

Crosstalk Minimization in

Channel Routing for VLSI

Circuit Synthesis

Thesis Submitted

by

Achira Pal (nee Biswas)

Doctor of Philosophy (Engineering)

Department of Computer Science and

Engineering

Faculty Council of Engineering and Technology

Jadavpur University

Kolkata 700 032, India

2017

Dedicated to

The fond memory of my parents

Who would have been the happiest

To see this work in this complete form

JADAVPUR UNIVERSITY

KOLKATA – 700 032, INDIA

INDEX NO.: 57/10/E

1. Title of the Thesis: Crosstalk Minimization in Channel Routing for VLSI Circuit

Synthesis

2. Name, Designation, and Institution of the Supervisors:

Dr. Atal Chaudhuri

Professor

Department of Computer Science and Engineering

Jadavpur University, Kolkata – 700 032

Dr. Alak Kumar Datta

Professor

Department of Computer and System Sciences

Visva-Bharati, Santiniketan, Bolpur, West Bengal – 731 235

3. List of Publications:

Refereed Journals

J[1] Achira Pal, D. Kundu, A. K. Datta, T. N. Mandal, and R. K. Pal,

Algorithms for Reducing Crosstalk in Two-Layer Channel Routing, Journal

of Physical Sciences (ISSN: 0972-8791), vol. 10, pp. 167-177, Dec. 2006.

J[2] Achira Pal, A. K. Datta, and R. K. Pal, Parallel Crosstalk Minimization

Algorithms for Two-Layer Channel Routing. The Icfai Journal of

Computer Sciences (Reference # 56J-2007-10-02-01), vol. I, no. 2, pp. 31-

44, Oct. 2007.

J[3] Achira Pal, A. K. Datta, and R. K. Pal, Weighted Hamiltonian Path

Problem is also NP-Hard, The Icfai Journal of Computer Sciences

(Reference # 56J-2007-10-02-01), vol. II, no. 2, pp. 80-82, Apr. 2008.

J[4] Achira Pal, T. N. Mandal, D. Kundu, A. K. Datta, and R. K. Pal,

Algorithms for Generating Random Channel Instances for Channel Routing

Problem, International Journal of Applied Research on Information

vi

Technology and Computing (IJARITAC) (ISSN: 0975-8070), vol. 1, no. 1,

pp. 106-129, Jan-Apr 2010.

J[5] Achira Pal, T. N. Mandal, A. Khan, R. K. Pal, A. K. Datta, and A.

Chaudhuri, Two Algorithms for Minimizing Crosstalk in Two-Layer

Channel Routing, International Journal of Emerging Trends and

Technology in Computer Science (IJETTCS) (ISSN: 2278-6856), vol. 3,

no. 6, pp. 194-204, 2014.

J[6] Achira Pal, T. N. Mandal, A. Khan, R. K. Pal, A. K. Datta, and A.

Chaudhuri, A Review on Crosstalk Avoidance and Minimization in VLSI

Systems, International Journal of Emerging Technology and Advanced

Engineering (IJETAE) (ISSN: 2250-2459 (Online)), vol. 5, no. 3, pp. 144-

150, 2015.

J[7] Achira Pal (nee Biswas), A. Chaudhuri, R. K. Pal, and A. K. Datta,

Hardness of Crosstalk Minimization in Two-Layer Channel Routing,

INTEGRATION, the VLSI Journal (Elsevier) (ISSN: 0167-9260), vol. 56,

pp. 139-147, 2017.

Refereed Conference Proceedings

C[1] Achira Pal, A. Singha, S. Ghosh, and R. K. Pal, High Performance Routing

for VLSI Circuit Synthesis, Proceedings of the Sixth IEEE VLSI Design

and Test Workshops 2002 (IEEE VDAT 2002), Bangalore, India, pp. 348-

351, Aug. 29-31, 2002.

C[2] Achira Pal, A. Singha, S. Ghosh, and R. K. Pal, Crosstalk Minimization in

Two-Layer Channel Routing, Proceedings of the 17th IEEE Region 10

International Conference on Computers, Communications, Control and

Power Engineering (IEEE TENCON 2002), Beijing, China, vol. 1, pp.

408-411, Oct. 28-31, 2002.

C[3] Achira Pal, B. Dam, S. Sadhu, and R. K. Pal, Performance Driven Physical

Synthesis, Proceedings of the International Conference on

Communications, Devices and Intelligent Systems (CODIS 2004),

Kolkata, India, pp. 194-197, Jan. 9-10, 2004.

vii

C[4] Achira Pal, A. K. Datta, D. Kundu, T. N. Mandal, and R. K. Pal,

Algorithms for High Performance Two-Layer Channel Routing,

Proceedings of the 22nd IEEE Region 10 International Conference on

Intelligent Information Communication Technologies for Better Human

Life (IEEE TENCON 2007), CD: Session: WeSC-O1.4 (Electronic Design

Automation (EDA) of System-on-Chip) (Four pages), Taipei, Taiwan, Oct.

30 – Nov. 02, 2007.

C[5] Achira Pal, A. K. Datta, and R. K. Pal, On Weighted Hamiltonian Path

Problem, Proceedings of the International Conference on Electronics,

Computer and Communication (ICECC 2008) (ISBN 984-300-002131-3),

University of Rajshahi, Bangladesh, pp. 97-100, Jun. 27-29, 2008.

C[6] Achira Pal, T. N. Mandal, A. K. Datta, D. Kundu, and R. K. Pal,

Generation of Random Channel Specifications for Channel Routing

Problem, Proceedings of the 11th IEEE International Conference on

Computer and Information Technology (IEEE ICCIT 2008) and

Workshops, Khulna, Bangladesh, pp. 19-24, Dec. 24-27, 2008.

C[7] Achira Pal, T. N. Mandal, A. K. Datta, R. K. Pal, and A. Chaudhuri,

Approximate and Bottleneck High Performance Routing for Self-healing

VLSI Circuits, Presented in the Second IEEE International Workshop on

Reliability Aware System Design and Test (IEEE RASDAT 2011) (In

conjunction with the IEEE 24th International Conference on VLSI Design

(IEEE VLSID 2011) and the IEEE 10th International Conference on

Embedded Systems (IEEE ES 2011)), Chennai, India, Jan. 6‐7, 2011.

4. List of Patents: Nil

5. List of Presentations in International Conferences/Workshops:

C[1] Achira Pal, T. N. Mandal, A. K. Datta, R. K. Pal, and A. Chaudhuri,

Approximate and Bottleneck High Performance Routing for Self-healing

VLSI Circuits, Presented in the Second IEEE International Workshop on

Reliability Aware System Design and Test (IEEE RASDAT 2011) (In

conjunction with the IEEE 24th International Conference on VLSI Design

viii

(IEEE VLSID 2011) and the IEEE 10th International Conference on

Embedded Systems (IEEE ES 2011)), Chennai, India, Jan. 6-7, 2011.

CERTIFICATE FROM THE SUPERVISORS

This is to certify that the thesis entitled “Crosstalk Minimization in Channel Routing

for VLSI Circuit Synthesis” submitted by Smt Achira Pal (nee Biswas), who got her

name registered on 30.08.2010 for the award of Ph.D. (Engineering) degree of

Jadavpur University is absolutely based upon her own work under the supervision of

Prof. Atal Chaudhuri and Prof. Alak Kumar Datta, and that neither her thesis nor any

part of the thesis has been submitted for any degree/diploma or any other academic

award anywhere before.

Dr. Alak Kumar Datta

Professor

Department of Computer and

System Sciences

Visva-Bharati, Santiniketan

Dr. Atal Chaudhuri

Professor

Department of Computer Science

and Engineering

Jadavpur University, Kolkata

Acknowledgement

Foremost, even though only my name appears on the cover of this dissertation, a great

many people have contributed towards its production. I owe my gratitude to all those

people who have made this dissertation possible and because of whom my research

experience has been one that I will cherish forever.

I have great pleasure to express my deepest feelings of gratitude to Dr. Atal

Chaudhuri, Professor, Department of Computer Science and Engineering, Jadavpur

University and Dr. Alak Kumar Datta, Professor, Department of Computer and

System Sciences, Visva-Bharati, Santiniketan, who as my respective supervisor and

co-supervisor have extensively helped in completion of this work with their valuable

suggestions, guidance, cooperation, patience, and love. I do consider myself very

lucky for working under such knowledgeable, helpful, and gentle persons.

I would like to thank all the faculty members and non-teaching staff members

of the Department of Computer Science and Engineering along with all my co-

researchers for their valuable help, suggestions, and encouragements.

I am also grateful to my co-researchers, Dr. Debasis Dhal, Mr. Tarak Nath

Mandal, Mr. Debojit Kundu, and Mr. Abhinandan Khan, to name a few, for their

untiring support, sharing thoughts, long discussions, continuous encouragement, and

helping me understand and enrich my ideas.

I would also like to express my sincere thanks to my colleagues at my place of

work, Harinavi Subhasini Balika Sikshalaya, in South 24 Parganas. They have

provided all the support and encouragement needed to complete my dissertation,

without which I may not have been able to pursue my research.

Last but not the least, I owe a huge debt to my beloved parents, my husband

and our son and daughter whose inspiration, patience, understanding, love and

unfailing support have enabled me to complete this dissertation.

(Achira Pal (nee Biswas))

Abstract

The channel routing problem (CRP) is the problem of computing a feasible routing

solution for the nets present in a channel so that the number of tracks required to route

the channel is minimized. A channel is a rectangular routing region that has two open

ends, the left and right sides of the region, and the other two sides of the channel

contains two rows of fixed terminals. The major cost factors that, in isolation or in

combination, are normally minimized in CRP are the area, net wire length, via, and

layer of interconnection. Besides, there are several other high performance factors like

signal delay, power consumption, heat generation, hot spot formation, electrical

hazards, and so on and so forth that are all research issues nowadays and these

objectives are needed to be considered in channel routing to maximize the chip

performance, even after a feasible routing solution is there.

In this thesis, we have considered the problem of crosstalk minimization as a

kind of electrical hazard that need to be reduced to enhance circuit performance. As

fabrication technology advances and feature size reduces, devices are placed in closer

to each other and interconnecting wire segments are assigned with narrower pitch,

whereas the circuits’ operations are realized at higher frequencies. As a result,

electrical hazards, viz., crosstalk between wire segments are evolved. More crosstalk

means more noise and more signal delay that reduce the circuit performance.

Therefore, it is desirable to develop channel routing algorithms that not only reduce

the channel area but also crosstalk. Work on routing channels with reduced crosstalk

is very important from high performance requirement for VLSI circuit synthesis.

There are several theoretical problems on crosstalk minimization in two-layer

channel routing, some of which are posed and proved as NP-complete in this thesis.

Subsequently, this thesis includes algorithms that have been designed for reducing

crosstalk in two-layer channel routing, devises algorithms for generation of a large

number of random channel specifications, parallel algorithms for minimizing

crosstalk, heuristics for lessening crosstalk for reduced area routing solutions in order

to optimize cost and maximize circuit performance that are some of the prime

contributions in brief to mention. In this work, we have studied the computational

complexity issues of the crosstalk minimization problem for simple and general

xiv

instances of channel specification with a partition of nets so that the nets in a class of

the given partition are to be assigned to the same track, the simple as well as general

instances of channel specifications with only two-terminal nets but without any

imposed partition of (non-overlapping) nets to tracks, the bottleneck crosstalk

minimization problem, and so on and so forth in the reserved no-dogleg two-layer

VH channel routing model.

In all these cases, the problems are considered when doglegging is allowed as

well. We further investigate the existence of exact or heuristic algorithms and

approximation algorithms for the abovementioned problems of crosstalk minimization

in two-layer channel routing. This thesis also identifies that the crosstalk minimization

problem in the three-layer VHV and HVH channel routing models are yet open for

future researchers.

Table of Contents

Abstract ... xiii-xiv

2.4 Summary

Table of Contents .. xv-xx

2.4 Summary

List of Figures ... xxi-xxxvi

2.4 Summary

List of Tables ... xxxvii-xxxviii

2.4 Summary

List of Abbreviations ... xxxix-xlii

2.4 Summary

Chapter 1: Introduction to Crosstalk Minimization Problem 1-34

1.1 Overview .. 1

1.2 The VLSI Chip Design Process ... 4

1.3 The VLSI Physical Design Process .. 7

1.4 Channel Routing ... 13

1.4.1 The Structure of a Channel .. 16

1.4.2 Channel Routing Models ... 17

1.4.3 Characterization of the Channel Routing Problem 24

1.4.4 A Lower Bound on the Number of Tracks .. 27

1.4.5 Optimization Issues Involving the Channel Routing Problem 28

1.5 Outline of the Thesis .. 31

2.4 Summary

Chapter 2: Literature Survey on Crosstalk Minimization Problem 35-54

2.1 Overview .. 35

2.2 Some Basic Terms and Preliminaries on the Theory of NP-Completeness 36

2.3 A Review on Crosstalk Avoidance and Minimization 41

2.3.1 Crosstalk in IC based Environment ... 41

2.3.1.1 Simulated Annealing based Approach ... 41

2.3.1.2 Signal Transformation Avoidance Technique 42

2.3.2 In-built Crosstalk Avoidance in Fabrication ... 42

2.3.2.1 An Alternative Layout Scheme for Crosstalk Avoidance 42

2.3.2.2 Crosstalk Minimization in Optical Networks 43

2.3.2.3 Crosstalk Avoidance in Nanometer ICs ... 43

2.3.2.4 Crosstalk Reduction in Fabrication Technologies 44

xvi

2.3.3 Crosstalk Reduction in Circuits and Systems .. 44

2.3.3.1 Crosstalk Reduction in Communication Systems 44

2.3.3.2 A Gate Sizing Technique for Crosstalk Minimization 44

2.3.3.3 Encoding Schemes for Reduction in Signal Transition in Crosstalk

Minimization .. 45

2.3.4 Crosstalk Reduction in Communication .. 46

2.3.4.1 Coding Scheme for Reduction of Signal Transition 46

2.3.4.2 A New Dielectric Structure to Reduce Crosstalk in ICs 46

2.3.5 Crosstalk Avoidance in Network-on-Chip .. 47

2.3.5.1 Crosstalk Avoidance in Network-on-Chips (NoCs) 47

2.3.5.2 Flow-Control in NoC for Avoiding Crosstalk 47

2.3.5.3 Optimization Techniques in NoC Design to Reduce Crosstalk 48

2.3.6 Crosstalk in Analog/Digital Circuits ... 48

2.3.6.1 Impact of Crosstalk on Circuit Design... 48

2.3.6.2 Interconnect Spacing Technique for Crosstalk Minimization 49

2.3.7 Crosstalk Avoidance in Interconnects ... 49

2.3.7.1 A Frequency Domain Approach for Minimization of Crosstalk in

High-Speed Interconnects .. 49

2.3.7.2 Error Control Coding to Reduce Crosstalk .. 50

2.3.7.3 Bus-Coding Techniques for Crosstalk Avoidance 50

2.3.8 Crosstalk Minimization in Routing ... 51

2.3.8.1 A Routing Framework for Crosstalk Avoidance 51

2.3.8.2 Switchbox Routing with Crosstalk Constraints 51

2.3.8.3 Crosstalk Minimization in Channel Routing 51

2.3.8.4 Crosstalk Minimization in Microring-based Wavelength Routing

Matrices .. 52

2.3.8.5 Simulated Annealing based Approach to Crosstalk Minimization in

Gridded Channel Routing .. 53

2.4 Summary .. 53

2.4 Summary

Chapter 3: Hardness of Crosstalk Minimization in Two-Layer Channel Routing

... 55-78

3.1 Overview .. 55

3.2 Crosstalk Minimization in Two-Layer Channel Routing 56

xvii

3.2.1 Foundation of the Problem .. 56

3.2.2 Models of Crosstalk Minimization .. 57

3.2.2.1 Types of Crosstalk Minimization... 58

3.3 Crosstalk Minimization in Channel Routing .. 61

3.4 Theoretical Proofs .. 63

3.4.1 Hardness of Crosstalk Minimization in the Absence of Vertical Constraint

 .. 63

3.4.2 Hardness of Other Crosstalk Minimization Problems 68

3.4.3 Hardness of Approximating Crosstalk Minimization.................................. 69

3.4.4 Hardness of Bottleneck Crosstalk Minimization ... 73

3.4.5 Hardness of Crosstalk Minimization in Doglegging 75

3.5 Summary .. 76

2.4 Summary

Chapter 4: Algorithms for Computing Two-Layer Reduced Crosstalk Channel

Routing Solutions .. 79-108

4.1 Overview .. 79

4.2 Area and Crosstalk Minimization in CRP .. 79

4.3 Algorithms for Crosstalk Minimization ... 82

4.3.1 The First Heuristic: Algorithm Track_Change ... 83

4.3.1.1 The Basic Approach Used ... 83

4.3.1.2 Modification Introduced .. 88

4.3.1.3 More on Implementation Details ... 90

4.3.1.4 Algorithms at a Glance .. 92

4.3.1.5 Computational Complexity .. 94

4.3.2 The Second Heuristic: Algorithm Net_Change ... 95

4.3.2.1 The Method Used ... 95

4.3.2.2 Algorithm Net_Change at a Glance ... 96

4.3.2.3 Computational Complexity ... 98

4.4 Experimental Results .. 98

4.5 Summary .. 107

2.4 Summary

Chapter 5: Algorithms for Generation of Random Channel Specifications

... 109-144

5.1 Overview .. 109

xviii

5.2 A Review on Channel Instance Generation ... 109

5.3 A Prelude to the Generation of Random Channel Instances 111

5.4 Generation of Simple Channel Specifications ... 113

5.4.1 Formulation of the Problem... 115

5.4.2 The Algorithm and Its Complexity.. 117

5.4.3 An Illustration .. 119

5.5 Generation of General Channel Specifications .. 126

5.5.1 An Overview ... 126

5.5.2 Formulation of the Problem... 127

5.5.3 The Algorithm ... 129

5.5.4 An Illustration .. 131

5.5.5 The Complexity of the Algorithm ... 134

5.5.6 Removal of Cyclic Vertical Constraints .. 135

5.6 Experimental Results .. 136

5.7 Usefulness in Developing the Algorithms ... 141

5.8 Summary .. 144

2.4 Summary

Chapter 6: Experimental Results on Generating Random Channel Instances and

Computing Two-Layer Reduced Crosstalk Channel Routing Solutions 145-196

6.1 Overview .. 145

6.2 Generation of Random Channel Instances ... 146

6.2.1 Generation of Simple Channel Instances .. 147

6.2.2 Generation of General Channel Instances ... 154

6.3 Results of Crosstalk Minimization Algorithms .. 166

6.3.1 Results of Crosstalk Minimization Algorithms for Simple Channel

Instances ... 168

6.3.2 Results of Crosstalk Minimization Algorithms for General Channel

Instances ... 183

6.4 Summary .. 196

2.4 Summary

Chapter 7: Parallel Algorithms for Computing Two-Layer Reduced Crosstalk

Channel Routing ... 197-212

7.1 Overview .. 197

7.2 A Revisit to the Channel Routing Problem .. 197

xix

7.3 Area and Crosstalk Minimization in Channel Routing 200

7.4 Parallel Algorithms for Minimizing Crosstalk ... 201

7.4.1 Algorithm 1: Parallel Track Interchange .. 202

7.4.1.1 Computational Complexity of Algorithm Parallel Track Interchange

 .. 203

7.4.2 Algorithm 2: Parallel Net Change .. 206

7.4.2.1 Computational Complexity of Algorithm Parallel Net Change 210

7.5 Summary .. 211

2.4 Summary

Chapter 8: Conclusion .. 213-220

8.1 Contribution of the Thesis .. 213

8.2 Open Problems and Future Scopes ... 216

2.4 Summary

Bibliography .. 221-230

xx

List of Figures

Figure Figure Caption Page No.

1.1 Input and output to the physical design step. The circuit to be

realized along with the design style is inputted while the

layout is the output of this step.

2

1.2 The VLSI chip design process. 5

1.3 The VLSI physical design process. 8

1.4 An example VLSI chip hierarchy. 9

1.5 Aspect ratio of a block, where v is the vertical dimension (or

width) of the block and h is the horizontal dimension (or

length) of the block.

9

1.6 (a) A channel is a rectangular routing region with fixed

terminals only on its two opposite sides, and the other two

opposite sides are open ends. (b) A switchbox is a (closed)

rectangular routing region with fixed terminals on any three

or all four sides of the region.

11

1.7 (a) Layout of rectangular circuit blocks A through H and pins

after placement, at some level of the hierarchy. Terminals are

located on the periphery of blocks as well as on the boundary

of the chip. Local (rectangular) routing regions (either

channels or switchboxes) are separated by dotted lines. (b)

Interconnection among the blocks after global routing through

different local routing regions, as per the netlist. (c)

Interconnection among the blocks after detailed routing

showing each exact geometric assignment.

11

xxii

1.8 (a) An (assumed) assignment of five blocks AE over the

chip floor after the placement phase is over. (b) The overall

routing space is divided into 12 rectangles where the routing

regions, 16, 9, and 10 are channels, and the remaining

routing regions, 7, 8, 11, and 12 are switchboxes. (c) An

alternative (or better) division of the overall routing space into

only nine rectangles where the routing regions, 14, 6, and 7

are channels, and the remaining routing regions, 5, 8, and 9

are switchboxes.

14

1.9 An example channel of eight nets. Intervals of the nets are

placed in four different tracks. Terminals are vertically

aligned along the columns of the channel. The length of the

channel (i.e. the number of columns) is 18. Arrows indicate

the terminals to be connected, either at the top or at the

bottom, to complete the required interconnection of all nets

belonging to the channel.

16

1.10 The structure of a channel, which is always rectangular in

shape with two rows of fixed terminals situated at the pin

locations. Rectilinear wire segments of different nets are

assigned to different tracks and columns of the channel; tracks

are parallel to the rows of fixed terminals and columns are

perpendicular to the rows of fixed terminals. The left and

right ends of the channel are open ends. If the number of

columns (or the number of pin locations) is c, then the length

of the channel is c+1. If the number of tracks required to route

the channel is t, then the height of the channel is t+1. In

reality, the height of a channel is determined by the number of

tracks required to route the channel (that certainly vary from

channel to channel).

17

1.11 (a) A routing solution in a grid-based routing model where

two orthogonal wire segments of a net that reach a grid point

18

xxiii

are connected by a via. (b) No superimposed grid is present in

a gridless routing model; pin locations are not necessarily

equispaced, and the thickness of wire segments may also

vary.

1.12 (a) Routing in a reserved layer routing model. Here a channel

is routed using two layers of interconnect; one layer is

reserved for horizontal wire segments (firm segments), and

the other layer is reserved for vertical wire segments (dashed

segments). Vias are introduced at grid points to connect

orthogonal wire segments of respective nets. (b) An

unreserved layer routing solution for the same channel, where

no layer is assigned for a given type of wire segments. In this

routing solution, three nets are assigned to three different

layers of interconnect, differentiated by the firm, smaller, and

bigger dashed segments (while net 2 can also be assigned to

the same layer of net 1).

19

1.13 (a) A routing solution in an overlap routing model, where a

single track is used to assign the horizontal wire segments of

two different nets in different layers of interconnects. (b) A

non-overlap routing solution in an unreserved layer routing

model that may require more tracks to route all the nets.

20

1.14 (a) A no-dogleg routing solution. (b) A restricted dogleg

routing solution, where net 1 is split (into subnets) in a

column that contains a terminal of net 1. (c) An unrestricted

dogleg routing solution, where net 2 is split (into subnets) in a

column that does not contain a terminal of net 2.

21

1.15 (a) A routing instance (of a channel) that has no no-dogleg

(two-layer) feasible routing solution in the reserved layer

routing model. The “?” mark indicates that the third column

of the channel is already occupied by the vertical wire

segment of net 1 that has been assigned to the top track, and

21

xxiv

the vertical wire segment of net 2 that has been assigned to

the bottom track, is not assignable to this column (to avoid

short-circuit). (b) A feasible dogleg routing solution of the

channel instance, where the horizontal wire segment of net 1

is split and assigned to different tracks (tracks 1 and 3) and

the horizontal wire segment of net 2 is assigned to track 2; as

a result, more vias are needed.

1.16 (a) A no-dogleg routing solution of a channel instance (that

requires four tracks, means more area). (b) A doglegged

routing solution of the same channel instance using only two

tracks means less routing area (sacrificing more vias).

22

1.17 (a) A routing solution in the knock-knee routing model where

a grid point is shared by two nets assigned to various layers of

interconnect. (b) A solution of the same channel in the

Manhattan-diagonal routing model. Vias used in diagonal

routing are specially designed; usually, the vias are fabricated

in an octagonal shape in the 45-135 diagonal routing model.

22

1.18 An example channel instance, that contains eight nets, is

considered for characterizing the channel routing problem.

24

1.19 The horizontal constraint graph (HCG) of the channel

specification shown in Figure 1.18.

25

1.20 (a) An infeasible allocation of the intervals of two different

nets to tracks due to the presence of a vertical constraint in the

ninth column of the channel in Figure 1.18, and as a result the

vertical wire segments of the nets get short-circuited. (b) A

feasible allocation of the intervals of two different nets to

tracks where the interval of a net with the top terminal is

assigned to at least one track above the interval of a net with

the bottom terminal to conform to the vertical constraint

present in the column.

26

xxv

1.21 The vertical constraint graph of the channel specification

shown in Figure 1.18.

26

3.1 An example channel of eight nets. The intervals of the nets

are placed in four different tracks. Terminals are vertically

aligned along the columns of the channel. The length of the

channel (i.e. the number of columns) is 18. Arrows indicate

the terminals to be connected, either at the top or at the

bottom, to complete the required interconnection of all nets.

57

3.2 Track-wise reassignment of nets of the 4-track assignment of

non-overlapping intervals in Figure 3.1 so as to reduce the

amount of crosstalk from 15 units to 10 units. Here, intervals

of tracks 2, 3, and 4 are now assigned to tracks 3, 4, and 2,

respectively.

59

3.3 Reassignment of nets in order to compute another 4-track

routing solution of the channel instance in Figure 3.1, so as to

reduce the amount of crosstalk from 15 units to 8 units only.

Here, net n5 is no longer in the group of nets n3 and n6; rather

n5 is with nets n8 and n7 now. Similarly, leaving n4 alone, n1 is

with n2 now.

60

3.4 (a) A graph instance G  (V, E) of problem HP. (b) The graph

G*  (V, E*) of the corresponding instance of problem HP*,

computed from G.

64

3.5 (a) A complete graph G* (V, E*) of instance I of problem

HP*. (b) The corresponding channel instance I of the

crosstalk minimization problem VHP, where nets nij and nji

are introduced into the channel corresponding to edge (vi, vj)

(i < j) in G*. Here, N  {nij | j ≠ i} and the i-th class Pi{nij |

1 ≤ j ≤ n, j ≠ i}, is a set of non-overlapping nets in I. {Pi | i

1, 2, ..., |P|} is the required partition P of nets. I  (N, P, K),

65

xxvi

where K is an integer, is the instance of VHP obtained.

3.6 (a) A channel specification I  (N, P, K) of VHP of eight two-

terminal nets. P  {P1, P2, P3, P4}, is a partition of P into four

non-overlapping class of nets. Nets in Pi can only be assigned

exclusively to one track. Note that this is only an input to the

problem, not a routing solution. (b) The corresponding

constructed graph instance G  (V, E) of five vertices of the

TSP problem. Here vi is the vertex corresponding to Pi, i; v0

is the other vertex. Weights of all edges adjacent to v0 are

zero. For all other edges, w(i, j)  ci,j. A tour T  v0, v4, v2, v1,

v3, v0 of the TSP problem of the cost of 15 units. (c) The

assignment of nets corresponding to the tour T, where Pi is

assigned to the j-th track from the top if vi is the (j+1)-th

vertex in T. This assignment of nets results in a routing

solution with exactly 15 units of total crosstalk, the same as

the cost of the tour.

70

3.7 (a) A channel specification of VHP of five nets. Let P  {P1,

P2, P3} be the given partition of P, which is not a solution to

the instance. (b) The corresponding instance of general TSP

problem, where the triangle inequality is not satisfied. This is

because the cost of edge (v2, v3) (i.e. 3 units) plus the cost of

edge (v3, v1) (i.e. 3 units) is less than the cost of edge (v1, v2)

(i.e. 11 units).

71

3.8 (a) A channel instance. (b) The VCG of the channel instance.

(c) A restricted dogleg routing solution for the channel

instance in (a), where net 1 is doglegged and its horizontal

sub-segments are assigned to the first track and the fifth track

of the channel, from top to bottom. Vias are also shown,

where two orthogonal wire segments of the same net

intersect; these are used for changing layers of interconnect.

74

xxvii

4.1 Crosstalk minimization problem in two-layer VH channel

routing, in the absence of vertical constraints. (a) A feasible

three-track routing solution with three intervals of three

different nets a, b, and c that are overlapping to each other.

Nets b and c share 11 units of horizontal span in the channel

(as they are assigned to adjacent tracks), and nets c and a

share 2 units, amounting a total of 13 units’ cross coupling

length. (b) Another feasible three-track routing solution for

the same channel instance, with a total net sharing of 4 units

of horizontal span; hence, a minimized crosstalk routing

solution is obtained just by reassigning the nets to tracks.

81

4.2 Crosstalk minimization problem in two-layer VH channel

routing, in the presence of vertical constraints. (a) A feasible

routing solution with a vertical constraint (c, a). (b) A

reduced crosstalk routing solution is gratifying the vertical

constraint.

81

4.3 (a) An instance of problem ICP with six intervals u through z.

(b) The intervals are sorted based on their spans in

descending order. (c) A reassignment of intervals to tracks

with reduced crosstalk. The sequence of reassignment is as

follows: Net with the largest span, net with the smallest span,

net with the second largest span, net with the second smallest

span, and so on. Here, the amount of total overlapping is 24

units, which is the lowest amount (of overlying based on

adjacency of the intervals).

85

4.4 Performance graph for crosstalk minimization in channel

routing for simple channel instances.

99

4.5 (a) A minimum area routing solution for Ex. 3(b) using

algorithm TAH. (b) A minimum crosstalk routing solution for

Ex. 3(b) using algorithm Track_Change_General. (c) A

minimum crosstalk routing solution for Ex. 3(b) using

102

xxviii

algorithm Net_Change.

4.6 (a) A minimum area routing solution for the Ex. 5 using

algorithm TAH. (b) A minimum crosstalk routing solution for

the Ex. 5 using algorithm Track_Change_General. (c) A

minimum crosstalk routing solution for the Ex. 5 using

algorithm Net_Change.

103

4.7 (a) A minimum area routing solution for the DDE using

algorithm TAH. (b) A minimum crosstalk routing solution for

the DDE using algorithm Track_Change_General. (c) A

minimum crosstalk routing solution for the DDE using

algorithm Net_Change.

104

4.8 (a) A minimum area routing solution for the r3 using

algorithm TAH. (b) A minimum crosstalk routing solution for

the r3 using algorithm Track_Change_General. (c) A

minimum crosstalk routing solution for the r3 using algorithm

Net_Change.

105

4.9 (a) A minimum area routing solution for the Ex. 3(b).1 using

algorithm TAH. (b) A minimum crosstalk routing solution for

the Ex. 3(b).1 using algorithm Track_Change_General. (c) A

minimum crosstalk routing solution for the Ex. 3(b).1 using

algorithm Net_Change.

106

5.1 An example channel of eight nets; zeros are non-terminals or

vacant terminals, not to be connected. Intervals of the nets are

placed in four different tracks. Terminals are vertically

aligned along the columns of the channel. The length of the

channel is 18. Arrows indicate that the terminals to be

connected, either at the top or at the bottom, to complete the

required interconnection of all the nets present in the channel.

112

5.2 (a) The generated simple channel specification that contains 125

xxix

10 nets; the length of the constructed channel is 20. (b) The

horizontal constraint graph of this (generated) simple channel

instance comprises two components, as none of the nets in

this channel instance passes through both columns 8 as well

as 9.

5.3 (a) The generated general channel specification whose length

is 19 and that comprises 10 nets. (b) The vertical constraint

graph of this generated general channel specification.

Incidentally, it consists of two components and does not

contain any cyclic vertical constraint.

133

5.4 The vertical constraint graph of a randomly generated general

channel instance that contains a cycle among nets 10, 2, 4, 6,

and 3.

135

5.5 The variation of average span per net over the number of nets

introduced into a randomly generated simple channel

instance. Here essentially 200 instances of a particular net

number are generated randomly, and the average span per net

is obtained by making an average of spans of all those nets

that are introduced into the said channels.

138

5.6 The variation of different parameters that are obtained as

experimental results in generating general channel instances

randomly as the number of nets introduced into the generated

channels increases. The parameters that are considered here

are average channel length, average number of non-terminals

per channel, average span per net, and the average number of

terminals per net. In reality, here 200 instances of a particular

net number are generated randomly, and a parameter is

computed by making an average of the said parameter of all

those nets that are introduced into the said channels of a given

net number.

140

xxx

6.1 Percentage reduction in crosstalk (of routing solutions) versus

the number of nets after successive executions of each of the

algorithms, Track_Change_Simple and Net_Change over the

initial amount of crosstalk of routing solutions computed after

algorithm Minimum_Clique_Cover_1 for simple instances in

two-layer no-dogleg channel routing.

169

6.2 (a) The initial crosstalk of a simple channel instance

comprising 10 nets (and channel length 20) is 47 units after

execution of Minimum_Clique_Cover_1. (b) Crosstalk after

execution of algorithm Track_Change_Simple is 22 units. (c)

Crosstalk after execution of algorithm Net_Change is 21 units

only.

170

6.3 (a) The initial crosstalk of a simple channel instance

comprising 15 nets (and channel length 30) is 83 units after

execution of Minimum_Clique_Cover_1. (b) Crosstalk after

execution of algorithm Track_Change_Simple is 32 units. (c)

Crosstalk after execution of algorithm Net_Change is also 32

units only.

170

6.4 (a) The initial crosstalk of a simple channel instance

comprising 20 nets (and channel length 40) is 180 units after

execution of Minimum_Clique_Cover_1. (b) Crosstalk after

execution of algorithm Track_Change_Simple is 84 units. (c)

Crosstalk after execution of algorithm Net_Change is also 84

units only.

171

6.5 (a) The initial crosstalk of a simple channel instance

comprising 25 nets (and channel length 50) is 229 units after

execution of Minimum_Clique_Cover_1. (b) Crosstalk after

execution of algorithm Track_Change_Simple is 106 units.

(c) Crosstalk after execution of algorithm Net_Change is also

106 units only.

171

xxxi

6.6 (a) The initial crosstalk of a simple channel instance

comprising 30 nets (and channel length 60) is 473 units after

execution of Minimum_Clique_Cover_1. (b) Crosstalk after

execution of algorithm Track_Change_Simple is 295 units.

(c) Crosstalk after execution of algorithm Net_Change is also

295 units only.

172

6.7 (a) The initial crosstalk of a simple channel instance

comprising 35 nets (and channel length 70) is 510 units after

execution of Minimum_Clique_Cover_1. (b) Crosstalk after

execution of algorithm Track_Change_Simple is 264 units.

(c) Crosstalk after execution of algorithm Net_Change is also

264 units only.

172

6.8 (a) The initial crosstalk of a simple channel instance

comprising 40 nets (and channel length 80) is 776 units after

execution of Minimum_Clique_Cover_1. (b) Crosstalk after

execution of algorithm Track_Change_Simple is 450 units.

(c) Crosstalk after execution of algorithm Net_Change is 448

units only.

173

6.9 (a) The initial crosstalk of a simple channel instance

comprising 50 nets (and channel length 100) is 1242 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 771

units. (c) Crosstalk after execution of algorithm Net_Change

is 770 units only.

173

6.10 (a) The initial crosstalk of a simple channel instance

comprising 60 nets (and channel length 120) is 1571 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 813

units. (c) Crosstalk after execution of algorithm Net_Change

is 793 units only.

174

xxxii

6.11 (a) The initial crosstalk of a simple channel instance

comprising 70 nets (and channel length 140) is 2291 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 1308

units. (c) Crosstalk after execution of algorithm Net_Change

is 1304 units only.

174

6.12 (a) The initial crosstalk of a simple channel instance

comprising 80 nets (and channel length 160) is 2921 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 1810

units. (c) Crosstalk after execution of algorithm Net_Change

is 1805 units only.

175

6.13 (a) The initial crosstalk of a simple channel instance

comprising 90 nets (and channel length 180) is 2917 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 2270

units. (c) Crosstalk after execution of algorithm Net_Change

is 2199 units only.

176

6.14 (a) The initial crosstalk of a simple channel instance

comprising 100 nets (and channel length 200) is 4525 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 3223

units. (c) Crosstalk after execution of algorithm Net_Change

is 3132 units only.

177

6.15 (a) The initial crosstalk of a simple channel instance

comprising 110 nets (and channel length 220) is 5772 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 4281

units. (c) Crosstalk after execution of algorithm Net_Change

is 4208 units only.

178

xxxiii

6.16 (a) The initial crosstalk of a simple channel instance

comprising 120 nets (and channel length 240) is 6725 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 4151

units. (c) Crosstalk after execution of algorithm Net_Change

is 4031 units only.

179

6.17 (a) The initial crosstalk of a simple channel instance

comprising 130 nets (and channel length 260) is 7648 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 4750

units. (c) Crosstalk after execution of algorithm Net_Change

is 4689 units only.

180

6.18 (a) The initial crosstalk of a simple channel instance

comprising 140 nets (and channel length 280) is 8054 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 4718

units. (c) Crosstalk after execution of algorithm Net_Change

is 4697 units only.

181

6.19 (a) The initial crosstalk of a simple channel instance

comprising 150 nets (and channel length 300) is 11316 units

after execution of Minimum_Clique_Cover_1. (b) Crosstalk

after execution of algorithm Track_Change_Simple is 7049

units. (c) Crosstalk after execution of algorithm Net_Change

is 6978 units only.

182

6.20 Percentage reduction in crosstalk (of routing solutions) versus

number of nets after successive execution of each of the

algorithms, Track_Change_General (with the concept of

Track_Change_Simple) and Net_Change over the initial

amount of crosstalk of routing solutions computed after

algorithm Track_Assignment_Heuristic (TAH) for general

185

xxxiv

instances in two-layer no-dogleg channel routing.

6.21 Percentage reduction in crosstalk (of routing solutions) versus

the number of nets after successive execution of each of the

algorithms, Track_Change_General (using Greedy approach)

and Net_Change over the initial amount of crosstalk of

routing solutions computed after algorithm Track_Assignment

_Heuristic (TAH) for general instances in two-layer no-dogleg

channel routing.

187

6.22 (a) The initial crosstalk of a general channel instance

comprising 20 nets (track number 12 and channel length 48)

is 228 units after execution of Track_Assignment_Heuristic.

(b) Crosstalk after execution of algorithm Track_Change

_General is 181 units. (c) Crosstalk after execution of

algorithm Net_Change is 165 units only.

188

6.23 (a) The initial crosstalk of a general channel instance

comprising 40 nets (track number 20 and channel length 89)

is 565 units after execution of Track_Assignment_Heuristic.

(b) Crosstalk after execution of algorithm Track_Change

_General is 452 units. (c) Crosstalk after execution of

algorithm Net_Change is 437 units only.

188

6.24 (a) The initial crosstalk of a general channel instance

comprising 60 nets (track number 24 and channel length 117)

is 1338 units after execution of Track_Assignment_Heuristic.

(b) Crosstalk after execution of algorithm Track_Change

_General is 1077 units. (c) Crosstalk after execution of

algorithm Net_Change is 1059 units only.

189

6.25 (a) The initial crosstalk of a general channel instance

comprising 80 nets (track number 35 and channel length 181)

is 2676 units after execution of Track_Assignment_Heuristic.

(b) Crosstalk after execution of algorithm Track_Change

189

xxxv

_General is 2404 units. (c) Crosstalk after execution of

algorithm Net_Change is 2253 units only.

6.26 (a) The initial crosstalk of a general channel instance

comprising 100 nets (track number 39 and channel length

216) is 3375 units after execution of Track_Assignment

_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 2890 units. (c) Crosstalk after

execution of algorithm Net_Change is 2488 units only.

190

6.27 (a) The initial crosstalk of a general channel instance

comprising 120 nets (track number 47 and channel length

250) is 4832 units after execution of Track_Assignment

_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 4269 units. (c) Crosstalk after

execution of algorithm Net_Change is 3942 units only.

190

6.28 (a) The initial crosstalk of a general channel instance

comprising 150 nets (track number 60 and channel length

335) is 9314 units after execution of Track_Assignment

_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 8490 units. (c) Crosstalk after

execution of algorithm Net_Change is 7977 units only.

191

6.29 (a) The initial crosstalk of a general channel instance

comprising 180 nets (track number 74 and channel length

358) is 12077 units after execution of Track_Assignment

_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 10974 units. (c) Crosstalk after

execution of algorithm Net_Change is 10116 units only.

192

6.30 (a) The initial crosstalk of a general channel instance

comprising 220 nets (track number 87 and channel length

480) is 18897 units after execution of Track_Assignment

_Heuristic. (b) Crosstalk after execution of algorithm

193

xxxvi

Track_Change_General is 17141 units. (c) Crosstalk after

execution of algorithm Net_Change is 14933 units only.

6.31 (a) The initial crosstalk of a general channel instance

comprising 220 nets (track number 87 and channel length

480) is 18897 units after execution of Track_Assignment

_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 17141 units. (c) Crosstalk after

execution of algorithm Net_Change is 14933 units only.

194

6.32 (a) The initial crosstalk of a general channel instance

comprising 250 nets (track number 97 and channel length

516) is 21377 units after execution of Track_Assignment

_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 18205 units. (c) Crosstalk after

execution of algorithm Net_Change is 16292 units only.

195

List of Tables

Table Table Caption Page No.

1.1 Generation-wise Integrated Circuits. 1

4.1 Average crosstalk in the computed routing solutions for some

randomly generated simple channel instances using different

algorithms and percentage reduction in overall crosstalk.

100

4.2 Amount of crosstalk computed after each of the algorithms and

percentage reduction in the overall crosstalk.

101

5.1 An assumption on the allowable percentage of remaining free

nodes for computing max_offset, based on available free nodes

in the list (or available free columns in the channel) in

percentage.

120

5.2 Allowable range of offset for a typical channel of length 100,

based on available free nodes in the list (or available free

columns in the channel).

121

5.3 Spans (or intervals) of different nets introduced into the

randomly generated channel specification, shown in Figure

5.2(a).

126

5.4 Spans (or intervals) of different nets introduced into the

randomly generated general channel specification, shown in

Figure 5.3(a). The number of terminals per net is also shown in

this table in the rightmost column of Terminal Count.

134

5.5 Experimental results of randomly generated simple channel

instances; 200 instances are generated for each number of nets,

and a row in this table shows the data out of all these 200

137

xxxviii

instances for a given net number.

5.6 Experimental results of randomly generated general channel

instances; 200 instances are generated for each number of nets,

and a row in this table shows the data out of all these 200

instances for a given net number.

139

6.1 Performance of crosstalk minimization algorithms

Track_Change_Simple and Net_Change after their successive

execution for computing reduced crosstalk routing solutions for

simple channel instances in two-layer no-dogleg (channel)

routing.

167-168

6.2 The performance of crosstalk minimization algorithms

Track_Change_General_Version_I (with the concept of

Track_Change_Simple) and Net_Change after their successive

execution for computing reduced crosstalk routing solutions for

general channel instances in two-layer no-dogleg (channel)

routing.

184

6.3 The performance of crosstalk minimization algorithms

Track_Change_General_Version_II (using Greedy approach)

and Net_Change after their successive execution for computing

reduced crosstalk routing solutions for general channel

instances in two-layer no-dogleg (channel) routing.

186

List of Abbreviations

3D Three Dimensional

BER Bit Error Rate

CAC Circular Arc Colouring

CAC Crosstalk Avoidance Coding

CAD Computer Aided Design

CE Circuit Extraction

CMOS Complementary Metal-Oxide Semiconductor

CR Concurrent Read

CRCW Concurrent Read Concurrent Write

CREW Concurrent Read Exclusive Write

CRP Channel Routing Problem

CW Concurrent Write

DAG Directed Acyclic Graph

DDE Deutsch’s Difficult Example

DFS Depth First Search

DRC Design Rule Checking

DSM Deep Submicron

DTM Deterministic Turing Machine

DSP Digital Signal Processing

EA Exhaustive Algorithm

ER Exclusive Read

EREW Exclusive Read Exclusive Write

FEN Far-End Noise

FRR Flit Reordering / Rotation

FWM Four-Wave Mixing

GA Genetic Algorithm

GA Greedy Algorithm

HCG Horizontal Constrained Graph

HNCG Horizontal Non-Constrained Graph

HP Hamiltonian Path

HP* Weighted Hamiltonian Path

IC Integrated Circuit

xl

ICP Interval Containment Problem

ILP Integer Linear Programming

LEA Left Edge Algorithm

LSI Large Scale Integration

MBFF Multi-Bit Flip-Flop

MC Matrix Combination

MCC1 Minimum Clique Cover 1

MCC2 Minimum Clique Cover 2

MRR Microring Resonator

MS Matrix Selection

MSI Medium Scale Integration

MOSFET Metal-Oxide-Semiconductor Field-Effect-Transistor

NC Net Change

NDTM Non-Deterministic Turing Machine

NEN Near-End Noise

NoC Network-on-Chip

NP Non-deterministic Polynomial Time Computable Problem

OD Opposite Direction (transitions)

OSF Optical Switching Fabric

P Deterministic Polynomial Time Computable Problem

PON Passive Optical Network

PRAM Parallel Random Access Machine

QAP Quadratic Assignment Problem

RVCG Reduced Vertical Constrained Graph

SA Simulated Annealing

SEC–DED Single-Error-Correction–Double-Error-Detection

SEQ Sequencing to Minimize Weighted Completion Time

SPM Self-Phase Modulation

SoC System-on-Chip

SSI Small Scale Integration

TAH Track Assignment Heuristic

TC Track Change

TFTEC Thin-Film Thermo-Electric Cooler

TSP Travelling Salesman Problem

TTL Transistor-Transistor Logic

xli

ULSI Ultra Large Scale Integration

VCG Vertical Constrained Graph

VDSM Very Deep Submicron

VHDL VHSIC Hardware Description Language

VLSI Very Large Scale Integration

WDM Wavelength-Division Multiplexing

WRM Wavelength-Routing-Matrix

WSI Wide Scale Integration

XPM Cross-Phase Modulation

xlii

Chapter: 1

Introduction to Crosstalk Minimization Problem

1.1 Overview

The eventual endeavour in the present age of Information Technology is information

generation and dissemination of the same by anybody, anytime, and anywhere. Very

Large Scale Integration (VLSI) technology has revolutionized the electronics industry

and established the twentieth century as the computer age, but even now in the second

decade of the twenty-first century, it is approaching its fundamental limits in the

submicron process of miniaturization. These are needed due to the increasing

demands of high speed, throughput, and overall performance in modern computing

applications plus the explosive proliferation of data volume to be stored and

processed, that necessitate a revolutionary supercomputing technology.

From the beginning of 1960, Integrated Circuit (IC) fabrication technology

has evolved from being able to integrate a few transistors in Small Scale Integration

(SSI) to today’s integration of well over millions of transistors in Very Large Scale

Integration (VLSI). Gradually from the very beginning to the present era, some

generation of ICs with the number of transistors on a single chip growing from 4 to

more than 40 million has been realized. A tentative time dependent numbers of

transistors that have relatively been accumulated to realize scaled integrated circuits

are shown in Table 1.1 as a growth of VLSI technology in the last five decades [1, 4,

23, 24, 43, 69].

Table 1.1: Generation-wise Integrated Circuits.

