on geometrically nonlinear analysis of laminated composite thin shells using a 

modified first order shear deformation theory and nine noded Lagrangian elements. 

A free vibration analysis of a simply supported shallow cylindrical shell was performed 

by Dogan and Arslan (2009). Authors used Hamilton’s principle to obtain the governing 

differential equations for a general curved shell. The authors used two different theories to 

perform the analysis and in first of them the shear deformation is not considered and in the 

second theory it was considered. The values of the fundamental frequencies using these 

theories which were obtained by varying the elasticity ratio, thickness to width ratio and width 

to radius ratio were compared with the results obtained through finite element method. 

Kishimoto et al. (2009) studied forced vibration response of isotropic conical shell with simply 

supported boundary condition at the opposite edges. Hamilton’s principle with the Rayleigh–

Ritz method was employed to derive the equation of motion of the conical shell. Dynamic 

displacement in two tangential directions and in transverse direction was studied under the 

action of unit amplitude sinusoidal time dependent load. The dynamic displacement in three 

orthogonal directions was plotted with the loading frequency and some peaks values of 

displacement were observed in frequency – response curve. They were identified as resonant 

responses of the conical shell under the external dynamic loads. Das and Chakravorty (2009) 

solved free vibration problems of full conoidal shells using a finite element code which was 

developed using an eight noded curved quadratic isoparametric element. Numerical problems 

were solved for six different practical boundary conditions and for eight laminations of 

graphite-epoxy conoidal shells on square planform to study the performances of different shell 

options in terms of fundamental frequencies. Effects of number of boundary constraints and 

arrangement of boundary conditions along the four edges on fundamental frequencies were 

studied meticulously and also performances of symmetric and anti-symmetric laminations were 
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examined in details. Study of comparative performance of cross and angle ply laminations was 

also made. Zhao and Liew (2009) studied geometrically nonlinear behaviour of isotropic and 

functionally graded cylindrical shells. Sanders’ nonlinear strain theory and arc-length method 

was adopted by the authors to report displacements and stresses of shells subjected to 

concentrated load at the center.  

Das and Chakravorty (2010) again put their contribution to the research work on 

laminated shells by this paper. In this paper the authors studied bending behaviour of composite 

conoidal shells with three different combinations point supported boundary conditions and four 

different laminations. Relative performance of different shell options were studied in details. 

Suitable approaches were proposed to choose the best shell option among many in a practical 

situation. A new nonlinear theory was reported by Amabili and Reddy (2010) for doubly curved 

closed and open shells. The proposed theory was derived considering shear deformation and 

fully nonlinear strain – displacement relations for in-plane and transverse degree of freedom. 

The authors studied large amplitude forced vibration of deep and moderately thick laminated 

composite circular cylindrical shells with initial geometric imperfections and the proposed 

theory yielded superior results than the existing nonlinear theories. 

Kumari and Chakravorty (2010, 2011) worked on damaged conoidal shells and reported 

static deflections and deflection profiles of delaminated graphite-epoxy shells. Neogi et al. 

(2011) studied impact response of simply supported skewed hypar shell roofs using 

geometrically linear finite element method. Nanda and Pradyumna (2011) worked on free and 

forced vibrations of laminated composite cylindrical and spherical shells with imperfections 

subjected to hygrothermal environments. Eight noded Serendipity elements, first order shear 

deformation theory, von – Kármán kinematics and modified Newton – Raphson method were 

adopted by the authors to solve vibration problems of shells. The free vibration response was 

solved using direct integration method for the eigenvalue problem and the forced vibration 
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response was solved using Newmark’s average acceleration method. The authors (2013) later 

studied transient responses of functionally graded cylindrical, spherical and hyperbolic 

paraboloid shell panels. Amabili (2011) compared the Amabili – Reddy theory with von – 

Kármán nonlinear theory by studying forced vibration of simply supported thick circular 

cylindrical shells and the proposed theory established its superiority. The accuracy of the 

proposed formulation was established for deep and thick cylindrical panels also by Alijani and 

Amabili (2013). Amabili (2013) later refined the Amabili – Reddy theory by adding a uniform 

normal transverse strain in the thickness direction and the effects of geometric imperfections. 

A full three dimensional model of the laminated shell was possible to derive using shell theory 

considering transverse stress and strain. As a result, the refined theory proved to be efficient 

than the Amabili – Reddy theory in predicting natural frequencies and large amplitude forced 

responses of laminated composite circular cylinders. The theory was again modified by 

Amabili (2014) by adding a third order transverse normal strain. Alijani and Amabili (2014) 

reported a detailed review on nonlinear vibrations of shell structures. 

The nonlinear vibration modes of simply supported cylindrical shells were reported by 

Avramov (2012) applying Donnell’s shell theory and Galerkin method. The author also worked 

on stability analysis of periodic motions. Bich and Nguyen (2012) studied nonlinear vibration 

of simply supported and functionally graded cylindrical shells. Governing equations were 

derived using improved Donnell’s shell theory and kinematic nonlinearity. The Galerkin 

method, the Volmir’s assumption and fourth order Runge – Kutta method were used as solution 

algorithms. Natural frequencies and dynamic displacements of axially and transversely loaded 

shells were studied by the authors. An extension of Kármán – Donnell’s theory for non-

shallow, long cylindrical shells undergoing large deflection was studied by Xue et al. (2013). 

The governing equation was derived by considering the influence of initial curvature of the 

shell and the authors indicated that ignoring that influence overestimated the buckling pressure 
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conspicuously. The static responses including the deflections and stresses of laminated 

composite skew shells considering different geometry, boundary conditions, ply orientation, 

loadings and skew angles were reported by Kumar et al. (2013). Shell forms considered in this 

study include spherical, conical, cylindrical and hypar shells. 

The von – Kármán nonlinear theory and total Lagrangian approach were combined with 

first order shear deformation theory to study displacements of simply supported and clamped 

square and circular laminated composite plates and also clamped and hinged composite 

cylindrical shells by Van et al. (2014). Ahmed and Sluys (2014) worked on geometrically 

nonlinear dynamic responses of thick and thin, isotropic and anisotropic plates and cylindrical 

shells using solid-like shell elements. By using the eight noded solid elements, the authors were 

able to conduct a three dimensional dynamic analysis of the laminated composites. Shear 

locking of these elements were avoided by using the Assumed Natural Strain (ANS) method. 

 

2.4 REVIEW ON FAILURE OF COMPOSITE LAMINATES 

 

Failure of a composite laminates or laminated composite is progressive in nature which 

initiates with failure of the weakest ply in the laminate. The initiation of failure is termed as 

first ply failure. After failure of the weakest ply, redistribution of stresses takes place and 

remaining laminae continue to carry the load until the total laminate fails. The maximum stress 

and maximum strain theories applicable to metals are also useful to predict failure of the fiber 

reinforced composites. These theories also indicate failure modes of the composites which are 

frequently observed in practice, and hence, maximum stress and strain criterion are physically 

realistic. A laminated composite may be subjected to biaxial stress state in its service life. It 

may happen that none of the stresses exceed their respective permissible values individually, 

but their combination indicates failure. The interactive type failure theories were reported by       
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Hill (1948), Azzi and Tsai (1965), Hoffman (1967) and Tsai and Wu (1971). Hill (1948) 

suggested anisotropic generalization of the von-Mises criterion for the shear yield behaviour 

of anisotropic ductile metals. Azzi and Tsai (1965) modified Hill’s theory to the fracture of an 

orthotropic lamina and proposed the Tsai-Hill failure theory. Hoffman (1967) proposed a 

fracture criterion to predict brittle strength of orthotropic materials. The proposed criterion was 

based on Mises-Schleicher isotropic yield condition and Hill’s orthotropic yield condition 

(1948). Tsai and Wu (1971) proposed a tensor polynomial type interactive strength criterion, 

which was an improvement over earlier proposed theories in predicting combined stress-space 

i.e. in the space away from the coordinate axes of the failure surface. They observed that 

failures of composites are further complicated by a multitude of independent and interacting 

mechanisms which includes filament breaks and micro-buckling, delamination, dewetting, 

matrix cavitation and crack propagation. They opined that operationally simple strength criteria 

cannot possibly explain the actual mechanisms of failures. They intended to evolve a useful 

tool for materials characterization, which determines how many independent strength 

components exist and how they are measured. Hashin (1980) proposed a separate failure 

criterion for fiber and matrix collapse by introducing fracture plane-dependent stress 

components. Then, Puck and Schürmann (1998) enhanced Hashin’s failure criterion by 

implementing the angle of fracture plane and proposed three kinds of fracture modes: inter-

fiber failures under tensile stress on the plane perpendicular to the fiber direction and in-plane 

shear stress (mode A), failure due to a small compressive stress on the plane perpendicular to 

the fiber direction and large in-plane shear stress (mode B), and failure due to a large 

compressive stress on the plane perpendicular to the fiber direction and small in-plane shear 

stress (mode C). A number of researchers used these failure criteria in their research works for 

the study of failures of composite laminates.  
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Turvey (1980) studied an initial flexural failure of simply supported GFRP and CFRP 

plates subjected to three lateral pressure distributions. The author restricted his study to 

symmetric, cross ply layups. The author presented the results graphically as a set of initial 

failure load and corresponding plate central deflection curves to facilitate design application.  

Reddy and Pandey (1987) reviewed a number of existing failure criteria, including the 

maximum stress, the maximum strain, Tsai – Hill's, Tsai – Wu and Hoffman's, to analyze the 

first ply failure of laminated composite plates subjected to in-plane and transverse loads using 

geometrically linear finite element analysis procedure for the static analysis. The finite element 

program formulated by the authors allows the user to specify the desired failure criteria and 

element type, and yields the first ply failure results (i.e. failure load, ply and element in which 

failure occurs). 

The first order shear deformation theory and the finite element method to compute the 

linear and nonlinear first ply failure loads for three different types of loads on the plates and 

four different types of boundary conditions were proposed by Reddy and Reddy (1992). The 

failure loads and locations predicted by different well-established failure criteria can differ 

from each other significantly. The authors found large difference between the linear and the 

nonlinear failure loads in the case of transverse loading, considerably less in the case of in-

plane (tensile) loading with hinged ends, and almost zero in the case of in-plane (tensile) 

loading with clamped ends. The difference was large for thin (three or four layer) laminates 

and simply supported boundary conditions and much less for thick (16 layer) laminates and 

clamped end boundary conditions. The displacements and first ply failure loads obtained by 

finite element analysis were compared for a typical laminate and it is concluded that the failure 

loads depend on the nature of the displacements and their derivatives throughout the laminate 

rather than the central deflections. 
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A progressive failure algorithm was proposed by Reddy et al. (1995) to report the first 

and ultimate ply failure of composite laminates in bending. The authors studied the effect of 

geometric nonlinearity, span to depth ratio, lamination sequence and the boundary condition 

on the proposed algorithm. The von – Kármán type geometric nonlinearity was considered and 

the nonlinear governing equation was solved using Newton-Raphson method. The authors 

adopted Tsai-Wu failure theory to report the failure loads and stress based independent failure 

theory to identify the modes of failure. They found that the transverse normal stress had 

considerable influence on the failure of composite plates and concluded that a three 

dimensional plate theory should be preferred over equivalent single layer theories to study 

failure behaviour of composite laminates accurately.  

Kam and his co-researchers conducted experiments to study first ply failure of 

laminated plates subjected to concentrated load at the center. The authors used layer wise linear 

displacement theory [Kam and Jan (1995)], Ritz method [Kam and Sher (1995)] and finite 

element method [Kam et al. (1996)] to obtain theoretical failure loads of those plates. 

Maximum stress, Tsai-Hill, Tsai-Wu and Hoffman failure theories were applied to obtain the 

failure loads.  

Kam and Jan (1995) used layer wise linear displacement theory and geometrically 

linear strain – displacement relationship to formulate bending stiffness of the plate. The authors 

compared the failure loads obtained using the proposed theory and Mindlin theory with 

experimental results. It was found that the layer wise linear displacement theory showed better 

agreement with the experimental results than the Mindlin theory.   

Kam and Sher (1995) conducted experiment on centrally loaded, clamped, laminated 

composite plates and studied the load – deflection relationship up to total ply failure of the 

laminate. Acoustic emission sensors were used to identify first ply failure of those plates. Von 

– Kármán – Mindlin nonlinear plate theory, Ritz method and the failure theories reported by 
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Reddy and Pandey (1987) were used by the authors to obtain the theoretical failure loads. 

Theoretical results were compared with the experimental values. Along with the failure loads, 

the failed ply numbers were also reported. The authors also proposed a stiffness reduction 

model where the laminate stiffness was reduced progressively.  

A nonlinear finite element method for the prediction of nonlinear load – deflection 

curves and first ply failure loads of centrally loaded and partially clamped laminated composite 

plates using several well-established failure criteria was developed by Kam et al. (1996). The 

authors adopted a hypothetical stiffness reduction model to improve the prediction of load – 

displacement curves of damaged laminated composite plates. Experimental results on load – 

displacement curve and first ply failure load of laminated plates with four different lamination 

arrangements were used to verify the accuracy of the solutions. The results shown that the 

method, especially when used with nine noded Lagrangian elements, predicted fairly good load 

– deflection curves and ultimate strengths for plates with damage. The capabilities of the well-

established failure criteria in predicting first ply failure load was investigated and discussed. 

The authors found fairly accurate first ply failure loads of laminated composite plates based on 

maximum stress, Hoffman’s and Tsai-Hill’s failure criteria.  

Kam and Chang (1997) reported reliability analysis of laminated composite plates 

based on the concept of first ply failure and structural reliability theory. Maximum stress and 

Tsai-Wu failure criteria were used to identify failure of those plates. Stress analysis was carried 

out using nine noded Lagrangian elements and 2 × 2 Gauss rule based on first order shear 

deformation theory. The lamina strength parameters were treated as baseline random variables. 

The feasibility and accuracy of the proposed method was validated by comparing its results 

with the experimental results and findings from normal, lognormal and Weibull distributions. 

The Weibull distribution yielded conservative results. These probability density functions were 

also used by Lin et al. (1998) to study first ply failure and buckling probabilities of laminated 



28 

 

composite plates. The material properties, fiber angles and layer thicknesses of the laminates 

were treated as random variables in the reliability analysis. Stress analysis was carried out using 

eight noded quadratic elements and 2 × 2 Gauss rule. The theoretical results were validated by 

comparison with experimental data.  

Sciuva et al. (1998) studied the influence of nonlinearities and the stress distribution. 

Author implemented geometrically nonlinear first ply failure procedure in a home-developed 

finite element code and investigated the behaviour of simply supported and clamped laminated 

plates under a uniformly distributed transverse load. The authors tested the procedure for thin 

and thick plates and in the case of shear stresses (obtained by means of the constitutive 

equations and by integration of the local equilibrium equations). Singh and Kumar (1998) 

studied post buckling failure behaviour and progressive failure of thin simply supported 

symmetric rectangular laminates subjected to in-plane shear loads. The buckling load, first and 

ultimate ply failure loads and maximum transverse deflection associated with failure loads 

were reported for variation of boundary condition, lamination, plate aspect ratio, fiber 

orientation and lamina material properties of those laminates. The authors used three 

dimensional Tsai – Hill failure criterion to predict the failure of lamina and maximum stress 

criterion to predict the onset of delamination. First order shear deformation theory and von – 

Kármán type geometric nonlinearity were combined with nine noded Lagrangian elements to 

formulate the governing equation of plate bending and the nonlinear equation was solved using 

the Newton – Raphson approach. The authors found that the buckling and failure loads were 

strongly dependent on boundary condition and lamination of plates. Moreover, the ultimate 

failure loads were found to be significantly greater than the first ply failure loads. 

The first ply failure study was extended by Kam and Lai (1999) and failure strengths 

of laminated composite plates were determined using experimental techniques. Acoustic 

emission sensors were used to detect the failure sources in the laminated plates and the first ply 
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failure loads. The authors proposed a finite element formulation based on layer wise linear 

displacement theory and nine noded Lagrangian elements. Theoretical failure loads were 

determined using the Tsai-Wu failure criterion. Comparisons between the experimental and 

theoretical first ply failure strengths showed reasonable accurately.  

Buckling of laminated cylindrical shells was reported by Ferreira and Barbosa (2000) 

using nine noded Lagrangian elements and von – Kármán nonlinearity. The Newton – Raphson 

method and arc length method was used to solve the differential equation.  

First ply failure analysis of composite laminated stiffened plate and shell panels using 

finite element method was made by Prusty et al. (2001a, 2001b). Modified approach of shell 

analysis was adopted, which takes care of shallow or deep shell elegantly. Stiffener was 

modeled suitably so as to accommodate arbitrary oriented stiffener anywhere inside the shell 

element. Various failure theories such as Maximum stress, Maximum strain, Hoffman’s, Tsai-

Wu’s and Yeh-Stratton’s theories were implemented for prediction of first ply failure loads 

using iterative procedure. A few laminated composite unstiffened and stiffened panels with 

various loading cases were solved for first ply failure analysis. 

Kumar and Srivastava (2003) presented a new laminated stiffened plate element for 

first ply failure analysis. The element was able to accommodate any number of arbitrarily 

oriented stiffeners and did not need a mesh line along the stiffener. The mesh division was no 

longer constrained by the stiffener disposition. The first ply failure analysis of laminated stiff-

ened plates was carried out and the results were in good agreement with published literature. 

A few parametric studies of laminated stiffened plates with various stiffener sections such as 

blade, I–section and hat section and with varying fiber angles ranging from 15˚to 75˚were 

carried out. The plates stiffened with blade stiffeners are found to have higher failure loads 

than plates stiffened with I-sections at fiber angles less than 45˚. The negative cross coupling 

terms of hat stiffener have ensured higher failure loads of hat stiffened plates. 
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A three dimensional layer wise mixed finite element approach was considered by 

Ramtekkar et al. (2004) for analysis of first ply failure of laminated composite plates and it 

was observed that the three dimensional failure theories yielded approximately the same failure 

loads as their two dimensional counterparts. Garai and Ray (2005) and Ray and Dey (2008) 

presented the first ply failure analysis of laminated composite plates exposed to moist condition 

and linearly varying temperature through the thickness of the laminate respectively in their 

research reports. 

Kelly and Hallström (2005) studied behaviour of laminated composites subjected to 

transverse load by experimentally and numerically. The authors reported the load – 

displacement relations of those composites. The initial damage was identified by sound of 

cracking of the composite. The first ply failure load was found at 20 – 30% of the ultimate load 

carrying capacity of the specimen. However, the initial damage was not noted on the load – 

displacement curve. Moreover, the authors did not found any noticeable loss of stiffness of the 

specimen at the initial failure load. The authors concluded that accumulation of damage at such 

low load levels may affect fatigue strength of the laminate. It was further reported that the 

initial failure mode was predominantly intra-laminar matrix shear failure and ultimately the 

laminate failed through inter-laminar shear failure. The authors proposed a three dimensional 

finite element formulation to predict the first ply failure numerically. The nonlinear load – 

displacement relationship of the composite was accurately predicted by the proposed finite 

element formulation. The numerically predicted failure loads and locations were also in 

reasonable agreement with the experimental results.  

Zahari and Zaffrany (2006) reviewed progressive damage analysis of composite layered 

plates using a mesh reduction method giving a progressive damage methodology and algorithm 

for composite laminates was successfully developed for the new finite strip methods using 

stress-based failure criteria. 
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Maimí et al. (2007) proposed a new constitutive model for the prediction of the onset 

and growth of intra-laminar failure mechanisms in composite laminates under plane stress 

using a simplification of the LaRC04 failure criteria. 

Progressive failure of tapered laminated composite plates subjected to uniaxial 

compression was reported by Ganesan and Liu (2008). The authors used von – Kármán type 

geometric nonlinearity and nine noded Lagrangian elements to solve the plate bending 

problems. Tensor polynomial form of maximum stress criterion was used by the authors to 

obtain the first and ultimate ply failure loads. Along with the failure loads, maximum transverse 

deflections at first and ultimate ply failures and buckling loads were also reported. It was found 

that the buckling loads of all the plates were smaller than their first ply failure loads and the 

ultimate ply failure load was significantly greater than the first ply failure load. The authors 

also worked on failure modes of those plates and reported that the first ply failure was initiated 

through matrix cracking of a lamina and ultimately the laminate fails through delamination. 