Generation of Integrated Circuits

(ICs)

Number of

Transistors
Number of Gates

Small Scale Integration (SSI) 4 to 400 1 to 100

Medium Scale Integration (MSI)  400 to 4,000  100 to 1,000

Large Scale Integration (LSI)  4,000 to 40,000  1,000 to 10,000

Very Large Scale Integration

(VLSI)
 40,000 to 4,00,000  10,000 to 1,00,000

Ultra Large Scale / Wide Scale

Integration (ULSI / WSI)
4,00,001 and above 1,00,001 and above

2

Integrated circuits consist of a number of electronic components realized by a

family of transistors, built by layering several different materials in a well-defined

fashion on a silicon base called a wafer. For smaller ICs, transistor-transistor logic

(TTL) is a well-accepted logic family, but nowadays, in general, metal oxide

semiconductor field effect transistor (MOSFET), or only MOS, either in the form of

an n- or a p-type, or in the complementary form has considerably been used in

realizing most scaled and compacted VLSI circuits. By the way, at some point in

time, Ultra Large Scale Integration (ULSI) or Wide Scale Integration (WSI) were the

terms to convey the sense of level of integration beyond VLSI, but ultimately,

worldwide academicians and industry people have accepted only VLSI as a

generalized term to cover all these (ULSI / WSI) beyond a number of transistors that

are accumulated in realizing a chip and ULSI / WSI as a generation of integrated

circuits no longer exists.

In practice, the designer of an IC transforms a circuit description into a

geometric description, which is known as a layout. A layout consists of a set of planar

geometric shapes in several layers. In some other words, a geometric description that

is obtained from a circuit description while designing an IC is known as a layout. A

layout consists of a set of planar geometric shapes in several layers, and then it is

checked to ensure that it meets all the design requirements. Through some

intermediate steps, the design files are then converted into pattern generator files,

which are used to create patterns called masks by an optical pattern generator. During

fabrication, these masks are used to pattern a silicon wafer using a series of

photolithographic steps.

Figure 1.1: Input and output to the physical design step. The circuit to be realized

along with the design style is inputted while the layout is the output of this step.

Circuit to be

realized

Design style

that is used

Circuit design

Layout

Physical

design

Architecture

3

The process of converting the specifications of an electrical circuit into a

layout is called the physical design. In this step, the circuit a designer likes to design

is obtained as the output of the circuit design step that is inputted to the physical

design along with the design style as architecture (see Figure 1.1). This design style

could either be full or semi-custom design, or standard cell design, or gate array

design, or some of their combinations or variations. Besides, the output to the physical

design step is the layout, which is supposed to be realized through fabrication in a

laboratory.

The physical design step is an extremely error prone and tedious process

because of the minuteness of the individual components and the tight tolerance

requirements. For about last two decades, the VLSI design is realized at the

submicron level, where 1 micron (or micrometre)  1.0×106 metres. At present, the

smallest geometric feature of a component can be as small as 14 nanometres, where 1

nanometre  1.0×109 metres [14, 88]. However, it is expected that the feature size

can be reduced even further within a couple of years. This small feature size may

allow fabrication of as many as 40 million (or more) transistors on a 25 mm × 25 mm

chip (or even less).

Due to the requirement of exacting details for each component and

interconnecting wire segment in the fabrication process and the accumulation of a

very large number of components on a single semiconductor chip, the physical design

process is not practical without the help of computers. As a result, almost all the

phases of physical design comprehensively use different computer aided design

(CAD) tools, and many phases have already been partially or fully automated. This

automation of the physical design process has increased the level of integration,

enhanced chip performance, and reduced the turn-around time.

The VLSI physical design automation is essentially the study of different

problems and associated algorithms, and the data structures related to the physical

design process. There are problems in physical design that are polynomial time

computable, but most of the problems in physical design are beyond polynomial time

(or exponential time) computable. The objective of this phase is to study the optimal

arrangement of devices on a plane (or sometimes in a three-dimensional space in the

case of 3D design) and efficient interconnection schemes between these devices to

obtain the desired functionality. Since the use of space on a wafer is quite expensive,

4

and the level of purity is never 100%, algorithms that designers develop must use the

space very efficiently and competently so that the cost is lowered while the yield of

the products is improved.

Besides, a well-fashioned collection of components and devices (in different

levels of design) along with their assignment over the chip floor assumes an important

role in determining the performance of a chip. Algorithms intended for physical

design are also expected to make sure that all the rules required for the fabrication are

observed, and the layout is within the limits of tolerance of the fabrication process. To

end with, the algorithms ought to be efficient and should be able to grasp and handle

very large designs. Each algorithm not only leads to rapid turn-round time but also

allows designers to iteratively improve the layouts.

The overall fast growth in integration the chunky has been realized due to

automation of various steps involved in design, verification, and fabrications of chips.

In this thesis, we have primarily emphasized on developing techniques for crosstalk

minimization in two-layer channel routing as one of the most important high

performance factors in realizing the desired VLSI circuit. Now we briefly discuss the

steps present in the VLSI chip design process in the following section.

1.2 The VLSI Chip Design Process

The VLSI design process starts with a given plan and specification of a VLSI circuit,

follows a sequence of steps, and ultimately creates a packaged chip. A typical design

process may be represented by a series of steps in the form of a flowchart as shown in

Figure 1.2. This process starts with a system specification of the circuit we like to

design up to the packaged marketable chip. To achieve a broad viewpoint, a sketch of

all the steps of VLSI design process is briefed below [81].

1. System Specification: For the necessity of a high level representation of a

system, at first we set down the specifications of the system to be designed.

The factors that are considered in this process include: performance,

functionality, and physical dimensions; the selection of fabrication technology,

design style(s), and design methods are also taken care of. Stipulation for size,

speed, power, and functionality of the VLSI system to be designed are

expected as the end results.

5

2. Functional Design: Behavioural aspects of the system are considered and

measured in this step. The outcome is usually a timing diagram or other

relationships among the subunits. This information is used to get better the

general design process and to lessen the complexity of the subsequent phases.

Figure 1.2: The VLSI chip design process.

3. Logic Design: In this step, the logic configuration (or structure) that stands for

the functional design is derived and tested. The realized design is represented

in the form of a textual, schematic, or graphic description. Usually, the logic

design is represented by Boolean expressions. Then these expressions are

reduced to attain the smallest and often simplest logic design that matches to

the above functional design. These are also simulated and tested to confirm

their correctness, or customized accordingly.

4. Circuit Design: The aim of circuit design is to develop a circuit representation

derived from the logic design. The Boolean expressions are transformed into a

System Specification

Logic Design

Fabrication

Packaging

Circuit Design

Physical Design

Design Verification

Functional Design

6

circuit depiction by taking into consideration the speed, power requirements,

and the electrical performance of different components of the original design.

A designed circuit is usually obtained in the form of an entire circuit diagram.

5. Physical Design: This is the most essential and central step in the whole

process of developing a VLSI chip. In this step, the circuit representation of

each component is changed into a geometric representation. This illustration

is, in fact, a set of geometric patterns that perform the projected logic function

of the related component. Connections among different components are also

expressed as geometric patterns (or sketch). This geometric representation of a

circuit is called a layout. The precise aspects of a layout also depend on design

rules that are guidelines based on the inadequacies of the manufacturing

process and the electrical properties of the production stuff. Physical design is

a very complex process, and in order to handle the complexity of the problem,

it is usually broken down into various sub-steps like partitioning, placement,

routing, etc. Perhaps, the physical design consumes the maximum time among

all steps in the VLSI design process.

6. Design Verification: To ensure that the layout meets the system specification

and the fabrication requirements, the created layout is verified in this step.

Design verification consists of design rule checking (DRC) and circuit

extraction (CE). DRC is a process that verifies that each individual geometric

model must meet the design rules inflicted by the fabrication process. After

checking the design rule violation(s), if any, the functionality of the layout is

established by CE. This is a reverse engineering process that generates the

circuit representation from the layout.

7. Fabrication: After verification, the layout is ready for fabrication. The

fabrication process is composed of quite a few steps: preparation of wafer,

deposition, and diffusion of various materials on the wafer according to layout

description. ICs consist of a number of electronic components, fabricated by

layering several different materials in a well-defined fashion on a silicon base,

known as a wafer. A typical wafer may be of 10 cm in diameter and can be

used to produce tens or hundreds of chips. Before a chip is mass produced, a

prototype (or archetype) is prepared and tested.

7

8. Packaging, Testing, and Debugging: To end with, the wafer is fabricated and

diced in a fabrication laboratory where such a facility is available. Each chip is

then packaged and tested to ensure that it meets all design specifications and

functions properly. Based on the application, either the chips are packaged, or

they are kept bare.

The VLSI chip design process is a very big and complex process that involves

iterations as and when necessary, both within a step and among different steps. The

complete design process may be viewed as conversion and renovation of depiction in

a variety of steps. In each step, a new illustration of the system to be designed is

created and analysed. The manifestation is iteratively improved to meet system

specifications, or often the system specifications are tuned accordingly. If some

design violations are detected, particularly in the physical design step, then this step

needs to be repetitive to rectify the faults. Interestingly, this is the reason for which

the VLSI design process is also often called the VLSI design cycle. The purpose of

VLSI CAD tools is to reduce the number of iterations and thus lessen the time-to-

market.

1.3 The VLSI Physical Design Process

The physical design is the most time consuming, droning, and error-prone process in

the VLSI chip design cycle. The input to the physical design process is a circuit

diagram, and the output is the layout of the circuit to be designed. This is carried out

in a number of stages such as partitioning, floorplanning, placement, routing, and

compaction. The different stages of the physical design process are shown in Figure

1.3. Below we present a short outline of all the stages to give a broad perception of

VLSI physical design [49, 77, 81].

1. Partitioning: A VLSI chip may contain several million transistors (or active

devices). The layout of the whole circuit cannot be handled due to the

limitation of memory space as well as available computation power. Thus, the

circuit is usually partitioned by grouping the components into sub-circuits,

known as blocks or modules. In practice, the partitioning process considers the

following factors such as the size of the blocks, number of blocks, and number

of interconnections among the blocks. The output of the partitioning stage is a

set of blocks along with the interconnections required among the blocks at

8

some level of the hierarchy. The set of interconnections (or routing) required

is referred to as a net-list. The partitioning process is hierarchical for designing

a typical VLSI circuit, and at the topmost level a circuit may have between 5

to 25 modules, and each module is then partitioned recursively into hundreds

of smaller blocks. As for example, a VLSI chip hierarchy is shown in Figure

1.4.

Figure 1.3: The VLSI physical design process.

2. Floorplanning and Placement: The selection of good layout alternatives for

each block as well as the entire chip is the main concern of this step. At some

level of the hierarchy, the area of each block can be estimated and computed

after partitioning, as it is based approximately on the number and the type of

components present in the block. Floorplanning is the placement of flexible

blocks, i.e. blocks with fixed area but unknown dimensions. It is a much more

difficult problem as compared to the placement problem. In floorplanning,

several layout options and choices for each block are considered to substitute

itself. Usually, the blocks are rectangular in shape, and the lengths and widths

Partitioning

Routing

Compaction

Floorplanning and

Placement

Circuit Design

Layout for Fabrication

9

of all the blocks are determined in addition to their locations; however, the

lengths and widths of the blocks may vary within a prespecified range.

The exact rectangular shape of a block is determined by the aspect

ratio, i.e. aspect ratio is used to assign the block dimensions. The aspect ratio

of a block is the ratio of the width (v) of the block to its length (h); see Figure

1.5. Usually, there is an upper and a lower bound on the aspect ratio that a

block can have such that the blocks cannot take shapes that are too long or

very thin.

Figure 1.4: An example VLSI chip hierarchy.

Figure 1.5: Aspect ratio of a block, where v is the vertical dimension (or

width) of the block and h is the horizontal dimension (or length) of the block.

p q r q

q p q r

r q q p

A VLSI chip, or a block, at

some level of hierarchy,

comprising six modules A

through F

A macro belonging to module F

An example block

within a macro p

F

B

E

C

A

D

A Block

h

v Aspect ratio  v  h

10

Floorplanning is a very decisive and significant step in the VLSI

physical design phase. This step sets up the foundation towards achieving the

desired layout, though it is computationally quite hard. Very often the task of

the floorplan layout is done by design engineers, rather than automated CAD

tools. This is at times obligatory as the key components of an IC are often

anticipated for specific locations on the chip.

At the time of placement, the blocks are precisely located on the chip.

The objective of placement is to discover a minimum area arrangement for the

blocks that aids complete interconnections amongst themselves. Placement is

characteristically completed in two phases. In the first phase, a preliminary

placement is produced. In the second phase, the early placement is assessed,

and iterative upgrading is made in anticipation that the layout has minimum

area and obeys the rules of design specifications. Note that some space

between neighbouring blocks is left vacant to allocate wires to connect the

blocks.

The judgment of the merit of placement is imperfect unless the

subsequent routing phase is completed. Often a placement may direct to

unroutable design, i.e. routing may not be feasible in the space available. In

such a case, the next iteration of placement is essential. To bind the number of

iterations of the placement algorithm, an approximation of the required routing

space is used during the placement phase. Only a good placement algorithm

can endow with a good routing scheme and a desired performance of the

circuit. This is due to the fact that once the location of each block is made

final, very little can be done to better the routing and on the whole the circuit

performance.

3. Routing: At some level of design, the circuit after the placement of modules

on the chip floor is completed by producing interconnection amongst the

blocks using the vacant region separating the blocks through which a careful

interconnection is routed, which is known as routing. The routing problem

consists of interconnections in the midst of adjacent blocks, according to a

precise netlist, that has been assigned positions as a solution of a placement

problem. The arrangement of a routing problem consists of the position of

11

terminals, the netlist that indicates which terminals are to be interconnected (in

separation) and the routing space available for routing.

Figure 1.6: (a) A channel is a rectangular routing region with fixed terminals

only on its two opposite sides, and the other two opposite sides are open ends.

(b) A switchbox is a (closed) rectangular routing region with fixed terminals

on any three or all four sides of the region.

Figure 1.7: (a) Layout of rectangular circuit blocks A through H and pins

after placement, at some level of the hierarchy. Terminals are located on the

periphery of blocks as well as on the boundary of the chip. Local (rectangular)

routing regions (either channels or switchboxes) are separated by dotted lines.

(b) Interconnection among the blocks after global routing through different

local routing regions, as per the netlist. (c) Interconnection among the blocks

after detailed routing showing each exact geometric assignment.

Hence, the goal of the routing phase is to complete interconnections

amongst the blocks according to a given netlist. At first, the space, known as

the routing space (which is not covered by blocks) is divided into rectangular

regions known as channels and switchboxes. As for example, a channel and a

A Channel

A Switchbox

(a) (b)

(a) (b) (c)

A
B

C

D
E F

G H

A
B

C

D
E F

G H

A
B

C

D
E F

G H

1 1

2 2

3

3

3

4

4

4

5

5

5

5

6

6

7 7

8

8

9

9

10

10 10

10

10

11
11

12

switchbox are shown in Figures 1.6(a) and 1.6(b), respectively. Then, the

routing in each subsequent (routing) region is completed to accomplish the

entire desired circuit. The scheme of a routing algorithm is to complete all

circuit connections using the shortest possible wire length and using only the

channels and switchboxes. This is usually done in two phases, referred to as

the global routing and detailed routing phases.

Connections amongst the appropriate blocks of a circuit are completed

in global routing forgetting (temporarily) about the precise geometric details

of each wire and pin. For each wire, a global routing algorithm finds a list of

channels and switchboxes that are to be used as course of the path for that

wire. In other words, global routing specifies the ‘flexible route’ of a wire

through different local routing regions in the routing space. Figure 1.7(a)

shows a layout of circuit blocks A through H and pins after placement. The

remaining space on the chip floor is known as the routing region that has been

partitioned into a collection of local rectangular routing regions, distinctive by

dotted boundaries, either a channel or a switchbox. Interconnection among the

blocks after global routing using loose routes is shown in Figure 1.7(b), where

same pins (or terminals), differentiated by distinct numbers, are electrically

connected through wires, as per the given netlist.

Detailed routing is the next step after global routing that performs each

point-to-point connection between terminals (of the same pin number) on the

blocks, as guided by global routing. In this step, the flexible (global) routing is

transformed into the preferred exact routing by stating geometric information

such as the width of wires along with their track and layer assignment.

Channel routing and switchbox routing are the kinds of local routing that help

to achieve detailed routing necessary for a chip. Figure 1.7(c) shows detailed

routing for the layout of circuit blocks A through H followed by global

routing.

Routing is a premeditated and well-studied problem, and a few

hundreds of articles have been published about all its usual facets. In view of

the fact that most of the problems in routing are computationally hard, the

researchers worldwide have paid attention generally on developing heuristic

algorithms in the last four or more decades. Consequently, experimental

estimation has become an essential part of all such algorithms and some

13

benchmarks have been standardized. Owing to the very nature of the routing

problems, entire routing for all the connections can never be guaranteed in

many a case.

4. Compaction: It is essentially the assignment of condensing the layout in all

dimensions, mainly along the orthogonal axes, such that the total area is

concentrated as much as possible. By making a chip smaller, wire lengths are

reduced which in turn reduces the signal delay amongst the components of the

circuit. Along with a smaller area of a chip, it may result in realizing more

chips on a given wafer, which in turn reduces the cost of manufacturing. At

the same time, the compaction must make sure that no rules regarding the

design and fabrication process are violated towards accomplishing a VLSI

chip.

The physical design process, like the VLSI chip design process, is iterative in

nature and many steps such as global routing and detailed routing are repeated a

number of times to acquire an improved layout. Besides, the quality of a result

obtained in a step purely depends on the excellence of solution obtained in the

previous steps. For example, a bad quality placement cannot expect a good quality

routing. Thus, the earlier steps must have more persuasion on the overall quality of a

solution. In other words, partitioning, floorplanning, and placement problems play a

more significant role in determining the area and chip performance, as compared to

routing and compaction. Since a placement scheme may create an unroutable layout,

the chip might need to be re-placed and re-partitioned before another routing can be

attempted. By and large, the whole physical design process may be repeated a number

of times to achieve the goals of a design, and hence the physical design process is also

often known as physical design cycle. The complexity of each step varies depending

on the design constraints as well as the design style used [81].

1.4 Channel Routing

The major goal of a routing algorithm is to provide area efficient connections for all

the nets present in the circuit of a chip, such that none of the terminals remains

disconnected and the overall routing area is minimized. A set of terminals that need to

be electrically connected together constitutes a net. Terminals of the same net are

given the same symbol (or the same integer label).

14

 The process of routing builds connections amongst the terminals on the

periphery of different blocks (or modules) and also on the boundary of the chip floor.

Connections are realized using wire segments assigned to different layers of

interconnect. Usually, single layer routing is allowed for some special situations.

Some technologies allow only two layers of wiring; this is referred to as two-layer

routing. Connections between the wire segments assigned to adjacent layers are made

using vias.

Figure 1.8: (a) An (assumed) assignment of five blocks AE over the chip floor after

the placement phase is over. (b) The overall routing space is divided into 12

rectangles where the routing regions, 16, 9, and 10 are channels, and the remaining

routing regions, 7, 8, 11, and 12 are switchboxes. (c) An alternative (or better)

division of the overall routing space into only nine rectangles where the routing

regions, 14, 6, and 7 are channels, and the remaining routing regions, 5, 8, and 9 are

switchboxes.

To simplify the routing process, the routing regions of a chip are divided into

rectangular blocks. The perimeter of these blocks may contain pins that need to be

connected. In local routing, routing within each rectangular routing region is done

disjointedly one after another. As shown in Figure 1.6(b), a rectangular routing region

with terminals assigned to fixed locations on three (or all four) sides is called a

switchbox [82]. Producing the detailed connections within a switchbox is called the

switchbox routing problem [31, 40, 82, 83, 85]. If terminals are assigned to fixed

locations only on two opposite sides of a rectangular routing region, then such a

region is called a channel (see Figure 1.6(a)) [32]. The problem of routing within a

channel is called the channel routing problem [48, 49, 81, 96]. Note that a channel

(a) (b) (c)

12

9 10

2

3

4

5 6

7

8

11

1 2 3

4
5

8

9

6 7 1

E

D
C

B

A

E

D
C

B

A

E

D
C

B

A

15

may contain terminals on either or both of its two (opposite) open ends as well but

these are no ways fixed; these are floating terminals. The position of these terminals

gets fixed after a routing algorithm is executed for the channel. Moreover, channel

routing is a kind of local routing in the detailed routing phase.

A chip floor with only five blocks AE is shown in Figure 1.8(a), when

placement is over. Except the blocks, the remaining space over the chip is known as

the overall routing region, which is initially partitioned into 12 (local) rectangular

routing regions, out of which there are eight channels, 16, 9, 10, and four

switchboxes, 7, 8, 11, and 12, as shown in Figure 1.8(b). A different division of only

nine rectangles of the overall routing space of the same chip is shown in Figure 1.8(c),

where six routing spaces, 14, 6, and 7, are identified as channels, and the remaining

three rectangles, 5, 8, and 9 are switchboxes. These channels and switchboxes are

needed to be routed as the terminals of different nets are there on the periphery of

different blocks and also on the boundary of the chip floor.

At this point in time, we may mention that a channel area is adjustable as the

blocks (with fixed terminals) may relatively move as needed, they may come closer or

go apart, though a major goal of channel routing is to minimize the overall channel

area required. This flexibility of relative movement of blocks is not feasible in the

case of switchbox routing. In fact, whether a switchbox is completely routable for the

nets present therein is the prime issue in routing a switchbox. In our study, we have

been acquainted with the fact that routing a channel is a hard problem, and routing a

switchbox is even harder than that. So, at the time of dividing the overall routing

space other than the blocks on a chip floor, we need to provide a sequence of

generating (local) rectangular routing regions (and route them) so that we have, if

possible, more channels and less (or no) switchboxes.

As a channel is a rectangular routing region bounded by two parallel rows of

fixed terminals, the input to the channel routing problem is usually provided in the

form of channel specification (or netlist) that contains two rows of terminals, TOP

and BOTTOM. One such example channel specification is shown below whose net

distribution along the length of the channel is depicted in Figure 1.9.

TOP : 3 8 0 0 4 0 0 1 3 0 6 7 0 0 5 0 0 5

BOTTOM : 0 0 4 2 0 2 0 0 0 8 0 0 6 7 0 0 1 0

16

 3 8 0 0 4 0 0 1 3 0 6 7 0 0 5 0 0 5

 I3 I6 I5

 I8 I7

 I4 I1

 I2

 0 0 4 2 0 2 0 0 0 8 0 0 6 7 0 0 1 0

Figure 1.9: An example channel of eight nets. Intervals of the nets are placed in four

different tracks. Terminals are vertically aligned along the columns of the channel.

The length of the channel (i.e. the number of columns) is 18. Arrows indicate the

terminals to be connected, either at the top or at the bottom, to complete the required

interconnection of all nets belonging to the channel.

1.4.1 The Structure of a Channel

A channel has two open ends, the left and right sides of the rectangular routing space.

The other two sides, i.e. the top and bottom sides of the rectangle have two rows of

fixed terminals. The top view of a channel is shown in Figure 1.9. It consists of

terminals of eight different nets that are spread over 18 columns along the length of

the channel. In other words, the terminals are aligned vertically in columns. A set of

terminals that need to be electrically coupled together is called a net. The terminals of

the same net are assigned the same number. Zeros are non-terminals, not required to

be connected. Here, the channel contains only two-terminal nets; in general, a net in a

channel may have two or more terminals as well.

Characteristically, the connections required within a channel are specified as

two equal sized lists of numbers, one for terminals of the upper row of the channel

and the other for the terminals of the lower row of the channel. The size of each of

these lists is the number of columns in the channel. As we have already mentioned,

these lists together are called the netlist or channel specification [49, 96].

In general, in two-layer channel routing, rectilinear wire segments of the nets

are assigned to a minimum number of tracks of a channel. Tracks are successively

equispaced assumed horizontal lines parallel to two rows of fixed terminals. In order

to achieve a routing solution, the horizontal wire segments of all the nets belonging to

a channel are assigned to tracks, and the vertical wire segments are assigned to

assumed equispaced columns (in succession). In two-layer channel routing, such a

17

kind of assignment of wire segments helps in realizing routing solutions for most of

the channels. The structure of a channel is shown in Figure 1.10, and the routing

models have been discussed in the following section.

Figure 1.10: The structure of a channel, which is always rectangular in shape with

two rows of fixed terminals situated at the pin locations. Rectilinear wire segments of

different nets are assigned to different tracks and columns of the channel; tracks are

parallel to the rows of fixed terminals and columns are perpendicular to the rows of

fixed terminals. The left and right ends of the channel are open ends. If the number of

columns (or the number of pin locations) is c, then the length of the channel is c+1. If

the number of tracks required to route the channel is t, then the height of the channel

is t+1. In reality, the height of a channel is determined by the number of tracks

required to route the channel (that certainly vary from channel to channel).

1.4.2 Channel Routing Models

A routing algorithm that solves an instance of a channel must follow some routing

model to route all its nets [49, 81]. There are several ways of assigning nets to realize

a feasible routing solution. Accordingly, the models have their relative advantages

and disadvantages. Some of the models are practically more acceptable, whereas

some others might be less costly. On the other hand, there are simpler routing models,

but the algorithm may fail to generate a high performance routing solution. So, there

are trade-offs and debates among the researchers and industry people before accepting

a particular model as the most practical one from fabrication and cost as well as

performance points of view. Some of the important channel routing models are

discussed below.

Length of

the channel

Pin locations

Lower row

of fixed

terminals

Upper row

of fixed

terminals

A Channel

Columns

Pin locations

Left open

end

Right

open end

Height of

the channel

Tracks

18

1. The Grid-based versus Gridless Routing Model

In a grid-based routing model, a rectilinear grid is superimposed on the

routing region, and the wires are restricted to follow paths along the grid lines.

In the grid-based routing model, the tracks are equispaced, and the columns

are also equispaced. These theoretical separations are finally visualized by a

technology supported fabrication tool, which is accepted in general to

accomplish a routing solution. This is an abstract routing model, but this

routing model is received worldwide in realizing most of the routing solutions.

Figure 1.11: (a) A routing solution in a grid-based routing model where two

orthogonal wire segments of a net that reach a grid point are connected by a

via. (b) No superimposed grid is present in a gridless routing model; pin

locations are not necessarily equispaced, and the thickness of wire segments

may also vary.

A routing solution in a grid-based routing model is shown in Figure

1.11(a) that contains five tracks and seven columns. A dotted grid is

superimposed over the routing region. Intersections of orthogonal grid lines

Vias

Horizontal

wire segment

3 1 1

3 2 2

(a)

0

2

0

2

0

3

0

0

0

4

0 1 4 0 1 2 3

5 1 0 5 3 0 0 Columns

Grid point

Tracks

(b)

Vias

Vertical wire

segment

19

are known as grid points where the vias are placed, through which the vertical

and horizontal wire segments of a net are connected.

On the other hand, any model that does not follow the ‘gridded’

structure is referred to as a gridless routing model. As a result, the gap

between adjacent wire segments, either assigned to tracks or columns, varies

from case to case. This routing model might be more acceptable from the real

design point of view, where wire segments of different width (or diameter) are

used, but a routing solution of this model is more expensive.

Figure 1.12: (a) Routing in a reserved layer routing model. Here a channel is

routed using two layers of interconnect; one layer is reserved for horizontal

wire segments (firm segments), and the other layer is reserved for vertical wire

segments (dashed segments). Vias are introduced at grid points to connect

orthogonal wire segments of respective nets. (b) An unreserved layer routing

solution for the same channel, where no layer is assigned for a given type of

wire segments. In this routing solution, three nets are assigned to three

different layers of interconnect, differentiated by the firm, smaller, and bigger

dashed segments (while net 2 can also be assigned to the same layer of net 1).

2. The Reserved Layer versus Unreserved Layer Routing Model

In a reserved layer routing model, all horizontal wire segments are assigned to

a particular layer, known as the horizontal layer (H), and all the vertical wire

segments are assigned to a separate layer, known as the vertical layer (V) in

the two-layer VH routing model. In the case of unreserved layer routing

model, the wire segments may not follow any strict rule of their assignment to

tracks; in fact, a routing algorithm for such a routing model is responsible for

the assignment of wire segments. Figure 1.12(a) shows a reserved layer

routing solution of a channel whereas an unreserved layer routing solution for

(b)

2 3 2 3

3 1 1 1

(a)

2 3 2 3

3 1 1 1

20

the same channel is shown in Figure 1.12(b). In this routing solution, net 2

could also be assigned to the same layer of net 1.

3. The Overlap versus Non-Overlap Routing Model

In an overlap routing model, the wire segments of two different nets may

overlap on adjacent layers. If such overlaps are not allowed, the model is

called a non-overlap routing model. A routing solution of a channel in the

overlap routing model is shown in Figure 1.13(a), whereas that for the same

channel in the non-overlap routing model is shown in Figure 1.13(b). A non-

overlap routing model is more suitable from the viewpoints of design,

fabrication, and performance as a routing solution in an overlap routing model

may lead to more electrical hazards.

Figure 1.13: (a) A routing solution in an overlap routing model, where a

single track is used to assign the horizontal wire segments of two different nets

in different layers of interconnects. (b) A non-overlap routing solution in an

unreserved layer routing model that may require more tracks to route all the

nets.

4. The No-Dogleg versus Dogleg Routing Model

In the case of dogleg routing (or doglegging), the horizontal wire segment of a

net may be split into two or more parts and assigned to different tracks, and

then the vertical connections are made accordingly using vertical wire

segments. Figures 1.14(b) and 1.14(c) show such routing solutions where sub-

segments of different nets are assigned to different tracks. If the route for a net

is allowed to have only one horizontal wire segment, then it is called a no-

dogleg route. Figure 1.14(a) shows a no-dogleg routing solution for the same

channel instance. If the route for a net is allowed to dogleg only in those

(b) (a)

2 0 1 0

0 2 0 1

2 0 1 0

0 2 0 1

21

columns in which it contains a terminal, then it is called a restricted dogleg

route. This is explained in Figure 1.14(b), where doglegging is made in a

column that contains an intermediate terminal of net 1. Otherwise, it is known

as an unrestricted dogleg route. An unrestricted dogleg routing solution for the

same channel instance is shown in Figure 1.14(c), where net 2 is doglegged in

a column containing no terminal of net 2.

Figure 1.14: (a) A no-dogleg routing solution. (b) A restricted dogleg routing

solution, where net 1 is split (into subnets) in a column that contains a terminal

of net 1. (c) An unrestricted dogleg routing solution, where net 2 is split (into

subnets) in a column that does not contain a terminal of net 2.

Figure 1.15: (a) A routing instance (of a channel) that has no no-dogleg (two-

layer) feasible routing solution in the reserved layer routing model. The “?”

mark indicates that the third column of the channel is already occupied by the

vertical wire segment of net 1 that has been assigned to the top track, and the

vertical wire segment of net 2 that has been assigned to the bottom track, is not

assignable to this column (to avoid short-circuit). (b) A feasible dogleg routing

solution of the channel instance, where the horizontal wire segment of net 1 is

split and assigned to different tracks (tracks 1 and 3) and the horizontal wire

segment of net 2 is assigned to track 2; as a result, more vias are needed.

(b) (a)

0 1 2 2

1 2 0 1



0 1 2 2

1 2 0 1

(a)

1 0 0 2 1

0 0 1 0 2

(b)

1 0 0 2 1

0 0 1 0 2

(c)

1 0 0 2 1

0 0 1 0 2

22

Often some routing instances may not be routable using only no-

dogleg routes in some specified routing model but can be routed using

doglegging. One such situation is shown in Figure 1.15. In general, a routing

instance may use less number of tracks when the nets present in it are allowed

to dogleg. A channel instance with solutions in these two models illustrating

this fact is shown in Figure 1.16.

Figure 1.16: (a) A no-dogleg routing solution of a channel instance (that

requires four tracks, means more area). (b) A doglegged routing solution of

the same channel instance using only two tracks means less routing area

(sacrificing more vias).

Figure 1.17: (a) A routing solution in the knock-knee routing model where a

grid point is shared by two nets assigned to various layers of interconnect. (b)

A solution of the same channel in the Manhattan-diagonal routing model. Vias

used in diagonal routing are specially designed; usually, the vias are fabricated

in an octagonal shape in the 45-135 diagonal routing model.

5. The Manhattan versus Knock-knee and Diagonal Routing Models

Knock-knee is usually an unreserved layer routing model that allows two nets

to share a grid point if they are in different (adjacent) layers of interconnect.

This model may introduce an unavoidable undesired electrical property such

(a)

3 3 1 0 4 4 0

2 0 3 1 1 0 2

(b)

3 3 1 0 4 4 0

2 0 3 1 1 0 2

(a)

3 3 1 0 4 4 0

2 0 3 1 1 0 2

(b)

3 3 1 0 4 4 0

2 0 3 1 1 0 2

23

as coupling capacitance, caused due to bending of two different nets that

overlap and share a grid point. Figure 1.17(a) shows a routing solution of a

channel instance shown in Figure 1.16, in the knock-knee routing model that

uses only one track to route this channel.

On the other hand, unlike knock-knee, if a grid point is not shared by

two different nets for their change of direction, but rectilinear wire segments

are allowed to follow grid lines only, the routing model is known as

Manhattan routing model. All solutions in Figure 1.16 follow the (reserved

two-layer) Manhattan routing model. Diagonal routing model is the most

advanced routing model where wire segments may follow diagonal routes, and

often along with Manhattan routing. A routing solution, which allows wire

segments to route in rectilinear as well as in diagonal direction, is known as a

solution in the Manhattan-diagonal routing model. Figure 1.17(b) shows a

routing solution for the channel instance shown in Figure 1.16 (as well as

Figure 1.17(a)) in the Manhattan-diagonal routing model that also requires

only one track to route this channel.

Even then there are other routing models where we like to know the number of

interconnecting layers, whether this is two-layer, three-layer, or multi-layer, to route a

channel. To route a maximum number of channel instances, only two reserved layers

are sufficient in achieving a feasible routing solution. Only for some special cases of

channel specifications, computation of a feasible two-layer routing solution is not

possible in some models of routing under consideration.

In any case, amongst all these routing models discussed above, there are

several trade-offs/issues to select a particular set of models as the most satisfactory

rational routing model, as each of such models has their individual advantages and

limitations. For example, an unreserved layer overlap routing model may require less

routing area, but the performance in the reserved layer non-overlap routing model is

much better. Routing algorithms devised for the non-overlap reserved layer routing

model as well as the fabrication processes are modular in nature. On the other hand,

doglegging may draw designers’ attention as these routing solutions are usually area

efficient. However, all these routing solutions surely use more vias that increase the

fabrication cost, and these solutions are more hazardous too from an electrical

performance point of view. Often a routing instance might be most efficiently

24

routable only in the diagonal routing model, but in such a model either octagonal

shaped or similar vias are needed to be designed which is complicated and costlier

than square vias used in connecting rectilinear wire segments.

So, merits and demerits are there for each of the routing models talked about.

Anyways, based on the realistic scenarios and fabrications viewpoint, the most

practical, modular, and performance driven routing model is the grid-based non-

overlap reserved layer no-dogleg Manhattan routing model, in which the majority of

the designers, academicians, and industry people have given their attention and shown

their curiosity, and published a maximum number of articles on routing [15, 32, 33,

49, 51, 71, 96]. In this thesis too, we like to concentrate on the stated routing model in

developing all our theoretical contributions and designing algorithms for crosstalk

minimization in two-layer VH channel routing.

1.4.3 Characterization of the Channel Routing Problem

We consider an example channel specification as shown in Figure 1.18. This channel

contains eight nets, whose terminals are to be connected to complete the required

interconnection for computing a routing solution in the grid-based reserved two-layer

no-dogleg Manhattan routing model.

Figure 1.18: An example channel instance, that contains eight nets, is considered for

characterizing the channel routing problem.

We know that the primary objective of the channel routing problem is to

connect all the terminals using a minimum number of tracks (or channel area), where

non-terminals are vacant terminals and not connected. Now, to minimize the number

of tracks, of course, we require assigning the horizontal spans of all nets (belonging to

a channel) to a minimum number of tracks. This can be done in several possible ways

for the instance shown in Figure 1.18. Observe that the nets 4 and 7 can never be

6 0 0 5 0 2 1 0 0 5 7 5

0 2 3 6 3 1 7 4 8 4 8 0

I3 I8

I7

I6 I1 I4

I5

I2

25

assigned to the same track. The reason is that these intervals have horizontal spans

that overlap with each other and there is only one (reserved) horizontal layer for

assigning all horizontal wire segments in the VH routing model; otherwise, these two

spans are to be short-circuited in a track.

Such a constraint between a pair of nets for their assignment to tracks is

known as the horizontal constraint, and all horizontal constraints in a given instance

can be represented by an undirected graph, called the horizontal constraint graph

(HCG). This graph can be constructed as follows. For every net, there is a vertex in

the graph. There is an edge between two vertices of the graph if and only if the

corresponding intervals have overlapping horizontal spans [49, 96]. Sometimes, this

overlapping could be on a single point in a column, where the interval of a net

terminates whereas that of another net originates. For example, this is true for the net-

pair 1 and 7 in the channel instance shown in Figure 1.18. The HCG thus obtained for

the channel instance in Figure 1.18 is shown in Figure 1.19.

Figure 1.19: The horizontal constraint graph (HCG) of the channel specification

shown in Figure 1.18.

Now the question that arises: Whether the interval (or the horizontal span) of

net 6 (i.e. I6) is assignable to a track above the track to which net 5 (i.e. I5) to be

assigned? Noticeably, the answer is ‘no’; this is because the ninth column of the

channel contains a top terminal of net 5 and a bottom terminal of net 6. So, if the

interval I6 is assigned to a track above the track where the interval I5 is assigned, then

it results in an infeasible assignment as shown in Figure 1.20(a). In fact, to get a valid

routing solution in the said model at least one track separation is necessary while

assigning the intervals to tracks and I6 is always assigned below I5, as shown in Figure

1.20(b). This forced constraint in the order of assigning nets from top to bottom along

v2

v3

v1

v6

v5 v4

v7 v8

26

the height of the channel is known as a vertical constraint [49, 96]. Here, we say that

net 5 is vertically constrained to net 6.

Figure 1.20: (a) An infeasible allocation of the intervals of two different nets to

tracks due to the presence of a vertical constraint in the ninth column of the channel in

Figure 1.18, and as a result the vertical wire segments of the nets get short-circuited.

(b) A feasible allocation of the intervals of two different nets to tracks where the

interval of a net with the top terminal is assigned to at least one track above the

interval of a net with the bottom terminal to conform to the vertical constraint present

in the column.

Figure 1.21: The vertical constraint graph of the channel specification shown in

Figure 1.18.

The vertical constraints among the nets in a channel are represented by a

directed graph, called the vertical constrains graph (VCG) defined as follows. For

every net, we introduce a vertex, and there is a directed edge from vi to vj if and only

if the corresponding net ni is vertically constrained to net nj. The VCG of the channel

instance in Figure 1.18, is shown in Figure 1.21.

The horizontal and vertical constraints are two important characterizations of a

channel routing instance. The horizontal constraints determine whether two intervals

v2

v3

v1

v6

v5

v4
v7

v8

5

6

I6

I5

Short-

circuited

due to

invalid

assignment

of nets to

tracks

(a)

5

6

I6

I5

At least one

track parting

is required

for a valid

assignment

of nets to

tracks

(b)

27

Ii and Ij of two different nets ni and nj, respectively, are assignable to the same track.

The vertical constraints determine the order in which the intervals are to be assigned

from top to bottom across the height of the channel. An undirected edge {vi, vj} in the

HCG indicates that the corresponding intervals Ii and Ij are not assignable to the same

track in routing a solution under the (grid-based) reserved two-layer (VH) (no-dogleg)

Manhattan channel routing model. The channel density (or only density) of a channel

is the maximum number of nets passing through a column. Let us denote the channel

density by dmax. For the channel specification in Figure 1.18, the channel density, dmax

is four, because at most four nets (n5, n4, n7, n8 or n2, n5, n6, n3) are involved in

horizontal constraints in a column.

On the other hand, a directed edge (vi, vj) in the VCG indicates that the net ni

has to connect a top terminal and the net nj has to connect a bottom terminal at the

same column position. Therefore, the interval Ii must be assigned to a track above the

one to which the interval Ij is assigned. For an acyclic VCG, let us denote the length

of the longest path in the VCG by vmax, where vmax is same as the number of vertices

belonging to the path. Thus, for the channel instance shown in Figure 1.18, the length

of the longest path in the (acyclic) VCG, vmax  4, comprising vertices v2, v1, v7, v8.

1.4.4 A Lower Bound on the Number of Tracks

Typically, there are various assumptions as well as objectives in solving a given

channel instance. A routing model itself is a supposition that guides to the other

beliefs as well; some of which are briefly mentioned here. As the input of a channel is

given, that means the top row of terminals, as well as the bottom row of terminals, is

given that are equal in length. Moreover, this implies that the channel length and

hence the number of columns are also given, which is fixed for a given channel

specification.

A grid is assumed in a grid-based routing model, where rectilinear wire

segments are allowed to route; terminals are vertically aligned along the columns.

Among several mutually conflicting objectives, the prime objective is to minimize the

channel height, which is reflected by minimizing the number of tracks or the channel

area.

Hence, we may define the channel routing problem as follows. The channel

routing problem (CRP) is the problem of assigning the horizontal wire segments of a

28

given set of nets (in the form of netlist or channel specification) to tracks without any

conflict (or satisfying constraints), so that the number of tracks required, and thus the

channel area, is minimized.

Note that we need at least dmax tracks, as well as at least vmax tracks to compute

a two-layer routing solution under the reserved layer (no-dogleg) non-overlap

Manhattan routing model when the channel consisting of a set of fixed terminals and

the VCG for the channel is acyclic. Besides, when the VCG of a channel contains a

cycle, then there is no question of computing the length of the longest path in the

VCG, i.e. vmax. In such a case, a net that is belonging to a cycle in the VCG is

supposed to be assigned above (or below) to itself, which is meaningless (or

ambiguous). Therefore, for an acyclic VCG, max(dmax, vmax) is a lower bound on the

number of tracks required for a routing solution in the two-layer VH channel routing

model [49, 96]. This is because any two nets belonging to the set of nets in dmax must

be assigned to two different tracks; the same is true for the set of nets in vmax.

We may further make a note of that the HCG of a channel instance is an

interval graph, which is a kind of perfect graph [8, 29, 34, 36, 70]. Further, it can be

easily shown that dmax, the density of the channel, is same as the size of the maximum

clique of the underlined interval graph [8, 29, 34, 36, 49, 70, 96].

1.4.5 Optimization Issues Involving the Channel Routing Problem

So far, we have viewed the channel routing problem in an abstract framework. Based

on this abstraction, there are some usual objectives that we would like to achieve.

Some of the usual factors (or objectives) to optimize the cost of a routing solution are

area minimization, wire length minimization, via minimization, layer minimization,

and so on. All these cost factors are inter-related, and we need to assign priorities on

them that can reflect a real situation. Here, we have discussed these factors in brief.

1. Area: A primary objective in channel routing is to minimize the total routing

area of a channel. Minimization of routing area (space) for each of them

eventually, reduces the overall (global) routing area. If routing area is

minimized, the cost of production is reduced, and yield is enhanced, as

impurities (or defects in the wafer) could be avoided in realizing the same

circuit which is smaller in size; and out of the same wafer, more chips are also

produced.

29

2. Net wire length: Wire length is another important cost factor, as more wire

means more cost. Also, a long wire is responsible for signal propagation delay.

For some net, often long wires could be there as a part of design, but for

critical nets and nets for power and ground lines, long wires are not allowable

at all. Later on, we will find that long wires are hazardous from an electrical

point of view as well. In VLSI channel routing, the total wire length

minimization is an important problem, and this problem is much more

important when the objective is to minimize the longest net.

3. Via: A via is introduced to connect two orthogonal wire segments of a net or

in a case where the necessity of a change of layer is a must. In a grid-based

routing model, a via is placed at the corresponding grid point. Often in dogleg

routing, the area is reduced sacrificing more vias. In CRP, vias are minimized

to improve the alignment of masks. Besides, vias are often difficult to

fabricate. Vias also increase delay and electrical hazards, and therefore, need

to be reduced in high performance designs.

4. Layer: Increase in the number of layers causes minimization of routing area.

However, this increases the size of the chip in the third dimension and the cost

of fabrication. Thus, one of the important objectives is not to introduce more

layers, if a routing solution is achieved within a specified area using a

minimum number of layers of interconnect.

For general-purpose chips, the above objectives are attempted to minimize (or

optimize) in isolation or sometimes, in combination. However, there are several high

performance issues to make a routing solution reliable and practicable, even if the

routing solution is feasible. For designing high performance chips, there are some

supplementary objectives such as reducing crosstalk, signal delay, power

consumption, heat generation, hot spot formation, and so on and so forth. If we could

reduce all these factors in computing a routing solution, then a channel routing

solution with high performance is obtained. Some of these are discussed in brief as

follows.

1. Crosstalk: Crosstalk is one form of noise and is a kind of electrical hazard,

which is created due to the mutual capacitance between adjoining wires.

Propagation delay increases and logic faults may occur because of increase in

30

crosstalk. Crosstalk between wires is proportional to the coupling capacitance

which in turn is proportional to the coupling length, i.e. the total length of the

overlap between (adjacent) wires. Crosstalk is also proportional to the

frequency of operation and inversely proportional to the separating distance

between wires. Therefore, for high performance routing, it is required to

consider all these issues, and through minimization of crosstalk, these could

all be reduced below a real limiting value. The aim should be to avoid

overlapping wire segments that lie close to each other.

2. Signal delay: Delay is another important criterion for high performance

routing. In VLSI design, often it is possible that a critical path is cut many

times by the partition [81], and thus, the delay in the path may be too long to

meet the goals of high performance requirements. The design for high

performance routing requires intelligent partitioning algorithms to reduce the

cut size (that signifies interconnecting wires) as well as to minimize the delay

in the critical path. Often the delay is a consequence of a result of electrical

hazards (in the form of crosstalk) as has been mentioned above.

3. Power consumption: In high performance routing, the power consumption by

any net should be controlled; otherwise, there will be a mismatch of consumed

power between nets. Thus, even distribution of power is an important issue in

high performance routing. On the contrary, a spot over the chip could become

more heated and may get melted. Thus, the proper cooling arrangement is also

required for surviving of the chip. This problem is related to wire length

minimization and even distribution of wires in routing. Nowadays, low power

is one of the most important research domains in devising VLSI chips or any

portable electronic gadgets.

4. Hot spot: For high performance routing, there should never be a part of a

channel which is highly congested. As a matter of fact, the propagation of

signals may generate heat that could cross a specified (upper) limit. The spot

with crossing heat limit is called a hot spot. Congestion of active components

on a chip floor and wires in routing, power consumption, and hot spot

formation, these are all interlinked. To remove hot spots, rerouting is an

alternative way of probable solutions; otherwise, if rerouting fails to reduce

congestion (of wires), the adequate cooling arrangement is necessary.

31

In this thesis, we study the crosstalk minimization problem in two-layer (VH)

channel routing, in the routing models specified above, where we assume a pre-

computed channel routing solution with reduced area. In other words, our objective is

to reduce crosstalk in a given channel routing solution (with a fixed number of tracks

or channel area) by computing another routing solution (with reduced crosstalk)

keeping the channel area same. In more details, the chapter-wise contribution of the

thesis is briefly mentioned in the following section.

1.5 Outline of the Thesis

As fabrication technology advances the feature size reduces. The devices are placed

closer to each other, and the interconnecting wire segments are assigned narrower

pitches. However, the circuits’ operations are realized at higher frequencies. As a

result, electrical hazards, viz., crosstalk between wire segments are produced. More

crosstalk means more noise and more signal delay, and hence, a reduced circuit

performance. Therefore, it is desirable to develop channel routing algorithms that not

only reduce the number of tracks (i.e. channel area) but also crosstalk. The theoretical

aspects of the computational problems along with the presence of crosstalk as an

inherent electrical phenomenon in network-on-chip (NoC) and also in mixed-signal

ICs in deep submicron digital CMOS technology introduced for devising VLSI

circuits have been briefly discussed and reviewed in Chapter 2 of the thesis.