Orifici et al. (2008) conducted a nonlinear finite element analysis by introducing a stress-based 

adhesive degradation model in order to predict the failure mechanisms introduced by the 

debonding behaviour in blade stiffened composite panels under compressive loads. The 

influence of the shape of optimised cutouts on the buckling behaviour of tensile stressed thin 

walled composite plates was reported by Kremer and Schürmann (2008). 

Wagner and Balzani (2010) presented a numerical model to predict the post buckling 

response of stringer-stiffened curved composite airframe panels under axial compression 

including fiber fracture, matrix cracking and fiber-matrix debonding by means of extended 

Hashin’s criteria considering both geometric and material nonlinearities. Liu and Zheng (2010) 

reviewed the developments on damage modelling and finite element analysis of composite 

laminates. The authors reviewed different damage models based on continuum damage 

mechanics, popular failure theories like maximum stress, Hashin’s, Hoffman’s, Yamada-Sun’s, 
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Tsai-Hill’s and Tsai-Wu’s criteria and finally the finite element implementation of progressive 

failure analysis. The authors found that among all failure criteria, the most suitable failure 

criterion for composite laminates is the polynomial stress tensor criterion proposed by Tsai and 

Wu. The damage model based on continuum damage mechanics was yet to describe specific 

features of the damage evolution of composite laminates. The finite element technique 

provided good approximation of progressive failure with continuous stiffness degradation, 

specifically when combined with advanced techniques like cohesive theory used to predict 

damage evolution properties of laminated composites. Chang and Chiang (2010) studied first 

and ultimate ply failures of anti-symmetrically laminated composite plates using experimental 

and theoretical techniques. A number of parameters like length to depth ratio, aspect ratio and 

fiber orientation were varied by the authors to study failure of centrally loaded plates. They 

used eight noded elements and first order shear deformation theory to develop an isoparametric 

finite element formulation which was used to solve the plate bending problem. Maximum 

stress, maximum strain, Hoffman’s, Tsai – Hill’s and Tsai – Wu’s failure theories were used 

to predict the theoretical failure loads. The experimental results were used to verify the 

theoretical predictions. The authors found that the ultimate ply failure loads were significantly 

greater than the first ply failure loads for a given laminate. They recommended adopting the 

first ply failure load as a criterion to design the laminated composite plates. Falzon and 

Apruzzese (2010) proposed a progressive intra-laminar failure methodology to simulate 

damage growth of laminated composite materials and some structural applications of this 

progressive failure model on composite plates were implemented later (2011). The authors 

(2011) also highlighted the importance of considering the nonlinear behaviour in shear by 

comparing the model proposed by them with the Hashin’s model. In particular, the focus was 

on the nonlinear response of the shear failure mode and its interaction with the other failure 

modes. 
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Maimí et al. (2011) studied the first ply failure and the onset of delamination in 

laminated composite under multi axial loads, and proposed a continuum bulk model for the 

representation of the nonlinear constitutive response before matrix cracking. A composite finite 

element to predict failure progress in composite laminates accounting for nonlinear material 

properties was developed by Abu-Farsakh and Almasri (2011). The material nonlinearity has 

a great effect on initial and final failures of angle plied laminated composite shells (cylindrical 

and spherical) for some laminae configuration where shear failure in the matrix is expected. In 

some cases, material nonlinearity would decrease the failure load by around 30%. In addition, 

it was clear that failure mechanism of composite shells highly depends on load type and 

geometry of the shell. For example, in cylindrical shells subjected to internal when failure starts 

in a layer it propagates in the whole layer before it starts in another layer, while for spherical 

shells under transverse load the failure sequence propagates interchangeably between the 

layers. First ply failure and buckling of simply supported and clamped cylindrical shell panels 

were reported by Adali and Cagdas (2011). The effect of fiber orientation, aspect ratio and 

panel thickness on failure and buckling loads were studied by the authors. They conducted 

stability and stress analysis on symmetrically laminated angle ply laminates subjected to 

uniaxial compression using eight node finite elements and shear deformation theories. The 

dominant failure mode was defined as the minimum of buckling and first ply failure loads. The 

authors found that the dominant failure mode for thick panels was first ply failure and that for 

the thin panels was buckling. 

Oterkus et al. (2012) proposed a combination of the finite element method and the peri-

dynamic theory to predict the initial and final failure loads of a stiffened composite cylindrical 

panel with a central slot under combined internal pressure and axial tension. Different case 

studies of laminated composite plates were introduced by Nali and Carrera (2012) in order to 

compare the failure results corresponding to the different two dimensional popular failure 
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criteria including Hashin’s criterion subjected to mono-axial and bi-axial loadings. Gohari et 

al. (2012) studied failure of a circular cylindrical thin walled shell made of GFRP composite 

subjected to static internal and external pressures. Deformation, delamination, shear 

deformation and micro buckling failure were investigated. 

Gupta et al. (2012, 2013) investigated the effect of evolving damage on static response 

characteristics of laminated composite cylindrical / conical panels (Gupta et al., 2012) and 

plates (Gupta et al., 2013) subjected to uniformly distributed transverse loading with inclusion 

of geometric nonlinearity based on the first order shear deformation theory. The detailed 

parametric study was carried out later by the same authors (2015) to investigate the effects of 

evolving damage, span-to-thickness ratio, lamination scheme, boundary conditions and semi-

cone angle on the post buckling response and failure load of laminated cylindrical / conical 

panels under meridional compression considering geometric nonlinearity and evolving 

material damage.  

A finite element model was proposed by Chen et al. (2012, 2014) to study progressive 

failure of laminated composites. The proposed model was an elasto-plastic damage model 

which considered plasticity effects exhibited by composite materials. The authors first 

developed that model considering in-ply damage (2012) only and later modified it to account 

for delamination damage also (2014). Eight noded three dimensional cohesive elements were 

implemented in the finite element model to simulate in-plane and out of plane failure in the 

composite and interface layers, respectively. The authors applied that model to study 

progressive failure of punctured laminates subjected to in-plane tensile load and transverse low 

velocity impact load. A progressive failure study of laminated composite plates was reported 

by Ellul et al. (2014). The authors adopted shell elements, first order shear deformation theory 

and geometrically nonlinear theory to predict the load deformation behaviour and Tsai-Wu 

failure theory to obtain the progressive and ultimate ply failures of plates with different 
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boundary conditions, ranging from fully clamped to simply supported ones. The authors 

adopted different progressive failure models and suggested to decrease the elastic properties of 

laminae depending on the failure mode. Romanowicz (2014) conducted a study to determine 

the in situ first ply failure strength of lamina in a symmetric cross ply laminate subjected to 

uniaxial tension as well as to investigate the effect of matrix ductility on the transverse failure 

behaviour. 

Bakshi and Chakravorty (2012, 2013, 2014a, 2015) studied the first ply failure analysis 

of laminated composite conoidal shells considering geometric linear finite element 

formulation. The authors investigated the failure loads for clamped and simply supported 

boundary conditions. Different parametric variations including lamina sequences (cross and 

angle ply), angle of laminations and number of repetitions of symmetric and anti-symmetric 

units were done in these studies. The author (2014b) also investigated the first ply failure 

behaviour of composite cylindrical shells considering geometric nonlinearity and proposed 

some practical guidelines to the practicing engineers.  

Lal et al. (2012) evaluated nonlinear stochastic first ply failure response of composite 

plate under compressive loading using classical failure criteria such as Tsai-Wu’s and 

Hoffman’s for random input material and strength properties. This stochastic first ply failure 

study using material nonlinearity under hygro thermal environment and different biaxial 

loadings with clamped, simply supported and hinged end conditions using Puck failure 

criterion was done by Gadade et al. (2016a, 2016b). 

Coelho et al. (2015) worked on punctured laminated composites under in-plane tension 

load and predicted damage initiation using the Hashin’s failure criterion. The authors used 

brick elements for whom the kinematic and constitutive behaviours were like shell elements. 

The nonlinear governing equation was solved using Newton – Raphson method. The Hashin’s 

failure theory was adopted by the authors to obtain the failure of the composite laminates. 
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Finally, the authors validated the results with case studies. First ply failure prediction of an 

internally pressurized shell was carried out by Gohari et al. (2015). They studied theoretical 

failure loads of unsymmetrically laminated ellipsoidal woven GFRP composite shell. The Tsai-

Wu failure criterion and linear interpolation technique were adopted to obtain the failure. The 

influence of different parameters like thickness, aspect ratio and stacking sequence on the first 

ply failure of laminated ellipsoidal shell were investigated and the authors found that the 

analytical results showed good agreement with experimental values. Initial and progressive 

failures of glass / carbon fiber reinforced laminated composite plates were studied by Lee et al. 

(2015) using the Puck failure criterion and damage mechanics respectively. Dong et al. (2014) 

endeavoured to ameliorate the applicability of Puck’s failure theory by proposing simplest 

methods for evaluating various parameters required and Matthias and Kröplin (2012) extended 

the theory up to three dimensional stress analysis. 

The first ply failure stresses of laminated composite plates and cylindrical shell panels 

with modified Tsai-Wu’s and Hashin’s failure criteria using nonlinear finite element method 

were discussed by Chróścielewski et al. (2016) and these modifications were also reported in 

this paper. Reinoso and Blázquez (2016) reported the post buckling failure responses of 

composite cylindrical stiffened panel subjected to uniform pressure load employing geometric 

nonlinearity. 

A three dimensional consistent anisotropic damage model for laminated fiber 

reinforced composites relying on the Puck failure criterion was established by Reinoso et al. 

(2017). The damage model was modified with a transverse shear and trapezoidal locking free 

solid shell formulation by the Assumed Natural Strain (ANS) method in order to account for 

geometrically nonlinear effects in thin walled applications.  A quasi isotropic laminate, 

constant stiffness and variable stiffness laminates were designed, manufactured and tested to 

assess the effect of the layup construction on improving the failure load of a flat composite 
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panel with a large cutout by Khani et al. (2017). Priyadharshani et al. (2017) analysed the glass 

fiber reinforced polymer (GFRP) stiffened composite plates with and without rectangular 

cutout under axial, lateral and combined axial and lateral loadings using finite element method. 

 

2.5 CRITICAL DISCUSSIONS 

 

The literature that has accumulated on the study of shells indicates that research on 

shells began with closed form solutions of shell forms under static load. As it was realized that 

closed form solutions are possible to be formulated for very limited combinations of loading 

patterns and boundary conditions, engineers started employing the numerical techniques like 

the finite differences, finite strip and finite element approaches. The numerical analyses have 

been continued by the researchers later on to study the complicated aspects like stability and 

failure of laminated composite shells.  

As pointed out in Section 2.3, most of the researchers focused their research works on 

laminated composite cylindrical and spherical shell surfaces for static, dynamic and stability 

characteristics excluding the failure study. The researchers also realized that closed form 

solution of shell problems could not be reached except for very simple shell surface geometries 

(cylindrical and spherical ones), loading and boundary conditions. They noted that the 

configurations like conical, conoidal, saddle, elliptic and hyperbolic paraboloid and skewed 

hypar shells do not admit closed form solutions though these shell forms can offer a number of 

parallel advantages that suit to the requirements of the industry. In fact, in industrial 

applications, a shell may have complicated boundary condition and may be subjected to 

complex loading. So the researchers resorted to numerical solutions of shell problems among 

which the finite element approach is most versatile and widely applied. Researchers like 

Chakravorty et al. (1995a, 1995b, 1996, 1998), Nayak and Bandyopadhyay (2002, 2005, 2006), 
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Civalek (2007), Kishimoto et al. (2009), Das and Chakravorty (2007, 2008, 2009, 2010), 

Kumari and Chakravorty (2010, 2011) worked on the complicated conical and conoidal shell 

forms. The doubly ruled, doubly curved, non-developable skewed hypar shells enjoy a special 

attention from engineers owing to their aesthetic elegance, high stiffness and ease of 

fabrication. A number of researchers like, Sahoo and Chakravorty (2004, 2005, 2006a, 2006b, 

2007, 2008a, 2008b), Pradyumna and Bandyopadhyay (2008), Nanda and Bandyopadhyay 

(2009), Neogi et al. (2011), Nanda and Pradyumna (2013), Kumar et al. (2013) reported 

different static, dynamic and instability behaviours of laminated composite skewed hypar 

shells.  

An examination of research reports (Section 2.4) on laminated composites reveals that 

failure aspects of composite plates do have enjoyed the focus of the researchers but similar 

studies on composite shells are few in number. Very few researchers such as Prusty et al. 

(2001a, b), Adali and Cagdas (2011) studied the first ply failure of composite cylindrical shell 

panels applying linear finite element approach. First ply failure analysis of industrially 

important conoidal shell was done by Bakshi and Chakravorty (2012, 2013, 2014a, 2015) using 

geometrically linear finite element formulation. Gupta et al. (2012, 2015), Bakshi and 

Chakravorty (2014b) and Chróścielewski et al. (2016) reported the failure analysis of 

composite cylindrical shell form using geometrically nonlinear approach.  On the other hand 

the failure behaviour of cylindrical shells considering material nonlinearity was reported by 

Abu-Farsakh and Almasri (2011). 

The first ply failure strengths of industrially preferred and aesthetically appealing 

doubly curved synclastic spherical and doubly ruled anticlastic skewed hypar shell forms were 

not studied by the researchers. Thus, it is felt that failure characteristics of these forms with 

different laminations need to be studied in details to apply them efficiently as roofing units and 

to popularize their use further in the industry. With these findings from the overall review of 
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the literature the actual scope of the present study is presented systematically in the next 

chapter. 
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Chapter 3 

SCOPE OF PRESENT STUDY 

 
3.1 GENERAL 

 

The detailed review of literature presented in Chapter 2 and the critical discussions of 

the contents hint towards a number of areas through which future course of research may flow. 

The present thesis aims to address a part of the detailed scope of work as the present scope of 

research. Section 3.2 furnishes systematically the present scope of this thesis.  

 

3.2 PRESENT SCOPE 

 

A generalized finite element formulation is presented in Chapter 4 using eight noded 

isoparametric curved quadratic Serendipity finite element for the first ply failure analysis of 

industrially important synclastic spherical and anticlastic skewed hypar shell. Well-established 

failure criteria like maximum stress, maximum strain, Tsai-Hill, Tsai-Wu, Hashin and Puck 

criteria are used to obtain the first ply failure loads and the failure modes or tendencies. Both 

linear strains as proposed by Sanders’ and nonlinear components of strains as proposed by von 

– Kármán are used to study the failure load values obtained through linear and nonlinear 

approaches respectively. A good number of benchmark problems are solved to establish the 

applicability of the present approach. The primary outcomes of the numerical experimentations 

are the first ply failure load values, the failure modes or tendencies and the failure zones. The 

results are post-processed to obtain a number of other relevant data that characterize the failure 

behaviour of spherical and skewed hypar laminated composite shells. Chapter 5 deals with the 

linear first ply failure of laminated composite spherical shell roofs with clamped boundary 
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condition. The linear and nonlinear first ply failure loads of laminated composite clamped 

skewed hypar shells with varying planform and thickness are described in Chapter 6. The first 

ply failure characteristics considering geometrically linear and nonlinear approaches of the 

same type of shell roofs with varying curvature including guidelines for non-destructive test 

monitoring are also furnished in Chapter 7. Chapter 8 reported the nonlinear first ply failure 

loads of simply supported skewed hypar shells. All the results are critically examined to arrive 

at conclusions of engineering importance. 

The scope of future study is indicated in Chapter 9.  
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Chapter 4 

MATHEMATICAL FORMULATION 

 
4.1 GENERAL 

 

Based on the thesis objectives and present scope, a mathematical formulation is 

presented in this chapter. A finite element code is developed which can effectively be utilized 

to calculate the first ply failure load using geometric linear and nonlinear strains of laminated 

composite spherical and skewed hypar shells under uniformly distributed load. An eight-noded 

isoparametric curved shell element is used for this present finite element approach. The 

governing nonlinear equilibrium equations and solution procedure, the shell element, nonlinear 

strain – displacement relations and the failure theories are furnished in details in the different 

sections of this chapter. The symbols used to describe the formulation are either explained 

where they appear first or are explained in the ‘List of Notations’ given at the beginning of the 

thesis. 

 

4.2 COMPOSITE SHELL ELEMENT 

 

A doubly curved laminated composite thin shallow shell of uniform thickness h made 

of homogeneous linearly elastic, laminated composite material is considered. Two shell 

surfaces are considered for the present study. One is the doubly curved synclastic spherical 

shell (Fig. 4.1) having curvature R1 . The other shell surface is the skewed hypar shell (Fig. 

4.2) or commonly called hypar shell which is doubly curved and anticlastic having only the 

cross curvature xyR1 expressed as:  
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abcyxzRxy 41 2   .                                                              (4.1)        

The projection of the shell on the XY plane is a rectangle of dimensions a and b. The equation 

of the mid-surface of the hypar shell, referred to the Cartesian coordinate system (X, Y, Z) is 

expressed as: 

   224 byaxabcz                                         (4.2) 

 

4.3 DISPLACEMENT FIELD 

 

The first order shear deformation theory is applied here for the analysis of thin shallow 

shells. According to Vlasov (1958), the shell is considered as shallow when the height to shorter 

span ratio is kept within 0.2. The following simplifying assumptions are used, which provide 

a reasonable description of the behaviour of thin elastic shells: (1) the thickness of the shell is 

small compared to the radii of curvature, (2) the transverse normal stress is negligible and (3) 

normal to the middle plane of the shell before deformation remains straight but not necessarily 

normal after deformation (a relaxed form of Kirchhoff-Love’s hypothesis). The displacements 

U, V and W at any point (x, y, z) and at a distance z from the mid-surface of shell are expressed 

as:  

),(),(),,( yxzyxuzyxU x  

),(),(),,( yxzyxvzyxV y                               (4.3) 

),(),,( yxwzyxW   

where, u, v and w are the mid- surface displacements of the shell and x and y are the rotations 

about Y and X axes, respectively. 
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Fig. 4.1 A typical spherical shell surface 

 
Fig. 4.2 A typical skewed hypar shell surface 
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4.4 STRAIN – DISPLACEMENT RELATIONSHIPS 

 

The strain displacement relations of the shear deformable theory applied to shells that 

includes von-Kármán type geometric nonlinearity (Reddy 2004) are derived. Sanders’ 

nonlinear strain displacement relations (Sanders’ 1963) associated with the displacement field 

are used. According to the modified Sanders’ first approximation theory for thin shells, the 

strain displacement relationships at a distance z from lamina mid-surface are established as: 

     T

yzxzxyyx

T

yzxzxyyx

T

yzxzxyyx z       (4.4) 

where, the first vector on the right hand side represents the mid-surface strains and the second 

vector represents the curvatures and are respectively related to the degrees of freedom as: 
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The strain components of Eq. (4.5) are to be considered together for generalised representation 

of the three dimensional strain field and can be expressed in the form of  
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where, the in-plane, bending and shear strain components are expressed as:   
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Finally, the nonlinear components of in-plane strains }{ inplane   are defined as: 
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4.5 CONSTITUTIVE RELATIONS OF COMPOSITE MATERIALS 

 

The force and moment resultants (Fig. 4.3) for the laminate are obtained as: 

      EQQMMMNNNF
T

yxxyyxxyyx                                 (4.9) 

 

 

Fig. 4.3 Generalized force and moment resultant vectors 

 

The normal stress resultants of a laminate are,  
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Bending stress resultants are,  

  
 




































































np

k

z

z

xy

y

xz

z

xy

y

x

kij

xy

y

x k

k

k

k

dzzzdzQ

M

M

M

1

2

11 











; i, j = 1, 2, 6                                                    (4.11) 

Transverse shear resultants are, 
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By combining the above equations (Eqs. 4.10 – 4.12) and with the help of Eq. (4.9) the laminate 

stiffness matrix [E] can be expressed as: 
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Here f is the shear correction factor, taken as unity for the class of thin shells and Qij are 

elements of the off-axis elastic constant matrix which are given by 
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4.6 FINITE ELEMENT FORMULATIONS 

 

4.6.1 Selection of Finite Element and Discretization of the Structure 

 

Geometrically linear and nonlinear finite element formulation is developed here for the 

first ply failure analysis of laminated composite shells using the first order shear deformation 

shell theory. An eight noded isoparametric curved quadratic Serendipity element having five 

degrees of freedom per node (u, v and w are the displacements along X, Y and Z axes 

respectively and x  and y  are the rotations about Y and X axes respectively) is used for the 

present analysis. The element configuration is shown in Fig. 4.4. The full surface of the shell 

is discretized to account for its curvature and skew symmetry. The order of numbering of 

elements and nodes over the plan area of a typical shell surface is shown in Fig. 4.5. 
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Fig. 4.4 The isoparametric shell element with natural coordinates 

 

 

Fig. 4.5 A typical discretization of 88  mesh on plan area with element and node numbers 
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4.6.2 Selection of Shape Functions or Interpolation Functions 

 

The shape functions or the interpolation functions are polynomials of the natural 

coordinates (  ,, ) which relate the generalized displacements at any point within an element 

to the nodal values of the displacements. These are derived from an interpolation polynomial 

in terms of the natural coordinates so that the displacement fields are satisfactorily represented. 

For the analysis of thin shells where the final element is assumed to have mid-surface nodes 

only, the interpolation polynomial is a function of  and and has the following form: 

2
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3210),(  AAAAAAAAu                        (4.16) 

The shape functions derived from interpolation polynomial are as: 

    4/111  iiiiiN   for i = 1, 2, 3, 4 

   2/11 2  iiN    for i = 5, 7 

   2/11 2  iiN    for i = 6, 8                       (4.17) 

where, iN  denotes the shape function at ith  node having natural coordinates i  and i . 

The correctness of the shape functions is checked from the relations 

1 iN ,  0
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In an isoparametric formulation the generalised displacements and coordinates are 

interpolated from their nodal values by the same set of shape functions. Hence, the coordinates 

(x, y) of any point within an element are obtained as: 


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
8

1i

ii yNy .                           (4.19) 

where xi and yi are the coordinates of the ith node. The displacement fields are expressed by the 

shape functions Ni.  
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 The generalized independent element degrees of freedom {d} are expressed in terms of their 

nodal values {de}by the following relationship,  
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The isoparametric element shall be oriented in the natural coordinate system (  , ) and 

shall be transformed to the Cartesian coordinate system using the Jacobian matrix. The 

derivatives of the shape functions Ni with respect to x and y are expressed in terms of their 

derivatives with respect to  and  by the following relationship  
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where [J] is the Jacobian matrix given by  
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4.6.3 Establishing Strain – Displacement Matrices 

 

Total strain {ε} of Eq. (4.6) is decomposed into linear and nonlinear parts as 

       nll

T

yzxzxyyxxyyx              (4.23) 
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The linear strain field can be expressed in terms of nodal displacement vector and the resulting 

relations are, 
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    el dB                                          (4.24) 

Now, the generalised strain displacement relations are expressed as: 
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       edBB  5.0                               (4.25) 

where, [B] is the linear part and [B'], dependent on displacement, is the nonlinear part of the 

strain displacement matrix  B and 

          GABBBB  5.05.0                                                                                         (4.26) 
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4.7 GOVERNING NONLINEAR EQUILIBRIUM EQUATIONS AND SOLUTION 

PROCEDURE 

 

The equilibrium equations may be obtained by application of virtual work principle as: 

          
A

T
PdAFB 0                                       (4.28) 

where    denotes the resultants of internal forces and external generalised forces {P}. The 

external force is expressed as:  

     



8

1i A

T

i dAqNP                         (4.29) 

The area integral is evaluated by 22  Gauss quadrature rule.  

Here,    T

yxzyx qqqq   in which xq , yq  and 
zq  are the uniformly distributed 

forces per unit area along X, Y and Z axes, respectively, and x and y are the moments per unit 
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area along X and Y axes, respectively. In case of shells subjected to transverse loads only, xq , 

yq , x  and y  vanish and 
zq  remains. 

Now, {F} represents the generalised stress resultant vector and with the help of Eqs. 

(4.9), (4.25) and (4.26), Eq. (4.28) becomes 

                 05.0  PddABBEBB e

A

T
      PdK es                                    (4.30) 

where, the secant stiffness matrix  sK is given by 

                      
A

T

A

T

A

T

A

T

s dABEBdABEBdABEBdABEBK 5.05.0  

Taking appropriate variation of Eq. (4.28) with respect to  ed  the following may be obtained 

                 PdddKPddAFdBdAFBdd eT

A

T

A

T
                                      (4.31) 

Substituting Eqs. (4.9), (4.25) and (4.26) into Eq. (4.31), one gets 

                        0 
A

e

T

A

T
PdddAdBBEBBdAFBBd   

            PdddKKddK eLTLeF                 (4.32) 

where,       
A

T

L dABEBK ,       dAG
NN

NN
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yxy

xyx
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                 
A

T

A

T

A

T

LT dABEBdABEBdABEBK  

 FK  is a symmetric matrix dependent on the stress level. This matrix is referred to as the initial 

stress matrix or the geometric matrix. Nx, Ny and Nxy are in-plane force and shear resultants as 

described by Eq. (4.10). Thus, the tangent stiffness matrix consists of three parts and expressed 

as: 

       FLTLT KKKK                                                   (4.33) 
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In order to solve nonlinear equilibrium equation Eq. (4.28) by the Newton – Raphson 

iteration procedure as depicted in Fig. 4.6, the function    ed  is expressed in terms of 

Taylor’s series and the higher order terms are ignored to get the improved solution of 

displacement field at (n+1)th iteration as, 

         
 

  0
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e d
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                          (4.34) 

where      n

e

n

e

n

e ddd 
1

                          (4.35) 

In the above equation 
 
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 nT
ne

K
dd

d
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







 
                (4.36) 

Improved values of   1n

ed are obtained from Eq. (4.35) by calculating 

           n

e

n

S

n

T

n

e dKPKd 
 11

                          (4.37) 

Now, the convergence of this procedure is checked by using a pre-set tolerance limit (1% is 

adopted here) which is expressed in Eq. (4.38). 

          TolerancePP
TT

100                            (4.38) 

 

Fig. 4.6 The Newton – Raphson method 
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The element stiffness matrices and element load vectors are evaluated by numerical 

integration techniques using 22 Gauss quadrature rule. These element matrices are assembled 

with proper transformations from the curved geometry of the shell to get the global stiffness 

matrix  K  and global load vectors P respectively. The basic problem of static equilibrium 

takes the form,     PdK  , where  d  is the global displacement vector. 

 

4.8 LAMINA STRESS CALCULATIONS 

 

Lamina strains are transformed from the global axes of the shell to the local axes (1, 2 

and 3) of the lamina using transformation matrix (Eq. 4.39). Lamina stresses are obtained using 

the constitutive relations of the lamina (Eq. 4.40).  
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          (4.40)  

The stress resultants are evaluated at the Gauss points (22) considering the shear 

correction factor as unity for the class of thin shells taken up here. Lamina stresses and strains 

are used in well accepted failure theories like maximum stress, maximum strain, Tsai-Hill, 

Tsai-Wu, and Hoffman’s failure criterion as well as two other failure mode based criteria 

proposed by Hashin and Puck, given below, are used to evaluate the first ply failure loads of 

the composite shells under present study. A lamina is considered as failed if the calculated 

failure index [refer Reddy and Reddy (1992)] reaches a value very close to unity. The schematic 

algorithm for computing the first ply failure loads for composite shells is shown in Fig. 4.7 and 

it is discussed briefly in Section 4.10. 
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4.9 FAILURE THEORIES 

 

4.9.1 Maximum Stress Failure Criterion 

 

According to maximum stress theory, the failure initiates if at least one of the criteria 

is satisfied, 

Fiber breakage mode: 1
1

1 
u

T


, Fiber buckling mode: 

u

C11    

Matrix cracking mode: 1
2

2 
u

T


, Matrix crushing mode: 

u

C22    

Matrix shear failure mode: 1
12

12 
u


                    (4.41) 

 

4.9.2 Maximum Strain Failure Criterion 

 

According to maximum strain theory, the failure initiates if at least one of the criteria 

is satisfied, 

Fiber breakage mode: 1
1

1 
u

T


, Fiber buckling mode: 

u

C11    

Matrix cracking mode: 1
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2 
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
, Matrix crushing mode: 
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C22    

Matrix shear failure mode: 1
12
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                      (4.42) 
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Fig.4.7 Algorithm for evaluating first ply failure load 

 

4.9.3 Tsai-Hill Failure Criterion 

 

According to Tsai-Hill failure theory, a lamina fails if at least one of the following 

conditions is satisfied,  
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4.9.4 Tsai-Wu Failure Criterion 

 

Tsai-Wu criterion can be expressed as, 
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4.9.5 Hoffman Failure Criterion 

 

Hoffman criterion is expressed as, 
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4.9.6 Hashin Failure Criterion 
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4.9.7 Puck Failure Criterion 
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In case of interactive failure theories such as Tsai-Hill, Tsai-Wu and Hoffman failure 

criteria, none of the individual lamina stress components reach the permissible values but their 

interaction leads to failure. In case of such failures, the individual stress values developed may 

be compared to their corresponding permissible values to investigate that which stress 

component contributing to a particular interactive criterion plays the most significant role in 

the failure. The stress component for which the ratio of the developed to permissible stress is 

nearest to unity may be identified as the most significant component contributing to the failure 

following the corresponding failure mode also.  
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4.10 SOLUTION OF FIRST PLY FAILURE ANALYSIS 

 

Step 1: The static displacements of shells are found for the external load {P}. The linear 

displacement fields are used for obtaining the linear first ply failure loads and similarly 

the converged nonlinear displacement fields are used for getting the nonlinear failure 

loads.  

Step 2: The linear and nonlinear strain vectors are calculated at four Gauss points from the 

linear and nonlinear displacement fields. The linear and nonlinear strains are combined 

to obtain the mid-surface strain vector following Eqs. 4.24 and 4.25. 

Step 3: The in-plane and transverse strains are transformed from global to local axes system 

using Eq. 4.39. 

Step 4: The lamina stresses are calculated at Gauss points using Eq. 4.40. For linear failure 

loads, the linear strains are used. The nonlinear failure loads are calculated using the 

nonlinear strains.   

Step 5: The stresses are extrapolated from Gauss point locations to the element node points.  

Step 6: The lamina stresses are incorporated in the different failure theories and the failure 

index is calculated.  

Step 7: The failure index is compared with unity. The initial external load is appropriately 

increased or decreased depending on whether the failure index value is lesser than or 

greater than unity respectively.  

Step 8: Steps 1 to 7 are repeated till the percentage difference between the first ply failure loads 

of two successive iterations is less than unity. 
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Chapter 5 

LINEAR FIRST PLY FAILURE OF CLAMPED 

SPHERICAL SHELL ROOFS 

 
5.1 GENERAL 

 

Stiff doubly curved synclastic spherical shells are extremely popular in civil 

engineering construction industry and hence performances of these shell forms with laminated 

composite as the material need to be known in depth to the engineering fraternity. This chapter 

is devoted to study the failure characteristics of laminated composite spherical shells with 

different practical parametric variations. The developed finite element code is used to solve 

some benchmark problems for validation and is also used to solve a number of other problems, 

with different practical parametric variations, to bring out the failure characteristics of graphite 

– epoxy spherical shells. The results of all the problems and the relevant discussions are 

presented in Section 5.2. All the results that are presented in this chapter are arrived at after an 

appropriate mesh convergence study and are represented in forms of tables and figures for 

clarity. A particular value is assumed to have converged for a particular finite element grid 

when further refinement of the mesh does not improve the results to an extent exceeding 1%. 

The salient conclusions which emerged from the present study are presented in Section 5.3 at 

the end of the chapter. 

 

 

 

 



63 

 

5.2 NUMERICAL STUDY AND DISCUSSIONS 

 

The non-dimensional transverse displacements of composite spherical shells for 

different finite element grids are )]/([ 43

22 qahwEw   where w is the transverse displacement 

in cm and q is the uniformly distributed transverse loading intensity as mentioned by Reddy 

(1984). The results displayed in Table 5.1 show a good match of the present results with the 

results obtained by Reddy (1984) using exact method. The table further shows an excellent and 

monotonic convergence of the displacement values. In order to verify the correctness of the 

present approach the first ply failure loads evaluated using the present finite element 

formulation are compared with the linear failure loads reported by Kam et al. (1996) in Table 

5.2. 

 

Table 5.1 Nondimensional central deflections ( 310w ) of composite spherical shells 

Method 0°/90° 0°/90°/0° 0°/90°/90°/0° 

Reddy (1984) 1.1412 1.0443 1.0559 

Present finite element model (4×4) 1.1754 1.0151 1.0812 

Present finite element model (6×6) 1.1583 1.0568 1.0682 

Present finite element model (8×8) 1.1416 1.0445 1.0561 

Present finite element model (10×10) 1.1418 1.0450 1.0565 

Note: E11/E22 = 25, G12 = G13 = 0.5E22, E22 = 10GPa,
12  = 0.25, ba  , 100/ ha , R/a = 4 

 

 

Table 5.2 Comparison of linear first ply failure loads in Newton for a (  90/02
)S plate 

Failure criteria Length/ 

plate 

thickness 

Experimental  

failure load 

(Kam et al. 1996) 

First ply failure 

loads (Kam et al. 

1996) 

First ply failure 

loads ( present 

formulation ) 

Maximum stress 

105.26 157.34 

108.26 112.15 

Maximum strain 122.86 127.56 

Hoffman 106.45 103.36 

Tsai-Wu 112.77 110.46 

Tsai-Hill 107.06 104.40 

Note: Length = 100mm, loading details = a central point of load 
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All the problems presented in this chapter are solved for clamped spherical shells under 

uniformly distributed static transverse loading and the results are interpreted from practical 

engineering standpoint. The material properties of the Q–1115 graphite – epoxy composite to 

fabricate the spherical shells are as follows: 

Material properties: E11 = 142.5 GPa, E22 = E33 = 9.79 GPa, G12 = G13 = 4.72 GPa, G23 = 1.192 

GPa, ν12 = ν13 = 0.27, ν23 = 0.25. 

Strengths: 
u

T1 = 2193.5 MPa, 
u

C1 = 2457 MPa, 
u

T2  = 41.3 MPa, 
u

C2  = 206.8 MPa, 
u

13  = 

61.28 MPa, 
u

12  = 
u

23  = 78.78 MPa, 
u

T1  = 0.01539, 
u

C1  = 0.01724, 
u

T2  = 0.00412, 
u

C2  = 

0.02112, 
u

13  = 0.05141, 
u

12  = 
u

23  = 0.01669. 

The aspect ratio (a/b) of the shell is considered as unity and the value of span to 

thickness ratio (a/h) is taken as 100 for the present study. The R/a value is taken as 0.75 here. 

Plies are numbered from top to bottom of the laminate i.e. the topmost ply is numbered one. 

The uniformly distributed first ply failure load (FL) values of laminated composite 

clamped spherical shells are furnished in Tables 5.3 and 5.4 respectively. These first ply failure 

loads are nondimensionalized as   4

22 haEFLLF  . The independent failure criteria such as 

Maximum Stress and Maximum Strain criteria, the interactive failure criteria like Hoffman, 

Tsai – Hill and Tsai – Wu criteria and the partially interactive or failure mode based criteria 

like Hashin and Puck failure criteria are used to evaluate the first ply failure loads for different 

stacking arrangements of laminated composite spherical shells. The minimum value of the 

failure load obtained from different failure criteria is considered as the acceptable failure load 

on which the engineering factor of safety must be imposed. 

It is observed from the results presented in Tables 5.3 and 5.4 that the upper bound of 

the first ply failure load is determined by the interactive or partially interactive failure criteria 

for angle ply and by the partially interactive failure criteria for cross ply shells and the lower 
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bound is determined from the independent and partially interactive failure criteria for angle and 

cross ply shells respectively. For the cross ply shells taken up here the upper bound values of 

failure load are given by Puck’s failure criterion while the Hashin’s criterion corresponds to 

the lower bound value. It is interesting to note that this trend is observed for angle ply shells 

also where the Puck or the Tsai-Hill criteria correspond to the upper bound failures while the 

Maximum Strain criterion yields the lower bound value of the failure load. With the highest 

value of failure load as reference the percentage difference between the upper and lower bounds 

varies from 67% to 74% in the case of cross ply spherical shells and from 42.5% to 51.5% in 

the case of angle ply spherical shells. The Puck’s theory yields quite higher values of failure 

loads compared to the other criteria for cross ply shells. Even if one excludes the results 

obtained from this theory for cross ply shells the percentage difference between the highest and 

lowest failure load values with the highest value of the load as reference varies between 41.5% 

and 42.15%. These observations simply establish the fact that all the different failure criteria 

should simultaneously be tried out to get the failure load acceptable from engineering point of 

view. An exclusion of any of the theories may lead to grossly erroneous estimate of the failure 

load. It is interesting to note that, for cross ply, this difference is minimum for double layered 

shells and is maximum for four layered symmetric ply. Again, for angle ply shells, the reverse 

trend is observed. This phenomenological wide variation of the failure load values obtained 

from different criteria may be attributed to the difference in basic formulation of the failure 

theories and such deviations are difficult to justify through physical reason. The results 

obtained here are in tune with the observations made by Soni (1983) where he concluded that 

percentage differences between upper and lower bound values of failure load may be as high 

as 75% when the loading conditions are varied. Figs. 5.1 and 5.2 show the variation of first ply 

failure loads obtained from different failure criteria.  
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When the results given in Tables 5.3 and 5.4 are observed it is found that the cross ply 

shells are better options compared to the angle ply ones because the cross ply shells consistently 

yield higher values of the failure loads compared to those obtained from angle ply shells. In 

fact the 0°/90°/90°/0° shell is the weakest among the cross ply arrangements taken up here and 

still the failure load for this lamination is about 1.7 times the failure load of 45°/-45°/45° shell 

– the combination which gives the highest failure load among the angle ply combinations taken 

up here. Naturally, from engineering stand point, for a particular quantity of material 

consumption the cross ply shells should be preferred compared to the angle ply ones. It is 

interesting to note that all the cross ply combinations yield their minimum values of failure 

loads corresponding to Hashin’s criteria which involves all the stresses and strains contributing 

in the failure criteria and hence indicates a more efficient utilization of material strength. On 

the other hand all the angle ply combinations considered here failed through Maximum Strain 

criteria by matrix cracking.  