In Chapter 3, we study several crosstalk minimization problems in two-layer

VH channel routing in formal frameworks. We first introduce sum crosstalk

minimization problem. The sum crosstalk is the amount of total crosstalk between

horizontal wire segments of the nets that are assigned to adjacent tracks in a channel

routing solution. Then we introduce bottleneck crosstalk minimization problem. The

bottleneck crosstalk with respect to a feasible routing solution is the maximum

amount of crosstalk due to overlapping between any pair of adjacent horizontal wire

segments of two different nets. We show that these problems are intractable. This is

true irrespective of whether non-overlapping nets are grouped for their assignment to

tracks or not. In this chapter, we also address if there is a polynomial time

approximation algorithm with guaranteed error bound for the crosstalk minimization

problems, and subsequently prove that if P ≠ NP, there cannot exist such an

32

approximation algorithm. It is further shown that all these problems are also NP-hard

even if doglegging is allowed.

Hardness results obtained in Chapter 3 leaves one option to deal with these

problems, design of efficient heuristics for them. In Chapter 4, we develop crosstalk

minimization heuristics for the two-layer channel routing, where the channel instances

are simple. Then we extend it to two-layer routing for general channel instances. For

each such instance, two algorithms have been developed; one is Track Interchange,

and the other one is Net Change. The algorithms are efficient enough in reducing

crosstalk from 21% up to 36% for simple channel instances and on an average of 12%

for general channel instances.

Chapter 5 deals with designing algorithms for the generation of random

channel instances, for their use in computing reduced crosstalk channel routing

solutions in VLSI physical design. Channel instances are usually of two types: simple

and general. A simple channel instance does not contain any vertical constraint,

whereas a general channel instance contains both horizontal as well as vertical

constraints. The novelty of the heuristics designed in Chapter 4 can be judged better if

it works for a variety of a large number of randomly generated instances of the

problem. In this chapter, we develop two random channel instance generators that

vary from 14 to more than 33000 in channel length and from 10 to 15000 in the

number of nets belonging to a channel. For each net number, we generate 200 simple

as well as general random channel instances, with a varying number of terminals per

net, and use each of them for reducing crosstalk.

An exhaustive amount of computations has been performed in this research

work to support all the algorithms developed in this thesis in Chapters 4 and 5. All

results obtained have been included in Chapter 6 as part of experimentation relating to

our work. A limited number of sample channel instances have been incorporated in

this chapter though we have generated thousands of such instances of varying length.

A selected set of routing solutions have also been presented in this chapter where we

show an initial routing solution, a reduced crosstalk routing solution after the

execution of the algorithm Track Interchange, and then a further reduced crosstalk

routing solution after the execution of the algorithm Net Change. All our experimental

results are highly encouraging.

33

In Chapter 7, we show that the algorithms Track Interchange and Net Change

can be parallelised to get efficient parallel algorithms for simple instances of channel

specifications. The Track Interchange algorithm uses a sorting algorithm which can

also be easily parallelized. This readily gives us a parallel version of algorithm Track

Interchange. Whereas, in the second algorithm, a processor, which is responsible for a

net, searches for a blank space in some other track, if the net is interchangeable, such

that this interchange reduces a maximum amount of crosstalk. The algorithms are

efficient enough in terms of their computational complexity.

The thesis is concluded in Chapter 8 with some probable open problems for

future researchers. In this thesis, several issues relating to two-layer crosstalk

minimization problem in channel routing have been considered and resolved. Even

then, there are several other issues yet to be studied. Some of them are developing

algorithms for computing two-layer channel routing solutions with better (or further

reduced) bottleneck crosstalk without sacrificing area, algorithms for reduced

crosstalk in two-layer dogleg routing solutions, and parallel algorithms for reducing

crosstalk for general channel instances. The crosstalk minimization problem in the

three-layer VHV and HVH channel routing models are yet open for potential

investigators.

34

Chapter: 2

Literature Survey on Crosstalk Minimization

Problem

2.1 Overview

In this chapter, we briefly survey a few results on channel routing that are relevant to

the work presented in this thesis. We view channel routing as a combinatorial problem

and survey some fundamental intractability results for the area as well as wire length

minimization in channel routing. Since the CRP is NP-hard for both the problems

mentioned above, extensive research has been done on designing efficient algorithms

for meeting some desired target as usual cost factor(s) to be optimized for routing

channels. By the way, mainly in the last two decades, some high performance factors

have been addressed in a discrete way, but plenty of work is yet to be done in this

domain of research. Only very few researchers have worked on avoiding or

minimizing crosstalk and among them almost none on channel routing as a part of

high performance VLSI design for circuit synthesis.

In this chapter, we have reviewed the effects and impact that crosstalk has on

the performance and reliability of VLSI circuits and systems. With developments in

VLSI fabrication technology, as feature size decreases and communicating wires are

seated as close as possible, circuits also operate at higher frequencies. Thus, reduction

in crosstalk among interconnecting wire segments is becoming an essential concern

for VLSI physical design. In this chapter, we have also offered a short and snappy but

informative survey of the various methods that researchers worldwide are

implementing for a priori crosstalk avoidance or a posteriori crosstalk minimization in

VLSI systems from the point of view of fabrication over the past few decades.

In Section 2.2, we converse some basic terms and preliminaries pertinent to

the discussion on computational complexity as given in [28, 66]. In this section, we

also address some related problems on two-layer (VH) area and wire length

minimization in channel routing, either that are polynomial time computable or NP-

hard. In Section 2.3, we present a concise survey of the development of evading

and/or diminishing crosstalk in several spheres of research including network-on-chip,

36

inbuilt evasion in fabrication, optical network, nanometer design, circuits and

communication systems, gate sizing, signal transition, interconnect spacing in analog

and digital circuits, frequency domain, error control coding and bus-coding, routing in

VLSI domain, and so on and so forth. Some soft computing based methods have also

been adopted as has been included in this review. In Section 2.4, we summarize the

chapter by making some comments on crosstalk minimization along with mentioning

a few established intractable results in two-, three-, and multi-layer channel routing.

2.2 Some Basic Terms and Preliminaries on the Theory of NP-

Completeness

A decision problem  is a problem stated in terms of generic parameters for which

the solution is either “yes” or “no”. That means either the guessed solution to a

problem under consideration is a valid solution or the other, but we can check it in

polynomial time. In general, all decision problems that can be solved in polynomial

time by a nondeterministic computer belong to the class NP. Most of the apparently

intractable problems encountered in practice, when phrased as decision problems,

belong to this class [28, 66].

An instance I of problem  is obtained by assigning a set of specific values

to the parameters of . The set of all (valid) instances of  is denoted by D, whereas

Y  D is the set of all instances of  for which the solution is “yes”. P is the class

of all decision problems each of which is polynomial time computable by a

Deterministic Turing Machine (DTM). DTMs are related in polynomial time to the

high-level programming languages. Therefore, if an algorithm can be devised for

solving  whose computational space as well as time complexity is polynomial, then

  P. For example, let us consider the following decision problem 1.

Problem: Two-layer (VH) restricted dogleg channel routing problem of area

minimization with multi-terminal nets in the absence of vertical constraints (1).

Instance: A channel specification of length m (i.e. the length of TOP or BOTTOM

sequence of fixed terminals) that contains n  m multi-terminal nets such that either

the top terminal or the bottom terminal (or both) in each column is a non-terminal (or

0, not to be connected), and a number t of tracks between TOP and BOTTOM.

37

Question: Is there a permissible assignment of the wiring of all nets in the channel in

the two-layer (VH) restricted dogleg Manhattan channel routing model that uses no

more than t tracks?

To judge the nature of the problem 1, now we consider the following

decision problem 2.

Problem: Two-layer (VH) no-dogleg channel routing problem of area minimization

with two-terminal nets in the absence of vertical constraints (2).

Instance: A channel specification of length m (i.e. the length of TOP or BOTTOM

sequence of fixed terminals) that contains n  m two-terminal nets such that either the

top terminal or the bottom terminal (or both) in each column is a non-terminal (or 0,

not to be connected), and a number t of tracks between TOP and BOTTOM.

Question: Is there a permissible assignment of the wiring of all nets in the channel in

the two-layer (VH) no-dogleg Manhattan channel routing model that uses no more

than t tracks?

Since there are no vertical constraints for channel instances in this domain of

channel routing problem, polynomial time algorithms exist for finding a legal wiring

using no more than density number of tracks for the problem 2 [49, 52, 53]. Thus,

one needs only to compare the density of the channel and t to determine if a specific

instance I2  Y2. Hence, we conclude by saying that 2  P.

Now, it is interesting to observe that if 1 contains only two-terminal nets,

then such an instance of 1 becomes an instance of 2 only, as allowing restricted

doglegging in the case of multi-terminal nets is analogous to no-doglegging if the

number of terminals per net is limited to exactly two. Therefore, we conclude that 1

also belongs to P [49, 52, 53].

Incidentally, for some problem , there may not be any (optimal) polynomial

time computable algorithm. However, if a guessed solution S for some instance I

(for ) is given, the guess can be checked in polynomial time to verify if it

corresponds to a “yes” or “no” solution in a reasonable amount of time (or in

polynomial time) for . This is comparable by saying that there exists a polynomial

time Non-Deterministic Turing Machine (NDTM) for solving . NP is defined to be

the class of decision problems each of which can be solved in polynomial time by an

38

NDTM. It is known that P  NP [28]; that means a problem which is

deterministically polynomial time computable is also non-deterministically

polynomial time computable, but the reverse is not true. Thus, we may assert in some

other words that when a problem is a polynomial time computable one, then a

polynomial time computable non-deterministic algorithm (using NDTM) is there

which is more powerful to solve the problem than a polynomial time computable

deterministic algorithm (using DTM) to solve the same. However, it is yet to be

proved whether P  NP or P  NP [28].

Consider the following problem 3 [41].

Problem: Two-layer (VH) no-dogleg channel routing problem of minimizing area

with two-terminal nets (3).

Instance: A general channel specification of length m (i.e. the length of TOP or

BOTTOM sequence of fixed terminals) that contains n  m two-terminal nets, and a

number t of tracks between TOP and BOTTOM.

Question: Is there a permissible assignment of the wiring of all nets in the channel in

the two-layer (VH) no-dogleg Manhattan channel routing model that uses no more

than t tracks?

3 is an example of a problem for which there is no known polynomial time

algorithm that computes an optimal solution for each and every instance of this

problem. However, given a set of routes in a guessed solution S3 for all the nets of an

arbitrary instance I3 (for 3), we can check in polynomial time whether all these

routes provide feasible (or valid) wiring for the channel. Moreover, the number of

tracks present in S3 can also be compared to t. Thus, in polynomial time, a check can

be made to verify whether the guessed solution S3 for the (assumed) random instance

I3  Y3. This implies that 3  NP.

In the theory of NP-completeness, there is always a pair of problems that is

reducible (or transformable) to each other in polynomial time. In some other words, if

a polynomial transformation is applied to an instance of the first problem, a matching

instance of the second problem is produced, and if a polynomial transformation is

imposed on an instance of the second problem, an analogous instance of the first

39

problem is obtained. Let us consider two decision problems x and y. A polynomial

transformation from x to y is a function f : Dx  Dy such that

1. f has a polynomial time computable algorithm, and

2. Ix  Yx if and only if f(Ix)  Yy.

If such a function f exists, then x is polynomial time transformable (or

reducible) to y, which is denoted by x  y. Such a transformation shows (and

proves) that y must be as hard as x. x and y are polynomially equivalent if x

 y and also if y  x. A decision problem  is NP-complete if   NP and for

every problem   NP,   . NP-complete problems form a class of polynomially

equivalent problems such that if one problem in this class has an optimal polynomial

time computable algorithm for its solution, then all problems in the class do have the

same (means each of the remaining problems also has a polynomial time computable

algorithm for its respective optimal solution) [28, 66].

LaPaugh proved that the circular arc colouring (CAC) problem is transferable

to 3 in polynomial time [41, 49]. The decision version of the circular arc colouring

problem is as follows [28, 49].

Problem: Circular arc colouring (CAC).

Instance: A finite set of arcs of a circle and a positive integer k.

Question: Is there an assignment of colours numbered 1 through k to the arcs such

that any two arcs that overlap are assigned different colours?

CAC is a well-known NP-complete problem [28]. Therefore, 3 is also NP-

complete [41, 49].

Now suppose that p is a new problem that belongs to NP. Also, let q is a

known NP-complete problem. Moreover, say all instances of p can be restricted in

the fashion that makes the restricted version p, exactly the same problem as q.

Then solving p must be as hard as solving q. Thus, p must also be an NP-

complete problem. This technique of proving a (new) problem NP-complete is called

proof by restriction [28]. Consider the following problem 4.

Problem: Two-layer (VH) restricted dogleg channel routing problem of minimizing

area with multi-terminal nets (4).

40

Instance: A general channel specification of length m (i.e. the length of TOP or

BOTTOM sequence of fixed terminals) that contains n  m multi-terminal nets, and a

number t of tracks between TOP and BOTTOM.

Question: Is there a permissible assignment of the wiring of all nets in the channel in

the two-layer (VH) restricted dogleg Manhattan channel routing model that uses no

more than t tracks?

It is easy to see that 4 reduces to 3 by restricting the number of terminals

for each net belonging to the channel to two [41]. Therefore, 4 is NP-complete.

Now we like to mention another problem 5 for minimizing wire length in

two-layer channel routing. The problem is as follows.

Problem: Total wire length minimization in two-layer (VH) no-dogleg channel

routing (5).

Instance: A general channel specification of multi-terminal nets and a positive

integer k.

Question: Does there exist a two-layer (VH) no-dogleg routing solution in the

Manhattan channel routing model so that the total wire length is k or less?

In [49, 57, 59], it has been proved that 5 is an NP-complete problem, and for

proving the same the necessary polynomial time reduction is made from an instance

of the well-known NP-complete problem sequencing to minimize weighted

completion time (SEQ) [28] to it. Before we declare the sequencing problem, we

necessitate explicating a few notations. T is a set of n tasks t1, t2, …, tn. For every task

ti, l(ti) is the duration for which the task ti runs, w(ti) is the weight of task ti, and (ti)

is the instant of time when the task ti is sequenced.

Problem: Sequencing to minimize weighted completion time (SEQ).

Instance: A set T = {t1, t2, …, tn} of tasks, a set of partial orders  on T, for each task

ti  T a duration l(ti)  Z+, a weight w(ti)  Z+, and a positive integer k.

Question: Does there exist a one processor schedule  for T that obeys the

precedence constraints and for which i ((ti) + l(ti))∙w(ti), for 1  i  n, is at most

same as k?

41

2.3 A Review on Crosstalk Avoidance and Minimization

With advancements in fabrication technology, there is a constant reduction in

minimum feature size in VLSI chips [2, 14, 88]. Subsequently, interconnecting wires

are also being placed in closer proximity to minimize interconnection delay and the

real estate required for routing. With the decrease in circuit delay, circuits start

operating at higher frequencies. Thus, reduction in crosstalk becomes an important

consideration for VLSI physical design. Crosstalk mainly arises due to the coupling

capacitances between adjacent interconnecting wires. The crosstalk arising in the

course of two wires is found to be proportional to the coupling length between them;

the capacitance, in turn, is determined by the relative positions of the wires. The

length of the overlapping segments of any two parallel interconnecting wires

determines the coupling capacitance between them. The coupling capacitance is also

inversely proportional to the distance separating two parallel wires. The coupling

capacitance between a pair of orthogonal wires is negligible compared to that between

a pair of parallel wires and is thus reasonably assumed to be non-existent. The

frequency of the signals travelling through two parallel wires also affects the coupling

crosstalk arising between them.

Crosstalk results in noise which may lead to unexpected circuit behaviour. The

absolute limit of crosstalk that can be tolerated depends on two things: the power

driving the circuit and the sensitivity of the circuit. In order to reduce noise in any

particular design, it thus becomes imperative to minimize the total crosstalk. In this

chapter, we present a review of various crosstalk avoidance and minimization

techniques that researchers have proposed over the past decades. While some of them

try to incorporate changes in the design phase to avoid the generation of crosstalk,

others attempt to modify the signal using different schemes so as to minimize the

crosstalk arising due to the signals.

2.3.1 Crosstalk in IC based Environment

2.3.1.1 Simulated Annealing based Approach [76]

In [76], the authors have devised a simulated annealing (SA)-based high-level

synthesis algorithm for the purpose of minimization of crosstalk activity in any given

data environment. They have focused on bus-based architectures as bus-lines usually

have a well-defined neighbourhood. The main objective of the authors was to

42

minimize the crosstalk in the worst case scenario concerning signal transmission

pattern. In order to achieve this, they have also incorporated bus reordering and data

transfer invert encoding schemes in addition to synthesis moves.

Experimental results suggest that there is a possibility of significant crosstalk

reduction considering both resource and latency constraints. The devised framework

has shown an average improvement of 23.5% over non-optimized designs. The

authors have also claimed to have achieved up to 75% reduction in bus-lines without

requiring shielding in the case of a set of nine DSP benchmarks. Furthermore, they

have presented an idea for a circuit for the purpose of detection and elimination of on-

chip crosstalk.

2.3.1.2 Signal Transformation Avoidance Technique [87]

The problem of crosstalk manifests itself in integrated circuit design whenever

overlapping stretches of wires are present. This is due to the parasitic coupling

induced between the adjacent signal conducting wires. It has been intended in [87] to

find a solution to this problem using a signal transformation avoidance technique. The

authors have used simulated annealing to search for an optimal layout pattern that has

the minimum crosstalk. They have modelled the crosstalk involved as a function of

energy stored in capacitances, intending to reduce further the crosstalk by rearranging

wire signal transition. The proposed framework has been able to bring about a

reduction of about 24.4% in energy for the optimal result obtained and about 6.9% for

the average result.

2.3.2 In-built Crosstalk Avoidance in Fabrication

2.3.2.1 An Alternative Layout Scheme for Crosstalk Avoidance [45]

Advancements in fabrication technology have steered devices to enter the nanometer

regime. This has led to the design of several new logic and memory architectures. The

objective of these architectures is to achieve higher packing densities keeping power

consumption and delay within acceptable limits compared to contemporary CMOS

architectures. The minimum wire spacing attainable and thereby the maximum

packing density achievable are constrained by the crosstalk induced in such nano-

scale devices.

In [45], the authors have analyzed the crosstalk which is produced in sub-

lithographic programmable logic array architectures. They propose an alternative

43

layout scheme with the intention of reducing the effects of crosstalk in adjacent wires.

Their proposed framework makes use of an interleaved layout scheme whereby two

out-of-phase but non-overlapping clocks prevent simultaneous signal transition in two

neighbouring wires.

The results obtained by the authors suggest that their proposed framework

provides better tolerance against the induced crosstalk compared to other sub-

lithographic programmable logic array architectures (crosstalk of about 30% of VDD

compared to the worst case scenario of about 70% of VDD). The authors have also

analyzed the effect of different parasitic capacitances on the induced crosstalk.

2.3.2.2 Crosstalk Minimization in Optical Networks [72]

A nonlinear crosstalk minimization algorithm that simultaneously considers self-

phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing

(FWM) has been presented and experimentally assessed by the authors. For a passive

optical network (PON), in the worst case scenario, a 1 dB power gain is reported by

the authors for a bit error rate (BER) of 109.

The authors have experimentally demonstrated the effectiveness of their

proposed algorithm that is based on Volterra series and genetic algorithm (GA). The

authors have reported improvements up to 1.8 dB in the Q factor, in the case of a

WDM ring transporting 1610 Gbps on-off keying non-return-to-zero codes through

the standard single-mode fiber, compared to the non-optimized scenario.

2.3.2.3 Crosstalk Avoidance in Nanometer ICs [35]

Application of multi-bit flip-flops (MBFFs) to bring about a reduction in clock power

in modern nanometer ICs is a promising lower-power design technique. Researchers

have been trying to utilize more MBFFs with as the larger number of bits as possible

for more clock power saving. However, an MBFF with a larger number of bits may

lead to serious crosstalk problems due to the close spacing of interconnecting wires

belonging to different signal nets connected to the same MBFF.

The authors have analyzed, evaluated, and compared the relationship between

power consumption and crosstalk on the application of MBFFs with different

numbers of bits. To solve the addressed problem, the authors have proposed a novel

crosstalk-aware power optimization approach to optimize power consumption while

44

satisfying the crosstalk constraint. Experimental results show that the proposed

approach is very effective in crosstalk avoidance when applying MBFFs for power

optimization.

2.3.2.4 Crosstalk Reduction in Fabrication Technologies [78]

The authors of this paper have proposed to reduce crosstalk for deep submicron

(DSM) and very deep submicron (VDSM) technologies to increase reliability and

performance. The proposed methodology aims to reduce the switching activity of the

data buses by an efficient data encoding technique. The authors have suggested that

their anticipated technique can reduce the total crosstalk delay by around 36% to 40%

compared to unencoded data and 0.3% to 32% compared to others techniques for 12-

bit, 21-bit, 38-bit, and 71-bit data buses.

2.3.3 Crosstalk Reduction in Circuits and Systems

2.3.3.1 Crosstalk Reduction in Communication Systems [92]

In the context of the design of integrated high-density circuits, crosstalk is one of the

major concerns. A wireless communication system can deviate significantly from its

intended performance, especially in the high-frequency range. It has been studied in

[92] that the relationship between the orientation of and the crosstalk between dual

stripline. The authors have analyzed crosstalk effects in the frequency as well as time

domains and have concluded that the near-end and far-end crosstalk, respectively,

increases and decreases based on a change in the orientation of the stripline from 0 to

90 degrees.

2.3.3.2 A Gate Sizing Technique for Crosstalk Minimization [30]

In [30], the authors suggest a novel gate sizing approach for circuit optimization in the

presence of scarce information about the distributions of the process variations. The

projected framework is said to rely on the concepts of utility theory and risk

minimization for the multivariate optimization of parameters, namely, delay, dynamic

power, leakage power, and crosstalk noise, via gate sizing.

The authors have compared the results of single-metric optimization for

dynamic power, leakage power, and crosstalk noise with equally weighted multi-

metric optimization and the results suggest that the proposed algorithm can achieve a

45

multifold speedup in execution times compared to the traditional approaches. The

authors have designed the algorithm to allow for selective optimization of the metrics

subject to relevant design requirements. To achieve this, the authors have proposed

assigning a high weight vector to the particular metric that needs to be optimized. In

such cases, the authors have optimized the corresponding metric at the cost of sub-

optimizing the other metrics.

2.3.3.3 Encoding Schemes for Reduction in Signal Transition in Crosstalk

Minimization [89]

This paper recommends encoding schemes to achieve a reduction in transitions

between the previous and present states of wire as well as transitions in adjacent

wires. The reduction in transition improves the performance regarding power

dissipation and crosstalk. The authors have classified groups of three wires into five

types depending upon their respective nature of transitions of signals in the wire:

Type-0, Type-1, Type-2, Type-3, and Type-4.

Type-0 coupling occurs when all of the 3-bit wires are in the same state

transition, i.e. from 000 to 111 with coupling capacitance being zero in this case.

Type-1 coupling occurs when there is a transition in one or two of the wires, and the

authors have denoted the coupling capacitance in this case by CC. A Type-2 coupling

occurs when the central wire is in the same state transition with one adjacent wire and

the opposite state transition with the other wire. The coupling capacitance assumed by

the authors is 2CC in this case. A Type-3 coupling occurs when the central wire

undergoes the opposite state transition with one of the other wires while the remaining

one remains quiet, the coupling capacitance, in this case, being 3CC. In Type-4

coupling, all three wire transitions in the opposite states with respect to each other

with a coupling capacitance effect of 4CC.

The authors have achieved switching activity reduction of 34.84% and 36.23%

using their proposed methodologies Method 1 and Method 2, respectively. The

coupling activity reduction of Method 1 and Method 2 is 20.00% and 20.54%,

respectively. The encoding methods proposed by the authors apparently reduce the

worst crosstalk effects significantly and transforms them to lesser harmful Type-0 and

Type-1 couplings. The authors have suggested that Method 1 reduces Type-4, Type-3,

and Type-2 couplings by 100%, 77.4%, and 50.0%, respectively and Method 2

46

achieves a reduction in Type-4, Type-3, and Type-2 couplings by 100%, 77.4%, and

60.0%, respectively.

2.3.4 Crosstalk Reduction in Communication

2.3.4.1 Coding Scheme for Reduction of Signal Transition [77]

This paper proposes a technique which reduces power consumption due to crosstalk in

data buses which are fed to DSP / communication devices. The proposed coding

technique reduces the transition activity in the input signals. The authors have

suggested that this shall consequently result in the reduction of power consumption. A

new bus coding technique has been proposed by the authors to achieve less power

reduction in transmission.

SPICE simulations have been carried out by the authors for interconnect lines

of different dimensions at various technology nodes: 180, 130, 90, and 65 nm. The

authors have claimed that their projected model achieves a reduction of 58.25% and

35.00% in the switching activity and the power consumption, respectively, for 16-bit

data buses. The authors have studied higher length data buses as well and claim to

have achieved a reduction of 45.62% and 27.00% in the switching activity and the

power consumption, respectively, for 256-bit data buses.

2.3.4.2 A New Dielectric Structure to Reduce Crosstalk in ICs [46]

To overcome crosstalk noise and delay uncertainty in modern very large scale

integration (VLSI) design, a new dielectric structure has been suggested in [46] for

integrated circuits. Near- and far-end crosstalk noises are reduced 45.2% and 15.0%,

respectively. The authors have named their proposed structure, gradually low-K. The

authors also suggest that the structure exhibits negligible side-effects in terms of delay

and power consumption.

According to their frequency domain simulations, the crosstalk measure has

been reduced by 1 dB in the frequency range of 1–35 GHz for simulated structures

with respect to the traditional low-K one. Moreover, according to the time domain

simulations done by the authors, the proposed structure reduces the crosstalks: NEN

(near-end noise) and FEN (far-end noise), by 45.2% and 15.0% in the test structure,

respectively.

47

2.3.5 Crosstalk Avoidance in Network-on-Chip

2.3.5.1 Crosstalk Avoidance in Network-on-Chips (NoCs) [65]

Network-on-chip is evolving into a revolutionary method for the integration of

multiple cores in a single system-on-chip (SoC). Widespread adoption of network-on-

chip (NoC) paradigm will only be possible if the signal integrity issues that arise due

to crosstalk between adjacent wires are properly addressed. Incorporation of crosstalk

avoidance coding (CAC) in NoC data streams can bring about a reduction in the worst

case coupling capacitance of inter-switch wire segments and subsequently, a

reduction in energy dissipated. The energy savings depend on the distribution of inter-

switch wires of different lengths and structure of the packet.

The authors have proposed a method for reducing the energy dissipation by

eliminating the need for CAC coding/decoding of payload flits at intermediate

switches between communicating NoC cores. It has been observed in [65] that the

maximum energy savings have been achieved for the folded-torus architecture due to

the uniformly distributed long inter-switch wire segments. The authors have also

presented how their method of modifying the packet structure and reducing the

coding/decoding overhead makes it possible to achieve higher savings in energy in

conjunction with crosstalk avoidance.

2.3.5.2 Flow-Control in NoC for Avoiding Crosstalk [67]

The authors have proposed a flow-control method, for tackling the challenge posed by

crosstalk faults in network-on-chips (NoCs), which is power-efficient. The authors

have identified opposite direction (OD) transitions as the source of crosstalk faults in

NoC communication channels. The proposed method, named FRR (Flit Reordering /

Rotation) by the authors, combines three coding techniques to eliminate the OD

transitions entirely.

The first coding technique mechanism is known as flit-reordering. It, as the

name suggests, reorders flits of every packet to find a flit sequence that generates the

least number of OD transitions. The second technique is flit-rotation. It logically

rotates the content of every flit in a packet with respect to previously sent flit to

achieve an even greater reduction in the number of OD transitions. The third

48

mechanism, known as flit-insertion, investigates flits to find the OD transitions which

cannot be removed by the first and the second mechanisms. The third mechanism

strives to eliminate the appearance of OD transitions by inserting null-flits between

the required flits completely.

The authors have evaluated their proposed FRR method in two ways. First,

they have carried out VHDL-based simulations for 16- and 32-bit channels with the

constraint that the maximum number of reorderings and rotations in the first and

second mechanisms respectively are limited to 2, 4, and 8. Secondly, the authors have

developed an analytical model to calculate and compare the expected number of OD

transitions in an unprotected NoC as well as an FRR-enabled NoC.

The authors have also suggested that the results obtained from both the

simulation and the analytical model, confirm that the FRR method can completely

remove crosstalk faults from NoC channels. Also, the authors also suggest that the

FRR method provides remarkable power savings because the proposed method

reduces the number of transitions in NoC channels by at least 32.8%.

2.3.5.3 Optimization Techniques in NoC Design to Reduce Crosstalk [18]

This paper presents several optimization problems occurring in VLSI interconnect,

network-on-chip (NoC) design, and 3D VLSI integration, all possessing closed-form

solutions obtained by well-solvable Quadratic Assignment Problems (QAP). The first

type of problems deals with the optimal ordering of signals in a bus bundle such that

the switching power, delay, and noise interference are minimized. The authors have

extended a known solution of ordering the signals in a bus bundle to minimize the

impact of crosstalk, i.e. the first order wire-to-wire parasitic capacitance occurring

between adjacent wires into a model accounting for the secondary components of

wire-to-wire parasitic capacitances as well.

2.3.6 Crosstalk in Analog / Digital Circuits

2.3.6.1 Impact of Crosstalk on Circuit Design [42]

The crosstalk phenomenon and its impact on the design of mixed analog/digital

circuits with high accuracy specifications have been demonstrated in this work.

Generation of digital disturbs, propagation through the substrate, and effects on

49

analog devices have been considered, with particular emphasis on integrated circuits

realized on the heavily doped substrate, where traditional shielding is less effective.

Techniques to reduce analog/digital crosstalk have also been reviewed and discussed

in [42].

2.3.6.2 Interconnect Spacing Technique for Crosstalk Minimization [47]

Reduction of interconnect delay and interconnect power has become a primary design

challenge in recent CMOS technology generations. The spacing between wires can be

modified so that line-to-line capacitances can be optimized for minimal power under

timing constraints. In [47], the authors have presented a novel algorithm for

simultaneous multi-layer interconnect spacing that minimizes the total dynamic power

dissipation caused by interconnection while maximum delay constraints are satisfied.

The authors have introduced a multi-dimensional visibility graph to represent

the problem, and a layout partitioning technique has been applied to solve the problem

efficiently. The algorithm has been evaluated on an industrial microprocessor

designed using the 32 nm technology, and the authors claim to have achieved a 5–

12% reduction in interconnect switching power.

2.3.7 Crosstalk Avoidance in Interconnects

2.3.7.1 A Frequency Domain Approach for Minimization of Crosstalk in High-

Speed Interconnects [19]

In [19], the authors propose a frequency-domain approach to simulate efficiently and

minimize the crosstalk between high-speed interconnects. They have discussed

several methods in the text for modelling coupled transmission lines, at the same time

considering numerous possible simulation strategies. The authors follow a

straightforward yet rigorous frequency domain approach. As it exploits a harmonic

balance technique, the approach can be used for linearly and non-linearly terminated

micro-strip coupled lines.

The authors have simulated a typical example of micro-strip interconnects,

and they have compared their results with those obtained using time-domain methods,

by other authors. The work suggests that the devised simulation method yields good

accuracy. The authors have formulated a crosstalk minimization problem and have

implemented the proposed method to solve it.

50

2.3.7.2 Error Control Coding to Reduce Crosstalk [44]

The authors in [44] have suggested an energy-efficient error control code for the on-

chip interconnection link. The proposed code is capable of correcting any error

patterns that includes random and burst errors up to 5 bits. The proposed decoding

scheme has been designed based on single-error-correction–double-error-detection

(SEC–DED) extended Hamming code and standard triplication error correction

scheme. The triplication error correction scheme provides crosstalk avoidance by

reducing the coupling capacitance of the interconnection wire.

The authors suggest that the proposed code can provide high reliability

compared to other error control codes. They have evaluated the performance of the

proposed code by codec area, codec power, codec delay, residual flit error rate, link

swing voltage, and link power. The proposed code has achieved low residual flit error

rate and swing voltage, for any given reliability requirements of 105 and 1020
. A

reduction in the swing voltage, in turn, reduces the link power consumption up to 68%

compared to the existing methods. The authors have claimed that the low residual flit

error rate achieved and the low link power consumed, make the proposed code

appropriate for on-chip interconnection link.

2.3.7.3 Bus-Coding Techniques for Crosstalk Avoidance [21]

RC crosstalk effect in on-chip buses leads to some serious problems as propagation

delay and dynamic power dissipation. The authors have presented two efficient bus-

coding techniques to reduce simultaneously dynamic power dissipation and wire

propagation delay. The authors claim to have achieved improvements in both fronts

compared to existing techniques.

Simulation results presented by the authors show that the first proposed

technique reduces coupling activity by 26.7–38.2% and switching activity by 3.7–

7.0% on 8-bit to 32-bit data buses, respectively. The second proposed coding

technique reduces coupling activity by 27.5–39.1% and switching activity by 5.3–

9.0% on 8-bit to 32-bit data buses, respectively. The simulated results also suggest

that both the proposed methods reduce dynamic power by 23.9–35.3% on 8-bit to 32-

bit data buses and total propagation delay by up to 30.7–44.6% on 32-bit data buses,

and eliminate the Type-4 coupling. The proposed methods also claim to reduce total

51

power consumption by 23.6–33.9%, 23.9–34.3%, and 24.1–34.6% on 8-bit to 32-bit

data buses with the 0.18 mm, 0.13mm, and 0.09 mm technologies, respectively.

2.3.8 Crosstalk Minimization in Routing

2.3.8.1 A Routing Framework for Crosstalk Avoidance [93]

With the exponential reduction in feature size, the inter-wire coupling capacitance

becomes the dominant factor of load capacitance. Coupling delay deterioration and

crosstalk are two problems that arise with the reduction in feature size. The authors of

this paper have proposed a timing-driven global routing algorithm that considers

coupling effects and crosstalk avoidance.

They claim that the proposed methodology differs from the existing ones in

that the proposed global routing “framework” performs well regarding routability,

timing, etc. and at the same time also facilitates the detailed routing stage in crosstalk

avoidance. The authors have presented experimental results on industrial circuits that

suggest how the algorithm leads to substantial delay reduction and effective crosstalk

elimination.

2.3.8.2 Switchbox Routing with Crosstalk Constraints [26]

In [26], the authors have investigated the gridded switchbox routing problems with

the aim of satisfying crosstalk constraints and minimizing the total crosstalk among

the nets. The authors have proposed a new approach to the problems that employs

existing switchbox routing algorithms and brings about an improvement in the routing

results via respective reassignment of the horizontal and vertical wire segments to

rows and columns, in an iterative fashion. The authors claim that this method is

applicable to the channel routing problem with crosstalk constraints. The authors have

proposed a novel mixed integer linear programming (ILP) formulation and efficient

techniques to reduce the number of variables and constraints in the presented ILP

formalism. The authors claim to have achieved encouraging experimental results.

2.3.8.3 Crosstalk Minimization in Channel Routing [25, 27]

In [25, 27], the authors have studied the gridded channel routing problem, with the

purpose of satisfying crosstalk constraints for the nets. The authors have proposed a

new approach that employs existing channel routing algorithms and achieves an

52

improvement upon the routing results by a permutation of the routing tracks. The

authors have then presented a novel mixed integer linear programming (ILP)

methodology and efficient techniques to reduce the number of variables and

constraints in the presented ILP formalism. The authors have claimed to have

achieved encouraging experimental results.

2.3.8.4 Crosstalk Minimization in Microring-based Wavelength Routing

Matrices [9]

Silicon microring resonators (MRR) can be used for switching operations directly in

the optical domain. Nevertheless, MRR-based switching fabrics have the probability

of having limited scalability regarding port count because of the crosstalk

accumulation caused due to the reuse of spatial wavelengths. The authors have

considered an optical switching fabric (OSF) that is built using a wavelength-routing-

matrix (WRM), based on MRRs. The authors have highlighted the scalability issues

and have proposed a new design. The authors have also suggested two different

approaches to limit the spatial reuse of wavelength to enhance the scalability of

MRRs making them suitable for future high-capacity OSFs.

The authors have introduced an MRR-based switching fabric, which uses the

periodical transfer function and tunability of MRRs to implement multiple wavelength

assignments. Subsequently, the authors have presented and analyzed the matrix

selection (MS) and matrix combination (MC) strategies to reduce the reuse of

wavelength based on the exploitation of the proposed MRR-based WRM. The authors

have claimed that the MS approach divides the wavelength reuse factor roughly by

two, compared to the single WRM configuration. While on the other hand, the MC

strategy has been claimed to reduce further crosstalk, significantly. The authors have

described two possible applications for the MC strategy, the exhaustive algorithm

(EA) and the greedy algorithm (GA). According to the authors, the complexity of the

GA is considerably lower than the MS strategy, and the GA also produces a

noticeably lower crosstalk than the MS strategy. The authors have stated that the GA

can be believed a good candidate algorithm for controlling the proposed MRR-based

WRM.

53

2.3.8.5 Simulated Annealing based Approach to Crosstalk Minimization in

Gridded Channel Routing [39]

With the rapid evolvement of VLSI fabrication technology, the inter-wire spacing in a

VLSI is becoming closer. Consequently, it becomes imperative to minimize the

crosstalk due to the coupling capacitances between the adjacent wires in the layout

design of fast and safe VLSI circuits. The authors have presented an approach based

on simulated annealing and segment rearrangement for minimization of crosstalk in

an initially gridded channel routing. The authors have compared the proposed

technique with previous track-oriented techniques, especially a track permutation

technique whose performance is bounded by an exhaustive track permutation

algorithm. The authors have claimed that the experimental results obtained indicate

the proposed technique to be more effective than the track permutation technique. The

efficiency is more pronounced in the case of test examples where there are only a few

possibilities of track permutation and which have relatively large number of segments

on track. However, the authors have conceded that the time complexity of the

simulated annealing based approach is rather high.

2.4 Summary

Crosstalk is a phenomenon that arises when a pair of conductors is placed in close

proximity, separated by an insulator. Whenever electrical energy (signals) flows

through these conductors, the entire arrangement behaves as a capacitor, resulting in

the generation of coupling capacitance. This capacitance is directly proportional to the

amount of overlap of the two conductors and is responsible for introducing noise into

whatever it is that is being transmitted through the conductors. This phenomenon can

be visualized in electrical power lines, communication lines, and in the micro-scale, in

electronic circuits, between two interconnecting wires. The amount of noise directly

affects the quality of signals being transmitted, and is needed to be kept within a limit

or margin, suitably titled as noise margin.

In the present scenario, with ever reducing feature sizes and higher speeds of

operation, electronic circuit design faces the challenge of overcoming crosstalk noise,

one of the most significant factors limiting IC design. Broadly speaking, there are two

different approaches towards solving this problem: one involves modifications in the

54

design phase for crosstalk avoidance, and the other involves post-design

modifications for crosstalk reduction. In this chapter, we have attempted to make a

detailed study of various techniques for both crosstalk avoidance and/or reduction

implemented by a number of researchers over the past few decades and the success

they have had against this natural vice of electrical/electronic circuits.

Moreover, theoretical studies in terms of knowing (and/or proving) the nature

of a problem, whether it is intractable or polynomial time computable, measure the

way of thinking in attacking a problem. Some problems that are solvable in

polynomial time and some problems that are not, have been discussed at the

beginning of this chapter, including a brief idea on the theory of NP-completeness.

Now we mention a few more problems in channel routing that are NP-complete

before we begin the next chapter on the hardness of crosstalk minimization in two-

layer channel routing. We have already mentioned that LaPaugh considered the area

minimization problem in two-layer channel routing and proved its NP-hardness [41].

Szymanski established that the following problems in the rectilinear reserved two-

layer unrestricted dogleg routing model are NP-hard: (i) minimizing the number of

tracks needed to route an arbitrary channel, and (ii) minimizing the total wire length

of an arbitrary channel [86].

Schaper demonstrated that under the three-layer HVH routing model, the

problem of routing a channel with a minimum number of tracks is NP-hard for the

two-terminal no-dogleg case, and subsequently for the multi-terminal restricted

dogleg case [80]. The multi-layer channel routing problems of area minimization in

the ViHi, 2  i  dmax, and ViHi+1, 2  i  dmax1 routing models with alternating

vertical and horizontal layers of interconnect are known to be NP-hard [49, 55, 56,

58]. Besides, plenty of problems in wire length minimization for two-, three-, and

multi-layer channel routing have been considered by researchers, and proved that

these problems are also NP-hard [49, 57, 58, 59, 64].

Chapter: 3

Hardness of Crosstalk Minimization in Two-Layer

Channel Routing

3.1 Overview

The channel routing problem (CRP) has already been defined in Chapter 1. As

mentioned earlier, the main objective is to minimize the channel area while

interconnecting all nets belonging to a channel in a specified routing model. Beyond

the usual cost factor(s), we consider crosstalk minimization as a high performance

issue in computing a routing solution. In the previous chapter, we have seen how the

crosstalk is taken care of by researchers worldwide, either by avoiding it as an a priori

task or by minimizing it as an a posteriori problem in devising electrical, electronic,

and VLSI circuits. By the way, the theoretical study in terms of proving the nature of

several crosstalk minimization problems in two-layer channel routing, whether they

are tractable or beyond polynomial time computable, is the major concern of this

chapter.

We have presumed the problem of crosstalk minimization as a problem of

minimizing electrical hazards that should be reduced to in the circuit performance. As

fabrication technology advances and feature size reduces, devices are placed

increasingly closer to each other, interconnecting wire segments are assigned with a

narrower pitch. However, the circuit operations are being realized at even higher

frequencies. As a result, electrical hazards, viz., crosstalk between wire segments have

significantly evolved. The crosstalk between wire segments is proportional to the

coupling capacitance, which in turn is proportional to the coupling length, i.e. the total

length of overlap between wire segments of two different nets. The crosstalk is also

proportional to the frequency of operation and inversely proportional to the separating

distance between wires. More crosstalk means more noise and more signal delay

resulting in overall circuit performance. Therefore, it is desirable to develop channel

routing algorithms that not only reduce the channel area but also the resulting

crosstalk. Work on routing channels with reduced crosstalk is very important from the

point of view of high performance requirements in VLSI circuit synthesis.

56

In this chapter, we show that the crosstalk minimization problem in the

reserved two-layer Manhattan routing model is NP-hard for simple and general

instances of channel specifications with given partitioning of nets so that the nets in a

class of the partition are assigned to the same track. We have also investigated upon

the simple as well as general instances of channel specifications with only two-

terminal nets, but without any imposed partition of (non-overlapping) nets to tracks.

In addition, we introduce the problem of minimizing bottleneck crosstalk in the

reserved no-dogleg two-layer channel routing model. We prove that the problem is

also NP-hard. We further investigate the existence of polynomial time exact

algorithms, and approximation algorithms for the above mentioned problems in two-

layer channel routing. We prove that the problems are NP-complete. We show that the

problem is hard to approximate, too. In all these cases, the problems have also been

studied with doglegging allowed as well.

3.2 Crosstalk Minimization in Two-Layer Channel Routing

3.2.1 Foundation of the Problem

In the channel routing problem, the set of all terminals that need to be electrically

connected together is called a net. In Figure 3.1, at most two columns of numbers

having the same integer value (other than zero) uniquely define a two-terminal net. In

other words, a net with only two terminals is called a two-terminal net. A vertical wire

segment is a wire that lies in a column assigned to the vertical layer, whereas a

horizontal wire segment is a wire that lies in a track assigned to the horizontal layer in

a two-layer VH routing model. Tracks are horizontal lines that are usually equispaced

along the height of the channel, parallel to the two rows of (fixed) terminals.

A route for a net is a collection of horizontal and vertical wire segments spread

across different layers, connecting all terminals of the net. A legal wiring of a channel

is a set of routes that satisfy all the pre-specified conditions where no two wire

segments, used to connect different nets, overlap on the same conducting layer. A

legal wiring is also called a feasible routing solution.

The CRP is specified by two m element vectors TOP and BOTTOM of

integers, and a positive integer t. The objective is to find a feasible routing solution

for the channel, if it exists, using no more than t tracks. An instance of the CRP is

shown in Figure 3.1, where we have an assignment of intervals of the nets present in

57

the channel to four tracks only. Let Li (Ri) be the leftmost (rightmost) column position

of net i, then Ii  (Li, Ri) is known as the interval (or span) of the net.

 3 8 0 0 4 0 0 1 3 0 6 7 0 0 5 0 0 5

 I3 I6 I5

 I8 I7

 I4 I1

 I2

 0 0 4 2 0 2 0 0 0 8 0 0 6 7 0 0 1 0

Figure 3.1: An example channel of eight nets. The intervals of the nets are placed in

four different tracks. Terminals are vertically aligned along the columns of the

channel. The length of the channel (i.e. the number of columns) is 18. Arrows indicate

the terminals to be connected, either at the top or at the bottom, to complete the

required interconnection of all nets.

3.2.2 Models of Crosstalk Minimization

Routing channels with reduced crosstalk are very important from the viewpoint of

high performance [25, 27, 49], and it is desirable to develop channel routing

algorithms that not only reduce channel area but also crosstalk. We define the amount

of crosstalk between horizontal wire segments (i.e. intervals) of two different nets

assigned to (two) adjacent tracks in a given routing solution, to be proportional to the

amount of overlap of their horizontal spans. If two intervals do not overlap, there is no

horizontal constraint between the nets; therefore, no crosstalk exists between them

too. Further, we also assume that two overlapping intervals of two different nets that

are not placed in adjacent tracks produces no significant crosstalk and it does not

contribute anything to the overall crosstalk. In fact, technology itself is responsible for

bringing the amount of this crosstalk within a permissible range of noise margin.

For example, nets n5 and n8 would never produce any crosstalk, as the

respective intervals, I5 and I8 do not overlap with each other in the channel instance

shown in Figure 3.1, whereas nets n5 and n1 will result in accountable crosstalk as the

respective intervals I5 and I1 overlap in the channel. The crosstalk between two nets is

the same as the amount of overlapping between them if the nets are assigned to

58

adjacent tracks. This is measured in terms of the number of units of overlap between a

pair of nets on adjacent tracks in a feasible routing solution. Similarly, if the nets n3

and n8 are assigned to (two) adjacent tracks in a solution of the channel shown in

Figure 3.1, then the amount of crosstalk between these two nets would be seven units.

We assume that the amount of crosstalk, between vertical wire segments of

two different nets placed in adjacent columns, is very small, and hence can be

neglected. It is a matter of technology to keep a safe separation between (two)

adjacent columns of a channel that crosstalk evolved due to vertical wire segments is

always within some limit of tolerance. This is true even if the longest possible

adjacency of vertical wire segments of two different nets (as the vertical wire

segments are available due to the fixed terminals that cannot be altered) exists along

the length of the channel.

It may be noted that if more tracks are introduced into a feasible routing

solution, then the amount of crosstalk may be reduced further (as some of the nets that

were assigned to adjacent tracks are now mutually nonadjacent). Obviously, if t–1

blank tracks (i.e. the tracks containing no interval of any net) are introduced to a t-

track feasible routing solution, where a blank track is placed between two consecutive

tracks (of nets), the resulting routing solution will not have any crosstalk. However,

this routing solution uses almost twice the area of the initial routing solution, whereas

our prime interest is to compute a routing solution of the minimum possible area. So

we assume a constraint that a fixed number of tracks are to be used in obtaining a

minimum crosstalk routing solution.