 

Table 5.3. Nondimensionalized first ply uniformly distributed failure load of cross ply spherical 

shells 

Lamination 

in degree 
Failure theory LF  

Location 

(x,y) 

First 

failed 

ply 

Failure mode/ failure 

tendency 

0°/90° Maximum stress 76221.62 (0.875a,0) 2 Fiber Buckling 

Maximum strain 76602.62 (0.875a,0) 2 Fiber Buckling 

Hoffman 95915.18 (0.875a,0) 2 Fiber Buckling 

Tsai-Hill 79733.37 (0.875a,0) 2 Fiber Buckling 

Tsai-Wu 130297.2 (0.875a,0) 2 Fiber Buckling 

Hashin 76220.6 (0.875a,0) 2 Fiber Buckling 

Puck 232327.8 (0,0.875b) 1 Matrix Cracking Mode A 

0°/90°/0° Maximum stress 82197.1 (a,0.75b) 3 Fiber Buckling 

Maximum strain 82623.05 (a,0.75b) 3 Fiber Buckling 

Hoffman 103868.2 (a,0.75b) 3 Fiber Buckling 

Tsai-Hill 86209.36 (a,0.75b) 3 Fiber Buckling 

Tsai-Wu 128834.5 (0.125a,0) 3 Fiber Buckling 

Hashin 74839.6 (0.125a,0) 3 Matrix Crushing 

Puck 251378.8 (0.125a,0) 3 Matrix Cracking Mode A 

0°/90°/0°/90° Maximum stress 87211.4 (0.125a,b) 4 Fiber Buckling 

Maximum strain 87634.28 (0.125a,b) 4 Fiber Buckling 
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Lamination 

in degree 
Failure theory LF  

Location 

(x,y) 

First 

failed 

ply 

Failure mode/ failure 

tendency 

 Hoffman 109876.4 (0.125a,b) 4 Fiber Buckling 

Tsai-Hill 91529.07 (0.125a,b) 4 Fiber Buckling 

Tsai-Wu 140279.8 (a,0.25b) 4 Fiber Buckling 

Hashin 81150.12 (a,0.25b) 4 Matrix Crushing 

Puck 268718 (0,0.875b) 1 Matrix Cracking Mode A 

0°/90°/90°/0° Maximum stress 87940.72 (a,0.75b) 4 Fiber Buckling 

Maximum strain 88374.83 (a,0.75b) 4 Fiber Buckling 

Hoffman 112566.9 (a,0.75b) 4 Fiber Buckling 

Tsai-Hill 93861.04 (a,0.75b) 4 Fiber Buckling 

Tsai-Wu 121260.4 (0.875a,0) 4 Fiber Buckling 

 Hashin 70275.76 (0.875a,0) 4 Matrix Crushing 

Puck 274601.5 (a,0.875b) 1 Matrix Cracking Mode A 

Note: a/b = 1, a/h = 100, R/a = 0.75, the least failure loads are shown by italics. 

 

Table 5.4. Nondimensionalized first ply uniformly distributed failure load of angle ply 

spherical shells 

Lamination 

in degree 
Failure theory LF  

Location 

(x,y) 

First 

failed 

ply 

Failure mode/ failure 

tendency 

45°/-45° Maximum stress 56169.54 (0.875a,b) 1 Matrix Cracking 

Maximum strain 29611.84 (0.875a,b) 1 Matrix Cracking 

Hoffman 40940.74 (0.875a,b) 1 Matrix Cracking 

Tsai-Hill 60932.56 (0.875a,b) 1 Matrix Cracking 

Tsai-Wu 36655.75 (0.875a,b) 1 Matrix Cracking 

Hashin 40571.99 (0.875a,b) 2 Matrix Crushing 

Puck 55397.32 (0.875a,b) 1 Matrix Cracking Mode A 

45°/-45°/45° Maximum stress 59774.23 (0.125a,0) 3 Fiber Buckling 

Maximum strain 41262.49 (0.125a,0) 1 Matrix Cracking 

Hoffman 56396.3 (0.125a,0) 1 Fiber Buckling 

Tsai-Hill 56748.7 (0.125a,0) 3 Fiber Buckling 

Tsai-Wu 50861.06 (0.125a,0) 1 Fiber Buckling 

Hashin 46448.4 (0.125a,b) 3 Matrix Crushing 

Puck 77757.88 (0.125a,b) 2 Fiber Buckling 

45°/-45°/ 

45°/-45° 

Maximum stress 64278.83 (0.125a,0) 3 Fiber Buckling 

Maximum strain 35671.08 (0.125a,0) 1 Matrix Cracking 

Hoffman 49265.55 (0.125a,0) 1 Matrix Cracking 

Tsai-Hill 61675.15 (0.875a,0) 4 Fiber Buckling 

Tsai-Wu 44136.85 (0.125a,0) 1 Matrix Cracking 

Hashin 41148.09 (0.125a,0) 4 Matrix Crushing 

Puck 64351.35 (0.125a,0) 3 Fiber Buckling 

45°/-45°/ 

-45°/45° 

Maximum stress 59148.08 (0.125a,0) 4 Fiber Buckling 

Maximum strain 40330.93 (0.125a,0) 1 Matrix Cracking 
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Lamination 

in degree 
Failure theory LF  

Location 

(x,y) 

First 

failed 

ply 

Failure mode/ failure 

tendency 

 Hoffman 55627.15 (0.125a,0) 1 Matrix Cracking 

Tsai-Hill 56333.99 (0.125a,0) 4 Fiber Buckling 

Tsai-Wu 49885.58 (0.125a,0) 1 Matrix Cracking 

Hashin 44628.17 (0.125a,b) 4 Matrix Crushing 

 Puck 70119.48 (0.875a,0) 3 Fiber Buckling 

Note: a/b = 1, a/h = 100, R/a = 0.75, the least failure loads are shown by italics. 

 

It is well established that the variation of angle of lamination has a pronounced effect 

on the composite spherical shell characteristics and it is possible to optimally tailor the 

directions of the individual lamina to extract maximum advantage from a given quantity of 

material. Hence in the next part of the study typical 0°/θ°/θ°/0° and 0°/θ°/0°/θ° laminations are 

studied for discrete values of θ to see how the failure loads respond to such variations. The 

results are furnished in Tables 5.5 and 5.6 and Fig. 5.3. The results show that for any particular 

value of θ the four layered symmetric and anti-symmetric laminates show comparable results 

though when θ reaches 90° the 0°/90°/0°/90° shell shows a failure load which is 1.15 times of 

that corresponding to 0°/90°/90°/0° shell. For both symmetric and anti-symmetric laminates 

higher values of failure loads are obtained when θ approaches 0° or 90° while for intermediate 

values of θ the failure loads are of lesser magnitude. This again shows that cross ply 

combination should be preferred in fabricating four layered composite shells. Since in a 

laminate all the fibers in different layers are not normally put in same directions, the shell 

options with only 0° laminations are not practically applicable. Hence 0°/90°/0°/90° and 

0°/90°/90°/0° shells are recommended among which again the 0°/90°/0°/90° option is 

relatively better. 
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Fig.5.1. The first ply failure loads from different failure criteria for cross ply spherical shells 

 

 

 

Fig.5.2.The first ply failure loads from different failure criteria for angle ply spherical shells 

 

Failure occurring at the support, as evident from Tables 5.5 and 5.6, is quiet expected 

because for the clamped boundary condition, the points on the support or in near vicinity are 

subjected to worst values of bending moment and shear force. When two layered cross and 
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angle ply laminates are compared it is found that they tend to fail through compressive stress 

along the fibers in a lamina and transverse tension respectively. The three and four layered 

cross ply laminates are weak in transverse compression. On the other hand, in angle ply 

laminates the individual lamina always has a set of fibers running along the diagonal in plan, 

no fiber being present along the perpendicular diagonal. Naturally the shells become vulnerable 

in diagonal tension in that direction and if the lamina is considered alone, the failure is through 

transverse cracking of the matrix. 

While comparing four layered symmetric and anti-symmetric stacking orders (Tables 

5.5 and 5.6) it is very interesting to note that all shells except 0°/0°/0°/0° fail through matrix 

failure. The lamina where fibers are oriented at angle θ ranging from 15° to 60° are vulnerable 

in diagonal tension perpendicular to the fiber direction and the failed ply undergoes to the 

failure mode of transverse cracking of the matrix.   

Fig. 5.3. The first ply failure loads vs. degree of laminations for spherical shells 

 

Table 5.5. Nondimensionalized first ply uniformly distributed failure load of 0°/θ°/θ°/0° 

spherical shells 

Variation 

of θ°  
Failure theory LF  

Location 

(x,y) 

First 

failed 

ply 

Failure mode/ failure 

tendency 

0° Maximum stress 71853.9 (0,0.25b) 4 Fiber Buckling 

Maximum strain 72248.18 (0,0.25b) 4 Fiber Buckling 

Hoffman 87083.72 (0,0.25b) 4 Fiber Buckling 

Tsai-Hill 71666.97 (0,0.25b) 4 Fiber Buckling 

Tsai-Wu 118176.7 (a,0.25b) 4 Fiber Buckling 
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Variation 

of θ°  
Failure theory LF  

Location 

(x,y) 

First 

failed 

ply 

Failure mode/ failure 

tendency 

 Hashin 71853.39 (0,0.25b) 4 Fiber Buckling 

Puck 129213.4 (0,0.25b) 4 Fiber Buckling  

15° Maximum stress 65567.9 (0,0.125b) 3 Fiber Buckling 

Maximum strain 62337.05 (0,0.125b) 3 Matrix Cracking 

Hoffman 67447.36 (0,0.125b) 3 Fiber Buckling 

Tsai-Hill 65497.42 (a,0.75b) 4 Fiber Buckling 

Tsai-Wu 65567.9 (0,0.125b) 3 Fiber Buckling 

Hashin 65916.21 (0,0.75b) 4 Fiber Buckling 

Puck 78742.56 (a,0.75b) 3 Fiber Buckling 

30° Maximum stress 65971.37 (0,0.75b) 4 Fiber Buckling 

Maximum strain 47519.9 (0,0.125b) 3 Matrix Cracking 

Hoffman 60270.66 (0,0.125b) 3 Fiber Buckling 

Tsai-Hill 67390.16 (a,0.875b) 4 Fiber Buckling 

Tsai-Wu 57124.59 (0,0.125b) 3 Fiber Buckling 

Hashin 65971.37 (0,0.75b) 4 Fiber Buckling 

Puck 68284.95 (a,0.875b) 3 Fiber Buckling 

45° Maximum stress 70638.37 (a,0.25b) 4 Fiber Buckling 

Maximum strain 60537.26 (0.875a,b) 2 Matrix Cracking 

Hoffman 79252.26 (0.875a,b) 2 Fiber Buckling 

Tsai-Hill 73210.39 (0,0.125b) 4 Fiber Buckling 

Tsai-Wu 72973.41 (0.875a,b) 2 Fiber Buckling 

Hashin 64165.45 (0.125a,0) 4 Matrix Crushing 

Puck 95321.71 (0.875a,b) 3 Fiber Buckling 

60° Maximum stress 77703.74 (0,0.75b) 4 Fiber Buckling 

Maximum strain 50923.37 (0.125a,0) 2 Matrix Cracking 

Hoffman 70005.08 (0.125a,0) 2 Fiber Buckling 

Tsai-Hill 83148.07 (a,0.875b) 4 Fiber Buckling 

Tsai-Wu 63220.6 (0.125a,0) 2 Fiber Buckling 

Hashin 64842.67 (0.125a,0) 4 Matrix Crushing 

Puck 87453.48 (0.125a,0) 3 Fiber Buckling 

75° Maximum stress 84503.54 (a,0.25b) 4 Fiber Buckling 

Maximum strain 84923.35 (a,0.25b) 4 Fiber Buckling 

Hoffman 109737.4 (0,0.75b) 4 Fiber Buckling 

Tsai-Hill 91658.79 (0,0.75b) 4 Fiber Buckling 

Tsai-Wu 112990.8 (0.625a,b) 3 Fiber Buckling 

Hashin 67349.31 (0.875a,0) 4 Matrix Crushing 

Puck 136895.8 (0.375a,0) 2 Fiber Buckling 

90° Maximum stress 87940.72 (a,0.75b) 4 Fiber Buckling 

Maximum strain 88374.83 (a,0.75b) 4 Fiber Buckling 

Hoffman 112566.9 (a,0.75b) 4 Fiber Buckling 

Tsai-Hill 93861.04 (a,0.75b) 4 Fiber Buckling 

Tsai-Wu 121260.4 (0.875a,0) 4 Fiber Buckling 



72 

 

Variation 

of θ°  
Failure theory LF  

Location 

(x,y) 

First 

failed 

ply 

Failure mode/ failure 

tendency 

 Hashin 70275.76 (0.875a,0) 4 Matrix Crushing 

Puck 274601.5 (a,0.875b) 1 Matrix Cracking Mode A 

Note: a/b = 1, a/h = 100, R/a = 0.75, the least failure loads are shown by italics. 

 

Table 5.6. Nondimensionalized first ply uniformly distributed failure load of 0°/θ°/0°/θ° 

spherical shells 

Variation 

of θ°  
Failure theory LF  

Location 

(x,y) 

(m, m) 

First 

failed 

ply 

Failure mode/ failure 

tendency 

0° Maximum stress 71853.9 (0,0.25b) 4 Fiber Buckling 

Maximum strain 72248.18 (0,0.25b) 4 Fiber Buckling 

Hoffman 87083.72 (0,0.25b) 4 Fiber Buckling 

Tsai-Hill 71666.97 (0,0.25b) 4 Fiber Buckling 

Tsai-Wu 118176.7 (a,0.25b) 4 Fiber Buckling 

Hashin 71853.39 (0,0.25b) 4 Fiber Buckling 

Puck 129213.4 (0,0.25b) 4 Fiber Buckling  

15° Maximum stress 60404.47 (0,0.25b) 4 Fiber Buckling 

Maximum strain 58336.03 (0,0.125b) 4 Matrix Cracking 

Hoffman 60764.02 (0,0.125b) 4 Fiber Buckling 

Tsai-Hill 60649.62 (a,0.75b) 4 Fiber Buckling 

Tsai-Wu 60459.63 (0,0.125b) 4 Fiber Buckling 

Hashin 60404.47 (0,0.25b) 4 Fiber Buckling 

Puck 67496.39 (0,0.125b) 4 Fiber Buckling 

30° Maximum stress 59991.8 (0,0.125b) 4 Fiber Buckling 

Maximum strain 49682.31 (0,0.125b) 4 Matrix Cracking 

Hoffman 58170.56 (0,0.125b) 4 Fiber Buckling 

Tsai-Hill 62266.57 (0,0.125b) 4 Fiber Buckling 

Tsai-Wu 57250.23 (0,0.125b) 4 Fiber Buckling 

Hashin 57751.76 (0.125a,b) 4 Matrix Crushing 

Puck 59981.59 (0,0.125b) 4 Fiber Buckling 

45° Maximum stress 78946.85 (0,0.125b) 4 Fiber Buckling 

Maximum strain 78103.13 (0.875a,b) 2 Matrix Cracking 

Hoffman 89245.11 (0,0.125b) 4 Fiber Buckling 

Tsai-Hill 75917.23 (0,0.125b) 4 Fiber Buckling 

Tsai-Wu 89107.21 (0.875a,b) 2 Fiber Buckling 

Hashin 57176.69 (a,0.125b) 4 Matrix Crushing 

Puck 108449.4 (0.875a,b) 2 Fiber Buckling 

60° Maximum stress 68839.6 (0.125a,0) 4 Fiber Buckling 

Maximum strain 52643.49 (0.125a,0) 2 Matrix Cracking 

Hoffman 69713.96 (0.125a,0) 4 Fiber Buckling 

Tsai-Hill 68986.69 (0.125a,0) 4 Fiber Buckling 

Tsai-Wu 65164.42 (0.125a,0) 2 Fiber Buckling 
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Variation 

of θ°  
Failure theory LF  

Location 

(x,y) 

(m, m) 

First 

failed 

ply 

Failure mode/ failure 

tendency 

 Hashin 63775.25 (0,0.875b) 4 Matrix Crushing 

Puck 96543.37 (0.125a,0) 2 Fiber Buckling 

75° Maximum stress 79136.84 (0.125a,0) 4 Fiber Buckling 

Maximum strain 79306.4 (0.125a,0) 4 Fiber Buckling 

Hoffman 91012.22 (0.125a,0) 4 Fiber Buckling 

Tsai-Hill 81264.52 (0.125a,0) 4 Fiber Buckling 

Tsai-Wu 102917.2 (0.125a,0) 4 Fiber Buckling 

Hashin 74786.48 (0,0.875b) 4 Matrix Crushing 

Puck 124518.8 (0.25a,0) 2 Fiber Buckling 

90° Maximum stress 87211.4 (0.125a,b) 4 Fiber Buckling 

Maximum strain 87634.28 (0.125a,b) 4 Fiber Buckling 

Hoffman 109876.4 (0.125a,b) 4 Fiber Buckling 

Tsai-Hill 91529.07 (0.125a,b) 4 Fiber Buckling 

Tsai-Wu 140279.8 (a,0.25b) 4 Fiber Buckling 

Hashin 81150.12 (a,0.25b) 4 Matrix Crushing 

Puck 268718 (0,0.875b) 1 Matrix Cracking Mode A 

Note: a/b = 1, a/h = 100, R/a = 0.75, the least failure loads are shown by italics. 

 

5.3 CONCLUDING REMARKS 

 

The following conclusions are evident from the present study. 

 The finite element code used here can be accepted as a successful tool to explore the 

first ply failure aspects of composite spherical shells. The solutions obtained for 

benchmark problems by the present method confirm this fact. 

 The failure load values of spherical shells for different laminations are expected to serve 

as design aids to practicing engineers. 

 Among cross and angle ply shells, the cross ply ones are better in performance 

compared to their angle ply counterparts, for a given number of lamina and shell 

curvature. In case of cross ply, relatively more efficient material utilization may be 

achieved.  
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 The critical values of bending moment and shear force occur at the support for clamped 

boundary condition. So the failure must initiate at support and the results of the present 

investigation agree to this fact.    

 Four layered symmetric and anti-symmetric spherical shells are weak in diagonal 

tension or compression and this fact is reflected in their failure modes or tendencies. 
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Chapter 6 

LINEAR AND NONLINEAR FIRST PLY FAILURE OF 

CLAMPED SKEWED HYPAR SHELL ROOFS OF 

VARYING PLANFORM AND THICKNESS 

 
6.1 GENERAL 

 

Apart from being esthetically appealing doubly curved anticlastic surfaces, the skewed 

hypar shells are doubly ruled and may be fabricated and cast easily. No wonder that this form 

capable of allowing entry of north light is preferred for cladding industrial areas requiring 

diffused sunlight. In order to cover a particular area in plan an engineer often needs to decide 

the column grid suited to the functional requirements of the area and hence the cladding units 

may be of different aspect ratios. The thicknesses of shell units of varying planform are to be 

appropriately designed depending on the expected value of the superimposed loads and the 

serviceability criterion mostly in terms of deflection. Keeping the industrial requirements in 

mind, this chapter presents a study on clamped skewed hypar shells of different planforms and 

thicknesses using linear and nonlinear strains. The results which are furnished in forms of tables 

and figures in Sections 6.2 and 6.3 are expected to reflect the relative efficacy of the linear and 

nonlinear approaches apart from providing useful design results for the clamped boundary 

condition which is very common in industrial applications. The results that are obtained for 

validation of the present approach and also to explore the failure characteristics of laminated 

composite skewed hypar shells are examined meticulously to extract inferences of engineering 

value. These conclusions are presented in Section 6.4.       
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6.2 NUMERICAL EXAMPLES 

 

In order to validate the geometrically nonlinear finite element formulation the author 

studies the nondimensional central displacements of an isotropic simply supported plate under 

static uniformly distributed surface pressure as presented in Fig. 6.1. The displacement values 

are compared with those reported by Palazotto and Dennis (1992). The material properties and 

the geometry of the shell are carefully adjusted by assigning equal values of E11 and E22 and a 

very high value of Rxy (1030) respectively in the present computer code for analysing the 

isotropic plate as a special case. The transverse load and central plate displacements are 

nondimensionalized as )()( 4

11

4

0 hEaqq   and hww /  respectively where w  is the 

transverse displacement and 0q  is intensity of the uniformly distributed surface pressure. The 

related geometrical and material properties of the plate are taken as: length (a) and width (b) 

of the plate = 8 inch [203.2 mm] and the thickness (h) = 0.08 inch [2.032 mm], E11 = 10 x 106 

psi [68.95 GPa], ν = 0.316. Apart from this benchmark problem the author also solves one 

additional nonlinear bending problem of a cylindrical shell surface. For this, the author 

compares static nonlinear displacement values of clamped isotropic cylindrical shell evaluated 

by current formulation with the results published by Palazotto and Dennis (1992). The 

comparison is furnished in Fig. 6.2. The material and geometric properties of the cylindrical 

shell used are reported as: length of the shell (a) = 20 inch [508 mm], shell thickness (h) = 

0.125 inch [3.175 mm], rise to width (b) ratio = 0.0496, radius of curvature =100 inch [2540 

mm], semi-sector angle = 0.1 radian, E11 = 4.5 × 105 psi [3.1 GPa], ν = 0.3. 
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Fig. 6.1 Nonlinear deflection of isotropic plate 

 

 

Fig. 6.2 Nonlinear deflection of isotropic cylindrical shell 
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To validate the first ply failure formulation of laminated composites, the failure loads 

calculated from present approach are compared with those reported earlier by Kam et al. (1996) 

for a partially clamped plate. Table 6.1 shows the comparative results. Further, a comparison 

of the nondimensional fundamental frequencies of twisted plates reported by Qatu and Leissa 

(1991b) and those obtained by the present formulation are furnished in Table 6.2. This 

comparison problem is solved to ensure the correct incorporation of the skewed hypar shell 

geometry in the present computer code.   