3.2.2.1 Types of Crosstalk Minimization

Now we consider the problems of crosstalk minimization in two-layer channel

routing. We first introduce the sum crosstalk minimization problem. Crosstalk in a

reserved two-layer channel routing solution is the sum of all crosstalk between pairs

of horizontal wire segments of nets that are assigned to adjacent tracks. The sum

crosstalk minimization problem is to compute a feasible routing solution with a given

number of tracks in which the total amount of crosstalk is minimized. Unless

mentioned otherwise, by crosstalk minimization problem we refer to the sum crosstalk

minimization problem.

59

In any routing solution, we define the bottleneck cost (or bottleneck crosstalk)

as a maximum of all crosstalk between any pair of nets that are placed in adjacent

tracks. There can be several routing solutions that use fixed number of tracks, but

having different bottleneck crosstalk. We define the bottleneck crosstalk minimization

problem as the problem of computing a k-track routing solution such that the

bottleneck cost is minimized.

Suppose that we are given a k-track routing solution. Note that it may be

possible to reduce crosstalk further by interchanging some nets between a pair of

tracks. This is explained in Figure 3.2, where a new assignment of tracks to the same

solution reduces the amount of crosstalk from 15 units (as in Figure 3.1) to 10 units.

So, one way of reducing the crosstalk is to suitably interchange the nets assigned to

tracks in a given routing solution. Keeping this in view, we define the problem VHP

of crosstalk minimization in two-terminal no-dogleg two-layer VH channel routing as:

Given an a priori partition of nets such that the nets in a class of the partition can be

assigned to a single track, a feasible routing solution can be obtained by assigning

each class of nets to one track. This feasible solution has a fixed crosstalk. Every

permutation of the classes can be considered a feasible solution with a fixed amount

of crosstalk. The objective is to get a feasible solution (a permutation) with the

minimum amount of crosstalk. The problem is formally posed in the next section.

 3 8 0 0 4 0 0 1 3 0 6 7 0 0 5 0 0 5

 I3 I6 I5

 I2

 I8 I7

 I4 I1

 0 0 4 2 0 2 0 0 0 8 0 0 6 7 0 0 1 0

Figure 3.2: Track-wise reassignment of nets of the 4-track assignment of non-

overlapping intervals in Figure 3.1 so as to reduce the amount of crosstalk from 15

units to 10 units. Here, intervals of tracks 2, 3, and 4 are now assigned to tracks 3, 4,

and 2, respectively.

However, it may not be possible to obtain the minimum crosstalk k-track

routing solution in this way. This is because such an optimal solution may correspond

60

to a different net grouping. This is illustrated in Figure 3.3. Thus, we address the

question: Is it possible to compute a k-track minimum crosstalk routing solution in

polynomial time?

Keeping this in view, in the next section, we pose two crosstalk minimization

problems, VHS and VHG, of two-terminal no-dogleg two-layer VH channel routing,

where the channel instances are free from a specific constraint in one case (i.e. in the

absence of vertical constraints) and having both types of constraints present in it in the

other case. In both cases, we like to compute a k-track two-layer routing solution

without any given partition of nets (i.e. there is no class of nets in the form of the

partition that is to be assigned to the same track) such that crosstalk is minimized.

 3 8 0 0 4 0 0 1 3 0 6 7 0 0 5 0 0 5

 I3 I6

 I2 I1

 I4

 I8 I7 I5

 0 0 4 2 0 2 0 0 0 8 0 0 6 7 0 0 1 0

Figure 3.3: Reassignment of nets in order to compute another 4-track routing solution

of the channel instance in Figure 3.1, so as to reduce the amount of crosstalk from 15

units to 8 units only. Here, net n5 is no longer in the group of nets n3 and n6; rather n5

is with nets n8 and n7 now. Similarly, leaving n4 alone, n1 is with n2 now.

The crosstalk minimization problems defined above are optimization problems

where we need a k-track routing solution having a minimum amount of crosstalk.

Often, such a routing solution may not be acceptable due to long overlapping of a pair

of wire segments (high bottleneck) of two different nets on adjacent tracks. We define

the maximum amount of overlap in any routing solution between a pair of adjacent

nets as the bottleneck of that solution. Then the bottleneck crosstalk minimization

problem is to find a feasible routing solution of given number of tracks such that the

bottleneck of that solution is minimized. We define this problem as the bottleneck

crosstalk minimization problem, BVHP, of two-terminal no-dogleg two-layer VH

channel routing, given an a priori partition of nets so that the nets in a class of the

given partition are to be assigned to the same track.

61

Our observation is that this problem of crosstalk minimization is practically

more relevant in computing a high performance routing solution in some cases than

the sum crosstalk minimization problems. As in the case of the sum crosstalk

minimization problem, we can have two variations here as well; one with given

partition of nets and the other one where there is no partition of nets. A more formal

presentation of all these problems is given in the next section.

3.3 Crosstalk Minimization in Channel Routing

In computing a routing solution, our prime intention is to compute a solution that uses

a minimum possible number of tracks (or minimum channel area). In addition to

computing a routing solution with reduced area, in high performance routing our

interest is also to obtain a routing solution with less electrical hazards (i.e. crosstalk),

less signal propagation delay, less power consumption, less or no hot spot formation,

and so on and so forth.

The CRP of area minimization is itself an NP-complete problem [41, 49, 56,

58, 61, 80, 86]. However, the problem is polynomial time solvable if the instances are

free from any vertical constraint. In fact, there are polynomial time dmax-track routing

solutions (or routing solutions of density number of tracks) for such instances [32, 49,

52, 53]. Since the problem of minimizing area for instances of routing channel with

only horizontal constraints is polynomial time solvable (using exactly dmax tracks), we

define such instances as the simple instances of channel routing. A general channel

instance contains both types of constraints in it. There can be several dmax-track

minimum area routing solutions for simple channel instances. As discussed in Section

3.2.2, these solutions are of the same area, but of different amount of crosstalk. We

also discussed two ways to reduce crosstalk further. One way is to interchange the

allotted tracks of all nets among the tracks without changing the net grouping. This

way, we could get the improved solution as shown in Figure 3.2 than the one in

Figure 3.1. The other way could be by breaking net groupings allotted to tracks, as

obtained in Figure 3.3.

Therefore, we have the following decision problem.

Problem: VHP (Crosstalk minimization in two-terminal no-dogleg two-layer VH

channel routing, given an a priori partition of nets).

62

Instance: I  (N, P, K), where N is a set of two-terminal nets, P is a partition of N nets

into t non-overlapping classes of intervals, and K is a positive integer.

Question: Does there exist an assignment of nets to t tracks such that (i) all nets in the

same class in the given partition P are assigned to the same track, and (ii) the total

crosstalk is at most K?

In the next section, we prove that this problem is NP-complete. Now we

formally pose the problems of crosstalk minimization, VHS for simple instances, and

VHG for general instances of channel specifications in the absence of any partition P

of nets, as follows.

Problem: VHS (Crosstalk minimization in two-terminal no-dogleg two-layer VH

channel routing for simple instances of channel specification).

Instance: A simple channel specification I  (N, K) of N two-terminal nets with

density dmax, and a positive integer, K.

Question: Does there exist a dmax-track no-dogleg two-layer VH routing solution of

the given channel specification so that the total crosstalk is at most K?

Problem: VHG (Crosstalk minimization in two-terminal no-dogleg two-layer VH

channel routing for general instances of channel specification).

Instance: A general channel specification of two-terminal nets, and two positive

integers, t and K.

Question: Does there exist a t-track no-dogleg two-layer VH routing solution of the

given channel specification so that the total crosstalk is at most K?

In the next section, we prove that these problems are NP-complete. Now we

formally present the bottleneck crosstalk minimization problem as follows.

Problem: BVHP (Bottleneck crosstalk minimization in two-terminal no-dogleg two-

layer VH channel routing, given an a priori partition of nets).

Instance: A simple channel specification with two-terminal nets, a partition, P of nets

into classes of non-overlapping intervals, and a positive integer, B.

Question: Does there exist an assignment of nets to |P| tracks such that (i) all nets in

the same class in the given partition P are assigned to a track, and (ii) the amount of

crosstalk between any two horizontal wire segments (or intervals) of two different

nets on adjacent tracks is B or less?

63

We prove that this problem is also NP-complete in the next section.

3.4 Theoretical Proofs

3.4.1 Hardness of Crosstalk Minimization in the Absence of Vertical Constraint

In this section, we show that VHP is NP-complete by reducing a variant of the

Hamiltonian path (HP) problem to VHP. The problem HP is the following [13, 28,

66].

Instance: An undirected graph G  (V, E).

Question: Does G contain a Hamiltonian path?

Before showing that VHP is NP-complete, we need to show that the following

variant HP* of problem HP is also NP-complete.

Problem: HP* (Weighted Hamiltonian path).

Instance: An undirected weighted complete graph G*  (V, E*), with weight w(e)  1

or 2 for each edge e  E*.

Question: Does G contain a Hamiltonian path of weight n1, where n  |V|?

Theorem 3.1: HP* is NP-complete.

Proof: We first show that HP* belongs to NP. Given an instance of the problem, we

take a certificate that is a sequence of n  |V| distinct vertices. The verification

algorithm checks that this sequence contains each vertex exactly once and the sum of

the weights of edges on this path is exactly n1. This algorithm can certainly be

executed in polynomial time. Therefore, HP*  NP.

To prove that HP* is NP-hard, we show that HP ≤P HP*. Let G  (V, E) be

any instance of HP. We construct a corresponding instance of HP* as follows. We

compute a complete graph G*  (V, E*), where E*  {(vi, vj) | vi, vj  V}, and for

every edge e  E*, we assign weight w(e)  1, if e  E; otherwise, we assign weight

w(e)  2. The instance of HP* can be obtained in polynomial time. The construction

has been explained in Figure 3.4.

We now show that the graph G has a Hamiltonian path HPP if and only if the

graph G* has a weighted Hamiltonian path HPP* of weight n1, where n  |V|.

64

Suppose that the graph G has a Hamiltonian path HPP. The same path is also a

Hamiltonian path in G*. We take HPP*  HPP. Each edge of this path has a weight of

one. Thus, HPP* has weight exactly n1 in G*. Hence, if HPP is a Hamiltonian path

in G, then HPP* is a weighted Hamiltonian path in G* with weight n1.

Figure 3.4: (a) A graph instance G (V, E) of problem HP. (b) The graph G* (V,

E*) of the corresponding instance of problem HP*, computed from G.

Conversely, suppose that the graph G* has a weighted Hamiltonian path HPP*

of weight n1. Since HPP* has a length of exactly n1 (edges) and each edge in G* is

of weight one or two, all edges on HPP* must have edge weight of exactly one. Thus,

G  (V, E)

v3

v4

v5

v6
v2

v1

(a)

1

1

1

1

1

1

2 2

2

2

2

1

2

2

2

v3

v4

v5

v6
v2

v1

G*  (V, E*)

(b)

65

all edges on this Hamiltonian path HPP* are edges in E as well. Let HPP be the set of

all these edges in E. HPP is obviously a Hamiltonian path in G. This completes the

proof. 

Now we show that VHP is NP-complete by reducing HP* to it. First, we show

that VHP  NP. Given a feasible |P|-track no-dogleg two-layer VH routing solution

for any instance I of VHP, we can verify in polynomial time whether (i) all the nets

of the same class in the given partition P are assigned to the same track, and (ii) the

total crosstalk is less than or equal to K, simply by checking the total amount of

crosstalk between nets assigned to adjacent tracks. Therefore, VHP  NP.

(a)

 n12 0 0 0 n12 n13 0 0 0 n13 n14 0 0 0 n14 n23 0 0 0 n23 n24 0 0 0 n24 n34 0 0 0 n34

 0 n21 0 n21 0 0 n31 n31 0 0 0 n41 n41 0 0 0 n32 n32 0 0 0 n42 0 n42 0 0 n43 n43 0 0

(b)

Figure 3.5: (a) A complete graph G* (V, E*) of instance I of problem HP*. (b) The

corresponding channel instance I of the crosstalk minimization problem VHP, where

nets nij and nji are introduced into the channel corresponding to edge (vi, vj) (i < j) in

G*. Here, N  {nij | j ≠ i} and the i-th class Pi{nij | 1 ≤ j ≤ n, j ≠ i}, is a set of non-

overlapping nets in I. {Pi | i 1, 2, ..., |P|} is the required partition P of nets. I  (N,

P, K), where K is an integer, is the instance of VHP obtained.

2

2

1

1 1

1

v4

v1

v2

v3

G*  (V, E*)

66

To show that VHP is NP-hard, we consider the following reduction from

problem HP* to VHP. We construct an instance I (N, P, K) of problem VHP from

any instance I of the problem HP* by a polynomial time transformation as follows.

Let the number of vertices of the graph in I be n. For every edge (vi, vj) (i < j),

we introduce two two-terminal nets nij and nji in the channel. We place the two

terminals of net nij at positions (5((2ni)(i1)2  (ji1))) 1 and (5((2ni)(i1)2

 (ji1))) 5 of the top row of terminals. For net nji, we place the two terminals at

positions (5((2ni)(i1)2  (ji1))) 2 and (5((2ni)(i1)2  (ji1))) 2

w(vi, vj) of the bottom row of terminals. Assume that N {nij | i ≠ j} be the set of all

n(n1) nets. Let Pi be the set of nets {nij | 1 j n, j i}. Observe that Pi  Pj  

and ⋃ 𝑛
𝑖  1 Pi  N. Therefore, P  {Pi | i  1, 2, …, n} is a partition of all nets N into n

classes. By construction, no two nets in the class Pi have any horizontal constraints

between them; therefore, they can be assigned to a track. All remaining terminals are

vacant terminals and thus, are not required to be connected. Obviously, I  (N, P, K),

where K is an integer, is an instance of VHP. This completes the construction of the

channel instance I. It can be constructed in polynomial time. It contains n(n1) nets

and the length of the channel is 5n(n1). The construction of such a channel instance

I from a graph instance I is explained in Figure 3.5. Observe from the figure that the

channel density of I is two. In the following lemma we prove that it will always be

two.

Lemma 3.1: The channel density dmax of the constructed channel instance I is 2.

Proof: Let Iij denotes the horizontal span (or interval) of net nij in I. There are exactly

|E*| two-terminal nets nij (i < j), one for each edge (i, j). These nets have both the

terminals at the top. By construction, all these nets have disjoint horizontal spans.

There are |E*| nets nji (i < j), one for each edge in the graph; nji has both

terminals at the bottom row. By construction, Iji is contained in Iij. Therefore, Iij  Iji 

. In all other cases, Iij  Iij  . Hence, the lemma. 

Corollary 3.1: In fact, Iij  Iji  Iji  w(vi, vj), where w(vi, vj) is the weight of the edge

(vi, vj). In all other cases Iij  Iij  .

67

To complete the proof that VHP is NP-complete, we now establish the

following lemma.

Lemma 3.2: I has a weighted Hamiltonian path HPP* of weight n1 if and only if I

has a feasible n-track no-dogleg two-layer VH routing solution with (i) all nets in a

class Pi in the given partition P, assigned to the same track and (ii) the total crosstalk

is exactly n1.

Proof: Observe that net nij  Pi and nji  Pj. Now as Iij  Iji   and in all other cases

Iij  Iij  , as per the proof of Lemma 3.1, their corresponding intervals overlap.

This means that the nets in Pi and Pj cannot be assigned to a single track. Therefore,

we need n  |P| tracks in any feasible solution of I. Thus, all nets in a class are

assigned to a track, and no two nets in different classes are assigned to a track in any

solution of I.

Now we calculate the amount of crosstalk, ci,j, created between the nets in Pi

and Pj if they are assigned to adjacent tracks. Again as Iij  Iji   and in all other

cases Iij  Iij   (as in the proof of Lemma 3.1), no net in Pi, except nij, will make

any crosstalk with some other net in Pj. By Corollary 3.1, nij and nji will produce a

crosstalk of amount exactly w(vi, vj). Therefore, ci,j  w(vi, vj), is the amount of

crosstalk created if Pi and Pj are assigned to adjacent tracks.

Suppose that there is a weighted Hamiltonian path HPP*  v1, v2, , vn in I

of weight n1. We show that there is a feasible n-track no-dogleg two-layer VH

routing solution S for I with (i) all nets in a class Pi are assigned to a track and (ii) the

total crosstalk is exactly n1. To get the feasible routing solution S, we assign all nets

in Pi to the i-th track from the top. As the weight of the Hamiltonian path HPP* is n1

and HPP* has exactly n1 edges, w(vi, vi+1)  1, i. Total crosstalk for this solution S

is ∑ 𝑛−1
𝑖 = 1 ci,i+1  ∑ 𝑛−1

𝑖  1 w(vi, vi+1)  n1.

Next, assume that Ihas an n-track feasible solution S with a crosstalk n1 in

which all nets in 𝑃𝑖 are assigned to a track, i  1, 2, …, n. If Pi and Pj are assigned to

(two) adjacent tracks in S, they contribute crosstalk of an amount of w(vi, vj), which is

either 1 or 2. As the total crosstalk is exactly n1, each such pair of consecutive tracks

contributes exactly one unit of crosstalk in S. Thus, w(vi, vj)  1, if Pi and Pj are

68

assigned to adjacent tracks in S. We construct a set of edges HPP* as HP*  {(vi, vj) |

where Pi and Pj are adjacent in solution S}. Obviously, HP* is a Hamiltonian path in

I. As w(vi, vj)  1, HP* is a Hamiltonian path of total weight n1 in I. Hence, the

lemma. 

We summarize the result obtained in the following theorem.

Theorem 3.2: VHP is NP-complete.

The result of the CRP with the partition of nets established in this section

equally holds for the general instances of channel specifications (where the partition is

provided in such a way that no cyclic vertical constraint is formed). This is because

the set of simple instances of channel specifications is a proper subset of the set of

general instances of channel specifications considering both constraints are present in

it.

3.4.2 Hardness of Other Crosstalk Minimization Problems

In this section, we consider the problems, VHS and VHG, of crosstalk minimization in

two-layer VH channel routing problem where no partition of nets are provided as in

VHP. Let us first consider the problem VHS. As defined in Section 3.3, here we are

given a simple channel specification I  (N, K) of N two-terminal nets with density

dmax and a positive integer K. VHS is required to find out if there exists a dmax-track

no-dogleg two-layer VH routing solution such that the total crosstalk is at most K? In

the next theorem, we prove that the problem is NP-complete.

Theorem 3.3: VHS is NP-complete.

Proof: A certificate here is a dmax-track no-dogleg two-layer VH routing solution S.

We can find in polynomial time, the total amount of crosstalk in S, just by checking

and summing up crosstalk between all adjacent tracks. Therefore, VHS  NP. Next,

we show that VHS is NP-hard. We use proof by restriction method to prove the

hardness of VHS. A feasible solution of VHS is a partition of nets into dmax classes of

non-overlapping nets and an assignment of tracks, one to each class. Now there is an

exponential number of such partitions of nets into dmax classes. If we restrict to a given

partition, say P, the problem reduces to an instance of problem VHP. Now, as VHP is

NP-hard, we claim that VHS is also NP-hard. Hence, the proof. 

69

Now let us consider the problem VHG. In this problem, we are given a general

channel specification of two-terminal nets, and two positive integers, t and K. We are

asked whether there is a t-track solution to this channel instance such that the total

crosstalk is at most K? VHG is obviously in NP as in the case of VHS and VHP. We

claim NP-hardness of VHG, again by using the proof by restriction method. In VHG,

we restrict to cases where t dmax, and there is no vertical constraint. The problem

instance reduces to VHS. As VHS is NP-hard, we claim that VHG is also NP-hard.

Therefore, we have the following theorem.

Theorem 3.4: VHG is NP-complete.

3.4.3 Hardness of Approximating Crosstalk Minimization

In the previous sections, we have shown that the problem of two-layer crosstalk

minimization is NP-complete for simple as well as general instances of channel

specifications. This means that it is almost impossible to design polynomial time

algorithms to solve these problems. A natural question arises: Whether there is any

polynomial time approximation algorithm with guaranteed error bound to solve any

one of these problems? In this section, we prove that the problem of developing such

an approximation algorithm for any such problem is also NP-hard.

First, we consider the simplest case, VHP. In fact, we show that it is

impossible to design an approximation algorithm with ratio error  (  1), unless P 

NP.

To establish this result, we formulate VHP as a general travelling salesman

problem (TSP). The formulation is based on constructing a weighted undirected

complete graph G, as described below. Let I  (N, P, K), be the instance of VHP,

where N is the set of nets, P  {Pi | i  1, 2, …, t} is the partition of N into t disjoint

classes of non-overlapping nets and K, a positive integer.

We construct a complete graph G  (V, E) of t+1 vertices as follows. For every

Pi, 1 i t, we introduce a vertex vi  V in G. For every pair (vi, vj) of vertices, we

introduce an undirected edge (vi, vj). This edge is assigned a weight w(i, j)  ci,j, where

ci,j is the total amount of crosstalk created by nets in Pi and Pj when they are assigned

to adjacent tracks. We now introduce one more vertex v0 in V and t edges (v0, vi) of

weight zero into the graph, where 1 i t. This completes the construction of G, a

complete graph of t1 vertices. The construction is illustrated in Figure 3.6.

70

 5 0 5 2 0 0 2 0 1 0 6 0 7 0 0 0 4 0 0

 0 3 0 0 6 5 0 3 0 2 0 8 0 1 8 0 4 7 4

 Partition P  {C1, C2, C3, C4},

 where C1  {5, 7}, C2  {3, 1, 4}, C3  {2}, and C4  {6, 8}.

(a)

 A tour T  v0, v4, v2, v1, v3, v0

(b)

 5 0 5 2 0 0 2 0 1 0 6 0 7 0 0 0 4 0 0

 0 3 0 0 6 5 0 3 0 2 0 8 0 1 8 0 4 7 4

(c)

Figure 3.6: (a) A channel specification I  (N, P, K) of VHP of eight two-terminal

nets. P  {P1, P2, P3, P4}, is a partition of P into four non-overlapping class of nets.

Nets in Pi can only be assigned exclusively to one track. Note that this is only an input

to the problem, not a routing solution. (b) The corresponding constructed graph

instance G  (V, E) of five vertices of the TSP problem. Here vi is the vertex

corresponding to Pi, i; v0 is the other vertex. Weights of all edges adjacent to v0 are

zero. For all other edges, w(i, j)  ci,j. A tour T  v0, v4, v2, v1, v3, v0 of the TSP

problem of the cost of 15 units. (c) The assignment of nets corresponding to the tour

T, where Pi is assigned to the j-th track from the top if vi is the (j+1)-th vertex in T.

This assignment of nets results in a routing solution with exactly 15 units of total

crosstalk, the same as the cost of the tour.

0

0

0

0

6

5 7

2

3

5

v4

v3

v0

v2 v1

G

71

In this example, we have considered a channel instance and a partition P of

nets, as shown in Figure 3.6(a). The corresponding graph G for the TSP problem is

shown in Figure 3.6(b). A tour T is also assumed here, and the cost of the tour c(T) is

15 units. Following the tour (ignoring v0) of the TSP problem, we assign the nets in

different classes of P of the channel instance to tracks along the height of the channel,

as shown in Figure 3.6(c). The total amount of crosstalk of this assignment of nets as

a routing solution is 15 units, which is the same as the cost of the tour. Now it is

interesting to note the following lemma.

 1 0 0 4 0 4 0 0 0 1 3 0 5 3 0 5 0 2 0

 0 4 0 0 1 0 0 3 4 0 0 2 0 2 0 0 5 0 2

 Partition P  {P1, P2, P3},

 where P1  {1, 5}, P2  {4, 2}, and P3  {3}.

(a)

 A tour T  v0, v2, v3, v1, v0

(b)

Figure 3.7: (a) A channel specification of VHP of five nets. Let P  {P1, P2, P3} be

the given partition of P, which is not a solution to the instance. (b) The corresponding

instance of general TSP problem, where the triangle inequality is not satisfied. This is

because the cost of edge (v2, v3) (i.e. 3 units) plus the cost of edge (v3, v1) (i.e. 3 units)

is less than the cost of edge (v1, v2) (i.e. 11 units).

Lemma 3.3: For every tour, starting with v0, of the travelling salesman problem there

is a unique |P|-track no-dogleg two-layer VH routing solution, and the amount of

crosstalk in this routing solution is same as the cost of the tour.

0

0

0

11

3
3

v3

v0

v2 v1

G

72

Proof: Let T v0, v1, v2, …, vt, v0 be a tour for an instance of the travelling

salesman problem (TSP) obtained with cost c(T). From tour T, if we delete vertex v0

and its adjacent edges, the cost of the path from v1 through vt remains same as c(T).

This is because, from the construction of graph G for a TSP instance, the weights of

the edges (v0, v1) and (vt, v0) are zero. Accordingly, we could assign the sets of nets

from top to bottom along the height of the channel, obeying t classes of the partition

P, such that the nets in a class are assigned to the same track. In this assignment, nets

corresponding to vi are assigned to track i, 1 i t, from the top of the channel. Thus,

the nets corresponding to vt are assigned to the bottommost track, where t  |P|.

Hence, a |P|-track no-dogleg two-layer VH routing solution is obtained.

Now we prove that the amount of crosstalk of this routing solution is the same

as c(T). Here we have just stated how the nets are assigned to tracks following their

classes in P, along with the height of the channel. So for two consecutive vertices vi

and vi1 in the path obtained (ignoring v0), 1 i t1, the corresponding sets of nets

are assigned to two successive tracks i and i1, respectively, from the top of the

channel. According to the construction of the graph, the weight of edge (vi, vi1) is

same as the total amount of overlapping between the nets in the corresponding classes

of P. Hence, the total crosstalk of the routing solution is same as the cost of the path

consisting of vertices v1 through vt, which is the same as c(T), as the weights of the

edges (v0, v1) and (vt, v0) are zero. 

It turns out from the above lemma that VHP can be formulated as a general

TSP problem. Observe that an instance of the TSP problem thus obtained may not

satisfy the triangle inequality, as explained in Figure 3.7. Also, we know that there is

no approximation algorithm for the general TSP problem, with ratio error  (  1),

unless P  NP [13, 28]. Therefore, we have the following theorem.

Theorem 3.5: Unless P  NP, it is impossible to design an approximation algorithm

for the no-dogleg two-layer VH channel routing problem of crosstalk minimization

with the partition of nets for simple instances of channel specifications (VHP), with

ratio error  (  1).

73

As the problem of crosstalk minimization with a partition in two-layer channel

routing for simple instances of channel specifications is a special case of the general

two-layer channel routing problem of crosstalk minimization, we claim the following.

Theorem 3.6: Unless P  NP, it is impossible to design an approximation algorithm

for the no-dogleg two-layer VH channel routing problem of crosstalk minimization

without any partition of nets for general instances of channel specifications (VHG),

with ratio error  (  1).

3.4.4 Hardness of Bottleneck Crosstalk Minimization

Now we prove that the bottleneck crosstalk minimization problem, BVHP is NP-

complete. Input here is the same as VHP. Let I  (N, P, B) the input instance of

BVHP. We need to find if there is a feasible |P|-track assignment such that exactly one

track is used to assign all nets in Pi and the maximum amount of crosstalk between

two nets in (two) adjacent tracks of the solution is at most B. Obviously, a certificate,

i.e. an assignment of the track to each Pi can be checked in polynomial time for the

existence of nets in an adjacent track having overlap at most B. This proves that

BVHP is in NP.

To show the NP-hardness of BVHP, we use the same reduction as used in

VHP. Let I be the original instance of HPP* and I  (N, P, B) be the constructed

channel instance. By Lemma 3.2, I has a Hamiltonian path P of length n1 if and only

if the corresponding track assignment of I, as mentioned in the lemma, produces

exactly one unit of crosstalk between each pair of adjacent tracks. Let Pi and Pj be the

classes of nets assigned to adjacent tracks in this solution. By construction, nij and nji

are the only nets in these classes that can overlap. Thus, these two nets will produce

crosstalk of one unit, and all the other nets will not produce any crosstalk. Therefore,

the instance I will have a Hamiltonian path of length n1 if and only if instance I has

an n-track solution with bottleneck crosstalk 1. Note that I has many feasible

solutions with bottleneck crosstalk two.

Theorem 3.7: BVHP is NP-complete.

74

 5 6 0 1 4 3 0 1 5 1 0 2

 I1

 I6 I2

 I3

 I4

 I5

 3 0 4 6 0 2 0 3 4 0 3 1

 (a)

 (b)

 5 6 0 1 4 3 0 1 5 1 0 2

 3 0 4 6 0 2 0 3 4 0 3 1

 (c)

Figure 3.8 (a) A channel instance. (b) The VCG of the channel instance. (c) A

restricted dogleg routing solution for the channel instance in (a), where net 1 is

doglegged and its horizontal sub-segments are assigned to the first track and the fifth

track of the channel, from top to bottom. Vias are also shown, where two orthogonal

wire segments of the same net intersect; these are used for changing layers of

interconnect.

v6

v5

v4 v3

v2

v1

75

It becomes obvious that the bottleneck crosstalk minimization problem is NP-

complete without any partition of nets for simple as well as general instances of

channel specifications.

3.4.5 Hardness of Crosstalk Minimization in Doglegging

So far, we have considered several crosstalk minimization problems in computing a

routing solution for two-layer VH channel routing, using the shape of no-dogleg

routes only. No-dogleg routing is simple, and it requires a minimum number of vias

used for changing layers of interconnect. However, there are instances of CRP for

which we may not have a feasible routing solution using only the shapes of no-dogleg

routes. One such channel instance is shown in Figure 3.8(a). The VCG of this channel

instance contains a cycle comprising vertices v1, v3, and v2 as shown in Figure 3.8(b).

Thus, there is no feasible no-dogleg two-layer VH routing solution in the

reserved Manhattan routing model in this case. Rather, in order to compute a feasible

two-layer VH routing solution in the specified routing model, we need to split the

horizontal span of a net into subnets (or subintervals) for their assignment to different

tracks. This is known as doglegging, and the route is known as a dogleg route [15,

49]. Even when a no-dogleg solution exists, use of doglegging may also help in

computing a routing solution with a lesser number of tracks (or less channel area),

sacrificing a few more vias [15, 49].

Usually, there are two kinds of doglegging within the span of a net. If the

route for a net is allowed to dogleg only in those columns in which it contains a

terminal, it is called a restricted dogleg route [15, 49]; otherwise, it is known as an

unrestricted dogleg route [73]. In restricted dogleg routing, the horizontal span of a

net is permitted to dogleg only at columns where it has a terminal. A restricted dogleg

two-layer VH routing solution for the channel instance in Figure 3.8(a) is shown in

Figure 3.8(c). Here, net 1 is doglegged and assigned to two different tracks, the

topmost and bottommost tracks of the channel.

We now consider channel routing with restricted doglegging for the instances

with multi-terminal nets. We extend the NP-completeness of the results proved so far

to this model by considering no-dogleg routing of instances restricted to two-terminal

nets. Now it is easy to see that any problem with multi-terminal restricted dogleg two-

layer VH channel routing reduces to two-terminal no-dogleg two-layer VH channel

76

routing, by restricting the number of terminals for each net to two [41, 49]. So all the

above results of NP-completeness proved in this chapter using no-dogleg routing

imply that the problems of computing minimum crosstalk routing solutions (of given

area) using restricted doglegging (with multi-terminal nets) are also NP-complete.

All these results of crosstalk minimization equally hold for the general

instances of channel specifications consisting of both horizontal and vertical

constraints. This is because the set of instances of channel specifications without any

vertical constraint is a proper subset of the set of general instances of channel

specifications.

3.5 Summary

In this chapter, we have considered the problem of crosstalk minimization in two-

terminal no-dogleg two-layer VH channel routing and have proved that the problem is

NP-complete for (i) the simple instances of channel specifications where there is no

vertical constraint, and (ii) the general instances of channel specifications with both

types of constraints present in it, with a partition of nets so that the nets in a class of

the given partition are to be assigned to the same track.

The problem of crosstalk minimization for simple, as well as general instances

of channel specifications in two-terminal no-dogleg two-layer VH channel routing,

has also been proved NP-complete, even if there is no such partition of nets (so that

the nets in a class of the partition are to be assigned to the same track). We have

considered the issue of the existence of polynomial time approximation algorithms for

the CRP and proved that it is impossible to design such an approximation algorithm.

The bottleneck crosstalk minimization problem has also been considered and proved

to be NP-complete with and without any partition of nets. In addition, all these

problems have been proved NP-hard, even if restricted doglegging is allowed.

As the problem of crosstalk minimization is a hard problem, it is unlikely that

a polynomial time algorithm can be developed to solve the problem; rather, devising

heuristic algorithm(s) could be a probable solution strategy to solve available channel

instances with mostly reduced crosstalk. In this thesis, in Chapter 4, we have

developed heuristics for obtaining reduced crosstalk routing solutions. Experimental

results based on the heuristics are computed that show a lot of improvement over

77

existing routing solutions of reduced area; these results have been included in Chapter

6 of this thesis. The problem of crosstalk minimization in three-layer and multi-layer

channel routing, however, is still an open problem in any routing model.

78

Chapter: 4

Algorithms for Computing Two-Layer Reduced

Crosstalk Channel Routing Solutions

4.1 Overview

In the previous chapter, we have shown that the crosstalk minimization problem for

the reserved two-layer (VH) Manhattan channel routing is NP-hard for simple

instances of channel specifications (i.e. the channels without any vertical constraint).

It remains NP-hard for general instances of channel specifications which involve both

horizontal and vertical constraints. In this chapter, we present two heuristics for

computing reduced crosstalk two-layer channel routing solutions on given routing

solutions of minimum area for simple as well as general channel instances. The

performance of our algorithms is encouraging enough for most of the existing

benchmark channels, and reduction in crosstalk for these channels is up to 28.34% for

a given routing solution. By the way, for all the relevant instances, simple as well as

general, generated in the next chapter, both the associated algorithms devised in this

chapter have been executed, and results computed are included in Chapter 6.

4.2 Area and Crosstalk Minimization in CRP

Channel routing has been studied extensively in the layout of integrated chips in last

four-and-a-half decades. The CRP of area minimization is an NP-hard problem [41,

49, 80, 86]; several heuristic algorithms have been designed for routing channels in

different routing models [10, 12, 15, 33, 49, 51, 54, 71, 73, 96]. The problem is

polynomial time computable if the instances are free from any vertical constraint and

we are interested only in resolving horizontal constraints in the two-layer VH channel

routing model [32, 49]. The same algorithm is applicable in computing routing

solutions for any channel instances in the Vi+1Hi routing models, where 1  i  dmax,

with alternating vertical and horizontal layers of interconnect [49, 52, 53, 57].

Since the problem of minimizing area for the instances of routing channels

without any vertical constraint is polynomial time solvable using only dmax tracks,

such instances are termed as the simple channel specifications. Hashimoto and

80

Stevens [32] proposed a scheme for solving this problem. According to Schaper [80],

it can be implemented in O(n(log n + dmax)) time, where dmax is the channel density

and n is the number of nets in the channel. Later on, Pal et al. [49, 52, 53] developed

and analyzed two different minimum clique cover based algorithms, MCC1 and

MCC2, based on the scheme developed by Hashimoto and Stevens [32].

The first algorithm MCC1 is devised on a graph theoretic approach that runs in

O(n + e) time, where n is the number of nets and e is the size of the horizontal non-

constraint graph (HNCG) [49, 51, 52, 53, 59], the complemented graph of HCG. The

second algorithm, MCC2 is developed using a balanced binary search tree data

structure that takes O(n log n) time for a channel with n nets [49, 52, 53]. Though

routing solution of only dmax tracks is guaranteed for the simple channel instances in

the stated routing models, it may not be a good routing solution from the resulting

crosstalk point of view.

We reiterate the presence of crosstalk between nets (or intervals) assigned to

different tracks in a two-layer channel without any vertical constraint. If two intervals

do not overlap, there is no horizontal constraint between them. That is, if there is a

horizontal constraint between a pair of nets, there is a possibility of having a

measurable crosstalk between them. We quantify crosstalk in terms of the number of

units a pair of nets overlaps on adjacent tracks in a feasible routing solution.

Consider the problem of minimizing crosstalk in a two-layer VH routing

model. Suppose we have three intervals a, b, and c as shown in Figure 4.1(a), in a

feasible routing solution of three tracks only.

Since all three nets, a, b, and c overlap, we are compelled to assign them to

three different tracks on the same horizontal layer in any feasible routing solution.

However, the most interesting feature we can point out is that in Figure 4.1(a), nets b

and c share 11 units of horizontal span in the channel, and nets c and a share 2 units;

whereas in Figure 4.1(b), we have a net sharing of 4 units of horizontal span in total

just by reassigning the nets to tracks. It is inevitable that the assignment of nets to

tracks in Figure 4.1(b) produces a reduced crosstalk routing solution; in fact, it is the

minimum crosstalk three-track routing solution in this particular case. On the other

hand, we identify a channel specification as general, if both the constraints are present

in it. We now consider the presence of vertical constraint in a channel, and the

81

situation evolved, due to this constraint.

 b

  c

 a

(a)

 b

a

  c

 (b)

Figure 4.1: Crosstalk minimization problem in two-layer VH channel routing, in the

absence of vertical constraints. (a) A feasible three-track routing solution with three

intervals of three different nets a, b, and c that are overlapping to each other. Nets b

and c share 11 units of horizontal span in the channel (as they are assigned to adjacent

tracks), and nets c and a share 2 units, amounting a total of 13 units’ cross coupling

length. (b) Another feasible three-track routing solution for the same channel

instance, with a total net sharing of 4 units of horizontal span; hence, a minimized

crosstalk routing solution is obtained just by reassigning the nets to tracks.

 b

  c

 a

(a)

 c

a

  b

 (b)

Figure 4.2: Crosstalk minimization problem in two-layer VH channel routing, in the

presence of vertical constraints. (a) A feasible routing solution with a vertical

constraint (c, a). (b) A reduced crosstalk routing solution is gratifying the vertical

constraint.

Now, suppose that there is a vertical constraint (c, a) as shown in Figure

4.2(a), as in some column we have a terminal of net c at the top row and a terminal of

net a at the bottom row. In this case, we cannot alter the sequence of assigning the

82

intervals c and a in order to compute a reduced crosstalk feasible routing solution, as

we did in the case of Figure 4.1. Rather in any feasible routing solution of this

instance, we have to assign the interval of net c to a track above the track to which the

interval of net a is assigned. In this case, in order to minimize crosstalk, we can alter

the assignment of interval b to any of the three tracks conforming the vertical

constraint. In fact, a minimum crosstalk feasible routing solution of this example is

shown in Figure 4.2(b).

In this chapter, we have developed two heuristic algorithms for minimizing the

crosstalk in the reserved two-layer (VH) Manhattan channel routing model, where our

intention is to minimize sum crosstalk. The sum crosstalk is the amount of total

crosstalk between horizontal wire segments of different nets pair-wise that are

assigned to adjacent tracks. The sum crosstalk minimization problem is to compute a

feasible routing solution with a given number of tracks in which the total amount of

crosstalk is minimized. In Chapter 3, we have proved that the problem of sum

crosstalk minimization is NP-hard even if the channels are free from vertical

constraints. Thus, developing deterministic polynomial time algorithms for

minimizing the crosstalk is implausible. Developing heuristic algorithm(s) is the way

out for dealing with the problem.

4.3 Algorithms for Crosstalk Minimization

In the previous section, we have mentioned that the crosstalk minimization problem in

two-layer channel routing is NP-hard, even if the channel instances are simple. For

this reason, we first develop a crosstalk minimization algorithm in two-layer channel

routing, where instances are free from any vertical constraint. Then we extend it to

two-layer routing with general channel instances. Before that, we reexamine the

assignment of intervals in order to reduce crosstalk in two-layer (VH) channel

routing, as has been illustrated in Figure 4.1, where the amount of crosstalk in Figure

4.1(b) is reduced to 30.77% to that of in Figure 4.1(a). Hence, we have the following

observation.

Observation 4.1: The amount of crosstalk can be reduced if a net (or interval) of a

smaller span is sandwiched by two nets (or intervals) of larger spans, or vice versa.

This observation is the motivation for developing the first algorithm.

83

NP-completeness proofs, given in Chapter 3, of crosstalk minimization in two-

layer channel routing, with and without vertical constraints imply that a polynomial

time algorithm for any one of these is unlikely to exist. Furthermore, results obtained

in Section 3.4.3 entail that getting an approximation algorithm for the problem is also

NP-hard. Hence, it makes sense to design appropriate heuristics for this problem. In

this section, we present two heuristics for computing near optimal crosstalk routing

solutions from a given routing solution of minimum area for simple instances of two-

layer CRP. The heuristics have also been subsequently generalized using a novel

technique to compute a near optimal crosstalk routing solution from a routing

solution of given area, for a general instance of two-layer CRP.

We start with a two-layer feasible routing solution S of t tracks and compute

another feasible routing solution Sof the same area (i.e. using exactly t tracks) with

reduced total crosstalk. For the simple instances of CRP, we take the routing

solutions, S, of dmax tracks, obtained by the algorithm Minimum_Clique_Cover_1

(MCC1) [49, 52, 53]. On the other hand, for a general channel specification, we start

with an existing routing solution obtained from the algorithm

Track_Assignment_Heuristic (TAH) [49, 51].

In the first heuristic, we reassign the nets in Pi, track-wise, in a given routing

solution S, so as to reduce the amount of overall crosstalk in computing S. In the

second one, the nets that are reassignable to some other track(s) are shifted such that

the total crosstalk is further reduced. Intelligently adapting these reassignments, we

are able to design the heuristic for the general instances of CRP.

4.3.1 The First Heuristic: Algorithm Track_Change

4.3.1.1 The Basic Approach Used

Let Pi be the set of nets assigned to the i-th track in the given solution S. This heuristic

obtains a permutation P  (P1, P2, …, Pt) of P  (P1, P2, …, Pt) and assigns Pi to

the i-th track, for all i  1, 2, …, t. Note that the groups of nets obtained in the area

minimization problem are not changed here. Reduction in total crosstalk due to such

reassignment of net groups can be observed in Figures 3.1 through 3.2. To get the

permutation P (of P), the heuristic starts with the reduced vertical constraint graph

(RVCG), introduced in [49, 56, 58, 59], of the minimum area routing solution S, and

84

in t iterative steps, it reassigns the net groups track-wise from the top to the bottom

along the height of the channel.

We often represent vertical constraints by the RVCG, a graph that represents

all vertical constraints between groups of nets, where each group has a set of non-

overlapping intervals representing a clique in the horizontal non-constraint graph

(HNCG) [49, 51, 52, 53, 59]. Note that an HNCG is the complement of the HCG of a

given channel, and a clique of the HNCG corresponds to a set of non-overlapping

intervals that may safely be assigned to a track in a routing solution. As the nets in a

track of a routing solution S correspond to a clique in the HNCG, the RVCG can be

used to represent the vertical constraints among the classes in P. The RVCG under

consideration is computed for a given feasible two-layer VH channel routing solution

S, and hence acyclic (or a DAG).

The algorithm is ‘greedy’ that works iteratively. In the first iteration, it selects

a source vertex (a vertex with indegree zero) in the RVCG whose nets are of the

maximum horizontal span. Then it deletes the vertex along with its adjacent edges (if

any) from the RVCG. In the i-th iteration, 2 i t, the algorithm selects a source

vertex, say s, in the current RVCG (i.e. the modified RVCG at the beginning of the i-

th iteration) such that the nets in s are best fitted (in terms of reduction in crosstalk)

for their assignment to the i-th track from the top row of the channel. After

assignment of all the nets in s to the i-th track, s and its adjacent edges, if any, are

deleted from the current RVCG and the modified RVCG is obtained for the next

iteration.

Clearly, for simple instances of CRP, the number of tracks t in S is the same as

the density, dmax, of the channel. Further, the RVCG, in this case, contains no edges,

as there is no vertical constraint in the channel instance I; therefore, it consists of

exactly dmax isolated vertices (corresponding to dmax disjoint sets of non-overlapping

intervals). Thus, we have to handle only the horizontal constraints present in I. The

solution technique is similar to the solution of Interval Containment Problem (ICP)

[16, 22]. Therefore, we need to present ICP and the algorithm for solving it.

Problem: Interval Containment Problem (ICP).

Instance: A set of n intervals such that for any pair of intervals i and j, 1 i, j n,

either i contains j or j contains i.

85

Objective: Obtain an ordering of all n intervals on a real line, that the total

overlapping of the consecutive intervals in the order is the minimum.

 u

 v

 w

 x

 y

 z

 (a)

 z

 w

 x

 u

 v

 y

 (b)

 z

 y

 w

 v

 x

 u

 (c)

Figure 4.3: (a) An instance of problem ICP with six intervals u through z. (b) The

intervals are sorted based on their spans in descending order. (c) A reassignment of

intervals to tracks with reduced crosstalk. The sequence of reassignment is as follows:

Net with the largest span, net with the smallest span, net with the second largest span,

net with the second smallest span, and so on. Here, the amount of total overlapping is

24 units, which is the lowest amount (of overlying based on adjacency of the

intervals).

Without any loss of generality, we assume that all 2n end points are distinct.

To design a polynomial time algorithm for an instance of ICP, we perform the

following two steps one after the other. First, we sort the intervals based on their

spans and then reorder them in such a way that the amount of total overlapping of

consecutive intervals in the new order is minimized. To get the intended ordering, we

place the interval with the maximum span to the first position, the interval with the

minimum span to the second position, the interval with the next to maximum span to

86

the third position, the interval with the next to minimum span to the fourth position,

and so on. This is exactly the algorithm that we have followed in reordering the

intervals. It is obvious that this ordering minimizes the sum of overlapping of

consecutive intervals. This has been explained in Figure 4.3. Therefore, we have the

following lemma.

Lemma 4.1: A minimum cost ordering of intervals of the ICP of n intervals can be

obtained if the intervals are assigned to a new order in the following way: (i) The

interval with the maximum span is assigned to the first position, (ii) the interval with

the minimum span is assigned to the second position, (iii) the interval with the next to

maximum span is assigned to the third position, (iv) the interval with the next to

minimum span is assigned to the fourth position, (v) and so on. If the intervals are

arranged in non-ascending order of their spans, then the amount of total overlapping

is same as twice the sum of spans of last (or smallest) n/2 intervals, if n is odd;

otherwise, if n is even, that is same as twice the sum of spans of last (or smallest) n/2

1 intervals plus the span of the (n/2+1)-th interval.

Proof: The amount of overlap between two consecutive intervals is same as the span

of the smaller one. After reassignment, we obtain an interval with smaller span

flanked by two intervals of larger spans, and this is acquired after sorting the intervals

based on their spans. Thus, the amount of total overlapping of the consecutive

intervals in the new order is as follows.

Clearly, if n is odd, then each of the n/2 intervals with their smaller relative

spans is flanked by a pair of the remaining n/2 intervals with their larger relative

spans. Therefore, the total overlap of intervals, in this case, is twice the sum of total

span of n/2 smaller intervals. On the other hand, if n is even, then each of the n/21

intervals with their smaller relative spans is flanked by a pair of (the elongated) n/2

intervals with their larger relative spans, and the remaining interval (i.e. the (n/2)-th

smallest interval) is assigned to the last position (or below but) adjacent to the (n/2)-th

longest interval. Thus, the total amount of overlap, in this case, is twice the sum of

spans of last (or smaller) n/21 intervals plus the span of the (n/2+1)-th interval (if

the intervals are arranged in non-ascending order of their spans).

87

Observe that, the total overlap of consecutive intervals obtained by the

algorithm matches the lower bound. None of the other orders, evidently, produces

total overlap better than the solution obtained. Hence, we conclude the lemma. 