 

Table 6.1 Comparison of nonlinear first ply failure loads in Newton for a (  90/02
)S plate 

Failure criteria Length/ 

plate 

thickness 

Experimental  

failure load 

(Kam et al. 1996) 

First ply failure 

loads (Kam et al. 

1996) 

First ply failure 

loads ( present 

formulation ) 

Maximum stress 

105.26 157.34 

147.61 139.94 

Maximum strain 185.31 194.58 

Hoffman 143.15 137.12 

Tsai-Wu 157.78 150.71 

Tsai-Hill 144.42 151.22 

Note: Length = 100mm, load details = central point load. 

 

Table 6.2 Nondimensional natural frequencies for   // graphite-epoxy twisted plates  

Angle 

of twist 
θ 0° 15° 30° 45° 60° 75° 90° 

15  Qatu and 

Leissa (1991b) 

1.0035 0.9296 0.7465 0.5286 0.3545 0.2723 0.2555 

Present 

formulation 

0.9985 0.9250 0.7444 0.5280 0.3542 0.2720 0.2552 

 30  Qatu and 

Leissa (1991b) 

0.9566 0.8914 0.7205 0.5149 0.3443 0.2606 0.2436 

Present 

formulation 

0.9501 0.8841 0.7180 0.5143 0.3446 0.2611 0.2446 

Note: E11 = 138 GPa, E22 = 8.96 GPa, G12 = 7.1GPa, 
12  = 0.3, a/b = 1, a/h = 100. 

 

The present author carries out a number of numerical investigations with different 

parametric variations of clamped composite shallow (Vlasov 1958) skewed hypar shells under 

uniformly distributed transverse static pressure and the results are critically discussed from 

practical engineering point of view. The material properties of Q–115 graphite – epoxy 
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composite and the geometric dimensions of the shells that are used here are reported in Table 

6.3. The uniformly distributed first ply failure load values (FL) are nondimensionalized as

  422 haEFLLF  . Different stacking sequences like 0°/90°, 0°/90°/0°, 0°/90°/0°/90° or 

(0°/90°)2 and 0°/90°/90°/0° or (0°/90°)S laminations are taken up here as cross ply laminates. 

On the other hand 45°/-45°, 45°/-45°/45°, 45°/-45°/45°/-45° or (45°/-45°)2 and 45°/-45°/-

45°/45° or (45°/-45°)S angle ply laminates are considered. The plies are numbered from top to 

bottom of the laminate. The developed stresses and strains of the laminae are checked with 

their permissible values by different well-established failure criteria like maximum stress, 

maximum strain, Hoffman’s, Tsai-Hill, Tsai-Wu, Hashin’s and Puck’s criteria and minimum 

of these are taken as the failure loads of collapse on which engineering factor of safety may be 

imposed. In Tables 6.4 and 6.5 these first ply collapse failure loads are marked by italics and 

the corresponding failed ply numbers are reported in the parentheses. Moreover, the 

permissible deflection of skewed hypar shell is taken as shorter plan dimension / 250 and the 

failure loads corresponding to this deflection are taken as the first ply failure loads from 

serviceability consideration.  

 

Table 6.3 Material properties of Q–1115 graphite-epoxy  

Material 

constants 

values 

E11 

142.5 GPa 

E22 = E33 

9.79 GPa 

G12 = G13 

4.72 GPa 

G23 

1.192 GPa 
2312    

0.27 

13  

0.25 

 

Strengths 

values 

 

 

u

T1  

2193.5 MPa 

u

C1  

2457 MPa 

u

T2   

41.3 MPa 

u

C2   

206.8 MPa 

u

13  

61.28 MPa 

uu

2312    

78.78 MPa 
u

T1  

0.01539 

u

C1

0.01724 

u

T2  

0.00412 

u

C2  

0.02112 

u

13  

0.05141 

uu

2312    

0.01669 

 

In many practical situations, plan areas of different facilities are covered by repeating 

the modular forms of shell units with varying aspect ratios. In this chapter the aspect ratio i.e. 

a/b ratio is varied by keeping the value of ‘b’ as constant to study the effect of aspect ratio on 

the failure load values. A shell with a/b = 0.5 may be designated as short shell, that with a/b = 
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1.0 is a square shell and a long shell has a/b = 2.0. For these three types of shells, the nonlinear 

first ply failure loads for different cross and angle ply laminations with shorter span to thickness 

ratio equal to 100, are compared. The results are presented in Fig. 6.3 and Fig. 6.4 respectively. 

These figures compare the nonlinear collapse failure loads. 

Apart from the criterion of collapse the shell thickness in design is also governed by 

other considerations like controlling the resonating frequency and deflection. In some practical 

situations even a thick shell may be required to enhance stability of a structure against wind 

suction forces constructed in cyclonic coastal areas. The numerical experiments are carried out 

for moderately thick (a/h=80), thin (a/h=100) and very thin (a/h=120) hypar shells. The 

geometrically nonlinear first ply failure loads of all the angle and cross ply shells corresponding 

to their governing failure criteria with varying the a/h ratio from 80 to 120 are furnished in Fig. 

6.5. 

 

6.3 RESULTS AND DISCUSSIONS 

 

6.3.1 Benchmark Problems 

 

The values of static nonlinear displacements of a simply supported isotropic plate and 

a clamped isotropic cylindrical shell are reported in Fig. 6.1 and Fig. 6.2 respectively which 

show a close agreement between the present results and the published ones. These prove that 

the bending formulation involving geometrically nonlinear strains are correctly incorporated 

in the author’s formulation. The results of Table 6.1 show that the agreement of present results 

with those of Kam et al. (1996) is excellent and the correctness of the present approach for 

determination of first ply failure loads of laminated composite shell considering geometrically 

linear and nonlinear strains is established. 
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The author uses a simple lumped mass matrix scheme together with the undamaged 

stiffness matrix to solve the eigenvalue problem of twisted plates to compare the 

nondimensional fundamental frequencies obtained by the present approach with those 

published by Qatu and Leissa (1991b). The close agreement of results [Table 6.2] establishes 

the proper incorporation of hypar shell geometry in the formulation which is structurally similar 

to a twisted plate.  

 

6.3.2 Failure Loads of Thin (a/h = 100) Hypar Shells on Varying Planform 

 

It is found from the present numerical investigations that the Puck’s and the maximum 

strain criteria govern the first ply failure loads of the cross and angle ply shells respectively. 

From Fig. 6.3 and Fig. 6.4 it is interestingly noted that the load carrying capacities of the square 

shells are much higher than those of short and long shells for both cross and angle ply 

laminations. In most of the cases, except for four layered cross ply laminates, short shells yield 

higher values of failure loads in comparison to the long shells. Hence, to cover a large column 

free open space, a practicing engineer should preferably use a number of square shells or 

combinations of square and short shells.  
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Fig. 6.3 First ply failure loads of cross ply thin shells with different aspect ratios 

 

 

 

Fig. 6.4 First ply failure loads of angle ply thin shells with different aspect ratio 
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6.3.3 Failure Loads of Thin (a/h = 100) Hypar Shells on Square Planform (a/b = 1)  

 

The first ply failure loads of cross and angle ply shallow thin hypar shells are reported 

in Tables 6.4 and 6.5 respectively. In practical civil engineering, failure of a structure is not 

only evaluated by comparing the developed stresses and strains with the permissible ones but 

the maximum deflection value is also to be maintained within a limit (taken as span/250 here) 

to satisfy the serviceability criterion. All the four cross ply laminates show comparable failure 

loads when serviceability criterion is considered. This means that periodic non-destructive 

monitoring of the deflections undergone by the cross ply shells is enough to conclude on their 

safety.  

It is interestingly noted that the minimum collapse failure loads are obtained from 

Puck’s and the maximum strain criteria respectively for cross and angle ply shells. It is noted 

further that for angle ply laminates Puck’s criterion yields failure loads which are very close 

(8% to 10% deviation taking failure loads from maximum strain criterion as the base) to those 

obtained from the maximum strain criterion. Since we always impose a factor of safety to the 

tune of 1.5 to 2 on the ultimate loads to get the working load values it would not be wrong to 

conclude that Puck’s failure criterion may be universally accepted as the only criterion that 

may be used to obtain the failure loads of all the shell combinations that are considered here.  

It is noted further that the failure loads considering the geometric linearity are more 

compared to that of nonlinear ones but by margins not exceeding 5% with respect to nonlinear 

failure loads. This trend is observed for two and three layered cross ply laminates. However, 

for four layered cross ply laminates, the linear failure load is about the 10% less than the 

nonlinear failure load. This establishes the fact that no unified conclusion may be reached about 

which approach (linear or nonlinear) should be adopted for obtaining the conservative values 

of failure loads. This calls for a clear recommendation about the approach applicable for 
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evaluating the failure loads in different specific cases and such guidelines are proposed in the 

later part of this chapter. The two layered 0°/90° laminate yields the maximum value of the 

failure load among all the cross ply laminates considered here. 

In contrast to cross ply shells for the angle ply shells, the collapse loads are consistently 

less compared to the loads corresponding to permissible deflection. In all the four cases, the 

first ply failure loads obtained from the failure criteria are about 47% to 67% of those calculated 

from serviceability considerations. This observation leads to conclude that there is an 

apprehension of a brittle failure for this class of shells. The results furnished in Table 6.5 show 

that the failure loads computed considering geometric linear strains are higher than those 

obtained from nonlinear computations. So the nonlinear analysis should preferably be carried 

out for the angle ply shells. By virtue of the geometry of a skewed hypar shell, majority of the 

loads and moments are transferred along the diagonal directions. This is why the angle ply 

laminates taken up here, which have their fibers oriented along the diagonals, prove to be 

convincingly better than the cross ply ones in terms of first ply failure which is evident from 

the results given in Table 6.5. The three layered 45°/-45°/45° shell yields the maximum failure 

load among the angle ply options and it is almost equal to 2.7 times than what one gets for the 

best option of 0°/90° cross ply shell. So, the 45°/-45°/45° stacking sequence may be concluded 

as the best option among all the combinations of stacking sequences considered in this chapter.  

It is observed that the failure modes of cross ply shells are matrix crushing mode C and 

all the angle ply laminates fail through matrix cracking mode. According to the Puck’s 

criterion, matrix crushing mode C refers the shear failure of the matrix through a 45° failure 

plane. For cross ply laminates all the fibers run along and perpendicular to the plan direction. 

So, the cross ply laminates are very weak at its 45° plane because there are no such fibers run 

along this direction. Hence, the first ply failure loads calculated from Puck’s criterion are 

comparatively lesser than the failure loads obtained from other criteria. On the other hand, for 
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all angle ply laminates the fibers run along diagonal directions and the matrix is reinforced 

enough by the fibers to prevent its failure mode through matrix crushing mode C. It is 

interesting to note that the first ply failure loads obtained from Puck’s criterion do not differ 

much from the other criteria for angle ply shells. 

 

Table 6.4 Nondimensionalized first ply failure loads ( FL ) and failed ply numbers of thin cross 

ply skewed hypar shells 

Failure criteria 
Laminations 

0°/90° 0°/90°/0° 0°/90°/0°/90° 0°/90°/90°/0° 

Maximum stress 11653.73L    (1) 10363.64L   (1) 10747.70L   (1) 9594.48L     (1) 

11908.07N    (2) 10972.42N   (1) 10246.17N   (1) 10008.17N   (1) 

Maximum strain 11653.73L    (1) 10272.73L   (1) 10724.21L   (1) 9493.36L     (1) 

11908.07N    (2) 10836.57N   (1) 10195.10N   (1) 9896.83N     (1) 

Hoffman 10164.45L    (2) 10205.31L   (1) 10228.80L   (4) 9486.21L     (1) 

10879.47N    (1) 10781.41N   (1) 9914.20N     (1) 9907.05N     (1) 

Tsai-Hill 11578.14L    (2) 10339.12L   (1) 10604.70L   (1) 9586.31L     (1) 

11646.58N    (2) 10890.70N   (1) 10130.75N   (1) 9988.76N     (1) 

Tsai-Wu 10263.53L    (2) 10248.21L   (1) 10396.32L   (4) 9520.94L     (1) 

11066.39N    (2) 10812.05N   (1) 9966.29N     (1) 9940.76N     (1) 

Hashin 11389.17L    (2) 10273.75L   (1) 10506.64L   (1) 9534.22L     (1) 

11638.41N    (2) 10839.63N   (1) 10050.05N   (1) 9961.19N     (1) 

Puck 4922.37L      (2) 3633.30L     (3) 3422.88L     (2) 3815.12L     (3) 

4775.28N      (2) 3485.19N    (1) 3690.50N    (3) 4224.72N     (3) 

Serviceability 3825.332L   3594.48L 3942.80L 3710.93L 

3883.55N 3656.79N 3964.25N 3779.37N 

Note: “L” and “N” indicate the linear and nonlinear failure loads respectively. 

Note: Values in the parentheses indicate the failed ply numbers. 

Note: a/b = 1, a/h = 100, c/a = 0.2 

 

 

Table 6.5 Nondimensionalized first ply failure loads ( FL ) and failed ply numbers of thin angle 

ply skewed hypar shells 

Failure criteria 

Laminations 

45°/-45° 45°/-45°/45° 
45°/-45°/ 

45°/-45° 

45°/-45°/ 

-45°/45° 

Maximum stress 11189.99L  (1) 14979.57L    (1) 12441.27L (1) 14687.44L   (1) 

10755.87N  (1) 14263.53N   (1) 12017.36N  (1) 14171.60N   (1) 

Maximum strain 9799.79L    (1) 13661.90L   (1) 11287.03L   (1) 13417.77L    (1) 

9463.74N    (1) 13082.74N   (1) 10943.82N   (1) 12998.98N   (1) 

Hoffman 11122.57L  (1) 14894.79L   (1) 12373.85L   (1) 14602.66L   (1) 

10692.54N  (1) 14184.88N   (1) 11953.01N   (1) 14090.91N   (1) 

Tsai-Hill 11727.27L  (1) 15393.26L   (1) 12818.18L   (1) 15079.67L   (1) 

11251.28N   (1)  14626.15N   (1) 12363.64N   (1) 14527.07N   (1) 

Tsai-Wu 10716.04L  (1) 14546.48L   (1) 12062.31L   (1) 14268.64L   (1) 

10315.63N  (1) 13875.38N   (1) 11664.96N   (1) 13785.50N   (1) 
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Failure criteria 

Laminations 

45°/-45° 45°/-45°/45° 
45°/-45°/ 

45°/-45° 

45°/-45°/ 

-45°/45° 

Hashin 11159.35L  (1) 14915.22L   (1) 12391.22L   (1) 14622.06L   (1) 

10726.25N  (1) 14203.27N   (1) 11969.36N   (1) 14110.32N   (1) 

Puck 11154.24L  (1) 14902.96L   (1) 12382.02L   (1) 14610.83L   (1) 

10721.14N  (1) 14192.03N   (1) 11960.16N   (1) 14098.06N   (1) 

Serviceability 20953.01L 20813.07L 21186.93L 20954.03L 

20007.15N 19281.92N 20955.06N 21259.45N 

Note: “L” and “N” indicate the linear and nonlinear failure loads respectively. 

Note: Values in the parentheses indicate the failed ply numbers. 

Note: a/b = 1, a/h = 100, c/a = 0.2 

 

6.3.4 Failure Loads of Shells with Varying Thicknesses 

 

It has been discussed earlier in this chapter that the diagonals being the primary load 

transfer directions in a hypar shell, the cross ply configurations having fiber orientations 

parallel to the plan directions do not yield high failure load values and for this complex 

interaction again the variation of the failure loads with a/h ratio does not show any specific 

trend. On the other hand the failure load values of angle ply shells monotonically increase with 

increase of thickness (as a/h ratio decreases). For all the angle ply laminates considered here 

working equations may be formulated connecting the failure loads with a/h ratios and these 

working equations are presented in Fig. 6.5.  
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Fig. 6.5 Variation of first ply failure loads with (a/h) ratio for different lamination (Degree) 

 

6.3.5 Comparison between Linear and Nonlinear Approaches to Evaluate Failure Loads 

  

The approach considering geometric nonlinearity of strains yields accurate results of 

failure loads undoubtedly but the linear approach is easy from implementation point of view. 

Naturally, a structural analyst may be keen to know that for which of the shell options the linear 

approach is acceptable to be used. To find the answer to this question the percentage differences 

between linear and nonlinear failure loads with the later as the base are furnished in Table 6.6. 

The cases where this percentage is negative the linear theory yields a lower value of failure 

load and may be used for design purpose. In other cases where this percentage is positive an 

exact analysis through nonlinear approach will give a lower conservative value of the failure 

load and the nonlinear theory should be adopted. It is noteworthy that whatever may be the 
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approach by which the failure load is obtained a factor of safety to the tune of 1.5 to 2 is to be 

applied on these loads to get the working load values. Keeping this in mind the present author 

suggests here a practical relaxation that when the percentage difference as mentioned above is 

positive but within 5%, use of the linear theory to get the failure load and ultimately applying 

a factor of safety of 1.5 to 2 on it will safely assess the working load and may be recommended. 

So recommendation matrix giving a broad guideline regarding the approach of analysis to be 

adopted is furnished in Table 6.7 for different a/h ratio values as a ready reference to structural 

analysts. The table shows that for both cross and angle ply combinations of thin and moderately 

thick shells, the linear theory may be adopted but this theory is not applicable for very thin 

shells with a/h = 120. It is concluded that for very thin shell options (a/h = 120) a structural 

engineer should apply the geometrically nonlinear theory for safe assessment of failure load. 

When the shell becomes thinner, it gains its load carrying capacity primarily from its curved 

geometry. Theoretically this load carrying capacity is due to from the nonlinear components of 

strains. Hence the nonlinear components of strains should be considered for numerically 

computing the failure loads of very thin shells and the results of Table 6.7 reflect this fact. 

 

Table 6.6 Percentage differences between linear and nonlinear first ply failure loads 

Lamination  

Percentage differences between linear and nonlinear 

first ply failure loads 

a/h = 80 a/h=100 a/h=120 

0°/90° 1.664 3.080 5.100 

0°/90°/0° 4.205 4.249 1.338 

0°/90°/0°/90° -4.217 -7.251 -2.419 

0°/90°/90°/0° 4.572 -9.695 7.139 

45°/-45° 3.151 3.551 3.858 

45°/-45°/45° 3.822 4.226 5.217 

45°/-45°/45°/-45° 2.705 3.136 3.493 

45°/-45°/-45°/45° 2.942 3.221 3.448 

Note: a/b = 1, c/b = 0.2 
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Table 6.7 Recommendation on design 

Lamination  
Design approach 

a/h = 80 a/h=100 a/h=120 

0°/90° Geometric linear Geometric linear Geometric nonlinear 

0°/90°/0° Geometric linear Geometric linear Geometric nonlinear 

0°/90°/0°/90° Geometric linear Geometric linear Geometric nonlinear 

0°/90°/90°/0° Geometric linear Geometric linear Geometric nonlinear 

45°/-45° Geometric linear Geometric linear Geometric nonlinear 

45°/-45°/45° Geometric linear Geometric linear Geometric nonlinear 

45°/-45°/45°/-45° Geometric linear Geometric linear Geometric nonlinear 

45°/-45°/-45°/45° Geometric linear Geometric linear Geometric nonlinear 

 

6.4 CONCLUDING REMARKS 

 

The following conclusions are evident from the study of present section. 

 The finite element code developed here is capable of computing both geometrically linear 

and nonlinear uniformly distributed first ply failure pressures of laminated composite 

clamped skewed hypar shells. It is evident from the results of the benchmark problems that 

are solved here. 

 In general the Puck’s and maximum strain criteria give the minimum first ply failure loads 

of cross and angle ply shells respectively on which factor of safety should be imposed to 

get the working load values. For the angle ply shells, Puck’s criterion gives close failure 

load values in comparison with the loads obtained through maximum strain criterion. So, 

Puck’s criterion may be universally used to get the first ply failure loads of laminated hypar 

shells. 

 The shells square in plan (aspect ratio = 1) carry higher failure loads compared to those on 

rectangular plan forms. Hence, the square forms may be adopted by the practicing design 

engineers as far as practicable.  

 The periodic non-destructive monitoring of the deflections are enough to ensure the safety 

of the cross ply shells, but for the angle ply shells brittle failure may occur as the collapse 

loads are consistently less compared to the serviceability failure loads. 
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 In general, angle ply shells are better in comparison to cross ply ones in terms of first ply 

failure. The double layered 0°/90° and three layered 45°/-45°/45° stacking sequences are 

the best stacking sequences respectively for the cross and angle ply shells among the 

laminations considered in this chapter.   

 A recommendation table is suggested in this chapter for guiding the designer regarding the 

approach of failure analysis applicable to composite hypar shells. For all moderately thick 

and thin shells, the geometrically linear theory yields reasonably accurate results and for 

very thin shells only the geometrically nonlinear theory is required for evaluation of failure 

loads.  

 For all the angle ply shells, working equations, useful to practicing engineers, may be 

derived correlating first ply failure load with shorter span to total thickness ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 

 

Chapter 7 

LINEAR AND NONLINEAR FIRST PLY FAILURE OF 

CLAMPED SKEWED HYPAR SHELL ROOFS OF 

VARYING CURVATURE INCLUDING GUIDELINES 

FOR NON-DESTRUCTIVE TEST MONITORING 

 
7.1 GENERAL 

 

The curvature factor in shells is basically responsible for coupling of bending and 

membrane stiffnesses and thereby increasing the load bearing capacity compare to plates. 

Introducing curvature in a surface during casting and fabrication requires stringent monitoring. 

An engineer has to strike an optimum balance between the desired strength and ease of 

construction. This necessitates determination of optimum curvature and this chapter is devoted 

to study first ply failure loads against varying curvatures. Design guidelines are also formulated 

regarding identifying appropriates zones on the shell surface which are prone to failure 

initiation and are to be kept under the scanner of health monitoring through periodic non-

destructive tests.  The results are presented in Section 7.3. The obtained results are post-

processed to extract important design guidelines which are also presented in Section 7.3. 

Section 7.4 furnishes the salient engineering conclusions.       

 

7.2 NUMERICAL EXAMPLES 

 

A number of problems on clamped skewed hypar shells under uniformly distributed 

static transverse loading are solved and the results are interpreted from practical engineering 
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standpoint. The material properties of Q–1115 graphite – epoxy composite that are used here 

are reported in Table 6.3 of previous chapter. The uniformly distributed first ply failure load 

values (FL) are nondimensionalized as   422 haEFLLF   and other related information of 

laminated composite clamped skewed hypar shells with cross and angle ply laminations are 

furnished in Tables 7.1 and 7.2 respectively. 0°/90°, 0°/90°/0°, 0°/90°/0°/90° and 0°/90°/90°/0° 

cross ply laminates and 45°/-45°, 45°/-45°/45°, 45°/-45°/45°/-45° and 45°/-45°/-45°/45° angle 

ply laminates are considered in the present study. Fig. 7.1 shows the failure zones of the shells 

in plan. The independent failure criteria such as maximum stress and maximum strain criteria, 

the interactive failure criteria like Hoffman’s, Tsai – Hill and Tsai – Wu criteria and the 

partially interactive or failure mode based criteria like Hashin’s and Puck’s failure criteria are 

used to evaluate the first ply failure loads for different stacking arrangements of laminated 

composite hypar shells. The minimum value of the failure load obtained from different failure 

criteria is considered as the acceptable failure load on which the engineering factor of safety 

should be imposed to get the working load values. These collapse failure loads are shown in 

italics in the corresponding Tables 7.1 to 7.4. Besides all these collapse criteria, the present 

author considers the failure load from serviceability point of view with the permissible 

deflection of the skewed hypar shell taken as shorter span/250. Apart from determining failure 

loads, the author reports the failure zones, failure modes or tendencies and failed plies in the 

results furnished in Tables 7.1 and 7.2. The plies are numbered from top to bottom of the 

laminate. 

It is well established that the curvature value of a shell surface has a pronounced effect 

on its behaviour and introduction of curvature in a plate surface to make it a shell is actually 

responsible for the enhancement in its load bearing capacity. On the other hand, from practical 

engineering point of view, shells with deep curvatures are difficult to cast and fabricate and 

hence the present study considers height to shorter span ratio within 0.2 keeping the shell within 
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the definition of a shallow one (Vlasov 1958). The nondimensionalized failure loads and other 

related information from different failure criteria and serviceability criterion, in terms of 

deflection, are furnished in Table 7.1 and Table 7.2 for cross and angle ply, anti-symmetric and 

symmetric laminates. 

 

7.3 RESULTS AND DISCUSSIONS 

 

7.3.1 Behaviour of Clamped Cross Ply Skewed Hypar Shells with Height to Span Ratio = 

0.2 

 

The results furnished in Table 7.1 show that the failure load corresponding to Puck’s 

criterion gives the minimum value of the collapse failure load. If one considers only the 

material failure, it is found that Puck’s partially interactive or failure mode based criterion 

yields the lowest value of the failure load which should be taken for design. In fact the other 

independent or fully interactive failure criteria yield much higher values of failure loads and it 

may be concluded that a study using Puck’s criterion taken together with the serviceability 

limits is enough to assess the safe load which a cross ply shell can support.  

For two and three layered cross ply laminates, the linear theory yields a higher value of 

failure load compared to the nonlinear one but by a margin not more than 5% with respect to 

nonlinear failure loads. For four layered cross ply laminates, however, the linear failure load is 

about the 10% less than the nonlinear failure load. These observations lead to conclude that the 

linear failure theory, which is much easier to be implemented programmatically, may be used 

for evaluation of failure loads of cross ply shells without sacrificing the engineering safety 

because in any standard code of practice a minimum factor of safety to the tune of 1.5 to 2 is 

applied on the ultimate load to get the working load values. It is further observed from Table 
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7.1 that among the cross ply shells taken up here the two layered 0°/90° laminate turns out to 

be the best choice yielding the highest value of the failure load if failure through collapse is 

considered. If, however, serviceability criterion is taken into consideration too, all the four 

cross ply laminates show comparable results.  

It is also interesting to note that for all the cross ply shells taken up here failure is 

through matrix crushing mode C. The cross ply skewed hypar shell having its curvature along 

the diagonals but having the fibers oriented parallel to the plan dimensions show such a shear 

crushing of the matrix. 

 

Table 7.1 Nondimensionalized first ply failure loads )( LF  of cross ply shallow hypar shells  

Laminations 
Failure 

criteria 
LF  

Failure 

zone 

Failed 

Ply 

Failure mode / failure 

tendency 

0°/90° Maximum 

stress 

11653.73L C 1 Matrix shear Failure 

11908.07N C 2 Matrix shear failure 

 

 

 

Maximum 

strain 

11653.73L C 1 Matrix shear failure 

11908.07N C 2 Matrix shear failure 

Hoffman 10164.45L B 2 Matrix shear failure 

10879.47N A 1 Matrix shear failure 

Tsai-Hill 11578.14L B 2 Matrix shear failure 

11646.58N D 2 Matrix shear failure 

Tsai-Wu 10263.53L B 2 Matrix shear failure 

11066.39N C 2 Matrix shear failure 

Hashin 11389.17L B 2 Matrix cracking 

11638.41N C 2 Matrix cracking 

Puck 4922.37L A 2 Matrix crushing mode C 

4775.28N A 2 Matrix crushing mode C 

Serviceability 3825.332L B   

3883.55N B   

0°/90°/0° Maximum 

stress 

10363.64L A 1 Matrix cracking 

10972.42N A 1 Matrix cracking 

 Maximum 

strain 

10272.73L A 1 Matrix cracking 

10836.57N A 1 Matrix cracking 

Hoffman 10205.31L A 1 Matrix cracking 

10781.41N A 1 Matrix cracking 

Tsai-Hill 10339.12L A 1 Matrix cracking 

10890.70N A 1 Matrix cracking 

Tsai-Wu 10248.21L A 1 Matrix cracking 

10812.05N A 1 Matrix cracking 

Hashin 10273.75L A 1 Matrix cracking 

10839.63N A 1 Matrix cracking 



95 

 

Laminations 
Failure 

criteria 
LF  

Failure 

zone 

Failed 

Ply 

Failure mode / failure 

tendency 

 Puck 3633.30L A 3 Matrix crushing mode C 

3485.19N A 1 Matrix crushing mode C 

Serviceability 3594.48L B   

3656.79N B   

0°/90°/0°/90° Maximum 

stress 

10747.70L A 1 Matrix cracking 

10246.17N A 1 Matrix cracking 

 Maximum 

strain 

10724.21L A 1 Matrix cracking 

10195.10N A 1 Matrix cracking 

Hoffman 10228.80L B 4 Matrix shear failure 

9914.20N A 1 Matrix cracking 

Tsai-Hill 10604.70L A 1 Matrix cracking 

10130.75N A 1 Matrix cracking 

Tsai-Wu 10396.32L B 4 Matrix shear failure 

9966.29N A 1 Matrix cracking 

Hashin 10506.64L A 1 Matrix cracking 

10050.05N A 1 Matrix cracking 

Puck 3422.88L A 2 Matrix crushing mode C 

3690.50N A 3 Matrix crushing mode C 

Serviceability 3942.80L C   

3964.25N C   

0°/90°/90°/0° Maximum 

stress 

9594.48L A 1 Matrix cracking 

10008.17N A 1 Matrix cracking 

 Maximum 

strain 

9493.36L A 1 Matrix cracking 

9896.83N A 1 Matrix cracking 

Hoffman 9486.21L A 1 Matrix cracking 

9907.05N A 1 Matrix cracking 

Tsai-Hill 9586.31L A 1 Matrix cracking 

9988.76N A 1 Matrix cracking 

Tsai-Wu 9520.94L A 1 Matrix cracking 

9940.76N A 1 Matrix cracking 

Hashin 9534.22L A 1 Matrix cracking 

9961.19N A 1 Matrix cracking 

Puck 3815.12L A 3 Matrix crushing mode C 

4224.72N A 3 Matrix crushing mode C 

Serviceability 3710.93L B   

3779.37N B   

Note: a/b = 1, a/h = 100, ‘L’ and ‘N’ indicate the linear and nonlinear failure loads respectively. 
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7.3.2 Behaviour of Clamped Angle Ply Skewed Hypar Shells with Height to Span Ratio = 

0.2 

 

In contrast to the behaviour of the cross ply shells, in all four cases of angle ply 

laminates taken up here, the failure loads obtained from the collapse criteria are less than those 

from serviceability criterion [Table 7.2]. For the cases of angle ply shells the independent 

maximum strain failure criterion governs the failure loads and the loads obtained through 

nonlinear analysis are consistently less from what result from linear computations. This 

observation directly leads to conclude that for angle ply shells a nonlinear analysis should 

preferably be carried out, though the linear computations yield higher non-conservative failure 

load values not more than 10% when compared to the nonlinear ones. It is noted further that 

the collapse loads are around 65% of the loads corresponding to the permissible deflection and 

there is an apprehension of a brittle failure for these class of shells.  

In the angle ply shells considered here, the fibers are oriented in the diagonal directions 

along the curvatures of the skewed hypar shells resulting in an enhanced stiffness of the 

structure. For this reason the failure loads for angle ply shells are much higher than the 

corresponding cross ply ones and the three layered 45°/-45°/45° and the four layered 45°/-45°/-

45°/45° shells, which are the best choices among the angle ply options, yield failure loads 

almost equal to 2.5 times than what one gets for the best option of 0°/90° cross ply shell. For 

the same reason the loads corresponding to limiting deflection for 45°/-45°/45° angle ply shell 

is almost 5 times of the corresponding value for the 0°/90°/0° cross ply shell option. Among 

the angle ply shells, the 45°/-45°/-45°/45° and 45°/-45°/45° laminations show comparable 

performances and better than the other two angle ply options and from ease of fabrication point 

of view the 45°/-45°/45° stacking sequence may be concluded as the best option. 
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Interestingly, the failure loads obtained from different failure criteria for angle ply 

shells are comparable in magnitude which means that these shells fail satisfying almost all the 

independent and interactive criteria simultaneously and this behaviour indicates towards an 

optimum utilisation of the material strengths considering both fiber and matrix. Due to this 

efficient utilisation of the material properties the resultant load supporting capacities of the 

angle ply shells are much higher than their cross ply counterparts. 

 

Table 7.2 Nondimensionalized first ply failure loads )( LF  of angle ply shallow hypar shells 

Laminations Failure 

criteria 
LF  

Failure 

zone 

Failed 

ply 

Failure mode / failure 

tendency 

45°/-45° Maximum 

stress 

11189.99L A 1 Matrix cracking 

10755.87N A 1 Matrix cracking 

 Maximum 

strain 

9799.79L A 1 Matrix cracking 

9463.74N A 1 Matrix cracking 

Hoffman 11122.57L A 1 Matrix cracking 

10692.54N A 1 Matrix cracking 

Tsai-Hill 11727.27L A 1 Matrix cracking 

11251.28N A 1 Matrix cracking 

Tsai-Wu 10716.04L A 1 Matrix cracking 

10315.63N A 1 Matrix cracking 

Hashin 11159.35L A 1 Matrix cracking 

10726.25N A 1 Matrix cracking 

Puck 11154.24L A 1 Matrix cracking mode A 

10721.14N A 1 Matrix cracking mode A 

Serviceability 20953.01L B   

20007.15N B   

45°/-45°/45° Maximum 

stress 

14979.57L A 1 Matrix cracking 

14263.53N A 1 Matrix cracking 

 Maximum 

strain 

13661.90L A 1 Matrix cracking 

13082.74N A 1 Matrix cracking 

Hoffman 14894.79L A 1 Matrix cracking 

14184.88N A 1 Matrix cracking 

Tsai-Hill 15393.26L A 1 Matrix cracking 

14626.15N A 1 Matrix cracking 

Tsai-Wu 14546.48L A 1 Matrix cracking 

13875.38N A 1 Matrix cracking 

Hashin 14915.22L A 1 Matrix cracking 

14203.27N A 1 Matrix cracking 

Puck 14902.96L A 1 Matrix cracking mode A 

14192.03N A 1 Matrix cracking mode A 

Serviceability 20813.07L B   

19281.92N B   
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Laminations Failure 

criteria 
LF  

Failure 

zone 

Failed 

ply 

Failure mode / failure 

tendency 

45°/-45°/45°/-45° Maximum 

stress 

12441.27L A 1 Matrix cracking 

12017.36N A 1 Matrix cracking 

 Maximum 

strain 

11287.03L A 1 Matrix cracking 

10943.82N A 1 Matrix cracking 

Hoffman 12373.85L A 1 Matrix cracking 

11953.01N A 1 Matrix cracking 

Tsai-Hill 12818.18L A 1 Matrix cracking 

12363.64N A 1 Matrix cracking 

Tsai-Wu 12062.31L A 1 Matrix cracking 

11664.96N A 1 Matrix cracking 

Hashin 12391.22L A 1 Matrix cracking 

11969.36N A 1 Matrix cracking 

Puck 12382.02L A 1 Matrix cracking mode A 

11960.16N A 1 Matrix cracking mode A 

Serviceability 21186.93L B   

20955.06N B   

45°/-45°/-45°/45° Maximum 

stress 

14687.44L A 1 Matrix cracking 

14171.60N A 1 Matrix cracking 

 Maximum 

strain 

13417.77L A 1 Matrix cracking 

12998.98N A 1 Matrix cracking 

Hoffman 14602.66L A 1 Matrix cracking 

14090.91N A 1 Matrix cracking 

Tsai-Hill 15079.67L A 1 Matrix cracking 

14527.07N A 1 Matrix cracking 

Tsai-Wu 14268.64L A 1 Matrix cracking 

13785.50N A 1 Matrix cracking 

Hashin 14622.06L A 1 Matrix cracking 

14110.32N A 1 Matrix cracking 

Puck 14610.83L A 1 Matrix cracking mode A 

14098.06N A 1 Matrix cracking mode A 

Serviceability 20954.03L B   

21259.45N B   

Note: a/b = 1, a/h = 100, ‘L’ and ‘N’ indicate the linear and nonlinear failure loads respectively. 

 

7.3.3 Failure Zones of Hypar Shell and Guidelines to Non-Destructive Test Monitoring 

 

The different failure zones of a hypar shell in plan from where first ply failure initiates 

are marked as Zones A, B, C and D and shown in Fig. 7.1. In Tables 7.1 and 7.2 the failure 

zones corresponding to the failure loads for different cross and angle ply shells are furnished. 

The location of the first ply failure point is extremely important to be known to a practising 
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engineer because any instrumentation needed for hidden flaw detection should start from that 

point. For both clamped cross and angle ply  shells, failure always initiates from a zone close 

to the edges (zone A) within a narrow strip of width less than or equal to one-eighth of the plan 

dimension. This indicates that any non-destructive health monitoring instrumentation should 

be restricted within this peripheral area. 

In practical engineering collapse and serviceability failures should be taken together to 

conclude on the safe usability of a structure. For cross ply shells it is observed that for all 

laminations taken up here, the loads corresponding to the limiting deflection (taken as span / 

250 here) are less or marginally more than those obtained by using the different failure criteria 

of collapse. This means that periodic monitoring of the deflections undergone by the cross ply 

shells is enough to conclude on its safety. But this guideline is not valid for angle ply shell 

options. 

 
Lengths of each segments along X and Y axes are a/8 and b/8 respectively. 

Fig. 7.1 Failure zones of a hypar shell in plan. 
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7.3.4 Effect of Change of Curvature on Failure Loads and Suggestions Regarding Design 

Approaches 

 

The study done so far is about shells with the ratio of height to shorter span is 0.2. The 

study is extended for shallower shells as well, to explore the variation of the failure loads with 

curvature. The overall behaviour of a shell depends much on its curvature and hence the 

curvature is varied in terms of height to shorter span ratio from 0 to 0.2 to see the effect of 

curvature on the failure load values. The results are furnished in Tables 7.3 and 7.4. 

Interestingly for all curvature values, except for the plate case with no curvature, the maximum 

strain criterion governs the failure loads for angle ply shells. On the other hand, Puck’s failure 

criterion gives failure load values for cross ply shells for height to span ratio varying in between 

0.1 to 0.2 and in between 0 to 0.1 no such unified conclusion can be drawn. While for angle 

ply shells the failure loads increase monotonically with increase of curvature, on the other hand, 

for cross ply shells no such unified correlation is observed as evident from the results in Tables 

7.3 and 7.4.  

It is interestingly to note that in all four cases of cross and angle ply laminates taken up 

here, the failure loads obtained from serviceability criterion are less or marginally more than 

those from collapse criterion except for the cases of height to shorter span ratios equal to 0.2 

and 0.15 for only angle ply shells. For these two cases the reverse trend is observed. 