The problem of minimizing the crosstalk in CRP becomes the same problem

of minimizing the total overlapping in ICP when instances are free from any vertical

constraint, and the span of every net is contained in the span of some other net. In

general, unlike ICP, we can have two or more non-overlapping intervals in each class

Pi for their assignment to a track in CRP. The solution method used for ICP is not

expected to produce an optimal solution for the minimum crosstalk CRP. The solution

obtained is obviously an approximated routing solution.

In designing a heuristic for the simple instances of CRP, we do the following.

Assume a single hypothetical interval Ii for each Pi. The effective span of Ii is assumed

to be the sum of spans of all nets in Pi. Further, we assume that the amount of overlap

between Ii and Ij be ci,j, the amount of crosstalk created between Pi and Pj if they are

assigned to adjacent tracks. The abstract ICP instance obtained is solved using the

algorithm mentioned above. If j is the position of Ii in the final ICP order, all nets in

Pi are assigned to the j-th track from the top. Note that the ICP instance obtained here

may not satisfy the containment property. However, it can still be used to compute a

reduced crosstalk routing solution. This gives us the first heuristic

Track_Change_Simple. The execution of the algorithm has been explained in Figure

4.3.

The initial partition Pi of nets required by Track_Change_Simple is computed

using the dmax-track routing solution S obtained by executing any one of the

algorithms, Left Edge Algorithm (LEA) [32], or MCC1 or MCC2 [49, 52, 53], for a

simple instance of channel specification. First, we compute the effective spans of

intervals Ii for each Pi. The effective span tells about the use of a track; how much it is

occupied or how much it is sparse.

Subsequently, for a dmax-track routing solution S, we sort the set of all Ii’s in

non-increasing order according to their effective spans. If we find two or more classes

of nets having the same effective span, they are placed in the sorted sequence in non-

decreasing order of their total spans. The total span of nets belonging to a class Ii is

the span between the starting column of the first net and the ending column of the last

88

net in Ii. Total span tells us how the nets are relatively distributed and/or separated

over a track when two or more tracks are there with a same effective span of intervals.

After having the desired sorting of all Pi’s, in non-increasing order of their

effective span, we reassign them track-wise in the way as it is done in the case of ICP

(Figure 4.3). Thus, in the final solution obtained, the first two sets of the sorted

sequence having large effective spans, sandwich the dmax-th set (of least effective

span). The second and third sets sandwich the (dmax1)-th set of this sequence, and so

on. The sandwich of a track with a less effective span of intervals by a pair of flanked

tracks with more effective spans of intervals is absolutely motivated by the geometry

of the channel and the initial routing solution provided (or computed by us) as input to

run the heuristic. This is all about the algorithm Track_Change_Simple, which is

designed for a simple instance of CRP.

4.3.1.2 Modification Introduced

Now we introduce some changes in devising the algorithm Track_Change_General

so that the modified heuristic is able to compute a two-layer reduced crosstalk VH

routing solution starting from a (given) two-layer VH routing solution, S of t tracks,

for a general instance of CRP. In this case, we need to satisfy vertical constraints in

addition to the horizontal constraints present in the channel instance, in order to

compute a desired feasible routing solution S. As a consequence, we are not in a

position to compute a sorted sequence of vertices in the RVCG that would certainly

lead to a two-layer feasible routing solution (as there are vertical constraints among

the nets). In addition, the number of feasible solutions for some given routing

solution, S can also be exponential with respect to the number of nets. Thus, instead of

computing a sorted sequence, we devise two versions of this algorithm: In the first

version, we consider all groups of nets belonging to the set of source vertices in a

current RVCG and apply algorithm Track_Change_Simple for this set of vertices in

isolation, and in the second version, we introduce a balanced binary search tree data

structure, both in an iterative-cum-greedy manner. We now briefly describe the first

version of the algorithm as follows.

Based on the given routing solution S of t tracks for some general channel

instance I, we first compute the RVCG, which is not edge-free now. We know that the

RVCG represents vertical constraints between groups of nets, where each group has a

89

set of non-overlapping intervals assigned to a track in S. In other words, the nets in a

track in S correspond to a clique in the HNCG, and t is the size of a clique cover of

the underlying interval graph (based on the spans of nets as intervals), satisfying

vertical constraints present in I.

Thus, (i) the RVCG is used to represent the vertical constraints in S, and it

contains exactly t vertices, as S is a routing solution of t tracks, (ii) a vertex in the

RVCG corresponds to a set of non-overlapping nets assigned to a track in S, and (iii)

there is a directed edge (u, v) in the RVCG, if there is a net ni u and another net nj

v, such that (ni, nj) (or (vi, vj)) is a directed edge in the VCG. Obviously, the VCG

as well as the RVCG, is cycle-free (or DAG), as S is a feasible two-layer VH routing

solution.

The first version of the algorithm iterates for p times, where p  t for a given t-

track two-layer VH routing solution S. For a feasible S, an acyclic RVCG is there, that

must contain at least one source vertex at the beginning of each successive iteration.

We may note that if there are k  1 source vertices in RVC1 (i.e. the initial RVCG), all

(k groups of) nets belonging to these source vertices are set-wise assignable to the

topmost k tracks of S (i.e. the solution we like to compute with reduced crosstalk).

For this, we apply the algorithm Track_Change_Simple that has been devised in the

previous section, only for the set of k source vertices in RVC1. Next, we delete all

these vertices (along with adjacent edges) from RVC1 and obtain RVC2 (i.e. the

modified RVCG at the beginning of the second iteration).

Thus, we get a new set of source vertices in RVC2 to again apply the algorithm

Track_Change_Simple on this set (of vertices) for computing the desired sequence of

the corresponding groups of nets. In this case, it is necessary to check which end set

(of non-overlapping intervals) of the computed sequence introduces less crosstalk

with the set of intervals already assigned to the k-th track; then from the (k+1)-th track

onwards the groups of nets are assigned to subsequent tracks using the sequence

computed above, and the RVCG is further updated by deleting the source vertices

(along with adjacent edges) in RVC2 to obtain RVC3 (if any, for the next iteration).

This process is continued till the RVCG is exhausted; that means all the t groups of

(non-overlapping) nets are assigned to tracks and a reduced crosstalk routing solution

S is computed. This version of the algorithm is viewed at a glance in the next section.

90

The method devised for the second version of the algorithm is now described as

follows.

This version of the algorithm Track_Change_General starts with the RVCG

of a given minimum area routing solution, S of t tracks for a general channel instance

I, and in t iterative steps, track-wise it reassigns the nets from top to bottom along the

height of the channel. Let RVCi be the RVCG at the beginning of the i-th iteration, 1

i t, and Si be the set of source vertices in RVCi. Si must contain at least one

element at the beginning of the i-th iteration. This is because the given routing

solution S is a feasible two-layer routing solution in the specified routing model

without any cyclic vertical constraint and the corresponding RVCG is also acyclic. In

the i-th iterative step, we select a source vertex, say s, from RVCi, so that the nets in s

are best fitted (in terms of reduction in crosstalk) for their assignment to the i-th track

from the top row of the channel. After assignment of all the nets in s to the i-th track,

s and its adjacent edges (if any) are deleted from RVCi, and the RVCG for the next

iteration is obtained. The algorithm terminates exactly after t iterations and computes

S, for a given routing solution, S of t tracks.

4.3.1.3 More on Implementation Details

Now we state how each iterative step of the second version of the algorithm

Track_Change_General works in computing S. In the first iteration of this version of

the algorithm, we assign the nets corresponding to the source vertex, s such that the

effective span of intervals of all the nets in s among the source vertices in RVC1 (i.e.

the initial RVCG) is maximum. The idea of selecting such a source vertex, s for the

topmost track is justified by the following fact. Without loss of generality, we may

assume that the amount of crosstalk between the nets in the first track and the fixed

terminals at the top row of the channel is negligible.

From the second track onwards in successive iterations, we select such a

source vertex, s from RVCi for assigning the (non-overlapping set of) nets (assigned to

a track) in S to the i-th topmost track of the channel, 2 i t, that renders a minimum

amount of crosstalk with the nets already assigned to the (i1)-th track. Now we state

how a source vertex, s from RVCi is selected so that the corresponding nets deserve

their assignment to the i-th topmost track.

91

To compute s efficiently, we maintain a balanced binary search tree data

structure among the set of source vertices in RVCi based on their effective spans of

intervals. From this binary search tree, we particularly trace two source vertices

having the minimum and the maximum effective spans of intervals. Both elements

can be computed in O(log t) time. According to this heuristic, the nets either

belonging to the source vertex with a maximum effective span of intervals or the

source vertex with a minimum effective span of intervals are best assignable to the i-

th track. This can be computed in a constant amount of additional time by separately

computing and comparing crosstalk between the nets already assigned to the (i1)-th

track and the nets belonging to two end vertices (in inorder) in the balanced binary

search tree amongst the source vertices in RVCi.

If these two effective spans of intervals in RVCi are same (this is true only

when all the source vertices in RVCi are having the same effective span of intervals),

we compute their total spans of intervals, as defined earlier. It may also happen that a

few (two or more but not all) source vertices are having the same effective span of

intervals in RVCi. In that case, we arrange these source vertices in reverse order based

on their total spans of intervals within the same balanced binary tree structure.

The computation of total spans of intervals is motivated by considering the

design issues of (i) percentage utilization of a track, (ii) congestion of nets over the

region near the i-th track, (iii) amount of overlapping between the nets in adjacent

tracks, and (iv) sometimes, vertical wire length minimization, if situation supports.

All these aspects are suitably incorporated in all the phases of the heuristics designed

in this chapter, and these are extremely important in synthesizing VLSI physical

design from high performance routing point of view. Nonetheless, if the source

vertices in RVCi are differentiated by creating another balanced binary search tree

based on their total spans of intervals, we select the vertex that is the best fit (in terms

of reduction in crosstalk) to the i-th topmost track; otherwise, we assign the nets of

any one of them arbitrarily.

It is clear from the heuristics illustrated above that the final solution

Scomputed using algorithm Track_Change_General is a feasible routing solution of

exactly t tracks, as it always assigns the nets from the top to the bottom of the channel

and in each iteration of assigning the nets, it selects a source vertex from the current

92

RVCG. This completes the design of the heuristic Track_Change_General. The steps

of both the versions of this algorithm are now presented in the following section.

4.3.1.4 Algorithms at a Glance

In this section, we first view the algorithm Track_Change_Simple and then view both

the versions of the second heuristic, i.e. algorithm Track_Change_General. In each of

the cases, the input to the algorithm is a feasible two-layer VH routing solution of a

respective channel instance, and the output is a reduced crosstalk channel routing

solution. The algorithms at a glance are as follows.

Algorithm Track_Change_Simple()

Input: A simple channel instance and a feasible two-layer VH routing solution of the

channel.

Output: A reduced crosstalk routing solution.

Begin

Step 1: For (i  1 to dmax) do

 Begin

Step 1.1: If (i  dmax/2), then

Assign the i-th set of non-overlapping intervals to the (2i–1)-th track

Else

Assign the i-th set of non-overlapping intervals to the 2(dmax–i+1)-th

track.

End if

 End

 End for

End

Algorithm Track_Change_General_Version_I()

Input: A general channel instance and the RVCG of a feasible two-layer VH routing

solution of the channel.

Output: A reduced crosstalk routing solution.

Begin

Step 1: Set p  1.

Step 2: Set RVCp  RVCG.

93

Step 3: Repeat until the RVCG is exhausted

Begin

Step 3.1: Select the source vertices in RVCp and put them in a set Sp.

Let Sp  {t1, t2, …, tk | each ti, 1 i k, is a source vertex in RVCp}.

Step 3.2: Apply Track_Change_Simple() on set Tk of tracks containing non-

overlapping sets of intervals in S, corresponding to set Sp of vertices in

RVCp.

Step 3.3: Assign the sets of nets associated with the vertices in Sp as has been

sequenced as the output of Step 3.2 (or the reverse sequence) for the

set Tk of tracks to the current topmost |Tk| (empty) tracks, for which the

amount of crosstalk is minimum.

Step 3.4: Delete the set Sp of vertices (along with their edges) from RVCp, and

modify the graph (i.e. RVCp).

Step 3.5: Set p  p+1.

End

End

Algorithm Track_Change_General_Version_II()

Input: A general channel instance and the RVCG of a feasible two-layer VH routing

solution of the channel.

Output: A reduced crosstalk routing solution.

Begin

Step 1: Set RVCi  RVCG.

Step 2: For (i  1 to t) do

 Begin

Step 2.1: Construct a balanced binary search tree, BSTi of the source vertices

in RVCi based on their (sets of non-overlapping nets’) effective spans

of intervals to tracks (and total spans of intervals, whenever required).

Step 2.2: Assign a desired set of non-overlapping intervals associated to a

vertex vi in BSTi to the i-th track.

 Delete vertex vi along with its adjacent edges, if any, from RVCi.

 End

 End for

End

94

4.3.1.5 Computational Complexity

We first derive the computational time complexity of the algorithm Track_Change

_Simple. As sorting is the prime task of this algorithm over dmax sets of non-

overlapping nets based on their effective spans of intervals and if needed, total spans

of intervals, the time required by this algorithm is O(dmax log dmax) in the worst case.

Thus, we conclude the following.

Theorem 4.1: The algorithm Track_Change_Simple computes a feasible two-layer

VH routing solution Swith a reduced crosstalk for a given two-layer VH routing

solution S of a simple channel instance, where a pair of nets in Sis assigned to the

same track that was assigned to the same track in S. The time complexity of the

algorithm is O(dmax log dmax), where dmax is the density of the simple channel.

We now analyze the time complexity of algorithm Track_Change_General.

As this algorithm (in its first version) executes the tasks of the algorithm

Track_Change_Simple, so algorithm Track_Change_General requires at least the

same time that of Track_Change_Simple. Note that the value of dmax is same as O(n)

in the worst case when each set contains a single net (or on an average a constant

number of nets). Moreover, the RVCG is computed from the given routing solution, S

of t tracks in O(t + l)  O(n) time, as both t and l are same as O(n), where l is the

length of the given channel specification comprising n nets in total. As the size of the

set of source vertices in one iteration is O(n), the best fit source vertex, s from RVCi is

computed in time O(log n), as these vertices have already been organized in a

balanced binary tree (in the second version of the algorithm), whose computation time

is O(n log n). There can be at most 2t insertions and deletions in total as every vertex

of the RVCG can only be inserted and deleted exactly once in the balanced binary tree

data structure. Modification of the RVCG, as a whole, takes O(t) time. Now as the

heuristic iterates for t times and t  O(n), the overall computational complexity of the

algorithm Track_Change_General is O(n log n) time for a general channel

specification of n nets, in the worst case. Hence, we conclude the following.

Theorem 4.2: The algorithm Track_Change_General computes a feasible two-layer

VH routing solution Swith reduced crosstalk for a given two-layer VH routing

solution S of a general channel instance, where a pair of nets in Sis assigned to the

95

same track that was assigned to the same track in S. The time complexity of the

algorithm is O(n log n), where n is the number of nets belonging to the channel.

4.3.2 The Second Heuristic: Algorithm Net_Change

Algorithm Track_Change_General is efficient enough in minimizing the maximum

amount of crosstalk belonging to a given routing solution of a channel by reassigning

the nets track-wise, obeying vertical constraints. The initial net grouping is never

changed. However, it may so happen that an optimal solution actually corresponds to

a different net grouping. Thus, algorithm Track_Change_General, presented in the

previous section, can further be improved by interchanging nets among different

classes in the partition P. In the next heuristic, our objective is to interchange a pair of

nets assigned to two different tracks only when (i) the nets are horizontally

constrained to each other, (ii) the interchange does not introduce any horizontal

constraint violation due to overlapping with other nets, (iii) the interchange does not

introduce any vertical constraint violation in computing S, and (iv) the resulting

crosstalk (after interchanging the nets) is reduced.

4.3.2.1 The Method Used

Notice that the tasks mentioned above are not easy at all. Moreover, we do not know

the sequence of interchanging pairs of nets such that a maximum amount of crosstalk

can be reduced. Furthermore, a particular net may be interchanged O(n) times among

the tracks without giving any remarkable gain in overall crosstalk, and making the

complexity of the algorithm very high. That is why in this heuristic instead of

allowing net-to-net swapping, we shift a net to some other track where a suitable

blank space is available and this shifting results in a reduction of overall crosstalk. For

some net x, if several such shifting is possible, we perform the particular shifting of x

that maximizes the reduction in crosstalk.

In this heuristic, we sort the nets that are interchangeable (or exchangeable

with a blank space in some other track) from left to right in S with respect to their

starting column positions in the channel. Then we consider such exchangeable nets

one after another, and for some particular exchangeable net x we search out a track

where the net is best fitted in terms of the overall crosstalk minimization without

violating any vertical constraint. The sequence of substituting a net with a suitable

96

blank space in some other track plays the most important role in reducing the amount

of crosstalk. In general, there are an exponential number of such sequences, and it is

not possible to presume all of them to compute an optimal solution. Thus, we consider

a constant number of such sequences to allow interchanging of position (of the span

or interval) of a net with a blank space on some other track.

Such sequences may be computed in several ways. In our algorithm, we

compute the sequences by sorting of exchangeable nets (or blank spaces) (a) from

top-left to bottom-right and (b) from bottom-left to top-right in a solved two-layer

routing solution, S with respect to their starting column positions in the channel.

Similarly, such sequences may also be allowed by sorting of exchangeable blank

spaces (or nets) (a) from top-right to bottom-left and (b) from bottom-right to top-left

in a solved two-layer routing solution, S with respect to their starting column

positions from right to left along the length of the channel. In this context, it is

imperative to mention that several such constant numbers of sequences may be

identified and allowed to go through this heuristic before we accept the routing

solution S with the least amount of total crosstalk in it. Moreover, this heuristic may

repeatedly be executed a constant number of times, if the reduction in crosstalk can

further be achieved in each case. Next, we view the algorithm at a glance in the

following section.

4.3.2.2 Algorithm Net_Change at a Glance

We may note that this version of the algorithm is written in a generalized manner,

which is applicable for simple channel instances as well as general channel instances.

In any case, we assume a valid two-layer routing solution of t tracks, where in each

track there are N  1 nets (as a variable). The steps of the algorithm are as follows.

Algorithm Net_Change()

Input: A feasible two-layer routing solution, S of t tracks, i.e. a valid assignment of

tracks for all nets belonging to a channel.

Output: A reduced crosstalk routing solution, S.

Begin

Step 1: For i  1 to t do

For j  1 to N do

97

Begin

Step 1.1: Crosstalk  0.

Step 1.2: Calculate the crosstalk incurred by net nj in track ti due to

overlapping of nj at track ti with the nets assigned at track ti–1 (if ti is

not the first track) and track ti+1 (if ti is not the last track). Store the

sum of these crosstalk for nj in ctold.

Step 1.3: If ctold > 0, then

 Begin

Step 1.3.1: Find out the range (tp, tq) of tracks, p  q, such that net nj

can be interchanged with a suitable blank span in a track

between tp and tq, both tracks inclusive, and no vertical

constraint violation is introduced.

Step 1.3.2: Find out track ts, p  s  q, if any, such that the assignment

of net nj to ts produces a minimum sum of total crosstalk with

the nets in its adjacent (upper and lower) tracks, and vertical

constraints with other nets are also maintained. Store this sum

of crosstalk for nj in ctnew.

Step 1.3.3: If ctnew < ctold, then remove the horizontal span (i.e.

interval) of net nj from ti and place it to ts. Vertical wire

segments for net nj are connected accordingly.

End

Step 1.4: Crosstalk  Crosstalk + ctnew.

End

End for

End for

End

Without loss of generality, we may assume that the channel instance is simple,

and the number of tracks required for such an instance is the same as the density, dmax

of the channel, and in that case, t is replaced by dmax in Step 1 above. In addition, in

the case of simple channel instances, there is no question of vertical constraint

violation, as the channels are free from any vertical constraint; so this checking is

superfluous in such a case (see Steps 1.3.1 and 1.3.2 of the algorithm). Furthermore, if

ti is the first track, we may assume that ti–1 is the row of top terminals rendering no

98

crosstalk in practice; similarly, if ti is the last track, we may assume that ti+1 is the

row of bottom terminals rendering no crosstalk (see Step 1.2). Notice that the range

(tp, tq) of tracks, as mentioned in Step 1.3.1, is applicable for a general channel

instance where net nj assigned to a track ti is sandwiched by vertical constraints (by

other nets that are assigned above and below to nj); otherwise, for the given routing

solution of a simple channel instance, tp may be assumed as the topmost track whereas

tq as the bottommost track.

4.3.2.3 Computational Complexity

Now we analyze the time complexity of algorithm Net_Change. For a given t-track

routing solution S of n nets, the heuristic requires O(t) iterations, each requiring O(n)

time. Now since t  O(n), the algorithm takes O(n2) time in the worst case as for each

of the O(n) interchangeable nets (or blank spaces) in S, the heuristic searches blank

spaces (or nets) in at most O(n) tracks of the given routing solution S of the channel.

For the case of simple channel specifications, the worst case complexity is O(ndmax),

as for each of the n nets (or blank spaces) in the channel we have to search blank

spaces (or nets) in at most O(dmax) tracks in a given density routing solution, S of the

channel. Therefore, we have the following theorem.

Theorem 4.3: The algorithm Net_Change computes a feasible two-layer VH routing

solution with near optimal crosstalk for a given routing solution of a general channel

instance in O(n2) time, where n is the number of nets belonging to the channel.

4.4 Experimental Results

In this section, we present the performance of our heuristic algorithms. First of all, we

have dealt with only the simple instances of channel specifications. Unfortunately,

such instances are hardly available in practice. That is why we randomly generate a

large number of such instances of channel specifications. We have used all these

instances to compute the amount of crosstalk in the routing solutions using the

algorithms MCC1 (to compute the initial crosstalk of the routing solutions),

Track_Change (to compute the drastically reduced crosstalk routing solutions from

the routing solutions computed by MCC1 [49, 52, 53]), and Net_Change (to compute

the further reduced near optimal crosstalk routing solutions).

99

Figure 4.4: Performance graph for crosstalk minimization in channel routing for

simple channel instances.

According to the generation of simple channel instances, a channel of length

2p has exactly p nets, and each column of each of the constructed instances contains a

non-terminal either at the top or at the bottom. For each channel length, we have

generated 60 random instances, each of which is used to compute crosstalk using the

algorithms stated above one after another. The total crosstalk is measured in each

case, and an average over the total crosstalk is computed for each of the algorithms

for a fixed channel length. These results are included in Table 4.1. The overall

reduction in crosstalk using algorithm MCC1 through algorithm Net_Change helps to

compute the percentage reduction in crosstalk on an average. The data obtained in the

last column of the table are truly interesting. On an average for all the 540 instances

of randomly generated channel specifications, the overall reduction in crosstalk is

35.24%. The performance graph in Figure 4.4 shows the variation of crosstalk on an

average as the channel length increases, for the routing solutions computed using

algorithm MCC1 through algorithm Net_Change. The graph also helps to visualize

the amount of overall reduction in crosstalk for the channel instances of the same

length using our algorithms.

0

50

100

150

200

250

300

350

22 28 34 40 46 52 58 64 70

C
ro

ss
ta

lk

Channel Length

MCC1 Algorithm Net_Change

100

Table 4.1: Average crosstalk in the computed routing solutions for some randomly

generated simple channel instances using different algorithms and percentage

reduction in overall crosstalk.

Channel

Length

Amount of Crosstalk

MCC1 Track_Change_Simple Net_Change % Reduction

22 26 16 15 42.31

28 49 33 32 34.69

34 64 45 44 31.25

40 94 64 63 32.98

46 120 82 79 34.17

52 185 122 120 35.14

58 236 160 156 33.90

64 276 174 169 38.77

70 327 220 216 33.95

Now, we summarize the performance of our algorithms for several existing

channel instances as follows. Here, we have dealt with the general instances of

channel specifications, and there are a number of such instances of benchmark

channels including the famous Deutsch’s Difficult Example (DDE) [49, 96]. We have

considered all these instances to quantify the amount of reduction in crosstalk in the

computed routing solutions starting from the two-layer routing solutions obtained

using TAH, the well-known Track_Assignment_Heuristic that is designed for

computing minimum area routing solutions [49, 51]. We have considered all two-

layer no-dogleg routing solutions computed using TAH, as given in Table 4.1 (in page

102) and shown in different solutions (Figures 4.4-4.17 in pages 103-112) given by

Pal [49]. We have assumed all these solutions as the initial routing solutions and

executed them using the algorithms developed in this chapter one after another. In

other words, we have computed the reduced crosstalk routing solutions for all the

aforesaid benchmark examples following a two-phase implementation, where in the

first phase solutions are computed through algorithm Track_Change_General, and

these solutions are subsequently used as input to compute further reduced crosstalk

routing solutions following algorithm Net_Change. All the results are included in

Table 4.2.

101

Table 4.2: Amount of crosstalk computed after each of the algorithms and percentage

reduction in the overall crosstalk.

Example
Number of

Tracks

Amount of Crosstalk

TAH Track_Change_General Net_Change % Reduction

Ex. 1 12 201 201 (0) 196 (1) 02.49

Ex. 2 15 414 397 (1) 396 (1) 04.35

Ex. 3(a) 16 564 519 (1) 506 (1) 10.28

Ex. 3(b) 18 602 507 (1) 502 (1) 16.61

Ex. 3(c) 19 795 771 (1) 732 (3) 07.92

Ex. 4(b) 19 953 901 (1) 845 (2) 11.33

Ex. 5 20 942 724 (1) 675 (2) 28.34

DDE 29 1510 1435 (1) 1181 (3) 21.79

r1 23 1519 1482 (1) 1421 (2) 06.45

r2 20 1071 1034 (1) 1034 (0) 03.45

r3 18 784 728 (2) 690 (3) 11.99

r4 18 1262 1260 (1) 1206 (1) 04.44

Ex. 3(b).1 21 518 504 (1) 393 (2) 24.13

Ex. 3(c).1 18 846 818 (1) 775 (3) 08.39

The amount of crosstalk using the algorithm TAH is the initial crosstalk [49,

51] as shown in column TAH. Each of the relevant columns, Track_Change_General

and Net_Change, shows the computed crosstalk obtained using the corresponding

algorithm. The first algorithm provides significantly reduced crosstalk routing

solutions from the initial routing solutions computed using TAH in the first phase of

implementation, and the second algorithm computes the further reduced crosstalk

routing solutions based on the routing solutions computed using the first algorithm, in

the second phase of implementation of our algorithm. Numbers within parentheses in

these columns indicate the additional number of times the corresponding algorithm is

executed in obtaining a better routing solution of minimum crosstalk. Percentage

reduction column is obtained by computing the overall reduction in crosstalk, starting

from the initial routing solution computed using TAH [49, 51].

102

(a)

(b)

(c)

Figure 4.5: (a) A minimum area routing solution for Ex. 3(b) using algorithm TAH

[49, 51]. (b) A minimum crosstalk routing solution for Ex. 3(b) using algorithm

Track_Change_General. (c) A minimum crosstalk routing solution for Ex. 3(b) using

algorithm Net_Change.

103

(a)

(b)

(c)

Figure 4.6: (a) A minimum area routing solution for the Ex. 5 using algorithm TAH

[49, 51]. (b) A minimum crosstalk routing solution for the Ex. 5 using algorithm

Track_Change_General. (c) A minimum crosstalk routing solution for the Ex. 5 using

algorithm Net_Change.

104

(a)

(b)

(c)

Figure 4.7: (a) A minimum area routing solution for the DDE using algorithm TAH

[49, 51]. (b) A minimum crosstalk routing solution for the DDE using algorithm

Track_Change_General. (c) A minimum crosstalk routing solution for the DDE using

algorithm Net_Change.

105

(a)

(b)

(c)

Figure 4.8: (a) A minimum area routing solution for the r3 using algorithm TAH [49,

51]. (b) A minimum crosstalk routing solution for the r3 using algorithm

Track_Change_General. (c) A minimum crosstalk routing solution for the r3 using

algorithm Net_Change.

106

(a)

(b)

(c)

Figure 4.9: (a) A minimum area routing solution for the Ex. 3(b).1 using algorithm

TAH [49, 51]. (b) A minimum crosstalk routing solution for the Ex. 3(b).1 using

algorithm Track_Change_General. (c) A minimum crosstalk routing solution for the

Ex. 3(b).1 using algorithm Net_Change.

107

The results obtained here are highly encouraging. For example, in the case of

Ex. 5, the reduction in overall crosstalk is 28.34%, which is the maximum among the

example channels under consideration; see Figure 4.6 for all these routing solutions.

For the famous DDE, the overall reduction in crosstalk is 21.79%, which is very

inspiring and motivating from the point of view of performance driven routing for

VLSI circuit synthesis. The routing solutions for the DDE are shown in Figure 4.7.

Three other sets of similar routing solutions for instances Ex. 3(b), r3, and Ex. 3(b).1

are shown in Figures 4.5, 4.8, and 4.9, respectively. In all these figures, the solution in

(b) shows the reassignment of tracks indicating the initial track numbers (TN) in the

allied solution in (a) to the left of each channel. Besides, the amount of crosstalk (CT)

between the nets assigned to adjacent tracks is shown to the right of the solutions.

4.5 Summary

In Chapter 3, we have considered several crosstalk minimization problems in two-

layer (VH) channel routing and proved that the problems are NP-hard for simple as

well as general instances of channel specifications, with or without any partition of

nets such that the nets in a class of the given partition are to be assigned to the same

track, or there is no such partition. In the same chapter, the issue of the existence of

polynomial time approximation algorithms for CRP has also been considered and

proved that the design of such an algorithm is also not plausible. The bottleneck

crosstalk minimization problem has also been considered, and so on and so forth.

Thus, devising heuristic algorithm(s) is a reasonable solution strategy for computing

reduced crosstalk routing solutions that has been considered in this chapter.

More specifically, in this chapter, we have devised two prime algorithms (with

their variations) for minimizing crosstalk in two-layer channel routing, both for

simple as well as general channel instances. As simple instances are hardly available

in the literature, we have randomly generated only nine sets of smaller simple

channels (using the associated algorithm developed in Chapter 5), each set containing

60 in number, for computing desired routing solutions. For general channel instances,

we have presumed two-layer routing solutions of 14 benchmark channel instances

existing in the literature, and for each of them, we have executed subsequent crosstalk

minimization algorithms for computing mostly reduced crosstalk routing solutions.

All these results have been included in this chapter.

108

By the way, a very large number of simple as well as general channel

instances have been generated, executing the instance generators devised in the next

chapter, each of which has been considered for computing some initial routing

solution, and then carried out for obtaining a reduced crosstalk routing solution in

Chapter 6. Truthfully, this is not possible to include all those instances along with all

hardcopy routing solutions in this small span of thesis; rather, a very selective number

of instances have been included as generated randomly and also a very few routing

solutions have been incorporated in Chapter 6 to illustrate the depth of

experimentation executed in this thesis. The experimental results based on the

heuristics are computed that show lot of improvement over existing routing solutions

of reduced area.

Chapter: 5

Algorithms for Generation of Random Channel

Specifications

5.1 Overview

In this chapter, we have developed algorithms for generating random channel

instances for their use in computing channel routing solutions in VLSI physical

design. Channel instances are usually of two types: simple and general, and there are

usually two kinds of inherent constraints involving channel routing problem:

horizontal constraint and vertical constraint. Simple channel instances do not contain

any vertical constraint, whereas, general channel instances contain both horizontal as

well as vertical constraints.

Most of the optimization problems in two-, three-, and multi-layer channel

routing are NP-hard and, in fact, very few are polynomial time computable. Hence,

for each of the NP-hard problems in channel routing, it is unlikely to design a

polynomial time deterministic algorithm. Developing heuristic algorithm may be a

rational way out that hopefully provides good solutions for most of the instances

available in the literature. The novelty of a heuristic algorithm is judged better if it

works for a variety of a large number of randomly generated instances of the problem.

5.2 A Review on Channel Instance Generation

Channel routing performs a dominant role in VLSI physical design. The number of

active components on a chip has significantly increased nowadays in order to meet the

growing demands of functionality. Maximum layout schemes begin with the

positioning of modules on a chip and subsequently moves on to wiring terminals, to

be electrically linked to separate modules, together. A useful tactic for resolving such

a problem is partitioning the chip hierarchically into a set of rectangular channels,

subsequently routing each channel one after the other. This successfully splits a

difficult problem into smaller and easily solvable (similar) subproblems. Due to its

significance from the point of view of layout automation, the channel routing problem

(CRP) has been studied comprehensively. With regard to channel routing problem,

110

Deutsch’s examples [15, 49, 96] have been extensively used as benchmarks for the

purpose of evaluation of the performance of proposed algorithms, with special

attention given to the so-called Deutsch’s Difficult Example (DDE) [49, 96].

Researchers have been motivated by the following facts to find ways of generating a

large number of random channel instances for use as routing standards.

 The available benchmarks represent a really small subset of real problems. As

a result, they ideally, may not represent the existing complexity of the

contemporary as well as future designs.

 The number of active components on a chip keeps increasing at a considerably

rapid rate. Hence, testing on only traditional benchmarks may prove to be

inadequate for the purpose of evaluation of the performances of new channel

routing algorithms, proposed by researchers.

 It is quite possible that a proposed algorithm works pretty well for the

benchmarks, yet not for other instances.

One of the earlier efforts has been made in [80]. The author in this dissertation

has generated a large number of random channel instances with specific

characteristics for the purpose of performing experiments on channel routers. The

author has used Rivest’s random channel generator (rewritten by Eustace in C [20]).

The inputs to the channel generator used are as follows:

 n – the number of columns in the channel

 d – the density of the channel

 f – the fraction of used pins

 r – the average number of terminals per net

 a – the Boolean flag controlling production of cyclic vertical constraints

 s – the initial random seed

The fraction of used pins points out the percentage of pins that actually are

connected to a circuit. The flag, a, has a value TRUE if no cyclic vertical constraints

are required to be generated. As for example, a call to Rivest n  150, d  30, f 

0.75, a  TRUE, s  0 would produce an output file with vectors TOP, BOTTOM,

LEFT, and RIGHT for a channel with 150 columns and density 30. The channel

111

would have 75 percent of its pins connected to circuits, and there would be no cyclic

vertical constraints.

In the article [11], the authors have developed a random channel routing

generator. The proposed system is capable of generating difficult channel routing

instances of random size. The authors have also introduced and explained the major

constraints on a CRP. The proposed algorithm is able to generate CRP instances

which can be routed without any doglegs. The authors have suggested that the

proposed algorithm should prove to be useful for the purpose of testing the

performance of new algorithms for channel routing. Moreover, due to the arbitrary

size of the generated CRPs, they quickly become intractable with the increase in the

number of nets. As a result, exhaustive search techniques become infeasible. The

authors have stated that for some of the generated examples, there is a significant

difference between the optimal solution and the traditional lower bounds. The authors

have also indicated that consideration of the interaction of constraints is significant for

the purpose of developing channel routing algorithms.

In another article [5], the authors have tackled the same problem of random

channel routing instances but with the help of a genetic algorithm. The authors have

suggested that for all the generated cases, they have found better specifications (or

channel instances) compared to well-known existing benchmarks. The random

channels generated in this article have been claimed to be difficult to route due to

them having higher horizontal and vertical constraints. For example, compared to the

DDE [49, 96] having 72 nets and 174 columns, the five random channels generated by

the authors all have been shown to be more difficult to route. The authors have

claimed that the proposed algorithm can also be extended to generate even more

difficult channels, those that cannot be routed using two-layer no-dogleg routing

algorithms and can only be routed using two-layer dogleg, or three- or multi-layer

routing algorithms.

5.3 A Prelude to the Generation of Random Channel Instances

In this chapter, we are interested in generating random channel specifications for

channel routing problem. To do so, we first generate channel specifications having

two-terminal nets only, where none of the channel specifications contains any vertical

constraint. Such channel specifications that do not have any vertical constraint are

112

known as simple channel specifications. Then we modify our requirement for

computing general channel instances with multi-terminal nets so that we can generate

channel specifications containing two- or more than two-terminal nets; also

containing vertical constraints.

We know that the two-layer channel routing problem of area minimization is

polynomial time solvable for simple channel specifications [32, 49, 52, 53], but the

problem of crosstalk minimization in two-layer channel routing is NP-hard even if the

channel specifications are free from any vertical constraint. So, it is unlikely that there

exists a polynomial time algorithm for computing two-layer minimum crosstalk

channel routing solutions even for the simple instances of channel specifications.

Incidentally, such channel instances are hardly available in the literature. A very few

channel instances are available in the literature, usually known as benchmark channel

specifications, each of which contains both horizontal as well as vertical constraints

[49, 96].

 8 1 0 0 3 0 0 7 8 0 5 2 0 0 6 0 0 6

 I8 I5 I6

 I1 I2

 I3 I7

 I4

 0 0 3 4 0 4 0 0 0 1 0 0 5 2 0 0 7 0

Figure 5.1: An example channel of eight nets; zeros are non-terminals or vacant

terminals, not to be connected. Intervals of the nets are placed in four different tracks.

Terminals are vertically aligned along the columns of the channel. The length of the

channel is 18. Arrows indicate that the terminals to be connected, either at the top or

at the bottom, to complete the required interconnection of all the nets present in the

channel.

A channel specification is usually obtained in the form of two m-element

vectors TOP and BOTTOM indicating the top and bottom terminal lists, respectively,

of a channel. We often may use channel specification and channel instance

interchangeably. A channel is a rectangular routing region containing two sets of

fixed terminals on two of its opposite sides, say top and bottom, and the other two

113

sides, the left and right sides of the rectangle, are open ends. The left and right sides

of the rectangle may contain terminal(s) of net(s), but the terminal position(s) is (are)

not fixed before having a routing solution. The fixed terminals at the top and the

bottom are (usually) aligned vertically in columns. The set of terminals that need to be

electrically connected together is called a net. A channel specification with a set of

eight two-terminal nets in a channel is shown in Figure 5.1; the length of the channel

is 18.

In order to obtain simple channel specifications, in this chapter, we develop an

algorithm for generating instances of such (simple) channel specification in random.

There are several problems in channel routing that are hard in nature even if the

channel specifications are free from any vertical constraints; such randomly generated

simple channel specifications can be utilized to compute (desired) routing solutions

while evaluating the performance of the heuristic algorithms designed for those

problems. In the next section (i.e. in Section 5.4), we formulate the steps necessary for

developing the algorithm to generate simple routing channel instances. Then we

generalize the algorithm in generating general channel routing instances in Section

5.5. All the experimental results computed for generation of simple as well as general

channel instances are included in Section 5.6. Usefulness in developing such

algorithms in Sections 5.4 and 5.5 are briefly described in Section 5.7. In Section 5.8,

we summarize the chapter with a few remarks.

5.4 Generation of Simple Channel Specifications

Let us assume, the number of nets be n in a channel that is being generated. So the

channel length would be of 2n if no blank column (containing no terminal at the top as

well as at the bottom) or trivial column (containing both the terminals of the same net)

is introduced into the channel. In generating random channel specifications of simple

in nature, we introduce a non-terminal (i.e. a vacant terminal) either at the top or at

the bottom randomly, and the other side of the column would contain a terminal of a

net. Our next task is to obtain the starting and the ending column positions of a two-

terminal net, and on which side it would be (i.e. to obtain the terminal position of the

net), at the top or at the bottom, randomly along the length of the channel. In this

respect, we like to fix up and maintain a set of criteria while generating the random

channel specifications, as follows.

114

 Though it is needless to mention that the net numbers are nothing

but symbols to differentiate themselves, we like to obtain channel instances

where the net numbers would present randomly along the length of the

channel, i.e. the nets are not sorted in succession based on their starting

column positions from left to right or from right to left (along the length of the

channel) or something of that sort.

 Nets should be of different spans (or intervals), and they would

present randomly along the length of the channel. If Li (Ri) is the leftmost

(rightmost) column position of net ni, then Ii  (Li, Ri) is known as the span (or

interval) of the net. As for example, the span of net 7 in Figure 5.1 is 9, and

that of net 5 is 2. This criterion tells that all the smaller (or larger) nets are not

accumulated on a side along the length of the channel.

 Generally, in practice, a channel contains smaller nets in large

number and larger nets a few. Nets are defined smaller or larger based on their

relative spans (or intervals) over the length of the channel. However, the

number of nets with a fixed span (say, 5 nets of span 3 each, 2 nets of span 7

each, etc.) is not fixed; otherwise, the randomness of the channel to be

generated may suffer. Only we can say that there would be a large number of

smaller nets and a few larger nets, but we do not precisely specify the exact

spans of different nets or the number of nets of a fixed span. Obviously, the

number of nets with some intermediate spans is neither more nor less.

Essentially, this criterion helps us in generating random channel instances

where the number of nets gradually reduces as their spans increase along the

length of the channel.

In order to generate the desired channel specifications, as guided by the

criteria stated above, we now describe the channel specification generating procedure

as follows. Let us assume the channel instance we want to generate is C that contains

n nets, and its length is m  2n (as each of the n nets is a two-terminal net and we are

not introducing any blank column or trivial column into C). We can simply generate

two column numbers randomly for each net, and immediately place them at the top or

at the bottom of the selected columns randomly. The problems that may arise in this

method are that of generating the same number (as a net) more than twice (that means

115

the net that has already been assigned) and the same column position c in C, 1  c 

m, is accessed for assigning net j, which has already been occupied by net i, j  i, after

starting the procedure (that can be considered as a collision). Finding out of a free

column (where no net has yet been assigned) in some iteration might enhance the cost

of the procedure (in terms of computational complexity) beyond some limit, and even

if we use linear probing technique for such collision resolution (like hashing), it may

result in some channel specification, which may not satisfy one or more criteria,

mainly the third criterion described above.

Thus, generation of random column numbers for the nets is not a problem at

all; even different methods for generating random numbers are easily available in the

literature, among which we can use any one of them. The problem gets apparent

whenever a collision occurs because we cannot predict anything about the generation

of random numbers. To get rid of this collision situation, we may think of the problem

in a different way so that randomness remains unaffected.

5.4.1 Formulation of the Problem

In the preceding part of this section, we formulate the problem towards developing the

algorithm to generate simple channel routing specifications, based on the overview of

generating the same as discussed earlier. The channel specification may be thought as

a linear list of two-tuple elements, where each element corresponds to a column in the

channel (that is being generated) and the two tuples correspond to the top and the

bottom terminal positions at each column. The length of the lists is same as the length

of the channel (say m), where n-number of nets are to be introduced when the channel

is completely generated. For each list element we generate a net number; put it in one

of the two-tuples, i.e. either at the top or at the bottom, and the other side would

contain a non-terminal.

At the very beginning, all the elements of the linear list of the two-tuple

assumed above are initialized with zeros. In our algorithm, we replace 2n ( m) zeros

in total in this two-tuple list, in order to generate a desired simple channel instance,

where columnwise only one zero is randomly replaced by a net number. In order to

generate such a channel specification, we assume another list of length m, which is

same as the length of the channel specification that is being generated. Initially, the

116

list contains the natural numbers starting with zero onwards (i.e. 0 through m1), i.e.

each element i in the list contains the number i1, 1  i  m.

We consider a singly linked linear list L of m nodes and initialize the

information field of node i (L(i) → info) by i1, where 1  i  m. In other words, the

linear list L contains the column numbers 0 through m1 of channel C to be

generated. Initially, all the columns are free, as we have not yet assigned any net to a

column. If some net is assigned to column c, 0  c  m1, then the node with

information c is deleted from L and keeps L as the list of free or available columns for

the nets yet to be assigned. For each net i, 1  i  n, we randomly choose a node N

from the existing list L of free nodes, retrieve its information part, which is a free

column number in C, and store i in the free column. Thus, if N contains c in L, we

replace c by i and delete N from L. In effect, channel C would contain a terminal of

net i at column c. Furthermore, in identifying the side (TOP or BOTTOM) of the

channel, we choose another random number that signifies whether i is assigned at the

top or at the bottom of c so that the other side of c is allotted for a non-terminal (i.e.

0). We treat this terminal as the position of the initial terminal of net i.

The problem of selecting a particular node in L may also arise for multiple

times, if we do not delete the selected node from L. That is why we assign the current

net to the column obtained by randomly selecting a node in L as stated above and

delete the node from L. In the same iteration (i.e. for net i) we generate the final

terminal for net i too.

While generating the position of the final terminal of net i, 1  i  n, we have

to keep in mind the last criterion of generating random channel specification stated

above (in Section 5.4), which is relating to spans of nets to be introduced in C. Here

our intention is to generate many smaller nets and a few nets with larger spans. In

order to obtain a random channel specification, we generate some smaller (positive)

random numbers that would be added to or subtracted from column number c that is

already selected randomly as the initial column position of net i. At first, we generate

smaller random numbers and assign the nets with lesser spans along the length of the

channel. Gradually, L becomes sparse as the nets are assigned to C, and even for

randomly generated smaller numbers nets with larger spans are evolved during later

iterations.

117

As every time a new node with a new column number (as its information part)

is selected, we can always be able to use the column successfully for a new net

without any conflict, and in this way, the problem of multiple occurrences of the same

random number could be resolved.

5.4.2 The Algorithm and Its Complexity

This is the way how a random channel C of n two-terminal nets is generated, where

the length m of the channel specification is same as 2n, and C contains no vertical

constraint in it. The algorithm based on the tentative formulation of the problem

(towards developing the algorithm) described in the previous subsection, is given

below.

Algorithm: Simple_Random_Channel_Generator

Input: Number of nets (n) to be introduced into the channel (C) to be constructed.

Output: A random simple channel specification of length m  2n.

Begin

Step 1: Set free_node  m. // It is the variable that keeps the number of nodes (i.e.

free columns) currently existing in L.

Create a singly linked linear list (L) of m  2n nodes. Each node i has two fields,

where L(i)info contains the column number of the channel to be constructed, and

L(i)link contains the address of the next node.

Step 2: For (i  1 to m) do

Begin

Set L(i)info  i1

End

Step 3: Select a suitable random number generator, Random(), to generate the

random numbers and initialize the generator by a valid (may be a varying

quantity) seed value.

Step 4: For (i  1 to n) do

Begin

 Step 4.1: Set initial  Random(free_node).

 Step 4.2: Search L linearly, and get the content of L(initial)info

 Set initial_col  L(initial)info.

118

 Step 4.3: Delete node L(initial).

 Set free_node  free_node – 1.

 Step 4.4: Select any suitable function to determine max_offset.

 Set offset  Random(max_offset).

 Step 4.5: If (initial + offset ≤ free_node), then

 Set final  initial + offset

 Else

 If (initial – offset ≥ 0 and initial – offset ≤ free_node), then

 Set final  initial – offset

 Else

 Set final  Random(free_node)

 End if

 End if

 Step 4.6: Search L linearly, and get the value of L(final)info.

 Set final_col  L(final)info.

 Step 4.7: Delete node L(final).

 Set free_node  free_node – 1.

Step 4.8: initial_col and final_col contain the two terminals of the net under

consideration (i.e. net i). Select top/bottom randomly, and assign i to these

two columns.

 End

End

Now we compute the computational complexities in generating such a random

channel specification C as follows. In C, we have n nets in total. In addition, m is also

of the order of n. Initially, we create a singly linked linear list L of order n. For each

net i, 1  i  n, to be introduced into the channel, we randomly select a node N from

the existing list L of free nodes and retrieve its information part to determine the

initial terminal position of net i in a column in C. This linear search on the linked

linear list L (of length 2n) takes time O(n). At the same iteration, we also determine

the final terminal position of net i in a similar way, and that also takes time O(n). So

for each net i, 1  i  n, O(n) time is required for finding out its terminal positions (in

two different columns) in generating C. Thus, for a channel C that contains n nets, the

119

total time required is (n2). Hence, the time complexity in generating C is (n2).

Needless to mention that in generating C, we have used (n) dynamic space of

computer memory. We summarize the complexity results in the following theorem.