It is worth mentioning that the approach considering geometric nonlinearity of strains 

yields accurate results of failure loads undoubtedly but the linear approach is easy from 

implementation point of view. Naturally, a structural analyst may be keen to know that for 

which shell options the linear approach is acceptable to be used. To find the answer to this 

question the percentage differences between linear and nonlinear failure loads with the later as 

the base are furnished in Table 7.5. The cases where this percentage is negative the linear theory 
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yields a lower conservative value of failure load and may be used for design purpose. In other 

cases where this percentage is positive an exact analysis through nonlinear approach will give 

a lower conservative value of the failure load and the nonlinear theory should be adopted. It is 

noteworthy that whatever may be the approach by which the failure load is obtained, a factor 

of safety to the tune of 1.5 to 2 is to be applied on these loads to get the working load values. 

Keeping this in mind, the present author suggests here a practical relaxation that where the 

percentage difference as mentioned above is positive but within 5%, use of the linear theory to 

get the failure load and ultimately applying a factor of safety of 1.5 to 2 on it will safely assess 

the working load and may be recommended. Keeping this in view a recommendation matrix 

regarding the use of the approach of analysis is furnished in Table 7.6 for ready reference for 

a structural analyst. The table shows that for any cross ply combination the linear theory may 

be adopted while the applicability of this theory for analysis of angle ply shells is case specific. 

Keeping in mind the fact that the angle ply shells are prominently better than their cross ply 

counterparts, nonlinear approach has to be applied in many cases to correctly analyse the use 

of angle ply options. 

 

Table 7.3 Nondimensionalized first ply failure loads )( LF  for different height to span ratios of 

cross ply shells 

Laminations Failure 

criteria 
LF  

c/b=0.2 c/b=0.15 c/b=0.1 c/b=0.05 c/b=0 

0°/90° Maximum 

stress 

11653.73L 8569.97L 5301.33L 2993.87L 1686.42L 

11908.07N 8060.27N 6342.19N 4932.58N 4469.87N 

 Maximum 

strain 

11653.73L 8569.97L 5301.33L 2993.87L 1695.61L 

11908.07N 8060.27N 6342.19N 5082.74N 4641.47N 

Hoffman 10164.45L 8264.56L 5268.64L 2713.99L 1072.52L 

10879.47N 7639.43N 5302.35N 4213.48N 2928.49N 

Tsai-Hill 11578.14L 8563.84L 5300.31L 2947.91L 1701.74L 

11646.58N 8006.13N 5743.62N 4813.08N 4545.46N 

Tsai-Wu 10263.53L 8415.73L 5269.66L 2728.29L 1222.68L 

11066.39N 7649.64N 5347.29N 4635.34N 4127.68N 

Hashin 11389.17L 8545.45L 5296.22L 2940.76L 1686.42L 

11638.41N 7989.79N 5671.09N 4763.02N 4466.80N 

Puck 4922.37L 3039.84L 4112.36L 1587.33L 1344.23L 

4775.28N 3403.47N 3940.76N 4737.48N 4466.80N 
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Laminations Failure 

criteria 
LF  

c/b=0.2 c/b=0.15 c/b=0.1 c/b=0.05 c/b=0 

 Serviceability 3825.332L 2319.71L 963.23L 260.47L 73.54L 

3883.55N 2290.09N 984.68N 278.86N 88.87N 

0°/90°/0° Maximum 

stress 

10363.64L 8419.82L 5959.14L 3357.51L 1715.02L 

10972.42N 8942.80N 6350.36N 4040.86N 3054.14N 

 Maximum 

strain 

10272.73L 8419.82L 5959.14L 3311.54L 1689.48L 

10836.57N 8658.84N 6243.11N 3958.12N 2948.93N 

Hoffman 10205.31L 7712.97L 5393.26L 3316.65L 1713.99L 

10781.41N 8205.31N 5517.88N 4012.26N 3052.09N 

Tsai-Hill 10339.12L 8316.65L 5808.99L 3347.29L 1721.14L 

10890.70N 8648.62N 6257.41N 4034.73N 3064.35N 

Tsai-Wu 10248.21L 7740.55L 5396.32L 3325.84L 1717.06L 

10812.05N 8274.77N 5577.12N 4017.37N 3059.24N 

Hashin 10273.75L 8279.88L 5800.82L 3334.01L 1715.02L 

10839.63N 8606.74N 6230.85N 4023.49N 3054.14N 

Puck 3633.30L 2788.56L 2520.94L 2678.24L 1715.02L 

3485.19N 3884.58N 3604.70N 4021.45N 3054.14N 

Serviceability 3594.48L 2100.10L 1021.45L 369.77L 171.60L 

3656.79N 2146.07N 1046.99N 388.15N 187.95N 

0°/90°/0°/90° Maximum 

stress 

10747.7L 7982.64L 5310.52L 3062.31L 1588.36L 

10246.17N 8017.37N 5413.69N 3625.13N 2751.79N 

 Maximum 

strain 

10724.21L 7982.64L 5310.52L 3027.58L 1570.99L 

10195.10N 7959.14N 5342.19N 3541.37N 2686.42N 

Hoffman 10228.80L 7963.23L 4943.82L 2810.01L 1587.33L 

9914.20N 7835.55N 5329.93N 3604.70N 2750.77N 

Tsai-Hill 10604.70L 7982.64L 5257.41L 3065.37L 1597.55L 

10130.75N 7964.25N 5385.09N 3624.11N 2762.00N 

Tsai-Wu 10396.32L 7963.23L 4951.99L 2858.02L 1593.46L 

9966.29N 7886.62N 5343.21N 3610.83N 2757.92N 

Hashin 10506.64L 7977.53L 5242.08L 3050.05L 1588.36L 

10050.05N 7926.46N 5365.68N 3612.87N 2752.81N 

Puck 3422.88L 3496.43L 2698.67L 1912.16L 1588.36L 

3690.50N 3218.59N 3289.07N 3611.85N 2752.81N 

Serviceability 3942.80L 2165.48L 936.67L 319.71L 140.96L 

3964.25N 2185.90N 956.08N 337.08N 155.26N 

0°/90°/90°/0° Maximum 

stress 

9594.48L 8125.64L 5489.28L 2827.38L 1462.72L 

10008.17N 7898.88N 5642.49N 3276.81N 2792.65N 

Maximum 

strain 

9493.36L 8058.22L 5430.03L 2788.56L 1441.27L 

9896.83N 7669.05N 5547.50N 3203.27N 2719.10N 

Hoffman 9486.21L 7966.29L 5179.78L 2813.08L 1461.70L 

9907.05N 7626.15N 5520.94N 3263.53N 2791.62N 

Tsai-Hill 9586.31L 8098.06L 5490.30L 2830.44L 1467.82L 

9988.76N 7865.17N 5615.94N 3278.86N 2799.80N 

Tsai-Wu 9520.94L 7967.31L 5178.75L 2820.23L 1464.76L 

9940.76N 7658.84N 5574.06N 3269.66N 2795.71N 

Hashin 9534.22L 8045.97L 5460.67L 2819.20L 1462.72L 

9961.19N 7669.05N 5599.59N 3269.66N 2792.65N 

 Puck 3815.12L 3241.06L 2600.61L 2165.48L 1462.72L 

4224.72N 3007.15N 3568.95N 3269.66N 2792.65N 
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Laminations Failure 

criteria 
LF  

c/b=0.2 c/b=0.15 c/b=0.1 c/b=0.05 c/b=0 

 Serviceability 3710.93L 2144.03L 1009.19L 354.65L 166.50L 

3779.37N 2180.80N 1027.58N 373.85N 182.84N 

Note: a/b = 1, a/h = 100, ‘L’ and ‘N’ indicate the linear and nonlinear failure loads respectively. 

 

Table 7.4 Nondimensionalized first ply failure loads )( LF  for different height to span ratios of 

angle ply shells 

Laminations Failure 

criteria 
LF  

c/b=0.2 c/b=0.15 c/b=0.1 c/b=0.05 c/b=0 

45°/-45° Maximum 

stress 

11189.99L 9201.23L 6757.92L 3625.13L 542.39L 

10755.87N 8701.74N 6199.18N 3367.72N 1213.48N 

 Maximum 

strain 

9799.79L 8127.68L 6017.37L 3213.48L 493.36L 

9463.74N 7725.23N 5532.18N 3010.22N 1070.48N 

Hoffman 11122.57L 9150.15L 6722.17L 3600.61L 538.30L 

10692.54N 8653.73N 6166.50N 3348.32N 1197.14N 

Tsai-Hill 11727.27L 9603.68L 7018.39L 3773.24L 557.71L 

11251.28N 9066.39N 6430.03N 3496.43N 1239.02N 

Tsai-Wu 10716.04L 8839.63L 6511.75L 3484.17L 526.05L 

10315.63N 8372.83N 5982.64N 3246.17N 1163.43N 

Hashin 11159.35L 9173.65L 6735.44L 3610.83L 539.33L 

10726.25N 8676.2N 6178.75N 3355.47N 1199.18N 

Puck 11154.24L 9167.52L 6731.36L 3607.76L 539.33L 

10721.14N 8672.11N 6175.69N 3352.40N 1198.16N 

Serviceability 20953.01L 12413.69L 6075.59L 1405.52L 72.52L 

20007.15N 12185.90N 5984.68N 1403.47N 83.76N 

45°/ 

-45°/45° 

Maximum 

stress 

14979.57L 12905.01L 9972.42L 5536.26L 1257.41L 

14263.53N 11937.69N 8735.44N 4254.34N 2739.53N 

 Maximum 

strain 

13661.9L 11850.87L 9322.78L 5429.01L 1037.79L 

13082.74N 11045.97N 8127.68N 4011.24N 2983.66N 

Hoffman 14894.79L 12828.40L 9874.36L 5466.80L 1243.11L 

14184.88N 11870.28N 8686.42N 4203.27N 2557.71N 

Tsai-Hill 15393.26L 13216.55L 10000.0L 5500.51L 1355.47L 

14626.15N 12194.08N 8844.74N 4223.70N 2937.69N 

Tsai-Wu 14546.48L 12556.69L 9803.88L 5470.89L 1174.67L 

13875.38N 11643.51N 8533.20N 4202.25N 2723.19N 

Hashin 14915.22L 12844.74L 9905.01L 5494.38L 1257.41L 

14203.27N 11885.60N 8697.65N 4221.66N 2684.37N 

Puck 14902.96L 12834.53L 9892.75L 4949.95L 1257.41L 

14192.03N 11875.38N 8690.50N 4216.55N 2675.18N 

Serviceability 20813.07L 12553.63L 5888.66L 1335.04L 124.62L 

19281.92N 11858.02N 5642.49N 1255.36N 136.87N 

45°/-45°/ 

45°/-45° 

Maximum 

stress 

12441.27L 10522.98L 7953.01L 4287.03L 1004.09L 

12017.36N 10022.47N 7315.63N 3916.24N 1753.83N 

 Maximum 

strain 

11287.03L 9622.06L 7310.52L 4082.74L 1055.16L 

10943.82N 9207.35N 6790.60N 3691.52N 1860.06N 

Hoffman 12373.85L 10463.74L 7906.03L 4247.19L 978.55L 

11953.01N 9966.29N 7279.88N 3869.25N 1693.57N 
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Laminations Failure 

criteria 

  
LF    

c/b=0.2 c/b=0.15 c/b=0.1 c/b=0.05 c/b=0 

 Tsai-Hill 12818.18L 10799.8L 8140.96L 4310.52L 1027.58L 

12363.64N 10268.64N 7469.87N 3922.37N 1801.84N 

Tsai-Wu 12062.31L 10226.76L 7740.55L 4208.38L 1001.02L 

11664.96N 9753.83N 7159.35N 3841.68N 1742.59N 

Hashin 12391.22L 10477.02L 7916.24L 4259.45L 993.87L 

11969.36N 9978.55N 7283.96N 3884.58N 1727.27N 

Puck 12382.02L 10467.82L 7909.09L 4254.34L 991.83L 

11960.16N 9970.38N 7279.88N 3878.45N 1722.17N 

Serviceability 21186.93L 12946.88L 6182.84L 1320.74L 135.85L 

20955.06N 12869.25N 6159.35N 1326.86N 147.09N 

45°/-45°/ 

-45°/45° 

Maximum 

stress 

14687.44L 12747.70L 9993.87L 5367.72L 1313.59L 

14171.6N 12056.18N 8924.41N 4426.97N 2512.77N 

 Maximum 

strain 

13417.77L 11716.04L 9196.12L 5070.48L 1170.58L 

12998.98N 11144.02N 8307.46N 4097.04N 3101.12N 

Hoffman 14602.66L 12671.09L 9911.13L 5296.22L 1232.89L 

14090.91N 11984.68N 8870.28N 4417.77N 2363.64N 

Tsai-Hill 15079.67L 13049.03L 10030.64L 5346.27L 1397.34L 

  14527.07N 12314.61N 9088.87N 4541.37N 2787.54N 

Tsai-Wu 14268.64L 12406.54L 9727.27L 5309.50L 1306.44L 

13785.5N 11753.83N 8718.08N 4324.82N 2488.25N 

Hashin 14622.06L 12687.44L 9943.82L 5326.86L 1292.14L 

14110.32N 12000.00N 8882.53N 4426.97N 2479.06N 

Puck 14610.83L 12444.33L 9100.10L 4768.13L 1288.05L 

14098.06N 11989.79N 8875.38N 4426.97N 2479.06N 

Serviceability 20954.03L 12821.25L 6031.67L 1308.48L 137.90L 

 21259.45N 13214.50N 6064.35N 1347.29N 150.15N 

Note: a/b = 1, a/h = 100, ‘L’ and ‘N’ indicate the linear and nonlinear failure loads respectively. 

 

Table 7.5 Percentage differences between linear and nonlinear first ply failure loads 

Laminations 

Percentage differences between linear and nonlinear first ply 

failure loads 

c/b=0.2 c/b=0.15 c/b=0.1 c/b=0.05 c/b=0 

0°/90° 3.0802 -10.6843 4.3545 -62.3273 -63.3764 

0°/90°/0° 4.2497 -28.2146 -30.0652 -32.3355 -42.7087 

0°/90°/0°/90° -7.2515 8.6321 -17.9503 -46.0052 -41.5209 

0°/90°/90°/0° -9.6953 7.7785 -27.1322 -32.398 -46.9947 

45°/-45° 3.5509 5.2095 8.7703 6.7526 -53.9122 

45°/-45°/45° 4.4269 7.2868 14.7040 35.3450 -59.4249 

45°/-45°/45°/-45° 3.1360 4.5041 7.6564 10.5976 -42.2195 

45°/-45°/-45°/45° 3.2217 5.1329 10.6971 23.7596 -50.4754 

Note: a/b = 1, a/h = 100 
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Table 7.6 Recommendation on design 

Laminations 
Approach 

c/b=0.2 c/b=0.15 c/b=0.1 c/b=0.05 c/b=0 

0°/90° 
Geometric 

linear 

Geometric 

nonlinear 

Geometric 

linear 

Geometric 

linear 

Geometric 

linear 

0°/90°/0° 
Geometric 

linear 

Geometric 

nonlinear  

Geometric 

linear 

Geometric 

linear 

Geometric 

linear 

0°/90°/0°/90° 
Geometric 

linear 

Geometric 

nonlinear 

Geometric 

linear 

Geometric 

linear 

Geometric 

linear 

0°/90°/90°/0° 
Geometric 

linear 

Geometric 

nonlinear 

Geometric 

linear 

Geometric 

linear 

Geometric 

linear 

45°/-45° 
Geometric 

linear 

Geometric 

nonlinear 

Geometric 

nonlinear 

Geometric 

nonlinear 

Geometric 

linear 

45°/-45°/45° 
Geometric 

linear 

Geometric 

nonlinear  

Geometric 

nonlinear  

Geometric 

nonlinear  

Geometric 

linear 

45°/-45°/45°/-45° 
Geometric 

linear 

Geometric 

nonlinear 

Geometric 

nonlinear 

Geometric 

nonlinear 

Geometric 

linear 

45°/-45°/-45°/45° 
Geometric 

linear 

Geometric 

nonlinear 

Geometric 

nonlinear 

Geometric 

nonlinear 

Geometric 

linear 
 

 

7.3.5 Suggesting Partial Factor of Safety on Failure Loads for Design Purpose 

 

The shell combinations can be categorized into three distinct classes on carefully 

observing the results presented in Tables 7.1 to 7.4 as explained below. In some cases (say 

Class – I), the first ply failure loads are less than those corresponding to serviceability failures 

and from serviceability point of view these shells may be described as brittle ones as they fail 

even before the limit of serviceability failure is reached. In the second class of shells (say Class 

– II), the first ply failure loads are greater than those of corresponding to serviceability failure, 

but the ratio of the collapse load to that corresponding to serviceable limit of deflection does 

not exceed 3. The author chooses a practical ratio of 3 up to which the shells exhibit a ductile 

mode of failure and a practical factor of safety in between 1 to 3 may be imposed on the first 

ply failure load to get the safe values of working load. For the third category of shells (say 

Class – III), the above mentioned ratio exceeds 3, at places marginally and at places 

conspicuously to exhibit a highly ductile mode of failure. For these shells, the first ply failure 
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loads need not be evaluated at all. The ratios of collapse failure loads to the loads corresponding 

to permissible deflection values for all type of shells are furnished in Table 7.7. Since the 

nonlinear approach of analysis is the more reliable approach, Table 7.8 post-processes the data 

furnished in Table 7.7 and furnishes the factor of safety values equal to 1 for Class – I shells. 

For Class – II shells, conservative rounded off figures are furnished and no factor of safety 

values are suggested for Class – III shells. 

 

Table 7.7 Ratio of collapse load to load corresponding to permissible deflection  

Laminations c/b=0.2 c/b=0.15 c/b=0.1 c/b=0.05 c/b=0 

0°/90° 1.2296 1.4862 4.0021 15.1097 32.9525 

0°/90°/0° 0.9531 1.8100 3.4429 10.1974 15.6900 

0°/90°/0°/90° 0.9309 1.4724 3.4402 10.5060 17.3027 

0°/90°/90°/0° 1.1178 1.3789 3.4732 8.5683 14.8715 

45°/-45° 0.4730 0.6339 0.9243 2.1448 12.7803 

45°/-45°/45° 0.6785 0.9315 1.4404 3.1953 18.6871 

45°/-45°/45°/-45° 0.5223 0.7155 0.8174 2.7821 11.5138 

45°/-45°/-45°/45° 0.6114 0.8433 1.3699 3.0409 15.7419 

Note: a/b = 1, a/h = 100 

 

Table 7.8 Suggested partial factor of safety for different height to span ratio values to be 

imposed on first ply failure loads 

Laminations c/b=0.2 c/b=0.15 c/b=0.1 c/b=0.05 c/b=0 

0°/90° 1.25 1.5    

0°/90°/0° 1.0 2.0    

0°/90°/0°/90° 1.0 1.5    

0°/90°/90°/0° 1.25 1.5    

45°/-45° 1.0 1.0 1.0 2.25  

45°/-45°/45° 1.0 1.0 1.5   

45°/-45°/45°/-45° 1.0 1.0 1.0 3.0  

45°/-45°/-45°/45° 1.0 1.0 1.5   

Note: No factor of safety values have been suggested for Class – III shells 
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7.4 CONCLUDING REMARKS 

 

The present work leads to the following conclusions. 

 The failure load values of skewed hypar shells for different parametric variations reported 

here are expected to serve as valuable design aids to practicing structural engineers.  

 Among the cross ply shells taken up here, the two layered 00/900 laminate turns out to be 

the best choice, while 450/-450/450 stacking sequence may be considered as the best option 

in terms of first ply failure loads among the angle ply shells taken up here. 

 By virtue of geometry of a skewed hypar shell, majority of the loads and moments are 

transferred along the diagonal directions. This is why the angle ply laminates taken up here, 

which have their fibers oriented along the diagonals, prove to be convincingly better than 

the cross ply ones in terms of first ply failure. The strength of a laminate depends on 

individual contribution of the fibers and the matrix. The angle ply configurations optimally 

utilize the matrix and fiber strengths to yield higher first ply failure load values compared 

to the cross ply counterparts. Thus these stacking orders may be preferred by the practicing 

engineers for design purpose.  

 For angle ply shells, as the failure load corresponding to the limiting deflection (shorter 

span/250) is higher than the first ply collapse load, there is a possibility of a sudden brittle 

failure of these shells due to overloading without undergoing appreciable deflection. A 

designer must be cautious about this while using these laminates. 

 The critical values of bending moment and shear force occur at the support for clamped 

boundary condition. So the failure initiates at the region adjacent to the support and any 

non-destructive health monitoring measurements may be restricted within this peripheral 

area only.  
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 The recommendation table which points out the cases where a relatively simpler linear 

theory may be used in place of the more involved nonlinear theory to get the first ply failure 

loads shall be helpful to the researchers. 

 A design engineer may readily use the factor of safety values to be imposed on the first ply 

failure loads to get the working load values from the table given in this chapter. The 

nondimensional first ply failure loads corresponding to practical values of the parameters 

representing the shell curvature as used by design engineers practically are furnished in 

Tables 7.1 to 7.4. Further, indication about the failure zones has also been given which will 

be useful in non-destructive monitoring of shells at service. 
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Chapter 8 

NONLINEAR FIRST PLY FAILURE 

CHARACTERISTICS OF SIMPLY SUPPORTED 

HYPAR SHELL ROOFS 

 
8.1 GENERAL 

 

The different edge conditions with which the boundaries of a shell surfaces are 

restrained include the commonly used simply supported boundary. This chapter presents a 

study carried out on first ply failure characteristics of simply supported laminated composite 

skewed hypar shells for different stacking orders of the composite. The results are post 

processed to extract guidelines suitable for practicing engineers engaged in design of composite 

shells. For non-destructive health monitoring of a shell surface, an engineer has to first pinpoint 

the vulnerable area from where failure may initiate. This chapter presents clear guidelines 

indicating the vulnerable areas. The results are presented systematically in Section 8.3 and the 

pinpointed conclusions are mentioned precisely in Section 8.4. 

 

8.2 NUMERICAL EXAMPLES 

 

The uniformly distributed first ply failure load values (FL) are nondimensionalized as

  422 haEFLLF  . Various cross ply combinations including symmetric and anti-symmetric 

laminates such as 0°/90°, 90°/0°, 0°/90°/0°, 90°/0°/90°, 0°/90°/0°/90° or (0°/90°)2, 

90°/0°/90°/0° or (90°/0°)2, 0°/90°/90°/0° or (0°/90°)S and 90°/0°/0°/90° or (90°/0°)S are taken 

up here. On the other hand 45°/-45°, 45°/-45°/45°, 45°/-45°/45°/-45° or (45°/-45°)2 and 45°/-
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45°/-45°/45° or (45°/-45°)S angle ply laminates are also considered here. The failure load 

values ( LF ) and other failure related information like failure zones, modes or tendencies and 

first failed ply numbers are reported in Tables 8.1 and 8.2. Plies are numbered from top to 

bottom of the laminates. For any particular stacking sequence the minimum failure load value 

obtained from the different failure criteria is accepted as the first ply failure load from collapse 

point of view and it is marked in italics in Tables 8.1 and 8.2. Besides these failure loads 

corresponding to collapse point of view, the author also reports the failure loads corresponding 

to the permissible deflection of hypar shell taken as shorter span/250 in Tables 8.1 and 8.2. 

This load value is termed as the first ply failure load from serviceability standpoint. The failure 

study is carried out for various cross ply combinations which are obtained by repeating the 

0°/90° or the 90°/0° units. These results are furnished in Fig. 8.1.   

 

8.3 RESULTS AND DISCUSSIONS 

 

8.3.1 First Ply Failure Behaviour of Cross Ply Hypar Shells for Different Stacking 

Sequences 

 

Due to the effect of geometry of a hypar shell, majority of the loads are transferred 

along its diagonal directions while all the fibers of the cross ply laminates run along and 

perpendicular to the plan direction of the shell. Naturally, the matrix of a cross ply composite 

is weak in diagonal direction. Hence, all the cross ply laminates fail through in-plane shear 

failure of the matrix and results of Table 8.1 prove this fact. The Hoffman failure criterion 

yields the least value of the collapse failure loads in all the cases considered here. Hence, it is 

safely concluded that the Hoffman failure criterion may be accepted for the failure analysis of 

cross ply shells.  
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When two layered anti-symmetric cross ply laminates are compared, it is found that the 

0°/90° shell is convincingly better than the 90°/0° one as the former yields failure load value 

about 10% more than that of the later. Among the four layered anti-symmetric laminates, the 

failure load of (0°/90°)2 shell is about 6% more than that of (90°/0°)2 shell. On the other hand, 

symmetric three and four layered cross ply shells show comparable performances in terms of 

first ply failure. From fabrication point of view, an engineer must attempt to maximize the 

failure load value against a fixed cost of production. So, a study of the comparative values of 

the failure loads as discussed above will give a clue for selecting the most efficient stacking 

sequence for a given consumption of material. The 90° lamina lying above the mid surface is 

the most vulnerable layer in the cross ply shells as this ply fails first in all the cases considered 

here except for 0°/90° shell. For this exceptional case, the top ply fails first. This information 

may be utilised for non-destructive health monitoring.  

Safe and economical design means satisfying both collapse and serviceability criteria. 

So, the present author assesses the maximum allowable load from serviceability point of view 

with the permissible deflection of the shell taken as shorter span/250. These failure loads are 

given in Table 8.1. The serviceability failure load values are much lower than the failure loads 

obtained through collapse criteria. This indicates that the cross ply laminates behave like 

ductile materials. This is definitely an advantage of using cross ply shells because one gets 

sufficient warning before these shells fail due to overloading. Further it is noted that the 

maximum deflection occurs at the central node of the shell surface as expected for simply 

supported boundary condition. 
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Table 8.1. Nondimensionalized first ply failure loads )( LF of cross ply skewed hypar shells 

Lamination Failure theory LF  
Failure 

zone 

First 

failed 

ply 

Failure mode/ failure 

tendency 

0°/90° Maximum stress 7990.81 A 1 Matrix shear failure 

 

Maximum strain 7990.81 A 1 Matrix shear failure 

Hoffman 7540.35 A 1 Matrix shear failure 

Tsai-Hill 7941.78 A 1 Matrix shear failure 

Tsai-Wu 7557.71 A 1 Matrix shear failure 

Hashin 7932.58 A 1 Matrix cracking 

Puck 7804.90 A 1 Matrix cracking mode A 

Serviceability 2642.49 D   

90°/0° Maximum stress 7931.56 A 1 Matrix shear failure 

 

Maximum strain 7932.58 A 1 Matrix shear failure 

Hoffman 6633.30 A 1 Matrix shear failure 

Tsai-Hill 7321.76 A 1 Matrix shear failure 

Tsai-Wu 6638.41 A 1 Matrix shear failure 

Hashin 7310.52 A 1 Matrix cracking 

Puck 7045.97 A 1 Matrix cracking mode A 

Serviceability 2643.51 D   

0°/90°/0° Maximum stress 7431.05 A 1 Matrix shear failure 

 

Maximum strain 7431.05 A 1 Matrix shear failure 

Hoffman 6842.70 A 2 Matrix shear failure 

Tsai-Hill 7386.11 A 1 Matrix shear failure 

Tsai-Wu 6846.78 A 2 Matrix shear failure 

Hashin 7379.98 A 1 Matrix cracking 

Puck 7263.53 A 1 Matrix cracking mode A 

Serviceability 2636.36 D   

90°/0°/90° Maximum stress 8326.86 A 1 Matrix shear failure 

 

Maximum strain 8326.86 A 1 Matrix shear failure 

Hoffman 6963.23 A 1 Matrix shear failure 

Tsai-Hill 7688.46 A 1 Matrix shear failure 

Tsai-Wu 6968.34 A 1 Matrix shear failure 

Hashin 7675.18 A 1 Matrix cracking 

Puck 7398.37 A 1 Matrix cracking mode A 

Serviceability 2651.69 C   

0°/90°/0°/90° Maximum stress 7718.08 A 1 Matrix shear failure 

or (0°/90°)2 Maximum strain 7718.08 A 1 Matrix shear failure 

Hoffman 6836.57 A 2 Matrix shear failure 

Tsai-Hill 7540.35 A 2 Matrix shear failure 

Tsai-Wu 6839.63 A 2 Matrix shear failure 

Hashin 7530.13 A 2 Matrix cracking 

Puck 7260.47 A 2 Matrix cracking mode A 

Serviceability 2485.19 D   

90°/0°/90°/0° Maximum stress 7695.61 A 1 Matrix shear failure 

or (90°/0°)2 Maximum strain 7695.61 A 1 Matrix shear failure 

Hoffman 6436.16 A 1 Matrix shear failure 

Tsai-Hill 7107.25 A 1 Matrix shear failure 

Tsai-Wu 6439.22 A 1 Matrix shear failure 
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Lamination Failure theory LF  
Failure 

zone 

First 

failed 

ply 

Failure mode/ failure 

tendency 

 

Hashin 7096.02 A 1 Matrix cracking 

Puck 6839.63 A 1 Matrix cracking mode A 

Serviceability 2486.21 D   

0°/90°/90°/0° Maximum stress 7481.10 A 1 Matrix shear failure 

or (0°/90°)S Maximum strain 7481.10 A 1 Matrix shear failure 

Hoffman 6693.56 A 2 Matrix shear failure 

Tsai-Hill 7379.98 A 2 Matrix shear failure 

Tsai-Wu 6697.65 A 2 Matrix shear failure 

Hashin 7368.74 A 2 Matrix cracking 

Puck 7106.23 A 2 Matrix cracking mode A 

Serviceability 2562.82 D   

90°/0°/0°/90° Maximum stress 8045.97 A 1 Matrix shear failure 

or (90°/0°)S Maximum strain 8045.97 A 1 Matrix shear failure 

Hoffman 6725.23 A 1 Matrix shear failure 

Tsai-Hill 7426.97 A 1 Matrix shear failure 

Tsai-Wu 6729.32 A 1 Matrix shear failure 

Hashin 7416.75 A 1 Matrix cracking 

Puck 7148.11 A 1 Matrix cracking mode A 

Serviceability 2587.33 D   

Note: a/b = 1, a/h = 100, c/b = 0.2, minimum collapse failure loads are indicated by italics. 

 

8.3.2 First Ply Failure Behaviour of Angle Ply Hypar Shells for Different Stacking 

Sequences 

 

The nondimensionalized nonlinear first ply failure load values are reported for angle 

ply hypar shells in Table 8.2. The symmetric angle ply shells perform better than the anti-

symmetric ones in terms of first ply failure loads and (45°/-45°)S laminate gives the maximum 

failure load among all the angle ply options taken up here. This shell option also gives 

approximately 68.87% higher failure load than the failure load of 0°/90° shell which is the best 

option among all the cross ply shells considered presently. The maximum strain failure 

criterion may be accepted as the governing failure criterion for angle ply shells as it gives the 

minimum failure loads among all the collapse failure criteria considered here for all the angle 

ply cases. 
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It is interestingly noted that the top layers of all the angle ply shells fail first and it is a 

useful input to the practicing engineers for designing these shells. Since the skewed hypar shell 

transfers loads along its diagonal direction and for angle ply shells, the fibers also run along 

the diagonals, it is expected that the load bearing capacities of angle ply shells are higher than 

those of cross ply shells. The results of Tables 8.1 and 8.2 prove the correctness of this 

expectation.    

In contrast to the behaviour of the cross ply shells, the first ply failure loads obtained 

from the serviceability criterion are higher than the first ply failure loads from collapse point 

of view for all the angle ply shells. So there is a chance of brittle failure for this kind of shell 

and the user may not get adequate warning before failure.  

 

Table 8.2. Nondimensionalized first ply failure loads )( LF of angle ply skewed hypar shells 

Lamination Failure theory LF  
Failure 

zone 

First 

failed 

ply 

Failure mode/ failure 

tendency 

45°/-45° Maximum stress 8372.83 A 1 Matrix cracking 

 

Maximum strain 6309.50 A 1 Matrix cracking 

Hoffman 8229.83 A 1 Matrix cracking 

Tsai-Hill 8921.35 A 1 Matrix cracking 

Tsai-Wu 7515.83 A 1 Matrix cracking 

Hashin 8357.51 A 1 Matrix cracking 

Puck 8355.46 A 1 Matrix cracking mode A 

Serviceability 9751.79 D   

45°/-45°/45° Maximum stress 12233.91 A 1 Matrix cracking 

 

Maximum strain 10103.17 A 1 Matrix cracking 

Hoffman 12052.09 A 1 Matrix cracking 

Tsai-Hill 13162.41 A 1 Matrix cracking 

Tsai-Wu 11398.37 A 1 Matrix cracking 

Hashin 12213.48 A 1 Matrix cracking 

Puck 12210.42 A 1 Matrix cracking mode A 

Serviceability 16377.94 C   

45°/-45°/45°/-45° Maximum stress 12503.58 A 1 Matrix cracking 

or (45°/-45°)2 Maximum strain 10440.25 A 1 Matrix cracking 

Hoffman 12343.21 A 1 Matrix cracking 

Tsai-Hill 13385.09 A 1 Matrix cracking 

Tsai-Wu 11712.97 A 1 Matrix cracking 

Hashin 12478.04 A 1 Matrix cracking 

Puck 12472.93 A 1 Matrix cracking mode A 
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Lamination Failure theory LF  
Failure 

zone 

First 

failed 

ply 

Failure mode/ failure 

tendency 

 Serviceability 15145.05 C   

45°/-45°/-45°/45° Maximum stress 16116.45 A 1 Matrix cracking 

or (45°/-45°)S Maximum strain 12733.40 A 1 Matrix cracking 

Hoffman 15703.78 A 1 Matrix cracking 

Tsai-Hill 17593.46 A 1 Matrix cracking 

Tsai-Wu 14664.96 A 1 Matrix cracking 

Hashin 16100.10 A 1 Matrix cracking 

Puck 16097.04 A 1 Matrix cracking mode A 

 Serviceability 19389.17 C   

   Note: a/b = 1, a/h = 100, c/b = 0.2, minimum collapse failure loads are indicated by italics. 

 

8.3.3 Guidelines for Non-Destructive Test Monitoring from a Prior Knowledge of 

Probable Failure Zones 

 

For non-destructive health monitoring of a shell roof, a practicing engineer must have 

a prior knowledge of the vulnerable zones on the shell surface where from failure may initiate. 

The author has divided the plan area of the shell into distinct zones namely A, B, C and D 

which is depicted in Fig. 7.1 of Chapter 7. These failure zones are indicated against each shell 

combinations in Tables 8.1 and 8.2. It is noted that in all the cases taken up here failure initiates 

from Zone A and hence for detecting any hidden flaw appropriate instrumentations may be 

restricted within Zone A only.  

 

8.3.4 First Ply Failure Loads of Laminates (0°/90°)n and (90°/0°)n Units 

 

This chapter reports how the failure loads change if the 0°/90° or the 90°/0° units are 

repeated a number of times within a fixed thickness in Fig. 8.1. It is interestingly observed that 

the 0°/90° units yield higher failure load values in compare to the 90°/0° units for any given 

number of repetitions. All the shell options fail through the mode of in-plane shear failure of 
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matrix and the reason is discussed earlier of this section. When the number of repetition 

becomes one, the shells yield maximum failure load for both the units (0°/90° and 90°/0°) and 

the failure loads decrease gradually when the units are repeated more than once. This 

observation leads to conclude that there is no point in repeating the 0°/90° units more than once 

through involved fabrication process because there is no corresponding gain from first ply 

failure load point of view. 

 

 
Fig.8.1. Failure loads of skewed hypar shells by repeating anti-symmetric units 

 

8.3.5 Suggesting Partial Factor of Safety Values on First Ply Failure Loads 

 

In every civil engineering design, the concept of working load is an important point of 

interest. The failure loads corresponding to serviceability failure are considered as working 

loads here. The author reports the values of the ratios of first ply failure loads to working loads 

in Table 8.3. These values rounded up to nearest quarter of an integer may be proposed as the 

partial factor of safety values. In some cases, for angle ply shells, the failure loads due to 
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collapse point of view are lower than the failure loads corresponding to serviceability failure. 

Naturally, for these cases, the above mentioned ratio works out to be less than unity and the 

partial factor of safety may be suggested as unity. 

 

Table 8.3. Partial factors of safety for composite simply supported skewed hypar shells 

Lamination 
Ratios of first ply failure 

loads to working loads 

Proposed partial factor 

of safety 

0°/90° 2.85 3.00 

90°/0° 2.51 2.75 

0°/90°/0° 2.60 2.75 

90°/0°/90° 2.63 2.75 

0°/90°/0°/90° or (0°/90°)2 2.75 2.75 

90°/0°/90°/0° or (90°/0°)2 2.59 2.75 

0°/90°/90°/0° or (0°/90°)S 2.61 2.75 

90°/0°/90°/0° or (90°/0°)S 2.60 2.75 

45°/-45° 0.65 1.0 

45°/-45°/45° 0.62 1.0 

45°/-45°/45°/-45° or (45°/-45°)2 0.69 1.0 

45°/-45°/-45°/45° or (45°/-45°)S 0.66 1.0 

Note: a/b = 1, a/h = 100, c/b = 0.2 

 

8.4 CONCLUDING REMARKS 

 

The following conclusions are evident from the present study. 

 The nondimensionalized first ply failure loads of skewed hypar shells of simply supported 

boundary condition that are presented here are expected to serve as very useful design 

guidelines to the practicing engineers. 

 The matrix of a cross ply composite is very weak in diagonal direction when it is used to 

fabricate the hypar shell. So all the cross ply laminates fail through in-plane shear failure 

of the matrix. 

 The angle ply shells give higher first ply failure loads than the cross ply shells. The (45°/-

45°)S and 0°/90° shell options turn out to be the best among angle and cross ply shells in 

terms of first ply failure load values respectively. 
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 Though angle ply shells are convincingly better than the cross ply ones in terms of first ply 

failure but these angle ply shells exhibit a brittle failure which may be attributed as one of 

their disadvantages. On the other hand, the nature of failure of cross ply shells is quite 

gradual and this ductility is preferred in many practical cases despite the fact that these 

shells fail under relatively lower values of surface pressure. 

 There is no significant gain from first ply failure loads point of view when 0°/90° or 90°/0° 

units are repeated more than once within a given shell thickness. 

 Guidelines for non-destructive monitoring of skewed hypar shells and the suggested partial 

factor of safety values which are to be applied on the first ply failure load to get the working 

loads are expected to be extremely valuable inputs to practicing engineers. 
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Chapter 9 

SCOPE FOR FUTURE RESEARCH 

 
The first ply failure of laminated composite shell roofs are studied in the present 

investigation considering the geometrically linear and nonlinear strain terms. Among the 

various types of shell geometries, the spherical and skewed hypar shell forms are examined 

numerically in terms of their first ply failure behaviours in this research work. Though the pin 

pointed scope of the present study is reported in Chapter 3 but the present work is not claimed 

to be complete in all respects. Several other areas where future researches may be extended to 

have become apparent through review of literature and also during the course of this research 

work. Some of the areas are indicated below. 

First ply failure study using linear and nonlinear strains may be carried out for other 

shell configurations like the elliptic paraboloidal and conoidal ones which are aesthetically 

attractive. This study may be extended for different values of height to short span ratios. Failure 

study under dynamic loads may be investigated also. First ply and progressive failure studies 

on shells having different boundary conditions along the different edges are also interesting 

areas for future researchers. Shell configurations with cutouts, stiffeners – concentric or 

eccentric have received relatively less attention and hence failure study on these shell 

combinations may be carried out. Shells of smart composites and functionally graded materials 

may be taken up for future study. 

The above areas are only indicative but not exhaustive. Deeper search within the 

literature is expected to unfold many other areas which need attention but have not been studied 

and reported. 
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