Theorem 5.1: Algorithm Simple_Random_Channel_Generator randomly generates

simple channel specifications of only two-terminal nets without introducing any

vertical constraint in it. The algorithm takes time O(n2), and space O(n), where n is

the number of nets introduced into the channel.

Now we illustrate the algorithm in generating a simple channel specification in

the following subsection.

5.4.3 An Illustration

In this subsection, we illustrate the algorithmic procedure developed in this chapter

and motivate the steps while creating a simple channel specification, C. Let us

consider C would contain n  10 nets. Therefore, the length of the channel, m is

supposed to be 20. Now we create a singly linked linear list, L of length 20 (that

means L contains 20 nodes), where node i is initialized with number i1, 1  i  20.

Hence, the initial list L with its information fields in successive nodes is as follows,

which are same as the column numbers of the channel instance C under construction.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

For the sake of generating channel instance C, initially we assume that C

contains only non-terminals, and the initial node numbers contain all the nodes as

shown below.

Initial Node Numbers: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Remaining Column

 Numbers: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BOTTOM: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the overview in Section 5.1, we have discussed that we are intended to

introduce a large number of smaller spanned nets and a small number of larger

spanned nets (and a few neither larger nor smaller in their spans). In the algorithm,

developed in this chapter, we have introduced the nets in increasing order, 1 through

120

n. So, naturally the smaller numbered nets are also smaller in their spans and larger

numbered nets are eventually larger in spans. Though net numbers are having no

special significance other than differentiating themselves, in order to break this usual

trend in generating channel specifications, we follow a statistical measure assumed as

follows.

In Table 5.1, the percentage of free columns (of the channel to be generated),

i.e. the percentage of free nodes available in the node list is introduced in the left

column. The right column contains the allowable percentage of remaining free nodes

for computing the maximum offset (i.e. max_offset) of a net under consideration in an

iteration. The maximum offset is a number that determines the maximum span (or

interval) of the net that at most we like to provide for the net under consideration.

Offset (i.e. offset) is a randomly generated number in the range of zero through

max_offset that we essentially employ as the span (or interval) of the allied net. After

obtaining the terminal locations in two different columns for a net, we again generate

two random numbers; if the number is odd (even) for a column, then at that column

we assign the terminal position at the top (at the bottom) for the net under

consideration.

Table 5.1: An assumption on the allowable percentage of remaining free nodes for

computing max_offset, based on available free nodes in the list (or available free

columns in the channel) in percentage.

Percentage of Free Nodes in

the List (or Percentage of Free

Columns in the Channel)

Allowable Percentage of

Remaining Free Nodes for

Computing max_offset

91 – 100 0 – 10

81 – 90 0 – 20

71 – 80 0 – 30

61 – 70 0 – 40

51 – 60 0 – 50

41 – 50 0 – 60

31 – 40 0 – 70

21 – 30 0 – 80

11 – 20 0 – 90

1 – 10 0 – 100

121

Now we briefly describe the basis of introducing max_offset. Max_offset is the

maximum allowable range of span (or interval) of a net. The offset is a randomly

generated number within the range of max_offset (starting from zero). Thus, certainly

a smaller numbered net may have a span 10% (as offset) of the total length of the

channel to be generated, whereas a larger numbered net may have a span of 0% (i.e. a

minimum of one unit span) of the same (at some other iteration, as offset).

Table 5.1 is self-explanatory when we consider a channel of length 100 in

determining the allowable range of offset (i.e. zero through max_offset) for a net in

subsequent iterations of the algorithm. This has been shown in Table 5.2. Based on

our assumption in Table 5.1, the distribution of the allowable max_offset follows a

normal curve.

Now, we go back to our illustration when the channel specification under

generation of length 20 had only non-terminals at the top as well as at the bottom. The

first iteration starts with net number 1. Say, initial node, randomly selected, is 4. The

content of this node is 3, i.e. the column number of the initial terminal is 3. It is a free

node and is assigned as the initial terminal of net 1. Now the node (i.e. node 4) is

deleted from L, and after deletion of node 4, the status of the list (i.e. L) is as follows.

Table 5.2: Allowable range of offset for a typical channel of length 100, based on

available free nodes in the list (or available free columns in the channel).

Free Nodes in the List or

Free Columns in the Channel

Allowable Range of Offset

(0 – max_offset)

91 – 100 0 – 10

81 – 90 0 – 18

71 – 80 0 – 24

61 – 70 0 – 28

51 – 60 0 – 30

41 – 50 0 – 30

31 – 40 0 – 28

21 – 30 0 – 24

11 – 20 0 – 18

1 – 10 0 – 10

Remaining Node Numbers: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Remaining Column

 Numbers: 0 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

122

Now the list has 19 free nodes. We take a variable free_node to keep this free

node count. Each time when a node is deleted from the list, the value of free_node is

decremented by 1. According to Table 5.1, the max_offset of the node to be selected

randomly for the final terminal of the net is 10% of 19 free nodes, which belongs to

the range of percentage of free nodes 91 – 100, which is same as 1.9. Taking the floor

of this value, we get the max_offset that equals to 1. (Taking the ceiling may work

equally good or another for this experimentation in computing the value of

max_offset.)

Based on this value of max_offset, the allowable range of offset is 0 – 1. Say,

the number selected randomly for computing the final column position of net 1 is 0

(from the range of the above offset). To determine the final column position for net 1,

we add 0 to 4, which is the initial node number for this net. So, the final column

position of net 1 is the content of the fourth remaining free node of list L, which is

also same as 4. So, the span of net 1 is from column (number) 3 to column (number)

4. Node 4 is deleted from the list (i.e. L), and variable free_node is decremented to 18.

The exact terminal positions for net 1 at these columns are selected randomly, as

stated above. Say, the terminal position at column 3 is at the top (as an odd number is

randomly generated) and at column 4 is at the bottom (as an even number is randomly

generated). The generated channel is currently as follows.

Column Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BOTTOM: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Now the status of the remaining free nodes and the remaining column numbers

are as shown below.

Remaining Node Numbers: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Remaining Column Numbers: 0 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Say, in a similar way we have executed six more iterations in assigning nets 2

through 7 into the channel being constructed, and the generated channel is currently as

follows.

123

Column Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP: 0 0 3 1 0 7 2 0 0 0 0 0 0 0 4 0 0 6 4 5

BOTTOM: 7 2 0 0 1 0 0 3 0 0 0 6 0 5 0 0 0 0 0 0

Furthermore, let us consider the status of the remaining free nodes and the

unassigned column numbers, before introducing net 8, are as follows.

Remaining Node Numbers: 1 2 3 4 5 6

Remaining Column Numbers: 8 9 10 12 15 16

The remaining three nets are 8, 9, and 10, and the number of free columns is

six. Then for net number 8, following the algorithm, say, initial  4. Therefore,

initial_col, i.e. the initial column number for net 8 is 12. Now the available free_node

is five, and the list of remaining column numbers does not contain column number 12.

Next, in a similar way, we compute the max_offset for net 8, which is same as four.

So, the range of offset is 0 – 4. Say, three is randomly selected as the value of offset.

Thus, final is found by adding three to initial, i.e. final  4+3  7, which is greater

than the number of the available free nodes (i.e. 5). In this case, we subtract offset

from initial to get the other node. Therefore, final  43  1, and final_col  8. So,

selecting sides (top or bottom) for the terminal positions of net 8 randomly and after

assigning them to the channel, the generated channel specification is as follows.

Column Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP: 0 0 3 1 0 7 2 0 0 0 0 0 8 0 4 0 0 6 4 5

BOTTOM: 7 2 0 0 1 0 0 3 8 0 0 6 0 5 0 0 0 0 0 0

Before consideration of net 9, the status of the remaining free nodes and the

column numbers where nets have not yet assigned, are as shown below.

Remaining Node Numbers: 1 2 3 4

Remaining Column Numbers: 9 10 15 16

Two nets (9 and 10) are still to be assigned, and there are four free columns

available for these assignments. Say, initial  4, and hence, initial_col  16. Node 4 is

deleted; so, free_node  3. The max_offset calculated is 2; say, 0 is generated as

offset. Hence, final  4+0  4, which is, in turn, greater than the value of free_node

124

available. Thus, we follow the first Else-part of Step 4.5 of algorithm

Simple_Random_Channel_Generator. Even if we go backward, i.e. subtract 0 from 4,

the value of final remains unchanged, and therefore, we do not get any valid node as

node 4, as currently, the list is containing only three free nodes. In such cases, where

both addition of offset to the initial and then subtraction of offset from the initial result

in invalid nodes (as final > free_node as well as final < 1), we may select any node

from L randomly, which gives a valid node and a valid column number. Say, the

randomly selected node for final is 3. Thus, node 3 gives column number 15; hence,

final_col  15. Say, the side for the initial terminal of net 9 is randomly selected as the

top, and that of the final terminal is randomly selected as the bottom. After

assignment of net 9, the channel is as follows.

Column Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP: 0 0 3 1 0 7 2 0 0 0 0 0 8 0 4 0 9 6 4 5

BOTTOM: 7 2 0 0 1 0 0 3 8 0 0 6 0 5 0 9 0 0 0 0

For net 10, i.e. the last net to be introduced only two columns are free of the

channel being constructed. The status of the remaining free nodes and the unassigned

column numbers, before introducing net 10, are as follows.

Remaining Node Numbers: 1 2

Remaining Column Numbers: 9 10

This is the case where only two free columns remaining to be assigned and the

L has exactly two nodes (node 1 and node 2). Then we randomly compute the initial

column number for this net, and compute max_offset, randomly select offset, and

compute so on and so forth for the final column position of net 10, as stated above. As

at the beginning of this iteration, we had only two free columns, so for the assignment

of terminal positions for the last net (i.e. net 10), eventually we must assign the

terminals in these two columns only; of course, sides of these two terminals are again

selected randomly. The finally generated channel specification is as follows.

Column Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP: 0 0 3 1 0 7 2 0 0 0 0 0 8 0 4 0 9 6 4 5

BOTTOM: 7 2 0 0 1 0 0 3 8 10 10 6 0 5 0 9 0 0 0 0

125

 0 0 3 1 0 7 2 0 0 0 0 0 8 0 4 0 9 6 4 5

 I1 I8 I4

 I2 I5

 I3 I6

 I7 I10 I9

 7 2 0 0 1 0 0 3 8 10 10 6 0 5 0 9 0 0 0 0

(a)

(b)

Figure 5.2: (a) The generated simple channel specification that contains 10 nets; the

length of the constructed channel is 20. (b) The horizontal constraint graph of this

(generated) simple channel instance comprises two components, as none of the nets in

this channel instance passes through both columns 8 as well as 9.

Now we analyze the channel specification generated above. No doubt that this

channel specification is a simple channel specification, as in each column of this

channel a non-terminal is present either at the top or at the bottom. Nets with their

spans (or intervals) belonging to the channel are shown in Figure 5.2(a); Figure 5.2(b)

shows the horizontal constraint graph of this channel. In a horizontal constraint

graph, n vertices are introduced corresponding to n nets belonging to a channel, and

two vertices are connected by an edge if and only if the spans (or intervals) of the

associated nets overlap in the channel [49, 96]. Table 5.3 shows how the nets in the

channel generated are spanned over the length of the channel, as the net number

increases. Nets are also randomly stretched over the length of the channel. In addition,

the table shows the leftmost column position and the rightmost column position of

each of the nets that are randomly generated and introduced into the channel. From

this table, it is clear that the spans of the nets also do not increase as the net numbers

v8

v10

v5

v6 v9

v4

v2

v3

v7

v1

126

increase; rather max_offset as well as offset play their roles in obtaining the desired

random spans (or intervals) of the nets to be introduced into the randomly generated

channel specifications.

Table 5.3: Spans (or intervals) of different nets introduced into the randomly

generated channel specification, shown in Figure 5.2(a).

Net

Number

Leftmost Column

Position

Rightmost

Column Position

Span

(or Interval)

1 4 5 1

2 2 7 5

3 3 8 5

4 15 19 4

5 14 20 6

6 12 18 6

7 1 6 5

8 9 13 4

9 16 17 1

10 10 11 1

5.5 Generation of General Channel Specifications

5.5.1 An Overview

In the previous section, we have described how to generate random channel instances,

containing only two-terminal nets, and there are no vertical constraints between any

pair of nets. In general, (benchmark) channel specifications that are found in literature

may have vertical constraints and nets may contain more than two terminals, i.e. there

may be one or more than one terminals in between two end terminals of a net. Thus,

the procedure described above is applicable only to some special type of channel

specifications that are known as simple channel instances. However, we can tune the

procedure explained above, so that it becomes capable of generating channel instances

having vertical constraints and nets may contain more than two terminals. In

generating such general channel specifications, we assume that there is an upper

bound on the number of terminals and this number to be no more than six for the few

nets that are introduced into the channel being constructed.

127

5.5.2 Formulation of the Problem

Suppose, we like to generate a random channel instance that consists of N nets (N >

0). So, the only input to be given here is the number of nets, i.e. N. Each net is

assumed to be of k terminals (2  k  6). We need to place these N nets along the

length of the channel. Also, there may be some non-terminals spread over the channel

that should be incorporated in the specification. In order to generate a random general

channel specification, first, we have to estimate the length of the channel (L) in a way

such that it is long enough to accommodate proposed terminals of all the nets as well

as non-terminals. If ki is the number of terminals of net i, then the total number of

terminals for all the nets can be computed by adding the number of terminals for each

net. For example, if there are 10 nets in the channel then the total number of terminals

for 10 nets is K  k1 + k2 + … + k10. If NT is the number of non-terminals, then the

total number of terminals is P  K + NT. These P terminals are evenly distributed over

top and bottom positions of the channel specification along the length of the channel,

in a random fashion.

Now we can calculate the estimated length of the channel as L  P/2. As an

illustration, say, there are five nets having two terminals each, three nets having three

terminals each, and there are a 5-terminal and a 6-terminal net of a general channel

specification to be generated of ten nets. Also, say, the number of non-terminals (NT)

is seven. Thus, the total number of terminals is calculated as follows:

P  K + NT  (2×5 + 3×3 + 5×1 + 6×1) + 7  30 + 7  37.

Hence, L  P/2  19.

So, the channel of length L is now capable of accommodating K terminals and

NT non-terminals. In general, there are more nets having fewer terminals, and the

random distribution of terminals should follow this constraint. Now, we have to locate

the terminals of the nets at top/bottom positions in different columns in a random

fashion. In order to place them properly, we have used three auxiliary lists, described

as follows.

1. NET_LIST: The length of this list is also N. Initially, the list is filled in

with positive integers from 1 to N. An instance of the list is given below.

NET_LIST: 1 2 3 4 5 6 7 8 9 10

128

This list tells that the nets to be introduced into the random general

channel specification that is to be generated.

2. TERM_COUNT: The length of this list is N, i.e. same as the number of

nets. Each location of this list is used to store the number of terminals (k) for a

net. For example, if N  10, then TERM_COUNT may be looked like as:

TERM_COUNT: 2 2 2 2 2 3 3 3 5 6

This means that there are five nets of two terminals each, three nets of

three terminals each, and two nets having five and six terminals only.

3. TERM_LIST: The length of this list is 2L, i.e. same as the sum of the

total number of top plus total number of bottom terminal positions. Initially,

the list is populated by positive integers started from 1 up to 2L. For the above

example, as 2L  38, so TERM_LIST must have positive integers from 1 to 38

as shown below.

TERM_LIST: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Now, it is the time to describe how a channel specification, C is generated

with the help of these three auxiliary lists. At the very beginning of generating a

desired random general channel specification, we initialize all the 2L top and bottom

terminal positions of the channel by zeros. Then we start with generating the channel

specification in N successive iterations. In each iteration, we select a net number, i,

randomly and locate its terminals in different columns (c) in C, and again randomly

determine the terminal position, either at the top or at the bottom in column c for net i.

First, we randomly select an element p from NET_LIST and remove the element from

the list immediately; the length of NET_LIST is reduced accordingly. Thus, p is the

net, whose terminals are to be assigned to different columns in C. Now, an element k

from TERM_COUNT is selected randomly, and the entry is deleted, and the size of

this list is also reduced as before. Thus, p is considered as a k-terminal net. Say, we

have selected the sixth entry from NET_LIST and the ninth entry from

TERM_COUNT; so p  6 and k  5, i.e. p (or net 6) is a 5-terminal net, whose

terminal positions are to be determined now.

129

For each of these k terminals we generate a random number, r and select the r-

th element (which we denote by another number s) from TERM_LIST and delete the

element as before, which results in a reduction of the length of TERM_LIST. The

number s is now located at column c  s/2; if s is odd (even), then p (the net under

consideration) is placed at the top (bottom) position in column c. When all the

terminals of net p are assigned in different columns, we are left with TERM_LIST of

length reduced by k, i.e. the length of TERM_LIST is same as 2L–k, at the beginning

of the second net/iteration under consideration.

In this way we extract elements from the three lists and using them, we fill in

the top and bottom positions of column c, and after N iterations, we obtain the desired

channel specification. Note that based on the initialization of the channel specification

of length L (with all terminal positions containing only zeros), ultimately 2L–K

terminal positions are left unassigned with some net terminals; so, these terminal

positions contain only non-terminals for the generated channel specification. A formal

description of this algorithm is stated in step-by-step in the following subsection.

5.5.3 The Algorithm

This is the way how a random general channel instance of multi-terminal nets is

generated, where the length of the channel specification is L. The algorithm based on

the tentative formulation of the problem (towards developing the algorithm) described

in the previous subsection, is given below.

Algorithm: General_Random_Channel_Generator

Input: Number of nets (N) to be introduced into the channel to be constructed.

Output: A random general channel specification as a vector (Channel) of length L.

Top (Bottom) list is denoted by Channel.top (Channel.bottom).

Begin

Step 1: [Determination of length L of channel C to be generated]

Step 1.1: For each net, i (1  i  N), randomly estimate a number ki as the

number of terminals.

 Set K  k1 + k2 + … + kN.

Step 1.2: Randomly estimate the total number of non-terminals (NT).

 Set P  K + NT.

Step 1.3: If P is odd, then

130

Begin

 Step 1.3.1: Set NT  NT + 1.

Step 1.3.2: Set P  P + 1.

End

Step 1.4: Set L  P/2.

Step 2: [Initialize TERM_COUNT, NET_LIST, and TERM_LIST]

Step 2.1: For i  1 to N do

 TERM_COUNT[i]  ki.

Step 2.2: For i  1 to N do

 NET_LIST[i]  i.

Step 2.3: For i  1 to P do

 TERM_LIST[i]  i.

Step 3: [Create the channel specification]

Step 3.1: For i  1 to L do

Begin

Step 3.1.1: Set Channel[i].top  0.

Step 3.1.2: Set Channel[i].bottom  0.

End

Step 3.2: For i  1 to N do

Begin

Step 3.2.1: Randomly select an element p from NET_LIST.

Delete p from NET_LIST, and reduce the length of NET_LIST by 1.

Step 3.2.2: Randomly select an element k from TERM_COUNT.

 Delete k from TERM_COUNT and reduce the length of TERM_COUNT.

Step 3.2.3: For j  1 to k do

 Begin

Step 3.2.3.1: Randomly select an element s from TERM_LIST.

Delete s from TERM_LIST and reduce its length.

Step 3.2.3.2: Set c  s/2.

If s is odd, then

Channel[c].top  p

Else

131

Channel[c].bottom  p

End

End

End

Now we illustrate the algorithm in generating a general channel specification

in the following subsection.

5.5.4 An Illustration

Let us illustrate the algorithm with the help of the example considered in Section

5.4.3; see Figure 5.2(a). Here, the number of nets (N)  10, the number of terminals

(K)  30, the number of non-terminals (NT)  8. Thus, P  38 and the length of the

channel (L)  19. The initial state of the three auxiliary lists and the status of the

channel to be generated are as shown below.

NET_LIST : 1 2 3 4 5 6 7 8 9 10

TERM_COUNT : 2 2 2 2 2 3 3 3 5 6

TERM_LIST : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

 38

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BOTTOM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Let us assume, at the first iteration, the sixth entry from NET_LIST is selected

randomly, which is 6, and the ninth element is randomly selected from

TERM_COUNT, which is 5. So, p  6 and k  5. Therefore, net 6 is a 5-terminal net.

Now we need to select randomly five elements from TERM_LIST, one after another;

those are required in knowing the columns where net 6 has its terminals. Say, the

selected elements from TERM_LIST are 5, 12, 15, 22, and 25. Thus, the column

positions for the terminals of net 6 are calculated as follows. The first column

position of net 6 is c  5/2  3, and as 5 is an odd number, this terminal of net 6 is

assigned to the top at the third column of the channel. Similarly, other four terminal

positions for net 6 are column 6 at the bottom, column 8 at the top, column 11 at the

132

bottom, and column 13 at the top. The lists are modified accordingly. After the first

iteration, the status of the three lists and the generated channel after introducing net 6

are as follows.

NET_LIST : 1 2 3 4 5 7 8 9 10

TERM_COUNT : 2 2 2 2 2 3 3 3 6

TERM_LIST : 1 2 3 4 6 7 8 9 10 11 13 14 16 17 18 19 20 21 23

 24 26 27 28 29 30 31 32 33 34 35 36 37 38

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP 0 0 6 0 0 0 0 6 0 0 0 0 6 0 0 0 0 0 0

BOTTOM 0 0 0 0 0 6 0 0 0 0 6 0 0 0 0 0 0 0 0

In the second iteration, say, the fourth entry from NET_LIST (i.e. 4) and the

sixth entry from TERM_COUNT (i.e. 3) are randomly selected. It means that net 4 is

a 3-terminal net that is to be introduced into the newly constructed channel C. Say,

the elements that are chosen randomly from TERM_LIST are 11, 14, and 20, which

implies that the terminal positions of net 4 are column 6 at the top, column 7 at the

bottom, and column 10 at the bottom. The lists are modified accordingly. After the

second iteration, the modified lists are as shown below.

NET_LIST : 1 2 3 5 7 8 9 10

TERM_COUNT : 2 2 2 2 2 3 3 6

TERM_LIST : 1 2 3 4 6 7 8 9 10 13 16 17 18 19 21 23 24 26 27

 28 29 30 31 32 33 34 35 36 37 38

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP 0 0 6 0 0 4 0 6 0 0 0 0 6 0 0 0 0 0 0

BOTTOM 0 0 0 0 0 6 4 0 0 4 6 0 0 0 0 0 0 0 0

In this way, if we follow 10 successive iterations, the first two auxiliary lists

become empty, and eventually we generate a desired general channel specification,

whose all nets’ terminals are assigned to different columns along the length of the

channel. The finally generated channel specification may be some sort of the

following channel.

133

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP 8 0 6 1 5 4 0 6 2 1 2 7 6 9 0 9 10 9 0

BOTTOM 5 8 0 2 0 6 4 3 0 4 6 9 9 3 10 0 7 9 10

 8 0 6 1 5 4 0 6 2 1 2 7 6 9 0 9 10 9 0

 I8 I1 I7

 I2 I9

 I3

 I5 I4 I10

 I6

 5 8 0 2 0 6 4 3 0 4 6 9 9 3 10 0 7 9 10

(a)

(b)

Figure 5.3: (a) The generated general channel specification whose length is 19 and

that comprises 10 nets. (b) The vertical constraint graph of this generated general

channel specification. Incidentally, it consists of two components and does not

contain any cyclic vertical constraint.

The channel with 10 nets is shown in Figure 5.3(a). The vertical constraint

graph of this channel is shown in Figure 5.3(b). Vertical constraints among a set of

nets determine a relative ordering over the nets along the height of the channel [49,

96]. The vertical constraint graph (VCG) consists of n vertices for n nets present in a

channel. If a column of the channel contains terminals of two different nets, say a and

b, at the top and at the bottom, respectively, then in the vertical constraint graph, a

directed edge is introduced from vertex va to vertex vb.

v10

v7

v9

v4

v3

v6

v2

v1

v5

v8

134

Table 5.4 shows how the nets in the generated channel are spanned over its

length, as the net number increases. Furthermore, terminal count, i.e. the number of

terminals per net is also shown in the table. Data show the randomness of the

generated channel instance.

Table 5.4: Spans (or intervals) of different nets introduced into the randomly

generated general channel specification, shown in Figure 5.3(a). The number of

terminals per net is also shown in this table in the rightmost column of Terminal

Count.

Net

Number

Leftmost

Column Position

Rightmost

Column Position

Span

(or Interval)

Terminal

Count

1 4 10 6 2

2 4 11 7 3

3 8 14 6 2

4 6 10 4 3

5 1 5 4 2

6 3 13 10 5

7 12 17 5 2

8 1 2 1 2

9 12 18 6 6

10 15 19 4 3

5.5.5 The Complexity of the Algorithm

We now analyze the computational complexities of algorithm General_Random_

Channel_Generator. Suppose N nets are introduced in generating a general channel

instance; so, the number of iterations required is N. In each iteration, we need to

search some random locations from the three auxiliary lists. The length of each of the

lists TERM_COUNT and NET_LIST is same as the number of nets, i.e. N, and also the

length (2L) of TERM_LIST is linearly dependent on N, i.e. L is O(N). If we represent

all these lists by singly linked linear lists, then the sequential search time for each list

is dependent on their length. As the length of each of these (three) lists is O(N), and as

they are searched in a sequential manner, the total time to search the lists is O(N) +

O(N) + O(N), i.e. O(N). So, for N iterations, as we like to introduce N nets into the

channel, the total time complexity is O(N2). Also, the space complexity is dependent

on the length of each of all these lists, which is O(N). Consequently, the space

135

requirement is bounded by O(N). We summarize the complexity results in the

following theorem.

Theorem 5.2: Algorithm General_Random_Channel_Generator randomly generates

general channel specifications of multi-terminal nets that contain both horizontal as

well as vertical constraints in it. The algorithm takes time O(n2), and space O(n),

where n is the number of nets introduced into the channel.

5.5.6 Removal of Cyclic Vertical Constraints

In this subsection, we like to mention an additional checking that is often necessary to

know whether a generated general channel instance contains any cyclic vertical

constraints. This is because there are some routing models, like the reserved two-layer

no-dogleg Manhattan channel routing model [15, 49, 51, 52, 53, 54, 80, 96], where

vertical constraint violation occurs if a general channel instance contains a cyclic

vertical constraint. So, in order to make the vertical constraint graph of a generated

general channel instance acyclic we do the following task that we explain here with

the help of a suitable example.

Figure 5.4: The vertical constraint graph of a randomly generated general channel

instance that contains a cycle among nets 10, 2, 4, 6, and 3.

Let us consider a randomly generated general channel instance is as follows.

v8

v9

v3 v6

v4 v5

v2

v10

v7

v1

136

 2 0 6 5 9 1 4 0 10 10 6 8 7 10 4 0 2 0 3 10

 5 9 3 0 6 7 0 6 2 0 8 0 10 0 6 8 4 1 10 0

The vertical constraint graph (VCG) of this channel instance is shown in

Figure 5.4 that contains a cycle. We identify the cycle(s) using the well-known depth-

first search (DFS) algorithm on the directed VCG in time O(n+e), where n is the

number of nets in the generated channel instance and e is the number of edges in the

VCG.

After a cycle in the VCG is detected, we dissolve the cycle by destroying a

vertical constraint belonging to this cycle. We may destroy any one of the vertical

constraints in this cycle based on some logic so that the resulting VCG is acyclic.

Anyway, following DFS with source vertex v1, edge (v3, v10) may be identified as a

back edge that we could destroy by splitting the column containing a terminal of net 3

at the top and a terminal of net 10 at the bottom into two, as shown underlined below

in two consecutive columns of the channel.

2 0 6 5 9 1 4 0 10 10 6 8 7 10 4 0 2 0 3 0 10

5 9 3 0 6 7 0 6 2 0 8 0 10 0 6 8 4 1 0 10 0

In this way, the channel length is increased by one. So, for a randomly

generated general channel instance with p cycles in its VCG, at most p columns may

require being introduced in order to generate a desired channel instance without any

cycle in its VCG.

5.6 Experimental Results

In this section, we include all the experimental results that are computed for

generation of simple as well as general channel instances. In practice, the instances

we have generated randomly contain 10 through 15000 nets in a channel, and for each

number of nets 200 such instances are generated. Results that are shown in different

tables and curves in this section are computed by making an average on all such 200

randomly generated channel instances for a specific number of nets. As for example,

consider Table 5.5, where we show the experimental results obtained following

algorithm Simple_Random_Channel_Generator. This table shows the minimum as

well as the maximum span of nets out of 200n nets in generating 200 random simple

channel instances of n nets each. Incidentally, we may observe in the first row of the

137

table, the minimum span is one unit only whereas the maximum span of a net (out of

2000 nets) is almost spanned over the length of the channel, which is 19 units. The

average span per net is also shown in Table 5.5, and in the last row of this table, we

see that the average span per net is 4.852 units only (that is actually the average span

of 2000 nets here).

Table 5.5: Experimental results of randomly generated simple channel instances; 200

instances are generated for each number of nets, and a row in this table shows the data

out of all these 200 instances for a given net number.

The maximum span of a net out of 30,00,000 nets that are introduced in

generating 200 random simple channel instances, each of which contains 15000 nets,

Number

of Nets

Minimum / Maximum

Span per Net

Average Span

per Net

10 1 / 19 4.852000

20 1 / 39 10.599500

40 1 / 79 21.971500

60 1 / 103 29.509000

80 1 / 159 41.075125

100 1 / 175 51.174000

150 1 / 277 74.469733

200 1 / 360 98.519850

300 1 / 536 145.046333

400 1 / 730 200.074325

500 1 / 951 252.453620

600 1 / 1143 303.903500

700 1 / 1336 362.000243

800 1 / 1502 406.109000

900 1 / 1757 463.381778

1000 1 / 1976 516.205790

1500 1 / 2930 763.650047

2000 1 / 3898 1048.163660

4000 1 / 7844 2063.192635

6000 1 / 11895 3049.836172

8000 1 / 15670 3995.323902

10000 1 / 19622 5052.101507

12000 1 / 23783 6006.648183

15000 1 / 29814 7422.525149

138

is 29814 units whereas the average span per net of all the nets introduced in these

channels is 7422.525149 units only; see the last row of Table 5.5. In another form, we

view these computed results as shown in Figure 5.5. In this figure, the number of nets

is available along X-axis, and the average span per net is obtained along Y-axis of the

plot. The figure shows regularity in changing the average span per net as the number

of nets introduced into the channels changes. The relation is very close to linear, as

the average span per net is almost half of the number of nets introduced into the

channels of the same net number (also see Table 5.5).

Figure 5.5: The variation of average span per net over the number of nets introduced

into a randomly generated simple channel instance. Here essentially 200 instances of

a particular net number are generated randomly, and the average span per net is

obtained by making an average of spans of all those nets that are introduced into the

said channels.

Now we consider the experimental results that are computed following

algorithm General_Random_Channel_Generator. The results are included in Table

5.6. Here also, we randomly compute 200 general channel instances for a given

number of nets. Note that here in generating general channel instances the channels

that are generated for a particular net number may have different channel lengths; this

is unlike in generating simple channel instances, where the channel length is always

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000 4000 6000 8000 10000 12000 14000 16000

Average Span per Net

139

same as 2n for a channel with n nets (as we introduced 50% non-terminals there to

avoid vertical constraints). Here the generated channel lengths vary from around 1.5

to 2.2 times (as minimum to maximum channel lengths obtained) of the number of

nets belonging to the channel; see the second column of Table 5.6. Incidentally, the

average channel length (of 200 generated channel instances of a given net number) is

approximately 1.8 – 1.9 times of the number of nets introduced into the channel; see

the third column of the table.

Table 5.6: Experimental results of randomly generated general channel instances; 200

instances are generated for each number of nets, and a row in this table shows the data

out of all these 200 instances for a given net number.

Net

Number

Min / Max

Channel

Length

Average

Channel

Length

Average

Number of

Terminals

per Net

Average Number

of Non-

Terminals per

Channel

Average

Span

per Net

10 14 / 20 16.485000 2.592500 7.045000 5.539000

20 29 / 42 35.765000 2.807500 15.380000 9.914000

40 59 / 86 73.290000 2.881875 31.305000 18.232125

60 90 / 131 111.075000 2.911583 47.455000 27.340167

80 121 / 175 148.760000 2.922750 63.700000 36.178312

100 154 / 222 188.245000 2.959200 80.570000 45.017050

150 229 / 330 280.715000 2.941833 120.155000 65.774600

200 307 / 444 376.395000 2.959200 160.950000 86.965850

300 461 / 666 564.755000 2.959200 241.750000 127.570717

400 614 / 888 752.845000 2.959200 322.010000 168.568050

500 768 / 1110 941.090000 2.959200 402.580000 209.976840

600 921 / 1331 1129.190000 2.959200 482.860000 251.071517

700 1075 / 1553 1317.510000 2.959200 563.580000 291.667157

800 1228 / 1775 1505.690000 2.959200 644.020000 334.257887

900 1382 / 1997 1693.960000 2.959200 724.640000 374.271572

1000 1535 / 2219 1882.115000 2.959200 805.030000 414.723735

1500 2303 / 3329 2823.130000 2.959200 1207.460000 622.300127

2000 3071 / 4438 3764.190000 2.959200 1609.980000 822.438110

4000 6141 / 8876 7528.400000 2.959200 3220.000000 1628.330819

6000 9212 / 13314 11292.625000 2.959200 4830.050000 2432.932756

8000 12282 / 17752 15056.740000 2.959200 6439.880000 3186.042123

10000 15353 / 22190 18821.120000 2.959200 8050.240000 3948.734045

12000 18423 / 26628 22585.100000 2.959200 9659.800000 4736.121187

15000 23029 / 33285 28231.470000 2.959200 12074.940000 5918.711587

140

More specifically, we like to mention the following. In generating a general

channel instance, we have introduced only 2- to 6-terminal nets with the following

five sets of percentage range that are also selected randomly in our implementation.

The percentage ranges are {50, 30, 10, 7, 3}, {40, 35, 15, 5, 5}, {60, 20, 15, 3, 2},

{40, 30, 20, 6, 4}, and {45, 30, 15, 7, 3}. Observe in each of these sets a higher

percentage is usually used for nets with a smaller number of terminals, and the vice-

versa. As for example, consider the third set where 60% 2-terminal nets, 20% 3-

terminal nets, 15% 4-terminal nets, 3% 5-terminal nets, and 2% 6-terminal nets are to

be introduced. As a result of this in generating a channel having lesser number of nets,

like 10, 20, etc., the higher terminal net may not be introduced there in generating

general channel instances.

Figure 5.6: The variation of different parameters that are obtained as experimental

results in generating general channel instances randomly as the number of nets

introduced into the generated channels increases. The parameters that are considered

here are average channel length, average number of non-terminals per channel,

average span per net, and the average number of terminals per net. In reality, here 200

instances of a particular net number are generated randomly, and a parameter is

computed by making an average of the said parameter of all those nets that are

introduced into the said channels of a given net number.

0

5000

10000

15000

20000

25000

30000

0 2000 4000 6000 8000 10000 12000 14000 16000

Average Channel Length

Average Number of Terminals per Net

Average Number of Non-Terminals per Channel

Average Span per Net

141

Hence, the question arises about the average number of terminals per net, the

average number of non-terminals per channel, and the average span per net for the

randomly generated general channel instances, where a specific number of nets are

introduced. These parameters are also computed in our implementations that are

included in columns 4 through 6 in Table 5.6. Incidentally, the average number of

terminals per net approximately varies from 2.6 to 2.96 (which is almost constant), the

average number of non-terminals per channel is roughly 80% of the net number, and

the average span per net is 50 – 40% (in units) of the net number, as the number of

nets increases in generating general random channel instances. We also may view

these results, along with their variation, as shown in Figure 5.6.

Both the algorithms Simple_Random_Channel_Generator and General_Ran-

dom_Channel_Generator have been implemented in C on an Intel Pentium Dual-Core

machine having a 794 MHz clock. Furthermore, the implementations are done using

Microsoft Visual C++ 6.0 on a platform of Microsoft Windows XP Professional

(Version 2002) with CPU T2080@1.73GHz and with a support of 504 MB RAM.

The CPU times required are not shown in the tables, but these are mostly negligible

up to channels with 10000 nets in generating 200 channel instances of the same

number of nets introduced there.

We have used the seed increment for generating a channel as 65000 over the

channel count plus one. Here the channel count is 200, as we like to generate 200

random channel instances over a continuum of 65000 (as the maximum seed value),

where no two generated instances are identical to each other; rather, the instances

generated are likely to be evenly distributed over the continuum. Experimental results

show the beauty of the data obtained based on different parameters of generated

channel instances, as most of the parameters vary linearly as the number of nets

increases in generating random channel instances.

5.7 Usefulness in Developing the Algorithms

In channel routing problem, usually, the primary objective of a router is to compute a

routing solution for some channel instance that uses a minimum number of tracks (or

minimum channel area). In addition, in high performance routing our interest is also

to compute a routing solution with less electrical hazards (i.e. crosstalk), less signal

142

propagation delay, less power consumption, less or no hotspot formation, and so on

and so forth.

Crosstalk is one of the most important high performance optimization criteria

in (channel) routing that is to be reduced to achieve better performance out of the

routing solution. There are some techniques for minimizing crosstalk in a different

channel and switchbox routing models [23, 24, 25, 39]. Usually, there are two types

of crosstalk minimization problem in channel routing, namely, sum crosstalk

minimization and bottleneck crosstalk minimization; see Chapter 3. Sum crosstalk is

the amount of total crosstalk between horizontal wire segments of the nets that are

assigned to adjacent tracks. The sum crosstalk minimization problem is to compute a

feasible routing solution with a given number of tracks in which the total amount of

crosstalk is minimized.

On the other hand, bottleneck crosstalk with respect to a feasible routing

solution is the maximum amount of crosstalk due to overlapping between any pair of

horizontal wire segments of two different nets that are assigned to (two) adjacent

tracks in a routing solution. Thus, the bottleneck crosstalk minimization problem is

the problem of finding a feasible routing solution with a given number of tracks, such

that the amount of bottleneck crosstalk is minimized. Incidentally, all these problems

along with some other problems of crosstalk minimization have been proved NP-hard,

and all these results have been included in Chapter 3 of this thesis.

The channel routing problem of area minimization being an NP-hard problem

[41, 49, 50, 60, 61, 63, 80, 86], several heuristic algorithms have been proposed for

routing channels in different routing models [10, 12, 33, 49, 51, 54, 71, 73, 80, 96].

The problem is polynomial time solvable if the channel instances are free from any

vertical constraint, and there are algorithms for computing a routing solution using

exactly density number of tracks for each of such instances [32, 49, 52, 53]. Since the

problem of minimizing area for an instance of channel routing with only horizontal

constraints is polynomial time solvable (in computing a routing solution using exactly

density number of tracks), we call them as simple channel instances of channel

routing. We define a channel specification as general if both the constraints are

present in it.

143

However, the crosstalk minimization problem for two-layer channel routing,

both in the case of simple as well as general channel instances, is NP-hard, as has

been proved herein. That is, there exists no polynomial time algorithm for computing

a reduced crosstalk two-layer channel routing using the routing model under

consideration (i.e. the reserved two-layer (VH) Manhattan channel routing model),

even if the instances are free from any vertical constraint. As a result, several heuristic

algorithms have been developed to minimize crosstalk for two-layer channel routing

for simple as well as general instances of channel specifications, which have been

included in Chapter 4 of this thesis. Incidentally, there are a few general channel

instances available in the literature as benchmark channel instances [49, 96]; however,

those are not sufficient in executing the heuristic algorithms developed for reducing

crosstalk. On the other hand, no simple channel instances are available in the

literature. So, it is an obvious necessity in developing algorithms so that a huge

number of simple and general channel instances can be generated (randomly) for

using them in executing the heuristic algorithms developed for several NP-hard

channel routing problems. The algorithms developed in this chapter meet that

requirement.

Furthermore, it may be mentioned that following the illustration in Section

5.4.3, we show how a random simple channel instance is generated using algorithm

Simple_Random_Channel_Generator whose vertical constraint graph does not

contain any directed arc; the associated horizontal constraint graph is shown in Figure

5.2(b). On the other hand, algorithm General_Random_Channel_Generator generates

a general channel instance whose illustration is available in Section 5.5.4; the

associated vertical constraint graph is shown in Figure 5.3(b). In computing a general

channel instance, a cycle may also be evolved in its vertical constraint graph. Section

5.5.6 resolves such constraints using an algorithmic technique so that eventually

cycles are removed from a generated general channel instance. This is how a huge

number of simple and (desired) general channel instances are randomly generated

following the algorithms developed in this chapter. All generated instances are

utilized in computing reduced crosstalk channel routing solutions for the algorithms

developed in the previous chapter, and all associated results have been reported in the

next chapter (i.e. in Chapter 6).

144

5.8 Summary

In this chapter, we have developed algorithms for generating random channel

instances for both simple and general in nature for channel routing problem in VLSI

physical design. Simple channel instances do not contain any vertical constraint,

whereas general channel instances contain both horizontal as well as vertical

constraints [48, 49, 80, 81, 96]. Simple channel instances that are generated in this

chapter are all containing only two-terminal nets; simple channel instances of multi-

terminal nets, based on some requirements, can also be generated. General channel

instances that are randomly generated in this chapter contain two-terminal as well as

multi-terminal nets. These general channel instances may also contain cyclic vertical

constraints; however, for the channel routing model under consideration (that is the

reserved two-layer Manhattan channel routing model), we have removed those cyclic

vertical constraints such that a solution in two-layer routing is always guaranteed.

This has also been explained in this chapter.

The algorithms that are developed in this chapter are able to generate a very

large number of channel instances of any (possible) number of nets. In any case, the

said algorithms are extremely useful when we require a large number of channel

instances. As most of the problems in two-, three-, and multi-layer channel routing are

computationally hard to solve [41, 49, 50, 55, 56, 57, 58, 59, 61, 63, 80, 86], for each

of these problems it is unlikely to design a polynomial time deterministic algorithm.

Rather, developing heuristic algorithm may be a probable way out that hopefully

provides good solutions for most of the instances available in the literature.

Incidentally, a very few (general) benchmark channel instances are available in the

literature [49, 96]. So, to execute all these heuristic algorithms (that are developed for

NP-hard channel routing problems) and to judge their novelty, a variety of a large

number of similar kind of channel instances are required that we may generate with

the help of the algorithms developed in this chapter. In fact, the convergence of results

of a heuristic algorithm is well established when the algorithm of a problem is

executed for a substantial number of randomly generated similar (channel) instances,

and the final result is computed making an average on all of them.

Chapter: 6

Experimental Results on Generating Random

Channel Instances and Computing Two-Layer

Reduced Crosstalk Channel Routing Solutions

6.1 Overview

In this thesis, we have considered the problem of crosstalk minimization in two-layer

channel routing. We have already developed the previous three chapters for dealing

with the same. In Chapter 3, we have marked out several problems in crosstalk

minimization and subsequently proved their hardness. In order to acquire a large

number of channel instances, we have devised two algorithms for generating random

channels: one for the simple instances of channel specifications and the other for the

general instances of channel specifications, in Chapter 5. The crosstalk minimization

problem in two-layer (VH) channel routing is NP-hard. Thus, if a routing solution, S

of t tracks, is given and we are supposed to compute a reduced crosstalk channel

routing solution, S using the same t number of tracks (i.e. without enhancing the area

of routing), then the task that we can think of immediately is to design heuristic

algorithms to solve most of the instances of the problem under consideration.

In this light of thinking, in this thesis, we have devised two principal

algorithms for reducing crosstalk in Chapter 4. These algorithms have also been

implemented in Chapter 4 for a smaller number (540 only, in nine sets containing 60

channels in each set for a given number of nets) of randomly generated simple

channel instances and also for a set of 14 existing benchmark channel instances; all

these results are also included there.

Four noteworthy algorithms have been developed in the previous two chapters

of this thesis, and we have randomly generated an enormous number of channel

instances of both kinds. Even then, in order to comprise a particularly tiny subset of

some of these as representative generated instances as well as representative hardcopy

routing solutions produced by the subsequently reduced crosstalk channel routing

algorithms, we essentially include this chapter in the form of computed experimental

results as has been depicted in different tables.

146

6.2 Generation of Random Channel Instances

The random channel instance generating algorithms have been developed in Chapter

5. We have developed two algorithms for generating such instances; one for the

simple channel instances and the other for the general channel instances. The simple

channel instances do not contain any vertical constraint whereas the general channel

instances do have both the constraints. The length of a randomly generated simple

channel specification of n nets is exactly 2n, and each of the nets present in such a

channel is a two-terminal net. In this context, a general channel specification contains

two-terminal as well as multi-terminal nets with varying length of the channel. In

more detail, these are explained in the following two subsections by depicting some of

the randomly generated instances, the status of the routing solutions computed, and

some of the selected sets of hardcopy routing solutions after execution of each of the

algorithms.

As simple channel instances are hardly available in the literature, and general

(benchmark) channel instances are not much, in this work we have created a large

number of random channel instances of both types. In making the generated instances

as random as possible along the length of the channel, we follow some measures of

assumed standard, as has been briefly mentioned again.

(i) In our randomly generated channel instances the nets (that are made

different by numbers) appear randomly, i.e. the nets are not sorted in

succession based on their starting column positions from left to right (or

from right to left) along the length of the channel. We may remember that

the net numbers signify nothing but symbols to discriminate themselves.

(ii) Nets of different spans (of intervals) are supposed to appear randomly

along the length of the channel. This criterion tells that all the smaller (or

larger) nets are not accumulated (or concentrated) on a side of the channel.

(iii) We may assume that as a general practice, a channel includes a large

number of smaller nets and less large nets. Here the smaller or larger nets

are differentiated by their relative spans (or intervals). Observably, the

number of nets with some intermediate spans is neither more nor less.

Thus, this criterion tells that the number of nets steadily decreases as their

spans increase along the length of the channel.

147

(iv) Also, a general channel instance contains a percentage of non-terminals.

6.2.1 Generation of Simple Channel Instances

In this work, as we concentrate on minimizing crosstalk in two-layer channel routing,

for net pairs assigned to adjacent tracks (in a routing solution), that depends on only

the horizontal spans of different nets, we usually do not bother how much the vertical

wire segments of two different nets overlap on two adjacent columns. In fact, as the

pin-to-pin separation is determined by the allowable process technology, and we

usually have no control over a given channel specification (that are the TOP and

BOTTOM vectors of a channel), we do not like to impose any additional constraint in

assigning terminal locations, either at the top or at the bottom, of a two-terminal net

while generating a simple channel instance for a given number of nets.

We have already mentioned that for a given number of nets we have generated

200 random simple channel instances (where the number of nets introduced in a

channel varies from 10 through 15000; see Table 5.5), but there is no scope to show

all these instances by making this thesis unnecessarily thicker, and that could be

boring as well to a reader to go through. Besides, larger instances might take pages to

depict. Thus, as a matter of fact, we only include a reasonably small number of such

instances (that containing a smaller number of nets), with their associated information

for simple channel specifications. First, we include only six simple sample channels

each containing a total number of 10 nets. For all the nets belonging to all the 200

randomly generated instances, the average span of nets obtained is 4.8520 (see Table

5.5).

Sample simple channel # 1 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TOP 2 0 5 2 8 0 10 0 0 0 4 0 0 0 10 7 4 0 9 6

BOTTOM 0 9 0 0 0 5 0 8 1 1 0 3 7 3 0 0 0 6 0 0

The total span of nets  48 and the average span of nets of this channel  4.80.

Sample simple channel # 2 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TOP 10 0 9 0 0 0 6 0 7 4 7 0 0 0 3 0 0 0 1 0

BOTTOM 0 8 0 10 8 9 0 4 0 0 0 5 5 6 0 3 2 1 0 2

148

The total span of nets  26 and the average span of nets of this channel  2.60.

Sample simple channel # 3 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TOP 4 0 0 0 4 0 0 0 10 0 6 8 0 1 2 3 9 0 0 0

BOTTOM 0 10 7 9 0 5 6 7 0 5 0 0 1 0 0 0 0 2 3 8

The total span of nets  52 and the average span of nets of this channel  5.20.

Sample simple channel # 4 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TOP 3 9 1 0 2 0 5 3 8 0 0 0 8 0 10 0 4 0 0 0

BOTTOM 0 0 0 1 0 2 0 0 0 5 10 4 0 7 0 7 0 6 9 6

The total span of nets  46 and the average span of nets of this channel  4.60.

Sample simple channel # 5 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TOP 0 0 9 0 1 0 7 8 6 0 10 5 3 0 0 0 0 0 2 0

BOTTOM 9 4 0 4 0 1 0 0 0 7 0 0 0 8 6 10 3 5 0 2

The total span of nets  36 and the average span of nets of this channel  3.60.

Sample simple channel # 6 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TOP 1 6 10 0 4 0 9 5 6 0 3 10 8 0 2 0 0 0 0 1

BOTTOM 0 0 0 4 0 8 0 0 0 3 0 0 0 5 0 2 9 7 7 0

The total span of nets  62 and the average span of nets of this channel  6.20.

Now, we include four simple sample channels each containing a total number

of 20 nets, two channels each holding 40 nets, two similar channels each having 60

nets and only one channel of 80 nets. The average span per net for all nets belonging

to all 200 randomly generated instances for a given number of nets is included in

Table 5.5.

Sample simple channel # 1 that contains only 20 nets:

149

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 14 20 18 0 0 15 13 0 2 0 0 0 5 0 0 18 1 0 12 6 10

BOTTOM 0 0 0 10 19 0 0 20 0 16 2 6 0 14 9 0 0 1 0 0 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

TOP 0 3 0 0 0 8 0 0 0 7 0 0 0 11 0 4 15 16 0

BOTTOM 13 0 19 5 9 0 17 7 3 0 12 4 17 0 8 0 0 0 11

The total span of nets  224 and the average span of nets of this channel  11.20.

Sample simple channel # 2 that contains only 20 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 0 0 20 7 0 0 18 0 19 5 3 0 3 0 0 0 10 0 0 0 18

BOTTOM 14 4 0 0 5 10 0 4 0 0 0 15 0 13 7 20 0 16 14 8 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

TOP 0 13 0 17 0 8 0 2 0 2 6 15 0 0 11 9 0 0 0

BOTTOM 12 0 19 0 12 0 17 0 11 0 0 0 16 6 0 0 9 1 1

The total span of nets  168 and the average span of nets of this channel  8.40.

Sample simple channel # 3 that contains only 20 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 0 0 19 0 11 0 0 0 2 15 16 0 14 9 10 0 13 0 0 0 3

BOTTOM 12 9 0 15 0 18 2 8 0 0 0 17 0 0 0 3 0 12 8 5 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

TOP 0 20 7 13 0 4 6 0 0 1 0 0 0 10 0 17 6 7 0

BOTTOM 11 0 0 0 18 0 0 1 20 0 4 5 16 0 14 0 0 0 19

The total span of nets  278 and the average span of nets of this channel  13.90.

Sample simple channel # 4 that contains only 20 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 0 0 14 8 20 0 0 0 0 3 20 0 18 0 1 0 4 0 17 0 9

BOTTOM 19 8 0 0 0 17 3 18 5 0 0 4 0 1 0 11 0 14 0 16 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

150

TOP 5 13 0 13 0 7 0 10 0 0 0 9 7 19 0 12 6 2 2

BOTTOM 0 0 16 0 11 0 12 0 10 6 15 0 0 0 15 0 0 0 0

The total span of nets  154 and the average span of nets of this channel  7.70.

Sample simple channel # 1 that contains only 40 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 18 0 20 4 28 0 6 0 13 6 0 0 37 1 33 0 31 0 0 0 28

BOTTOM 0 39 0 0 0 20 0 34 0 0 4 40 0 0 0 25 0 30 1 38 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 38 12 0 23 0 40 0 0 3 37 0 13 8 26 0 29 0 9 39 24

BOTTOM 0 0 22 0 18 0 3 8 0 0 12 0 0 0 19 0 26 0 0 0

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

TOP 0 11 0 27 0 22 11 0 0 36 0 21 0 25 0 23 0 30 0 19

BOTTOM 33 0 9 0 24 0 0 29 14 0 15 0 34 0 15 0 31 0 16 0

Column # 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

TOP 35 32 0 27 0 0 0 35 0 17 0 21 0 5 7 2 0 10 0

BOTTOM 0 0 14 0 17 5 36 0 32 0 7 0 16 0 0 0 2 0 10

The total span of nets  598 and the average span of nets of this channel  14.95.

Sample simple channel # 2 that contains only 40 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 39 28 34 0 37 0 0 0 18 0 0 30 38 0 38 0 23 6 40 2 37

BOTTOM 0 0 0 40 0 33 25 31 0 21 6 0 0 28 0 22 0 0 0 0 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

TOP 0 2 17 26 0 11 0 0 0 1 0 0 4 4 0 33 0 27 24

BOTTOM 12 0 0 0 15 0 29 26 1 0 39 24 0 0 17 0 5 0 0

Column # 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

TOP 11 0 12 0 0 8 29 0 21 0 10 5 13 0 36 0 34 0 15 3 25

BOTTOM 0 22 0 16 7 0 0 18 0 10 0 0 0 9 0 7 0 8 0 0 0

151

Column # 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

TOP 0 23 31 20 0 14 0 0 0 0 0 32 0 36 0 14 0 0 0

BOTTOM 3 0 0 0 19 0 30 9 35 13 19 0 27 0 16 0 35 20 32

The total span of nets  804 and the average span of nets of this channel  20.10.

Sample simple channel # 1 that contains only 60 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 3 0 27 6 58 0 51 0 0 0 26 0 45 0 56 0 0 26 48 0 0

BOTTOM 0 36 0 0 0 39 0 54 9 41 0 49 0 50 0 17 5 0 0 5 7

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 0 42 0 49 0 17 14 32 0 2 0 27 0 0 0 31 0 34 0 41

BOTTOM 56 0 43 0 42 0 0 0 37 0 14 0 7 37 2 0 52 0 33 0

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

TOP 0 24 0 60 31 25 0 22 0 0 0 47 0 44 0 16 0 54 0 0 0

BOTTOM 19 0 19 0 0 0 18 0 59 3 18 0 4 0 60 0 53 0 6 57 28

Column # 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

TOP 0 0 11 0 36 0 46 0 47 0 0 0 23 0 13 0 35 0 0 0

BOTTOM 4 38 0 59 0 53 0 30 0 48 20 24 0 29 0 52 0 55 58 38

Column # 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

TOP 39 0 21 11 16 0 0 0 12 0 13 0 32 1 57 10 35 0 55

BOTTOM 0 34 0 0 0 40 9 22 0 33 0 30 0 0 0 0 0 44 0

Column # 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

TOP 0 50 0 0 0 0 23 28 0 12 25 29 0 43 0

BOTTOM 8 0 1 21 45 10 0 0 20 0 0 0 46 0 15

Column # 117 118 119 120

TOP 8 0 15 51

BOTTOM 0 40 0 0

The total span of nets  1980 and the average span of nets of this channel  33.00.

Sample simple channel # 2 that contains only 60 nets:

152

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 53 0 0 0 0 0 11 0 0 0 13 0 3 12 39 0 54 0 13 59 20

BOTTOM 0 46 57 56 26 58 0 31 11 3 0 24 0 0 0 51 0 24 0 0 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 0 41 0 0 0 50 0 42 0 49 0 0 0 37 0 0 0 37 0 0

BOTTOM 29 0 49 45 12 0 48 0 43 0 42 29 26 0 57 6 33 0 52 20

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

TOP 0 0 0 31 0 6 0 0 0 47 0 0 0 60 2 5 0 56 0 0 0

BOTTOM 14 28 41 0 60 0 33 53 5 0 18 14 44 0 0 0 54 0 38 30 46

Column # 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

TOP 34 0 0 0 0 0 10 0 1 0 9 0 0 0 48 0 25 0 35 55

BOTTOM 0 10 1 9 2 30 0 36 0 17 0 47 16 23 0 52 0 18 0 0

Column # 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

TOP 0 0 0 0 32 0 40 21 15 0 28 27 59 0 17 0 0 0 16

BOTTOM 32 58 21 38 0 39 0 0 0 7 0 0 0 8 0 35 32 44 0

Column # 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

TOP 0 55 19 50 0 4 0 36 0 0 0 15 0 25 4

BOTTOM 7 0 0 0 27 0 45 0 43 22 34 0 40 0 0

Column # 117 118 119 120

TOP 22 0 51 19

BOTTOM 0 8 0 0

The total span of nets  1680 and the average span of nets of this channel  28.00.

Sample simple channel # 1 that contains only 80 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 0 0 49 0 0 0 77 76 74 13 78 0 46 0 0 27 58 0 79 0 0

BOTTOM 48 67 0 47 66 50 0 0 0 0 0 28 0 24 26 0 0 71 0 37 61

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 0 77 21 13 0 41 0 61 0 0 0 0 0 25 0 52 0 63 57 20

BOTTOM 53 0 0 0 65 0 24 0 69 21 34 70 54 0 62 0 60 0 0 0

153

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

TOP 0 0 0 36 0 0 0 44 0 0 0 38 0 11 4 42 0 2 0 0 0

BOTTOM 11 51 9 0 39 4 68 0 55 69 45 0 28 0 0 0 9 0 43 34 80

Column # 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

TOP 2 0 0 0 18 0 20 0 59 72 12 0 22 0 42 0 0 10 29 0

BOTTOM 0 26 44 68 0 27 0 39 0 0 0 67 0 47 0 12 29 0 0 64

Column # 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

TOP 31 0 0 0 56 0 30 17 46 0 58 0 0 0 0 0 73 0 33

BOTTOM 0 48 17 66 0 23 0 0 0 80 0 6 45 37 1 25 0 22 0

Column # 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

TOP 50 6 0 1 0 31 49 74 0 52 0 0 0 15 3

BOTTOM 0 0 76 0 33 0 0 0 10 0 19 41 18 0 0

Column # 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

TOP 38 0 0 0 0 0 65 14 32 0 72 0 78 8 16 0

BOTTOM 0 75 16 23 36 55 0 0 0 19 0 3 0 0 0 59

Column # 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

TOP 54 0 0 0 73 0 53 64 35 0 62 0 43 0 0 0

BOTTOM 0 15 30 60 0 8 0 0 0 51 0 14 0 57 5 79

Column # 149 150 151 152 153 154 155 156 157 158 159 160

TOP 32 40 75 0 70 0 7 0 0 0 63 0

BOTTOM 0 0 0 56 0 35 0 40 5 7 0 71

The total span of nets  3968 and the average span of nets of this channel  49.60.

In this section, we have included only 15 sample simple channel instances (out

of 4800 instances) of smaller in size that we have generated randomly using algorithm

Simple_Random_Channel_Generator developed in Chapter 5 of this thesis. We may

observe that in each column of all these generated instances a non-terminal is there

that is not to be connected, and all the nets are only two-terminal nets. Multi-terminal

nets can also be generated randomly with necessary modification in the devised

algorithm, but as we allow only no-dogleg routing, from the crosstalk minimization

154

point of view, it does not matter whether the nets introduced are either two-terminal

nets or multi-terminal nets. Thus, the simple channel instances that we have generated

are all two-terminal nets only. In the next section, we show some example general

channel instances (of smaller in size) that we have generated randomly using the

generalized version of the algorithm.

6.2.2 Generation of General Channel Instances

General_Random_Channel_Generator is the algorithm that we have devised in

Chapter 5 to generate general channel instances each of which contains both

horizontal as well as vertical constraints. Generated instances also contain multi-

terminal nets with the number of terminals varying from 2 through 6. In such a case,

we are supposed to introduce an additional number of non-terminals (as a percentage

of total number of terminals of different nets), where the pins along a column can both

be non-terminals (or 0’s), as a column can also be a trivial column (containing

terminals of the same net) [49]. Moreover, as the number of terminals per net is not

fixed (including the number of non-terminals), the channel length for a given number

of nets is also varying.

We may further note that in generating a general channel instance a cycle may

be introduced into the vertical constraint graph of the channel under construction, and

for the exclusion of each such cyclic vertical constraint, we have added one extra

column into the channel to break a vertical constraint belonging to the cycle. This is

also a part of the generation of a general channel instance of our desire, as a channel

specification containing cyclic vertical constraint is not fully routable in the assumed

reserved two-layer no-dogleg Manhattan channel routing model.

To execute the algorithm General_Random_Channel_Generator in this thesis,

we have randomly generated 4800 total random channels for 24 sets of nets each

having 200 instances of our choice; the outcome of this experimentation is included in

Table 5.6. Interestingly, we have the following observation out of the table. On an

average, the minimum channel length is 1.5 times the number of nets, and the

maximum length of a channel is approximately 2.25 times, although the average

channel length is less than two times. The most interesting observation is that the

average number of terminals per net approaches 2.9592 as the number of nets

increases; initially, it starts from 2.5925 when the number of nets is 10 only. The

155

average number of non-terminals per channel is roughly 21% of the total number of

pin locations belonging to a channel. Moreover, as the number of nets increases, the

average span per net decreases, and this attenuation starts from approximately 33.5%

of the average length of the channel and reduces up to 21% of the same, where it

becomes almost steady.

It has already been mentioned that as we did in generating general channel

instances, for a given number of nets we have produced 200 random channel

instances, where the number of nets introduced in a channel varies from 10 through

15000 (see Table 5.6). Next, in this thesis, we include only a rationally small number

of such instances (that containing a smaller number of nets), with their associated

information for general channel specifications. First, we include only six sample

general instances each containing 10 nets per channel; for all nets belonging to all 200

randomly generated instances, the average span of nets obtained is 5.5390 (see Table

5.6).

Sample general channel # 1 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP 10 6 10 6 0 3 8 7 1 9 2 0 3 5 4 0 10 0 8

BOTTOM 0 0 0 9 5 3 1 0 2 8 3 0 8 7 4 5 0 4 4

The total span of nets  68 and the average span of nets of this channel  6.80. The

number of terminals of this channel  28; thus, the number of non-terminals  10 and

the average number of terminals per net  2.8, as the channel length is 19.

Sample general channel # 2 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14

TOP 6 4 9 4 0 4 8 6 10 2 3 0 9 2

BOTTOM 7 0 10 4 8 5 7 1 5 1 5 8 3 0

The total span of nets  53 and the average span of nets of this channel  5.30. The

number of terminals of this channel  24; thus, the number of non-terminals  4 and

the average number of terminals per net  2.4, as the channel length is 14.

Sample general channel # 3 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

156

TOP 2 9 0 10 0 5 3 10 1 6 3 9 4 8 0 7 6

BOTTOM 0 0 2 0 5 1 7 0 3 8 4 0 5 8 0 10 8

The total span of nets  64 and the average span of nets of this channel  6.40. The

number of terminals of this channel  25; thus, the number of non-terminals  9 and

the average number of terminals per net  2.5, as the channel length is 17.

Sample general channel # 4 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TOP 0 0 0 1 0 1 6 3 0 8 9 0 5 3 10 7 2 0 4

BOTTOM 10 8 1 1 8 8 9 0 6 3 0 0 4 7 7 2 5 2 0

The total span of nets  57 and the average span of nets of this channel  5.70. The

number of terminals of this channel  27; thus, the number of non-terminals  11 and

the average number of terminals per net  2.7, as the channel length is 19.

Sample general channel # 5 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TOP 0 0 9 8 10 1 1 0 0 8 4 7 5 0 9

BOTTOM 0 10 7 4 5 6 8 1 2 2 3 6 2 8 3

The total span of nets  65 and the average span of nets of this channel  6.50. The

number of terminals of this channel  24; thus, the number of non-terminals  6 and

the average number of terminals per net  2.4, as the channel length is 15.

Sample general channel # 6 that contains only 10 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TOP 0 0 9 6 10 0 5 0 8 3 3 2 2 0 7 3

BOTTOM 8 8 4 6 1 1 6 1 4 10 7 2 3 2 5 9

The total span of nets  58 and the average span of nets of this channel  5.80. The

number of terminals of this channel  27; thus, the number of non-terminals  5 and

the average number of terminals per net  2.7, as the channel length is 16.

Among other smaller randomly generated general channel instances, now we

include merely four general sample channels each containing a total number of 20

nets, four similar channels each holding 40 nets, two similar channels each having 60

nets, two such channels each holding 80 nets, and only one channel of 100 nets; the

157

average span per net for all nets belonging to all 200 randomly generated instances for

a given number of nets along with other associated data are included in Table 5.6.

Sample general channel # 1 that contains only 20 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 19 5 0 18 5 11 18 1 11 0 17 0 0 9 2 16 2 13 8 0 0

BOTTOM 0 19 0 5 0 19 5 0 6 6 1 6 18 2 0 12 17 18 0 9 4

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 12 0 7 13 17 8 0 17 0 13 14 10 0 0 10 0 3 3 15 0

BOTTOM 4 14 4 8 0 0 0 17 18 20 15 10 7 12 17 3 10 3 20 16

The total span of nets  190 and the average span of nets of this channel  9.50. The

number of terminals of this channel  60; thus, the number of non-terminals  22 and

the average number of terminals per net  3.0, as the channel length is 41.

Sample general channel # 2 that contains only 20 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 0 0 0 10 20 9 9 9 9 19 0 6 4 6 16 5 8 14 16 7 15

BOTTOM 19 2 14 15 2 13 8 17 16 13 4 5 17 14 6 10 0 11 14 15 0

Column # 22 23 24 25 26 27 28 29 30

TOP 0 7 12 11 1 20 12 15 0

BOTTOM 18 3 0 12 18 3 1 18 0

The total span of nets  155 and the average span of nets of this channel  7.75. The

number of terminals of this channel  50; thus, the number of non-terminals  10 and

the average number of terminals per net  2.5, as the channel length is 30.

Sample general channel # 3 that contains only 20 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 19 19 16 0 8 0 0 10 2 8 7 12 17 17 10 0 9 15 3 14 5

BOTTOM 0 0 13 0 14 9 8 2 0 14 2 2 0 8 8 7 7 11 0 18 19

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35

TOP 6 20 5 1 15 1 20 17 6 18 4 12 4 18

BOTTOM 13 1 16 10 0 3 1 19 11 4 5 4 15 0

158

The total span of nets  250 and the average span of nets of this channel  12.50. The

number of terminals of this channel  58; thus, the number of non-terminals  12 and

the average number of terminals per net  2.9, as the channel length is 35.

Sample general channel # 4 that contains only 20 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 9 9 19 6 17 19 0 20 0 18 15 15 0 10 8 0 10 8 19 12 8

BOTTOM 11 9 9 0 16 17 6 1 18 18 1 0 0 15 8 8 8 11 13 7 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

TOP 16 14 7 10 0 12 3 5 0 2 4 4 14 0 5 20 0

BOTTOM 18 18 0 0 0 7 17 2 0 2 2 3 4 4 5 14 13

The total span of nets  209 and the average span of nets of this channel  10.45. The

number of terminals of this channel  60; thus, the number of non-terminals  16 and

the average number of terminals per net  3.0, as the channel length is 38.

Sample general channel # 1 that contains only 40 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 0 0 0 13 0 9 34 23 13 0 0 24 11 0 12 30 20 0 9 27 12

BOTTOM 11 0 0 34 34 0 35 0 11 0 39 34 18 0 35 31 15 13 26 21 21

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 20 39 0 33 18 26 24 24 0 34 1 0 6 1 26 22 31 40 34 23

BOTTOM 18 20 12 24 15 20 35 6 6 18 6 0 28 0 35 33 17 15 40 0

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

TOP 29 19 19 28 14 7 35 16 8 37 8 37 38 3 17 37 2 32 38 2

BOTTOM 10 19 36 19 37 14 25 40 31 21 38 2 26 2 10 8 28 3 7 4

Column # 62 63 64 65 66 67 68 69 70 71 72 73

TOP 37 14 28 4 25 5 37 5 29 0 38 29

BOTTOM 21 27 29 22 32 0 8 16 5 30 0 36

The total span of nets  782 and the average span of nets of this channel  19.55. The

number of terminals of this channel  123; thus, the number of non-terminals  23

and the average number of terminals per net  3.075, as the channel length is 73.

159

Sample general channel # 2 that contains only 40 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 0 0 15 0 0 0 36 1 1 0 26 17 35 0 0 0 15 0 34 24 40

BOTTOM 35 0 0 0 0 0 0 1 36 1 19 0 15 12 36 17 29 38 32 26 19

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

TOP 24 4 21 30 0 13 2 34 12 34 0 30 0 13 13 39 20 0 14

BOTTOM 10 4 4 4 32 31 10 39 0 21 2 20 38 23 25 35 29 20 20

Column # 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

TOP 23 0 37 29 11 25 29 5 0 6 3 21 0 0 23 3 27 27 27 32 0

BOTTOM 33 0 25 14 28 34 0 18 5 0 31 0 11 0 9 20 35 0 0 22 7

Column # 62 63 64 65 66 67 68 69 70 71

TOP 27 6 37 9 0 8 16 40 16 28

BOTTOM 8 28 0 0 18 0 22 0 7 33

The total span of nets  590 and the average span of nets of this channel  14.75. The

number of terminals of this channel  103; thus, the number of non-terminals  39

and the average number of terminals per net  2.575, as the channel length is 71.

Sample general channel # 3 that contains only 40 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 38 23 37 0 23 0 37 0 34 12 31 0 0 34 16 2 0 2 36 32 30

BOTTOM 0 0 23 8 35 0 0 0 0 8 30 33 12 17 30 0 29 0 0 31 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 16 38 28 28 31 16 1 0 11 16 14 0 22 24 4 0 15 6 0 9

BOTTOM 26 1 1 12 16 11 9 0 33 29 24 35 32 39 25 37 0 22 0 40

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

TOP 21 21 21 3 3 15 3 3 14 14 28 7 0 38 18 20 34 13 20 32

BOTTOM 19 4 6 3 3 22 0 17 21 19 29 26 37 40 35 20 20 25 10 15

Column # 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

TOP 0 7 27 27 27 35 0 5 10 0 19 13 0 0 5 0

BOTTOM 27 27 34 40 25 5 5 5 36 18 39 29 5 0 0 0

160

The total span of nets  838 and the average span of nets of this channel  20.95. The

number of terminals of this channel  120; thus, the number of non-terminals  34

and the average number of terminals per net  3.0, as the channel length is 77.

Sample general channel # 4 that contains only 40 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 38 38 0 31 0 39 0 3 0 27 31 30 0 0 30 25 32 18 38 0 0

BOTTOM 21 21 21 27 21 0 34 0 3 37 0 18 34 8 8 16 34 27 4 4 6

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

TOP 0 22 26 4 10 23 39 0 28 24 23 31 10 6 13 40 10 36 35

BOTTOM 4 8 34 10 4 33 14 13 20 20 16 20 14 22 35 38 40 0 36

Column # 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

TOP 20 20 40 19 11 7 12 40 29 15 15 33 5 9 2 24 5 7 28 12 2

BOTTOM 34 9 20 30 0 0 39 26 11 22 19 28 0 5 32 17 35 15 25 29 11

Column # 62 63 64 65

TOP 0 0 1 1

BOTTOM 37 36 17 0

The total span of nets  704 and the average span of nets of this channel  17.60. The

number of terminals of this channel  110; thus, the number of non-terminals  20

and the average number of terminals per net  2.75, as the channel length is 65.

Sample general channel # 1 that contains only 60 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 0 22 0 0 54 0 54 55 0 44 40 0 40 44 47 27 40 0 9 0 29

BOTTOM 0 0 0 59 22 0 22 22 54 0 50 0 0 27 0 9 48 9 0 0 7

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 34 9 10 46 45 45 29 22 0 0 23 26 0 0 23 31 36 0 0 43

BOTTOM 26 29 0 29 44 41 7 44 50 22 0 50 32 40 0 0 0 50 35 31

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

TOP 50 34 30 41 27 50 51 32 17 23 17 39 0 17 24 21 0 14 42 48 13

BOTTOM 37 0 10 23 34 0 30 41 8 43 30 0 8 47 18 8 33 33 25 15 14

161

Column # 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

TOP 36 25 0 38 21 24 19 13 13 13 12 0 57 47 60 25 0 43 49 39

BOTTOM 33 19 49 12 28 0 47 42 0 25 0 15 0 49 0 18 0 0 24 0

Column # 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

TOP 38 19 43 34 52 0 0 0 0 58 3 3 3 0 20 38 0 58 0

BOTTOM 48 33 12 19 32 38 30 39 36 55 39 11 58 20 24 43 3 3 59

Column # 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

TOP 56 2 37 35 46 6 53 2 58 5 0 52 53 0 51

BOTTOM 0 57 3 0 2 0 5 58 45 20 1 58 0 0 1

Column # 117 118 119 120 121 122 123 124 125 126 127

TOP 60 6 53 11 0 0 1 0 0 16 20

BOTTOM 0 1 0 28 0 16 4 0 56 53 4

The total span of nets  1791 and the average span of nets of this channel  29.85.

The number of terminals of this channel  187; thus, the number of non-terminals 

67 and the average number of terminals per net  3.1167, as the channel length is 127.

Sample general channel # 2 that contains only 60 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 0 39 42 25 30 25 0 42 25 30 0 0 29 39 0 34 0 54 5 35 21

BOTTOM 41 48 25 41 0 34 58 59 23 26 43 0 44 0 0 60 46 0 40 5 15

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 35 60 0 32 45 16 15 49 50 36 51 58 7 35 54 35 33 11 35 16

BOTTOM 5 15 43 0 40 21 0 7 39 52 41 38 47 15 26 54 44 23 28 27

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

TOP 0 27 27 40 28 29 20 57 31 0 3 11 8 22 41 17 48 52 24 0 0

BOTTOM 28 53 45 39 1 20 0 35 24 3 0 1 3 53 38 8 3 9 37 0 50

Column # 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

TOP 17 54 20 22 19 48 55 2 19 10 12 48 4 4 12 9 18 46 58 52

BOTTOM 56 6 0 32 48 37 4 6 4 0 0 49 37 59 56 2 0 51 47 14

162

Column # 83 84 85 86 87 88 89 90 91 92

TOP 36 33 18 0 60 13 58 24 14 55

BOTTOM 31 0 19 18 13 47 10 13 13 57

The total span of nets  1515 and the average span of nets of this channel  25.25.

The number of terminals of this channel  157; thus, the number of non-terminals 

27 and the average number of terminals per net  2.6167, as the channel length is 92.

Sample general channel # 1 that contains only 80 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 80 0 38 0 17 30 0 0 61 68 0 76 66 8 17 8 50 0 38 17 8

BOTTOM 50 44 48 0 73 62 79 79 0 73 58 74 8 71 53 0 30 0 59 52 13

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 63 35 0 6 0 78 75 64 44 5 1 6 1 0 33 57 0 35 33 56

BOTTOM 35 0 0 35 53 57 76 24 62 54 62 44 33 5 47 54 14 3 50 13

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

TOP 42 12 72 19 0 37 51 48 78 24 67 4 67 58 12 0 28 70 0 74 74

BOTTOM 0 0 38 44 25 12 12 0 3 34 53 57 34 31 0 64 34 53 65 28 14

Column # 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

TOP 19 41 67 7 65 67 7 20 63 20 76 0 27 59 66 21 55 9 25 61

BOTTOM 65 4 32 9 0 26 79 60 23 41 75 7 26 7 22 52 74 80 16 71

Column # 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

TOP 62 16 21 49 59 36 45 78 56 47 68 0 16 29 67 37 10 55 67

BOTTOM 31 77 0 0 49 26 54 15 27 26 16 21 63 59 18 40 40 29 22

Column # 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

TOP 0 78 26 39 15 0 77 77 23 69 60 32 0 45 0

BOTTOM 40 36 0 70 69 11 2 51 10 42 11 0 46 43 77

Column # 117 118 119 120 121 122 123

TOP 49 0 76 72 2 78 46

BOTTOM 18 43 39 46 39 0 43

163

The total span of nets  2611 and the average span of nets of this channel  32.6375.

The number of terminals of this channel  210; thus, the number of non-terminals 

36 and the average number of terminals per net  2.625, as the channel length is 123.

Sample general channel # 2 that contains only 80 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 33 0 28 0 0 75 0 32 45 48 49 0 34 46 0 55 0 69 45 63 80

BOTTOM 76 20 76 31 0 73 38 48 34 0 73 38 64 33 46 11 46 0 0 55 0

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 38 39 80 33 80 61 0 31 43 0 0 78 6 74 0 31 0 23 0 50

BOTTOM 46 33 80 0 31 11 16 20 28 61 63 39 39 0 0 67 0 0 48 16

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

TOP 37 55 13 16 13 19 0 78 53 6 0 0 0 72 32 0 55 72 0 76 19

BOTTOM 0 13 0 55 61 0 6 0 16 52 59 53 79 38 39 38 38 72 61 79 0

Column # 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

TOP 37 53 0 0 14 39 14 0 23 65 75 22 17 49 30 73 24 10 12 29

BOTTOM 39 14 37 59 45 0 0 14 48 0 53 22 72 12 22 22 17 73 0 37

Column # 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

TOP 0 66 0 71 70 0 0 25 10 0 73 0 0 0 0 15 8 43 71

BOTTOM 0 0 0 29 10 29 10 0 0 4 9 27 35 24 8 4 8 35 9

Column # 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

TOP 75 25 60 25 73 0 64 15 0 25 78 54 51 18 74

BOTTOM 8 1 64 18 74 55 18 0 50 64 1 67 0 57 51

Column # 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

TOP 21 0 56 0 52 0 0 18 44 35 60 30 0 26 59 29

BOTTOM 29 70 41 50 0 70 68 42 58 62 0 0 69 0 27 60

Column # 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

TOP 40 78 0 77 0 7 54 58 44 71 7 26 5 65 5 7

BOTTOM 70 0 77 42 77 59 77 0 57 0 70 54 58 57 21 77

164

Column # 149 150 151 152 153 154 155 156 157 158 159 160 161 162

TOP 5 0 0 0 0 62 58 57 68 0 0 2 0 60

BOTTOM 41 5 47 36 0 0 77 36 47 0 66 3 0 36

Column # 163 164 165 166 167 168 169 170

TOP 0 56 40 68 0 66 2 3

BOTTOM 51 26 2 0 0 0 0 2

The total span of nets  2927 and the average span of nets of this channel  36.5875.

The number of terminals of this channel  250; thus, the number of non-terminals 

90 and the average number of terminals per net  3.125, as the channel length is 170.

Sample general channel # 1 that contains only 100 nets:

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TOP 42 0 0 35 0 67 42 49 0 0 0 0 0 46 8 42 0 72 0 0 0

BOTTOM 46 0 10 21 0 46 0 0 0 10 9 0 10 71 35 0 0 20 79 0 8

Column # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

TOP 0 46 0 81 71 88 9 26 26 83 0 0 71 0 0 0 0 0 47 0

BOTTOM 0 0 88 81 9 0 42 76 26 6 35 46 0 98 67 81 0 21 35 88

Column # 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

TOP 84 59 81 68 38 77 95 0 0 0 67 2 2 92 49 20 66 0 0 0 0

BOTTOM 0 65 61 94 24 76 18 18 20 6 74 78 2 2 0 74 24 11 30 26 75

Column # 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

TOP 18 0 0 0 41 0 97 0 93 64 58 52 97 91 3 52 72 0 0 50

BOTTOM 97 65 53 75 53 0 91 97 97 11 0 0 32 87 32 0 0 0 0 0

Column # 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

TOP 77 0 52 0 91 0 60 54 74 0 3 0 34 0 45 30 0 34 58

BOTTOM 43 40 99 76 32 71 0 0 79 0 0 52 64 44 38 98 0 0 44

Column # 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

TOP 62 47 58 45 56 72 44 89 0 41 62 0 4 90 0

BOTTOM 45 0 76 44 59 0 64 89 4 87 96 0 99 59 80

165

Column # 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

TOP 83 34 45 89 0 85 43 84 51 48 61 44 86 89 4 40

BOTTOM 83 0 65 78 76 44 92 48 87 50 31 79 70 62 16 0

Column # 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

TOP 57 65 100 54 0 23 0 51 0 54 12 12 12 28 0 51

BOTTOM 63 45 0 66 94 53 68 31 28 29 15 82 55 23 80 0

Column # 149 150 151 152 153 154 155 156 157 158 159 160 161 162

TOP 51 90 51 31 0 0 73 96 0 19 25 0 69 56

BOTTOM 28 0 77 80 73 1 55 60 51 23 74 29 19 14

Column # 163 164 165 166 167 168 169 170 171 172 173 174 175 176

TOP 0 0 0 1 23 16 94 25 70 37 1 78 0 54

BOTTOM 87 14 57 27 64 36 82 95 98 73 77 96 60 27

Column # 177 178 179 180 181 182 183 184 185 186 187 188 189 190

TOP 14 94 82 7 7 17 86 13 5 99 15 5 37 5

BOTTOM 0 0 85 77 13 7 22 0 48 27 0 5 85 62

Column # 191 192 193 194 195 196 197 198 199 200 201 202 203 204

TOP 5 0 48 36 0 33 13 22 0 69 87 100 93 73

BOTTOM 92 90 0 5 69 0 99 0 87 0 39 27 70 22

Column # 205 206 207 208 209 210 211 212 213

TOP 0 0 80 17 39 37 0 57 33

BOTTOM 0 0 0 22 0 94 63 0 0

The total span of nets  5023 and the average span of nets of this channel  50.23.

The number of terminals of this channel  309; thus, the number of non-terminals 

117 and the average number of terminals per net  3.09, as the channel length is 213.

In this section, we have included only 19 sample general channel instances

(out of 4800 instances) of smaller in size that we have generated randomly using

algorithm General_Random_Channel_Generator developed in Chapter 5 of this

thesis. Even in these example general channel specifications, we may observe that

there are blank columns (containing only non-terminals) or trivial columns (pins hold

166

terminals of the same net) that have also been introduced randomly into the channel.

In general, the channel lengths vary for a given number of nets, as the number of

terminals per net is not fixed, and the number of non-terminals is also determined

randomly. The minimum number of terminals for each net introduced is restricted to

two, and the maximum is six. All these generated channels contain vertical constraints

and never contain any cyclic vertical constraints.

Based on a different objective under consideration, viz., wire length

minimization or routing for multi-layer channels, different sets of channels with

dissimilar or special criteria can also be devised with suitable changes as desired in

the instance generating algorithms developed in this thesis (in Chapter 5). Now, in the

next section, we include some of the hardcopy routing solutions (for channel instances

that are smaller in length), for both simple as well as general, that we have computed

after execution of the algorithms devised in Chapter 4. For a selected set of random

channel instance generated, first of all, we have computed an initial routing solution

(using some relevant algorithm), then we have implemented crosstalk minimization

algorithms Track_Change and Net_Change one after another, and obtained minimized

crosstalk routing solutions. Results we have acquired are highly encouraging.

6.3 Results of Crosstalk Minimization Algorithms

Crosstalk minimization algorithms Track_Change and Net_Change have been

designed in Chapter 4, and most of the implemented results are included in this

chapter. Results for only 540 simple channel instances (nine sets of simple channels

each comprising 60 smaller randomly generated channel specifications) have been

depicted in Table 4.1 along with 14 existing benchmark (general) channel instances

(in Table 4.2), and only five hardcopy routing solutions are included there.

In this section, we incorporate most of the exhaustive computations we have

made as a part of our research in the form of tables, where each datum in each of the

tables represents an average value of a vast number of instances of a similar kind.

Parenthetically, as the number of instances we have handled is large, scopes for

showing all routing solutions is very little (as we have included even less than 0.31%

of all channel instances we have randomly generated in the previous section).

However, we have illustrated a reasonable number of hardcopy routing solutions that

we may find next, mostly for (randomly generated) smaller channel specifications.

167

Table 6.1: Performance of crosstalk minimization algorithms Track_Change_Simple

and Net_Change after their successive execution for computing reduced crosstalk

routing solutions for simple channel instances in two-layer no-dogleg (channel) routing.

Number

of nets

Initial

crosstalk

after

MCC1

Crosstalk after

algorithm

Track_Change

_Simple

Reduction in

crosstalk after

Track_Change

_Simple (%)

Crosstalk

after

algorithm

Net_Change

Reduction in

crosstalk

after Net

_Change (%)

10 25 16 36.00 16 36.00

15 69 47 31.88 46 33.33

20 131 90 31.30 88 32.82

25 221 155 29.86 153 30.77

30 322 226 29.81 223 30.75

35 465 330 29.03 326 29.89

40 611 439 28.15 434 28.97

45 797 569 28.61 562 29.49

50 1012 733 27.57 726 28.26

60 1483 1089 26.57 1079 27.24

70 2045 1522 25.57 1509 26.21

80 2745 2031 26.01 2016 26.56

90 3484 2618 24.86 2598 25.43

100 4290 3196 25.50 3173 26.04

110 5264 3945 25.06 3919 25.55

120 6284 4784 23.87 4754 24.35

130 7450 5590 24.97 5557 25.41

140 8661 6588 23.93 6549 24.39

150 9999 7570 24.29 7527 24.72

160 11430 8721 23.70 8675 24.10

170 12877 9881 23.27 9832 23.65

180 14533 11224 22.77 11166 23.17

190 16261 12462 23.36 12400 23.74

200 18163 13928 23.32 13860 23.69

220 21869 16855 22.93 16782 23.26

240 26109 20145 22.84 20051 23.20

260 30828 23855 22.62 23764 22.91

280 36235 28104 22.44 28009 22.70

168

Number

of Nets

Initial

Crosstalk

after

MCC1

Crosstalk after

algorithm

Track_Change

_Simple

Reduction in

crosstalk after

Track_Change

_Simple (%)

Crosstalk

after

algorithm

Net_Change

Reduction in

crosstalk

after Net_

Change (%)

300 41255 32078 22.24 31962 22.53

320 47153 36617 22.34 36484 22.63

340 53362 41378 22.46 41235 22.73

360 60281 46714 22.51 46562 22.76

380 67050 52369 21.90 52205 22.14

400 74467 58258 21.77 58073 22.02

420 82586 64563 21.82 64362 22.07

440 90378 70731 21.74 70520 21.97

460 98804 77236 21.83 77001 22.07

480 108033 84561 21.73 84317 21.95

500 117339 92054 21.55 91800 21.77

600 168910 132363 21.64 132024 21.84

700 231763 182698 21.17 182235 21.37

800 303586 238811 21.34 238273 21.51

900 383901 304147 20.77 303468 20.95

1000 474072 374947 20.91 374182 21.07

6.3.1 Results of Crosstalk Minimization Algorithms for Simple Channel Instances

In this section, we include the results of crosstalk minimization algorithms for simple

channel instances we have devised in Chapter 4 of this thesis. Specifically, for this

experimentation, we have randomly generated 200 instances for a given number of

nets, and the data in a row are obtained by making an average of each set of relevant

200 executed data, where the number of nets varies from 10 through 1000 only. In

carrying out this test, we have not considered even larger channel instances as we

interestingly observed that the percentage reduction in crosstalk is getting saturated to

a value a little below 21% after execution of algorithm Track_Change_Simple and a

value a bit above 21% after execution of algorithm Net_Change, when the algorithms

are implemented in succession, over the initial amount of crosstalk measured in the

first density routing solutions after execution of algorithm Minimum_Clique_Cover_1

(MCC1) [49, 52, 53], as the number of nets goes above 800. The amount of average

crosstalk (after execution of respective algorithm) is rounded off to its nearest integer

169

value (for a given number of nets), and the percentage reduction in crosstalk is also

calculated up to two decimal places. All these results have been included in Table 6.1

as the performance of both the crosstalk minimization algorithms developed in this

thesis and employed one after the other.

The variation in crosstalk minimization (as shown in Table 6.1) is graphically

depicted in Figure 6.1, where the percentage reduction in crosstalk in respective

routing solutions is included after each of the algorithms Track_Change_Simple and

Net_Change. Now we include some of the selected hardcopy routing solutions that we

obtained after execution of each of the algorithms MCC1, Track_Change_Simple, and

Net_Change. These routing solutions are shown in Figures 6.2 through 6.19 for

channels containing nets 10 through 150. In each of these figures, (a) displays the

routing solution obtained after MCC1, (b) depicts the significantly reduced crosstalk

routing solution after execution of Track_Change_Simple, and (c) includes the mostly

reduced crosstalk routing solution obtained after execution of algorithm Net_Change.

Figure 6.1: Percentage reduction in crosstalk (of routing solutions) versus the number

of nets after successive executions of each of the algorithms, Track_Change_Simple

and Net_Change over the initial amount of crosstalk of routing solutions computed

after algorithm Minimum_Clique_Cover_1 for simple instances in two-layer no-

dogleg channel routing.

0

5

10

15

20

25

30

35

40

10 25 40 60 90 120 150 180 220 280 340 400 460 600 900

%
 R

ed
cu

ti
o
n

 i
n

 C
ro

ss
ta

lk

Number of Nets

Reduction in crosstalk after Track_Change_Simple (%)

Reduction in crosstalk after Net_Change (%)

170

(a)

(b)

(c)

Figure 6.2: (a) The initial crosstalk of a simple channel instance comprising 10 nets

(and channel length 20) is 47 units after execution of Minimum_Clique_Cover_1. (b)

Crosstalk after execution of algorithm Track_Change_Simple is 22 units. (c)

Crosstalk after execution of algorithm Net_Change is 21 units only.

(a)

(b)

(c)

Figure 6.3: (a) The initial crosstalk of a simple channel instance comprising 15 nets

(and channel length 30) is 83 units after execution of Minimum_Clique_Cover_1. (b)

Crosstalk after execution of algorithm Track_Change_Simple is 32 units. (c)

Crosstalk after execution of algorithm Net_Change is also 32 units only.

171

(a)

(b)

(c)

Figure 6.4: (a) The initial crosstalk of a simple channel instance comprising 20 nets

(and channel length 40) is 180 units after execution of Minimum_Clique_Cover_1. (b)

Crosstalk after execution of algorithm Track_Change_Simple is 84 units. (c)

Crosstalk after execution of algorithm Net_Change is also 84 units only.

(a)

(b)

(c)

Figure 6.5: (a) The initial crosstalk of a simple channel instance comprising 25 nets

(and channel length 50) is 229 units after execution of Minimum_Clique_Cover_1. (b)

Crosstalk after execution of algorithm Track_Change_Simple is 106 units. (c)

Crosstalk after execution of algorithm Net_Change is also 106 units only.

172

(a)

(b)

(c)

Figure 6.6: (a) The initial crosstalk of a simple channel instance comprising 30 nets

(and channel length 60) is 473 units after execution of Minimum_Clique_Cover_1. (b)

Crosstalk after execution of algorithm Track_Change_Simple is 295 units. (c)

Crosstalk after execution of algorithm Net_Change is also 295 units only.

(a)

(b)

(c)

Figure 6.7: (a) The initial crosstalk of a simple channel instance comprising 35 nets

(and channel length 70) is 510 units after execution of Minimum_Clique_Cover_1. (b)

Crosstalk after execution of algorithm Track_Change_Simple is 264 units. (c)

Crosstalk after execution of algorithm Net_Change is also 264 units only.

173

(a)

(b)

(c)

Figure 6.8: (a) The initial crosstalk of a simple channel instance comprising 40 nets

(and channel length 80) is 776 units after execution of Minimum_Clique_Cover_1. (b)

Crosstalk after execution of algorithm Track_Change_Simple is 450 units. (c)

Crosstalk after execution of algorithm Net_Change is 448 units only.

(a)

(b)

(c)

Figure 6.9: (a) The initial crosstalk of a simple channel instance comprising 50 nets

(and channel length 100) is 1242 units after execution of Minimum_Clique_Cover_1.

(b) Crosstalk after execution of algorithm Track_Change_Simple is 771 units. (c)

Crosstalk after execution of algorithm Net_Change is 770 units only.

174

(a)

(b)

(c)

Figure 6.10: (a) The initial crosstalk of a simple channel instance comprising 60 nets

(and channel length 120) is 1571 units after execution of Minimum_Clique_Cover_1.

(b) Crosstalk after execution of algorithm Track_Change_Simple is 813 units. (c)

Crosstalk after execution of algorithm Net_Change is 793 units only.

(a)

(b)

(c)

Figure 6.11: (a) The initial crosstalk of a simple channel instance comprising 70 nets

(and channel length 140) is 2291 units after execution of Minimum_Clique_Cover_1.

(b) Crosstalk after execution of algorithm Track_Change_Simple is 1308 units. (c)

Crosstalk after execution of algorithm Net_Change is 1304 units only.

175

(a)

(b)

(c)

Figure 6.12: (a) The initial crosstalk of a simple channel instance comprising 80 nets

(and channel length 160) is 2921 units after execution of Minimum_Clique_Cover_1.

(b) Crosstalk after execution of algorithm Track_Change_Simple is 1810 units. (c)

Crosstalk after execution of algorithm Net_Change is 1805 units only.

176

(a)

(b)

(c)

Figure 6.13: (a) The initial crosstalk of a simple channel instance comprising 90 nets

(and channel length 180) is 2917 units after execution of Minimum_Clique_Cover_1.

(b) Crosstalk after execution of algorithm Track_Change_Simple is 2270 units. (c)

Crosstalk after execution of algorithm Net_Change is 2199 units only.

177

(a)

(b)

(c)

Figure 6.14: (a) The initial crosstalk of a simple channel instance comprising 100

nets (and channel length 200) is 4525 units after execution of

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm

Track_Change_Simple is 3223 units. (c) Crosstalk after execution of algorithm

Net_Change is 3132 units only.

178

(a)

(b)

(c)

Figure 6.15: (a) The initial crosstalk of a simple channel instance comprising 110

nets (and channel length 220) is 5772 units after execution of

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm

Track_Change_Simple is 4281 units. (c) Crosstalk after execution of algorithm

Net_Change is 4208 units only.

179

(a)

(b)

(c)

Figure 6.16: (a) The initial crosstalk of a simple channel instance comprising 120

nets (and channel length 240) is 6725 units after execution of

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm

Track_Change_Simple is 4151 units. (c) Crosstalk after execution of algorithm

Net_Change is 4031 units only.

180

(a)

(b)

(c)

Figure 6.17: (a) The initial crosstalk of a simple channel instance comprising 130

nets (and channel length 260) is 7648 units after execution of

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm

Track_Change_Simple is 4750 units. (c) Crosstalk after execution of algorithm

Net_Change is 4689 units only.

181

(a)

(b)

(c)

Figure 6.18: (a) The initial crosstalk of a simple channel instance comprising 140

nets (and channel length 280) is 8054 units after execution of

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm

Track_Change_Simple is 4718 units. (c) Crosstalk after execution of algorithm

Net_Change is 4697 units only.

182

(a)

(b)

(c)

Figure 6.19: (a) The initial crosstalk of a simple channel instance comprising 150

nets (and channel length 300) is 11316 units after execution of

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm

Track_Change_Simple is 7049 units. (c) Crosstalk after execution of algorithm

Net_Change is 6978 units only.

183

6.3.2 Results of Crosstalk Minimization Algorithms for General Channel Instances

In this section, we include the results of crosstalk minimization algorithms for general

channel instances we have devised in Chapter 4 of this thesis. Incidentally, in this

thesis, we have developed two versions of the algorithm Track_Change_General; in

each case starting from a two-layer no-dogleg routing solution that has been computed

after execution of algorithm Track_Assignment_Heuristic (TAH) [49, 51] devised for

computing minimum area channel routing solutions for general instances of channel

specifications. To start with a minimum area two-layer channel routing solution of our

desire, one may implement any one of many other existing channel routing algorithms

as well [10, 33, 49, 51, 71, 73, 96]. Nevertheless, after a feasible two-layer routing

solution is obtained, we compute the RVCG, which is a directed acyclic graph (DAG)

of the solution.

We may recall that both the versions of algorithm Track_Change_General are

iterative in nature. In the first version of the algorithm, we consider all source vertices

of the current RVCG in some iteration, and apply algorithm Track_Change_Simple

(using the concept of effective span of intervals of the tracks, and total span of

intervals, if needed) for that set of source vertices for their assignment to the current

available topmost tracks as directed by the step of reassignment of the algorithm. In

the second version, in each iteration, a most suitable source vertex from the current

RVCG is identified for its assignment to the current topmost track such that the

overall crosstalk is assumed to be reduced. This algorithm is greedy in nature.

In particular, the first version of algorithm Track_Change_General has been

implemented in Chapter 4 and executed for the existing 14 benchmark channel

instances; results are included in Table 4.2. We may straightforwardly observe from

the table that the results computed are encouraging enough. However, as the number

of existing general channel instances is not much and we have developed a random

channel instance generator in Chapter 5, both for creating simple as well as general

channel instances, for the implementation of both the versions of algorithm

Track_Change_General, we have randomly produced 200 general channel instances

and executed each of them to obtain the performance of our algorithms. These results

have been included in Tables 6.2 and 6.3. Results in Table 6.2 show the average

implemented data for a given number of nets (varying from 20 to 2000) after

184

execution of algorithm Track_Change_General_Version_I and results in Table 6.3

include the same after execution of algorithm Track_Change_General_Version_II.

Table 6.2: The performance of crosstalk minimization algorithms Track_Change

_General_Version_I (with the concept of Track_Change_Simple) and Net_Change

after their successive execution for computing reduced crosstalk routing solutions for

general channel instances in two-layer no-dogleg (channel) routing.

Number

of Nets

Initial

crosstalk

after

TAH

Crosstalk after

algorithm

Track_Change

_General

Reduction in

crosstalk after

Track_Change

_General (%)

Crosstalk

after

algorithm

Net_Change

Reduction

in crosstalk

after Net_

Change (%)

20 135 125 7.41 118 12.59

40 564 530 6.03 494 12.41

60 1363 1291 5.28 1202 11.81

80 2475 2347 5.17 2183 11.80

100 3997 3808 4.73 3534 11.58

150 9042 8626 4.60 8028 11.21

200 16260 15498 4.69 14395 11.47

250 25293 24174 4.42 22492 11.07

300 36612 35004 4.39 32577 11.02

350 49708 47552 4.34 44228 11.02

400 65032 62164 4.41 57691 11.29

450 82857 79077 4.56 73323 11.51

500 102922 98324 4.47 91530 11.07

600 148035 141247 4.59 131355 11.27

700 201940 192513 4.67 179071 11.32

800 265574 252957 4.75 235523 11.32

900 336455 320481 4.75 298856 11.18

1000 412991 393305 4.77 366015 11.37

1500 938379 890801 5.07 831324 11.41

2000 1665471 1579930 5.14 1468851 11.81

In performing this test, we have not considered even larger channel instances

(containing number of nets more than 2000) as we intriguingly observed that the

percentage reduction in crosstalk is approaching to a value of approximately 5% after

execution of algorithm Track_Change and a little above 11% after execution of

185

algorithm Net_Change, when we implement the first version (using the concept of

effective span of intervals) of the algorithm. This comparison is visibly different in

the case of implementing the second version (using greedy method) of the algorithm.

In this case, the percentage reduction in crosstalk is becoming saturated to a bit above

2%, which is much less, after execution of algorithm Track_Change and to a value of

approximately 11% after execution of algorithm Net_Change.

Figure 6.20: Percentage reduction in crosstalk (of routing solutions) versus number of

nets after successive execution of each of the algorithms, Track_Change_General

(with the concept of Track_Change_Simple) and Net_Change over the initial amount

of crosstalk of routing solutions computed after algorithm Track_Assignment

_Heuristic (TAH) for general instances in two-layer no-dogleg channel routing.

Thus, the first version of the algorithm (i.e. Track_Change_General_Version

_I) performs better over its second version (i.e. Track_Change_General_Version_II),

though after execution of algorithm Net_Change for all routing solutions obtained

after each of the versions of algorithm Track_Change_General, the percentage

reduction of crosstalk is roughly the same for a huge number of randomly generated

channel instances, as the number of nets in a channel increases. To be clearer, as we

may observe in the tables, all these algorithms have been implemented in a sequence,

0

2

4

6

8

10

12

14

20 60 100 200 300 400 500 700 900 1500

%
 R

ed
u

ct
io

n
 i

n
 C

ro
ss

ta
lk

Number of Nets

Reduction in crosstalk after Track_Change_General (%)

Reduction in crosstalk after Net_Change (%)

186

over the initial amount of crosstalk measured in the optimal or near-optimal routing

solutions computed after execution of algorithm Track_Assignment_Heuristic (TAH)

[49, 51]. The amount of average crosstalk (after execution of respective algorithm) is

rounded off to its nearest integer value (for a given number of nets), and the

percentage reduction in crosstalk is also calculated up to two decimal places. All these

results have been included in Tables 6.2 and 6.3 as the performance of all the

crosstalk minimization algorithms developed in this thesis and executed one after the

other.

Table 6.3: The performance of crosstalk minimization algorithms Track_Change

_General_Version_II (using Greedy approach) and Net_Change after their successive

execution for computing reduced crosstalk routing solutions for general channel

instances in two-layer no-dogleg (channel) routing.

Number

of nets

Initial

crosstalk

after

TAH

Crosstalk after

algorithm

Track_Change_

General (Greedy)

Reduction in

crosstalk after

Track_Change

_General (%)

Crosstalk

after

algorithm

Net_Change

Reduction

in crosstalk

after Net_

Change (%)

20 135 127 5.93 120 11.11

40 564 540 4.26 499 11.52

60 1363 1312 3.74 1214 10.93

80 2475 2386 3.60 2198 11.19

100 3997 3875 3.05 3568 10.73

150 9042 8787 2.82 8100 10.42

200 16260 15851 2.52 14516 10.73

250 25293 24648 2.55 22658 10.42

300 36612 35760 2.33 32824 10.35

350 49708 48596 2.24 44546 10.38

400 65032 63666 2.10 58105 10.65

450 82857 81039 2.19 73881 10.83

500 102922 100788 2.07 92086 10.53

600 148035 144816 2.17 132193 10.70

700 201940 197677 2.11 180150 10.79

800 265574 259729 2.20 236978 10.77

900 336455 329553 2.05 300532 10.68

1000 412991 404210 2.13 368171 10.85

1500 938379 918524 2.12 836159 10.89

2000 1665471 1624401 2.47 1471997 11.62

187

The deviation in crosstalk minimization (as shown in Tables 6.2 and 6.3) is

graphically depicted in Figures 6.20 and 6.21, where the percentage reduction in

crosstalk in allied routing solutions versus number of nets is included after each of the

algorithms Track_Change_General (for both of its versions I and II, respectively) and

Net_Change, over the initial two-layer channel routing solutions computed after

Track_Assignment_Heuristic (TAH). Now we include some of the selected hardcopy

routing solutions that we obtained after execution of each of the algorithms TAH,

Track_Change_General, and Net_Change. These routing solutions are shown in

Figures 6.22 through 6.32 for channels containing nets 20 through 250. In each of

these figures, (a) displays the routing solution obtained after TAH, (b) depicts the

significantly reduced crosstalk routing solution after execution of Track_Change

_General, and (c) includes the mostly reduced crosstalk routing solution obtained

after execution of algorithm Net_Change.

Figure 6.21: Percentage reduction in crosstalk (of routing solutions) versus the

number of nets after successive execution of each of the algorithms, Track_Change

_General (using Greedy approach) and Net_Change over the initial amount of

crosstalk of routing solutions computed after algorithm Track_Assignment_Heuristic

(TAH) for general instances in two-layer no-dogleg channel routing.

0

2

4

6

8

10

12

14

20 60 100 200 300 400 500 700 900 1500

%
 R

ed
u

ct
io

n
 i

n
 C

ro
ss

ta
lk

Number of Nets

Reduction in crosstalk after Track_Change_General (Greedy) (%)

Reduction in crosstalk after Net_Change (%)

188

(a)

(b)

(c)

Figure 6.22: (a) The initial crosstalk of a general channel instance comprising 20 nets

(track number 12 and channel length 48) is 228 units after execution of Track_Assign-

ment_Heuristic. (b) Crosstalk after execution of algorithm Track_Change_General is

181 units. (c) Crosstalk after execution of algorithm Net_Change is 165 units only.

(a)

(b)

(c)

Figure 6.23: (a) The initial crosstalk of a general channel instance comprising 40 nets

(track number 20 and channel length 89) is 565 units after execution of Track_Assign-

ment_Heuristic. (b) Crosstalk after execution of algorithm Track_Change_General is

452 units. (c) Crosstalk after execution of algorithm Net_Change is 437 units only.

189

(a)

(b)

(c)

Figure 6.24: (a) The initial crosstalk of a general channel instance comprising 60 nets

(track number 24 and channel length 117) is 1338 units after execution of

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 1077 units. (c) Crosstalk after execution of algorithm

Net_Change is 1059 units only.

(a)

(b)

(c)

Figure 6.25: (a) The initial crosstalk of a general channel instance comprising 80 nets

(track number 35 and channel length 181) is 2676 units after execution of

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 2404 units. (c) Crosstalk after execution of algorithm

Net_Change is 2253 units only.

190

(a)

(b)

(c)

Figure 6.26: (a) The initial crosstalk of a general channel instance comprising 100

nets (track number 39 and channel length 216) is 3375 units after execution of

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 2890 units. (c) Crosstalk after execution of algorithm

Net_Change is 2488 units only.

(a)

(b)

(c)

Figure 6.27: (a) The initial crosstalk of a general channel instance comprising 120

nets (track number 47 and channel length 250) is 4832 units after execution of

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 4269 units. (c) Crosstalk after execution of algorithm

Net_Change is 3942 units only.

191

(a)

(b)

(c)

Figure 6.28: (a) The initial crosstalk of a general channel instance comprising 150

nets (track number 60 and channel length 335) is 9314 units after execution of

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 8490 units. (c) Crosstalk after execution of algorithm

Net_Change is 7977 units only.

192

(a)

(b)

(c)

Figure 6.29: (a) The initial crosstalk of a general channel instance comprising 180

nets (track number 74 and channel length 358) is 12077 units after execution of

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 10974 units. (c) Crosstalk after execution of algorithm

Net_Change is 10116 units only.

193

(a)

(b)

(c)

Figure 6.30: (a) The initial crosstalk of a general channel instance comprising 200

nets (track number 73 and channel length 487) is 17769 units after execution of

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 17116 units. (c) Crosstalk after execution of algorithm

Net_Change is 14750 units only.

194

(a)

(b)

(c)

Figure 6.31: (a) The initial crosstalk of a general channel instance comprising 220

nets (track number 87 and channel length 480) is 18897 units after execution of

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 17141 units. (c) Crosstalk after execution of algorithm

Net_Change is 14933 units only.

195

(a)

(b)

(c)

Figure 6.32: (a) The initial crosstalk of a general channel instance comprising 250

nets (track number 97 and channel length 516) is 21377 units after execution of

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm

Track_Change_General is 18205 units. (c) Crosstalk after execution of algorithm

Net_Change is 16292 units only.

196

6.4 Summary

In this chapter, we have made some experimentation in two phases; in the first phase,

our objective is to generate desired random channel instances of both types, simple

and general, and in the second phase, we have shown hardcopy routing solutions for

some of the selected instances, where for each channel three routing solutions are

there with their associated amount of crosstalk. Experimental results have been

included in tables; some are in respective chapters, either Chapter 4 or Chapter 5, and

the remaining are in this chapter. Crosstalk is measured after computation of initial

routing solutions, and then subsequently for the solutions obtained after execution of

algorithms Track_Change and Net_Change.

Parenthetically, in this thesis, we have randomly generated as many as 4800

each of simple channel specifications and general channel specifications, ranging the

number of nets 10 through 15000 in 24 sets of channels, where each set comprises

200 instances. Out of all these instances, in this chapter, we have depicted merely 15

smaller sample simple channel instances (only 0.3125% of total generated instances

of this type) and no more than 19 smaller sample general channel instances (only

0.3958% of total generated instances of this kind).

Also, in this chapter, we have included minimized crosstalk channel routing

solutions for some initially computed two-layer channel routing solutions. For simple

channel instances, we have executed MCC1 [49, 52, 53] to obtain the initial density

routing solutions, and for general channel instances, we have executed TAH [49, 51]

to acquire the initial routing solutions of minimum possible area. After obtaining each

such initial channel routing solution, we have carried out respective algorithms

Track_Change and Net_Change one after the other; hardcopy routing solutions of just

18 simple channel instances (only 0.2045% of total generated instances of this type)

and no more than 11 general channel instances (only 0.2750% of total generated

instances of this kind) have been included in this chapter. Computed results are

included in tables, for a large number of randomly generated channel instances.

Graphs are also drawn for showing a reduction in crosstalk after execution of

associated algorithm for minimizing crosstalk; these show the deviation in percentage

reduction in crosstalk as the number of nets increases.

Chapter: 7

Parallel Algorithms for Computing Two-Layer

Reduced Crosstalk Channel Routing

7.1 Overview

It has already been mentioned several times in this thesis that based on the

advancement of fabrication technology, devices and interconnection wire segments

are placed as close as possible, and circuits operate at higher frequencies. These result

in crosstalk between interconnecting wire segments. As the work on routing channels

with reduced crosstalk is a very important area of current research [19, 21, 25, 27, 30,

39, 47, 49, 75, 87, 92, 93], we have already studied extensively the crosstalk

minimization in two-layer channel routing for VLSI circuit synthesis. In Chapter 3,

we have proved a host of crosstalk minimization problems NP-hard. Subsequently,

sequential crosstalk minimization algorithms have been developed in Chapter 4 both

for the simple as well as the general channel instances.

Since the problem of minimizing crosstalk is NP-complete in channel routing,

heuristics have been developed for reducing crosstalk, and the heuristics designed are

essentially sequential in nature. In this chapter, we study the problem for obtaining

efficient parallel algorithms. We present two such parallel heuristic algorithms for

computing reduced crosstalk routing solutions.

In Chapter 4, we have developed several sequential algorithms for reducing

crosstalk in two-layer channel routing. The algorithms devised, in this chapter, too

start from a given two-layer feasible routing solution of a channel whose crosstalk is

assumed as the initial amount of crosstalk of the said channel. Our proposed heuristics

are much better in computational complexity than their sequential counterparts

invented in Chapter 4.

7.2 A Revisit to the Channel Routing Problem

In VLSI physical design it is required to realize a specified interconnection among

different modules using minimum possible area. This is known as the routing

problem. One of the essential types of routing strategies is channel routing [49, 81,

198

96]. A net is a set of terminals that need to be electrically connected together, and the

terminals of the same net are assigned the same number. Different numbers (as

diverse symbols) signify different nets that must not ne shorted; terminals not to be

connected are assigned the number zero.

Like earlier chapters, in this chapter too we consider the reserved two-layer

Manhattan routing model, where one layer is reserved for horizontal wire segments

and the other layer is reserved for vertical wire segments. The connection between a

horizontal and a vertical wire segment of the same net in adjacent layers is achieved

by means of a via (a contact along the third dimension).

In this chapter, we represent horizontal constraints using the complement of

the horizontal constraint graph (HCG). We call the complement of the HCG, HC  (V,

E), the horizontal non-constraint graph (HNCG) and denote it by HNC  (V,E),

where V is the set of vertices corresponding to the intervals, and E  {{vi, vj} | {vi,

vj}  E}. The notation of the HNCG was introduced in [49, 51, 52, 53, 57] to

represent horizontal constraints. Note that a clique of the HNCG corresponds to a set

of non-overlapping intervals that may safely be assigned to the same track in a routing

solution.

We may recall that the channel routing problem (CRP) is the problem of

assigning the horizontal wire segments of a given set of nets to tracks obeying the

constraints present in a channel so that the number of tracks required (and hence the

channel area) is minimized. We say that a routing solution is feasible if all constraints

are satisfied and the nets can be assigned to the channel without any conflict.

Like most of the earlier chapters, in this chapter too, we consider the crosstalk

minimization problem as performance driven channel routing. As fabrication

technology advances, devices and interconnection wires are being placed in closer

proximity and circuits are being operated at higher frequencies. This results in

crosstalk between wire segments. Crosstalk between wire segments is proportional to

the coupling capacitance, which is, in turn, proportional to the coupling length (the

total length of the overlap between wires). Crosstalk is also proportional to the

frequency of operation and inversely proportional to the separation between wires.

Therefore, it is important that these factors be considered in the design of channel

routing algorithms. The aim should be to avoid long overlapping wire segments

and/or the wire segments that lie close to each other on the same layer [25, 27].

199

It is desirable to design channel routing algorithms that consider the factor of

minimizing crosstalk. The main objective in performance driven routing is to reduce

signal delays due to crosstalk. Note that the crosstalk minimization problem in the

reserved two-layer Manhattan routing model is NP-hard, even for the channels

without any vertical constraints; all these results have been established in Chapter 3 of

this thesis. Since minimizing crosstalk is NP-hard, polynomial time heuristics have

been devised for reducing crosstalk that are included in Chapter 4. All these ideas

prior to this chapter, which are introduced as heuristics, are essentially sequential

algorithms. In this chapter, we have developed two fast parallel heuristics to compute

reduced crosstalk routing solutions, in the reserved two-layer Manhattan routing

model, for simple channel instances that are free from any vertical constraint. Our

proposed algorithms have been developed based on the same notion that has been

utilized while devising the algorithms presented in Chapter 4. However, the

algorithms proposed in this chapter are much better from the point of view of

computational complexity than the sequential ones.

We know that parallel processing is an efficient style of information

processing that emphasizes concurrent execution of independent events in the

computing process. The parallel events may appear in the resources at the same time

instance, and pipelined events may occur in overlapped time spans. These concurrent

events are attainable in a computer system at various processing levels.

Parallel processing and distributed processing are closely related. In some

cases, we use certain distributed technique to achieve parallelism. As data

communication technology advances, the distance between parallel and distributed

processing become small. So in recent time, we may see distributed processing as a

form of parallel processing in a special environment [3, 37, 68]. We know that most

of the problems belonging to VLSI physical design process are typically NP-hard [49,

81], and subsequent heuristics developed to execute these problems take significant

amount of time sequentially. Thus, developing parallel heuristics might be a novel

way out to resolve the problems. In this chapter, we consider the problem of crosstalk

minimization in two-layer channel routing for the instances without any vertical

constraint and develop parallel heuristics to resolve them. To design parallel

algorithms for computing reduced crosstalk routing solutions, we consider the

sequential algorithms for simple channel instances developed in Chapter 4 and make

200

them parallel. Analytical results in terms of computational complexity of the

algorithms developed in this chapter are excellent.

In the following section, we discuss the crosstalk minimization problem in the

context of area minimization problem in channel routing. Subsequently, we propose

two parallel heuristics for reducing crosstalk and analyze their complexity issues.

7.3 Area and Crosstalk Minimization in Channel Routing

As the channel routing problem (CRP) of area minimization is an NP-complete

problem [41, 49, 80, 86], several (polynomial time) heuristics have been proposed for

solving the problem [10, 12, 15, 33, 49, 51, 54, 71, 73, 80, 96]. We know that the

CRP of area minimization is polynomial time computable if the instances are free

from any vertical constraints and we are interested only in resolving horizontal

constraints in the two-layer VH routing model [32, 49, 52, 53].

Since the problem of minimizing area for the instances of routing channels

without any vertical constraint is polynomial time solvable (using exactly dmax tracks),

such instances are defined as simple channel instances. Hashimoto and Stevens

proposed a scheme for solving this problem [32], and according to Schaper, it can be

implemented in O(n (log n + dmax)) time, where dmax is the channel density and n is the

number of nets belonging to the channel [80]. Later on, Pal et al. developed and

analyzed two different algorithms MCC1 and MCC2 [49, 52, 53], based on the

Hashimoto and Stevens’s scheme. The first algorithm MCC1 uses a graph theoretic

approach and runs in O(n + e) time, where n is the number of nets and e is the size of

the HNCG of the given simple channel. The second algorithm MCC2 is achieved

using a balanced binary search tree data structure that runs in time O(n log n), where n

is the number of nets. The details of the algorithms are available in [49]. Though a

routing solution of only dmax tracks is guaranteed for a simple channel specification in

polynomial time in the stated routing model, it may not be a good routing solution

from the resulting crosstalk point of view.

We have already observed in Figure 4.1, the presence of crosstalk between

nets (or intervals) assigned to different tracks in a two-layer channel without any

vertical constraint. Note that if two intervals do not overlap, there is no horizontal

constraint between the nets. That is, if there is a horizontal constraint between a pair

of nets, there is a possibility of having accountable crosstalk between them if the nets

201

are assigned to adjacent tracks. We compute crosstalk in terms of the number of units

a pair of nets overlaps on adjacent tracks in a feasible routing solution, as we defined

and measured it earlier too.

In this context, we like to remember VHP, the crosstalk minimization problem

in (two-terminal no-dogleg) two-layer VH channel routing (given an a priori partition

of nets), posed in Chapter 3. Subsequently, we keep in mind VHS, the crosstalk

minimization problem in (two-terminal no-dogleg) two-layer VH channel routing for

simple instances of channel specifications that has also been posed in the same

chapter.

Note that the problem of area minimization for a simple channel instance is

polynomial time solvable, and there exist several algorithms to compute a routing

solution for such an instance using exactly density number of tracks [32, 49, 52, 53].

However, the noticeable feature is that the crosstalk minimization problem in two-

layer VH channel routing for such instances of channel specifications is NP-hard; see

Chapter 3 of this thesis. Thus, we like to point out the following: The crosstalk

minimization problem is not only important from its practical outlook of computing

high performance routing solutions, it is equally motivating to observe the same as a

combinatorial optimization problem.

In the next section, we present two parallel algorithms to compute reduced

crosstalk routing solutions for existing routing solutions of minimum area for simple

instances of CRP.

7.4 Parallel Algorithms for Minimizing Crosstalk

It has been proved in Chapter 3 that the crosstalk minimization problem in two-layer

channel routing is NP-hard even for the simple instances of channel specifications.

Observe that, for any feasible two-layer VH routing solution S, we can compute

another routing solution S* with the total amount of crosstalk equals to zero. Suppose

we have a two-layer feasible routing solution S of t tracks. In computing S*, we

merely introduce t1 blank tracks into the routing solution S, where between each pair

of adjacent tracks in S a blank track is placed in. As a result we must not have any

crosstalk in S*, following the process of measuring crosstalk we have made and the

geometry of the routing model we have assumed. Thus, S* is obtained as a valid

routing solution of nearly 2t tracks without any crosstalk in it.

202

Here the main thing we like to emphasize is the following. If we provide

sufficient space between the wires assigned to adjacent tracks (and layers), the

amount of crosstalk will eventually be reduced. However, we all know that the area

minimization problem is the most important cost optimization problem in VLSI

physical design. Therefore, we must not encourage in computing such a routing

solution S* that takes almost twice the area of S. So it is a trade-off between routing

area and the resulting crosstalk in routing a channel. That is why, instead of

computing S*, we start with S of t tracks, compute another feasible routing solution S

of the same t tracks with reduced total crosstalk, as we did in devising sequential

crosstalk minimization algorithms in Chapter 4. To do that, we consider the routing

solutions S, that are computed using MCC1 for the simple instances of channel

specifications [49, 52, 53], as the area minimization problem of two-layer channel

routing is polynomial time computable; however, the subsequent crosstalk

minimization problem is NP-hard even for such instances of routing channels.

7.4.1 Algorithm 1: Parallel Track Interchange

The Parallel Track Interchange algorithm is naturally evolved from the theory of

reducing crosstalk (see Figure 4.1). The algorithm starts with a t-track two-layer

feasible routing solution S that is computed using MCC1 [49, 52, 53] for a simple

instance of the channel specification and computes another t-track two-layer feasible

routing solution S with a reduced total crosstalk. In the algorithm, we first compute in

parallel the effective spans of intervals of all the tracks in S. The effective span of

intervals of track i is obtained by adding the actual spans of intervals of all the nets

assigned to track i in S. Then, we sort the tracks in descending order according to their

effective spans of intervals.

In the proposed algorithm, our intention is to sandwich the track (comprising

net(s)) with the minimum effective span of intervals into the tracks (comprising nets)

with the maximum and the next to maximum (or the second maximum) effective

spans of intervals. Then we sandwich the track (comprising net(s)) with the next to

minimum (or the second minimum) effective span of intervals into the tracks

(comprising nets) with the second and the third maximum effective spans of intervals,

and so forth and so on. The flanked assignment of a track (comprising net(s)) with a

less effective span of intervals by a pair of tracks (comprising nets) with more

203

effective spans of intervals is absolutely motivated by the geometry of the channel

and the initial routing solution given as input to execute the algorithm. In other words,

in order to compute S, we reassign the tracks of intervals from the computed sorted

sequence as the following. Suppose   {1, 2, 3, …, t–2, t–1, t} is the sorted

sequence of tracks in descending order in their effective spans of intervals. Here our

desired sequence of effective spans of intervals is   {1, t, 2, t–1, 3, t–2, …}

to assign the nets from top to bottom in t different tracks, and hence the resulting

solution S is obtained.

One more clarification in our Parallel Track Interchange algorithm is required

when we have two or more tracks with the same effective span of intervals. In this

case in sorting those tracks of the same effective span of intervals, we compute the

total span of intervals of each such track. The total span of intervals of the nets

assigned to a track in S is the separation of columns between the starting column of

the first net and the terminating column of the last net, i.e. the span of the track used.

Here we sort such tracks with the same effective span of intervals in ascending order

based on their total spans of intervals in computing , as stated above. This is done in

ascending order being motivated that the nets belonging to a track with more total

span of intervals are more distributed over the track, and its reassignment to a track

will eventually result in reducing long overlapping (i.e. crosstalk) between the nets in

this track and the nets assigned to its adjacent track(s). If there are two or more tracks

with the same total span of intervals, we sort them arbitrarily. Hence,  is computed

from the given routing solution S,  is computed from  as stated above, and

following the sequence of tracks in  we reassign the nets to tracks from top to

bottom of the channel, and a routing solution S with reduced total crosstalk is

obtained. Each of these steps is computed in parallel. This completes the presentation

of the parallel heuristic algorithm Parallel Track Interchange. We use EREW PRAM

model for the implementation of these steps of the algorithm. Details of

computational complexity are presented next.

7.4.1.1 Computational Complexity of Algorithm Parallel Track Interchange

Now we analyze the time complexity of the algorithm Parallel Track Interchange. In

order to do that, we consider an Exclusive Read Exclusive Write (EREW) Parallel

Random Access Machine (PRAM), where a control unit issues an instruction to be

204

executed simultaneously by all processors on their respective data. In our algorithm

we primarily perform three sorts of computation, as follows: (1) Trackwise

computation of effective span of intervals (and total span of intervals, whenever

required), (2) Trackwise sorting of nets based on their effective spans of intervals (and

total spans of intervals, whenever required), and (3) Trackwise reassignment of nets to

tracks in computing S. Initially, we keep all the information (i.e. starting column

position, terminating column position, span of the interval, etc.) related to each of the

n nets belonging to a simple channel specification in the shared memory of the

PRAM.

We assign one processor to each track in the given routing solution S of a

channel. Let Pij be the i-th processor assigned for the j-th track in the initial solution,

S. An Exclusive Read (ER) instruction is executed by all processors, where processors

gain access to share memory for the purpose of reading the horizontal span(s) of the

net(s) associated to tracks in a one-to-one fashion. Thus, when this instruction is

executed, p processors simultaneously read the contents of p distinct memory

locations such that each of the p processors involved reads from exactly one memory

location and each of the p memory locations involved is read by exactly one

processor.

For a given j, we compute the sum of all values read by Pij. Observe that this

sum of values read by Pij, for all i, can be computed in parallel. Furthermore, each

sum can be computed in parallel for all j. As sum of m numbers can be computed in

O(log m) time using O(m) processors on an EREW PRAM machine, the Step (1) of

computing the effective span of nets/intervals (and total span of intervals, whenever

required) in all tracks can be computed in O(log n) time using O(n) processors on an

EREW PRAM, where n is the number of nets belonging to the channel; however, the

best value of n (the number of processors involved) is dmax for a density routing

solution S of a simple channel instance. This completes the Step (1) of the parallel

algorithm.

Step (2) of the parallel algorithm can be thought of sorting dmax elements [6]; i-

th element is the effective span of the net(s)/interval(s) in the i-th track in S. Now, n

elements can be sorted in O(log n) time using O(n) processors on a Concurrent Read

Exclusive Write (CREW) Parallel Random Access Machine (PRAM) machine [38].

Note that we need to sort dmax elements here, and dmax ≤ n. Therefore, using O(n)

205

processors, Step (2) can be implemented in O(log n) time on a CREW PRAM

machine. Since a concurrent read (CR) instruction by n processors can be simulated

on an EREW PRAM machine in O(log n) time using the same number of processors,

this step of the algorithm can be implemented in O(log2 n) time using O(n) processors

on an EREW PRAM.

Now we reassign the nets based on the sorted sequence obtained in the

previous step, and compute S. A more succinct formulation of this part of the

algorithm is given next as algorithm PRAM_Reassignment.

Algorithm: PRAM_Reassignment

For all i  1 to dmax do in parallel

If i  dmax/2,

then i  2i  1

Else i  2(dmax  i + 1)

End if

End for

In algorithm PRAM_Reassignment, the statement

“For all i  1 to dmax do in parallel”

means that all processors Pi, 1  i  dmax, perform the step simultaneously. Obviously,

this PRAM step takes O(1) time. Note that no concurrent access is required.

Therefore, the algorithm can be implemented on an EREW PRAM only. Thus, the

trackwise reassignment of nets takes constant time using an EREW PRAM machine

using dmax processors.

Now we compute the overall computational complexity of the algorithm

Parallel Track Interchange. All steps can be performed in parallel in O(log n) time

using O(n) processors on a CREW PRAM machine. If an EREW PRAM machine is

used, all steps can be performed in parallel in O(log2 n) time using O(n) processors.

We summarize the correctness and the computational complexity of the algorithm

Parallel Track Interchange in the following theorem.

Theorem 7.1: The algorithm Parallel Track Interchange computes a two-layer VH

routing solution with reduced total crosstalk on a PRAM model for simple channel

206

instances. The time and processor complexity of this algorithm are O(log n) and O(n),

respectively, if a CREW PRAM machine is used. Instead, if an EREW PRAM machine

is used, the time and processor complexities become O(log2 n) and O(n), respectively.

7.4.2 Algorithm 2: Parallel Net Change

The heuristic, Parallel Track Interchange, presented in the previous section, is simple

but efficient enough to reduce substantial amount of crosstalk over a given routing

solution where the nets are free from vertical constraints, merely by reassigning the

nets trackwise. An attempt has been made to reduce the crosstalk further using

heuristic Parallel Net Change.

Observe that, if two nets are (i) horizontally constrained to each other, (ii) the

interchange does not introduce any horizontal constraint violation due to overlapping

with some other nets, and (iii) the resulting crosstalk after swapping the nets is

reduced, then these two nets can be interchanged to reduce crosstalk further.

Incidentally, we do not talk about vertical constraint violation as the instances under

consideration are only simple channel specifications. Nevertheless, this is not at all a

clear-cut task, since we do not know a priori the sequence of pairs of nets to be

exchanged so that a maximum amount of crosstalk is reduced. Furthermore, a

particular net can be swapped O(dmax) times (where dmax is O(n)) over the tracks

without giving any remarkable gain in the overall crosstalk, and that might make the

problem of minimizing crosstalk drastically cost expensive. As a consequence, in this

algorithm, without swapping a pair of nets we do exchange a net with a blank space in

some other track if this substitution reduces the overall crosstalk. For some net x, if

several such swapping is possible, we perform the exchange that results in the

maximum reduction in crosstalk.

We define a net, in a given routing solution S of dmax tracks, that could be

swapped with a blank space in some other track as an interchangeable net; otherwise,

as a non-interchangeable net. Note that each non-interchangeable net pi, 1  i  n,

assigned to a track s, 1  s  dmax, in S, must also be assigned to track s in S.

However, an interchangeable net qi, 1  i  n, assigned to a track t, 1  t  dmax, in S,

may be assigned to a possibly different track t in S. It might so happen that an

207

interchangeable net cannot be swapped though there is a blank space in some other

track in S, as there is no gain in crosstalk out of that exchange.

Theoretically, there can be O(n) such interchangeable nets in S for a channel

comprising n nets in total, though it is unlikely as the channel instances are simple and

the solutions under consideration are all density routing solutions. Thus, as a matter of

fact, only a few interchangeable nets are there in such an initial routing solution S,

which is assumed as the preferred routing solution (with mostly reduced crosstalk)

computed after algorithm Parallel Track Interchange. This claim could be verified

based on the reduction in crosstalk after algorithm Net_Change over the amount of

crosstalk obtained after algorithm Track_Change_Simple, included in Table 6.1 and

visualized in Figure 6.1, which is just about 1% reduction or even less.

Furthermore, if among n nets in total, the channel density dmax is O(n), only

then a bulk of the remaining nets may be interchangeable nets as they do not belong to

density columns (in S). However, in such a situation, most of such nets are not

required to be shifted if their adjacent tracks are blank (that do not render any

crosstalk) in the given routing solution S. Thus, even for an interchangeable net,

searching for a necessary span of blank space in some other track could often be a

superfluous task. In accordance with the above, the steps of the algorithm Parallel Net

Change state below how the heuristic works and searches for a blank space for an

interchangeable net qi in some other track in order to compute S.

Algorithm: Parallel Net Change

Input: A density routing solution, S, of a simple channel instance.

Output: Another density routing solution, S, of S with reduced crosstalk.

Begin

Step 1: O(n) processors are employed to identify the interchangeable nets in S, where

processor Pi is deployed for net ni, 1  i  n, all in parallel.

Step 2: For each interchangeable net ni, Pi computes the amount of crosstalk in S

involving ni; all processors do the same in parallel.

Step 3: If the amount of crosstalk for an interchangeable net ni in S is zero, then ni is

kept in its own track in computing S.

Else

208

Pi searches for a track (with necessary blank span) where ni could be

reallocated in order to compute S, all in parallel.

Step 3.1: If only one such a track, t, is found for only one interchangeable net

ni, where ni could be reallocated (means the crosstalk for ni in its new

track is reduced in comparison to that in S), then ni is shifted to track t;

otherwise, ni is kept in its earlier track in S, all in parallel.

Else

Step 3.1.1: If two or more such (blank) spaces in different tracks are

found for only one interchangeable net ni, where ni could be

reallocated (means the crosstalk for ni in two or more of its new

tracks is reduced in comparison to that in S), then ni is shifted

to a new track where it is best fitted (means the reduction in

crosstalk is maximum); otherwise, ni is kept in its earlier track

in S, all in parallel.

End if

End if

Step 3.2: If two or more overlapped interchangeable nets are found assignable

to just one new track t, where each of them could be reallocated in

isolation, then the best such net is shifted to track t (whose reallocation

mostly reduces the crosstalk in computing S); otherwise, all such nets

are kept in their earlier tracks in S, all in parallel.

Else

Step 3.2.1: If p  2 overlapped interchangeable nets are found

assignable to a set of q  p new adjacent tracks, where these

could be reallocated, then we call Parallel Track Interchange,

only on this set of interchangeable nets for their reallocation to

the targeted set of blank tracks in order to compute S. If such

reallocation results more crosstalk, two tasks are performed as

follows, all in parallel. (1) The alternate even numbered

reallocated net(s) is (are) kept in the new track(s) and the

alternate odd numbered reallocated net(s) is (are) revert back to

its (their) earlier track(s) in S (keeping these allocated tracks

blank). (2) The alternate odd numbered reallocated net(s) is

209

(are) kept in the new track(s) and the alternate even numbered

reallocated net(s) is (are) revert back to its (their) earlier

track(s) in S (keeping these allocated tracks blank). Now,

among the (three) routing solutions, S and the two computed

after (1) and (2) above, the one with the minimum crosstalk is

regarded as the preferred minimum crosstalk routing solution

S.

End if

End if

End

It is straightforward to observe that each interchangeable net does not contain

any density column. In other words, the zonal density [49, 51] of each interchangeable

net is less than dmax in S, as there is at least one blank track spanned by the net where

it could be swapped and S is a density (or dmax-track) routing solution. The zonal

density of net i in S is the maximum density of the columns within the span/interval of

net i.

Now, if the interchangeable nets are pairwise nonoverlapping, each of them

could be moved to the blank places in the new tracks, in order to compute S, using an

EREW PRAM machine. If there are two or more overlapped interchangeable nets (as

has been included in Step 3.2) that could be shifted to the blank places in a new track,

then we need to shift the net that reduces the crosstalk by maximum amount. For this

reason, we use a priority CRCW PRAM model [3].

Here, we like to mention one more point in performing two additional tasks

(1) and (2), as has been included in Step 3.2.1, where we observe that after

reallocation of intervals the computed routing solution S might contain more

crosstalk in comparison to that in S. Then we like to revert back a subset of

intervals/nets to their earlier tracks tentatively keeping an alternate/non-adjacent half

of them to the newly allocated tracks. This certainly enhances the scope of reduction

in crosstalk further as concentrated intervals (for their consecutive presence over the

tracks in computing S) are now distributed over the (blank) tracks in alternation (in

order to compute S). However, if the resulting crosstalk in S is found to be more than

that in S, we accept S as the final solution with no reduction in crosstalk.

210

On the other hand, to satisfy the case 2  p  q, where p is the number of

overlapped interchangeable nets (which is equal or less) and q is the new set of

adjacent blank tracks (which is equal or more), the algorithm Parallel Net Change can

successively be executed for a constant number of times, if there is a further improved

routing solution in terms of minimizing crosstalk. Thus, we presume that the newly

computed routing solution S as S to start for computing even a probable better routing

solution for subsequent interchangeable nets (or zones of columns) exposed in S. If S

is superior than S in terms of minimizing crosstalk (i.e. the amount of crosstalk in S is

less than that in S), we accept it; otherwise, the algorithm terminates without any

further iterations. We now analyze the computational complexity of the algorithm.

7.4.2.1 Computational Complexity of Algorithm Parallel Net Change

In the heuristic Parallel Net Change, we assign a processor to each of the

(interchangeable) nets in S. Further, we assume that blank spaces in the present

solution are stored in the global (shared) memory. In addition, for each processor Pi, 1

 i  n, we have the interval information of blank spaces in all the tracks in S in the

form of sequential search of the blank spaces available in other tracks in S. Note that

the data structure contains at most O(dmax) information (of blank spaces) for each

interchangeable net. Moreover, for each interchangeable net, the initial crosstalk due

to a net is measured in Step 2 in constant time as all processors do it in parallel.

However, the interchangeable net identification (in Step 1) and the track where it

could possibly be reallocated (in Step 3) can be performed in time O(dmax), as S is a

dmax-track routing solution.

The problem of reallocation of an interchangeable net to a blank space in other

track becomes a bit tricky, when there are more interchangeable nets and less blank

spaces. Here the question of selecting a subset of interchangeable nets arises that

should get more priority for their transfer. This task is performed by executing a

Concurrent Write (CW) to the memory corresponding to blank spaces. As we need the

maximum reduction in crosstalk, we assume that an interchangeable net (or the

corresponding processor) succeeds in writing its value. This means that we need a

priority CRCW PRAM for implementation of our algorithm. Therefore, we conclude

the following.

211

Theorem 7.2: The algorithm Parallel Net Change computes a dmax-track two-layer

VH routing solution with reduced total crosstalk on a priority CRCW PRAM from a

dmax-track two-layer VH routing solution of a simple channel instance by reassigning

nets to some other tracks of the given routing solution. The time and processor

complexity of this algorithm are O(dmax) and O(n), respectively.

Corollary 7.1: As the sequential algorithm for the problem presented in Section

4.3.2.3 takes O(ndmax) time, this Parallel Net Change algorithm is cost optimal.

Corollary 7.2: As a concurrent read/write instruction by n processors on a CRCW

PRAM can be simulated on an EREW PRAM in O(log n) time, Parallel Net Change

algorithm can be simulated on an EREW PRAM in O(dmax log dmax) time using O(n)

processors.

7.5 Summary

In this chapter, we have developed two parallel heuristics for the problem of

computing reduced crosstalk routing solutions in two-layer VH channel routing for

the simple instances of channel specifications. The first algorithm Parallel Track

Interchange runs in time O(log n) on a CREW PRAM using O(n) processors; whereas

the second algorithm Parallel Net Change runs in O(dmax) time using O(n) processors

using a priority CRCW PRAM. The second parallel algorithm is cost optimal. On an

EREW PRAM, they can be implemented respectively in time O(log2 n) and O(dmax

log dmax) using the same number of processors. The sequential counterparts of these

algorithms take time O(dmax log dmax), and O(ndmax), respectively. Both parallel

algorithms are substantially faster than their sequential counterparts.

Here we like to point out a few possible extensions and open problems as

mentioned below. (i) It may be investigated to design similar algorithms for the

general instances of channel specifications with multi-terminal nets where both the

horizontal as well as vertical constraints are present in two-layer channel routing. (ii)

A generalized version of algorithm Parallel Net Change may produce better routing

solutions in terms of reduction in crosstalk when two overlapping nets interchange

their tracks. (iii) Researchers may also be interested in computing much reduced

crosstalk routing solutions in the expense of negligibly more channel area. (iv) Instead

212

of starting from a given routing solution researchers may also compute good routing

solutions directly optimizing crosstalk and some other cost optimization factor(s) of

CRP. (v) Minimized crosstalk routing solutions in the case of three- and multi-layer

channel routing might draw the current interest of research. Also, doglegging may be

introduced in all these cases.

Chapter: 8

Conclusion

8.1 Contribution of the Thesis

VLSI fabrication technologies now allow multiple layers of interconnection in

integrated circuits. Even then, several works in two-layer channel routing are still due

for their execution and experimentation for high performance challenges. Theoretical

issues are also getting importance from the viewpoint of combinatorial optimization.

The thesis starts with an introductory chapter where the channel routing

problem (CRP) along with its inherent constraints and different routing models have

been described. The interesting and important matters related to CRP have also been

elaborated in the same chapter. These include usual as well as several high

performance issues involving CRP.

Chapter 2 is the one, which is committed to almost all allied concerns relating

to electrical hazards, rather crosstalk, in several associated domains of research fields

in VLSI including network, fabrication technology, communication (or signal

transition), and so forth and so on. In the same chapter, before the literature survey,

we have briefly discussed on the theories of NP-completeness and NP-hardness and

mentioned a class of allied problems.

As have already been cited several times, the thesis primarily focuses on the

crosstalk minimization problem in two-layer channel routing. Undoubtedly, it is an

important problem whose fair consideration makes a routing solution satisfactory

from its high performance stand. As a consequence, there were some theoretical

apprehensions. This thesis has resolved most of them. Specifically, in Chapter 3 we

have considered the issues on the hardness of crosstalk minimization in two-layer

channel routing including the simplest of all crosstalk minimization problems. In this

chapter, we have proved that the crosstalk minimization problem in the reserved two-

layer Manhattan routing model is NP-hard for the simple and the general instances of

channel specifications with partitioning of nets so that the nets in a class of a given

partition are assigned to the same track.

214

In the same chapter, we have also investigated upon the simple as well as the

general instances of channel specifications with only two-terminal nets, but without

any imposed partition of (non-overlapping) nets to tracks. This, being a more general

case, is also NP-complete. Moreover, we have introduced the problem of minimizing

bottleneck crosstalk in the reserved no-dogleg two-layer channel routing model. We

have proved that the problem is NP-hard too.

On completion of the proof of NP-completeness of the crosstalk minimization

problem, one should look for the next best possible option. This is nothing but to look

for an approximation algorithm to solve the problem. We have further proved in this

chapter that this is not possible. We have proved that if P ≠ NP, it is impossible to

design an approximation algorithm for the (crosstalk minimization) problem even in

no-dogleg two-layer channel routing. These remain so even if doglegging is allowed.

The only option that remains with us to tackle the problem is to design

efficient heuristics for the problem. In Chapter 4, we have developed two efficient

heuristics for simple instances of channel specifications. They have been found to

produce optimal / near optimal routing solutions in most of the cases. Afterward, the

heuristics have also been generalized to compute an optimal / near optimal crosstalk

routing solution of a general instance of two-layer channel routing in a novel manner.

The performance of our algorithms is encouraging enough for most of the existing

benchmark channels. Moreover, the experimental results obtained on the execution of

the heuristics show a lot of improvement over the existing routing solutions of

reduced area.

We know that the efficiency of a heuristic is well established when it is

executed for a variety of a large number of randomly generated similar (channel)

instances, and the final upshot is computed making an average on all of them.

Incidentally, the simple channel instances are hardly available in the literature. Also, a

very few general channel instances, commonly known as benchmark channel

specifications, are available in the literature. For these reasons, we have developed

algorithms for generating random channel instances in Chapter 5, for the purpose of

running the heuristics developed in Chapter 4.

Simple channel instances that are (randomly) generated in Chapter 5 are all

containing only two-terminal nets; simple channel instances with multi-terminal nets

215

can also be created. General channel instances that are also randomly generated in

this chapter contain two- as well as multi-terminal nets. Furthermore, the devised

algorithms can create channel instances of any number of nets containing any number

of terminals per net.

Chapter 6 of this thesis is based on experimental results of most of the

implementations made in this thesis, principally for all the algorithms designed in

Chapters 4 and 5. The first pair of algorithms for reducing crosstalk devised in

Chapter 4 has also been right away executed in the same chapter for a smaller

number of randomly generated simple channel instances and also for a set of only 14

existing benchmark (general) channel specifications. All these results have also been

included there in Chapter 4. However, in Chapter 5, a second pair of algorithms has

been developed, and these have been formulated for generating random channel

instances. Precisely, in Chapter 5, at once we generate two sets of channel

specifications at random, simple as well as general, each containing 4800 instances

in total, for 24 sets of a given number of nets ranging from 10 through 15000.

On the other hand, in Chapter 6, we first randomly generate as many as 8800

simple channel instances containing a number of nets ranging from 10 to 1000 for

further experimentation of reducing crosstalk. Likewise, herein, we also have

produced 4000 general channel instances containing a number of nets ranging from 20

to 2000. For a particular net number, exactly 200 instances have been produced. We

observed that for a maximum number of nets as mentioned above, the instances, on an

average, get saturated in terms of reducing crosstalk when these are allowed to go

through the relevant Track_Change and Net_Change algorithms (devised in Chapter

4).

Essentially, Chapter 6 contains only a number of small simple as well as

general channel instances and shows only a little number of hardcopy routing

solutions for inclusion in the thesis. For each example channel with reasonably shorter

in length and lesser number of nets, three routing solutions have been presented: (a)

The first one displays the minimum area routing solution against after a standard

existing routing algorithm, (b) the second one depicts the significantly reduced

crosstalk routing solution after execution of the first crosstalk reduction algorithm,

Track_Change, and (c) the third one includes the mostly reduced crosstalk routing

solution obtained after execution of algorithm Net_Change. Graphs have also been

216

drawn for showing a reduction in crosstalk after execution of each associated

algorithm for minimizing crosstalk; these demonstrate the deviation in percentage

reduction in crosstalk as the number of nets increases. The reduction in crosstalk in

each case is extremely significant.

Chapter 7 is the last contributory chapter of the thesis in which we have

developed two simple, efficient parallel heuristics for computing reduced crosstalk

routing solutions for simple instances of channel specifications. The parallel

algorithms presented herein demonstrate that the algorithms devised in Chapter 4 can

eventually be parallelized to get efficient parallel algorithms.

8.2 Open Problems and Future Scopes

Now at the end of the thesis, we would like to draw attention to some possible open

problems that future researchers may consider as their field of work. Although several

works have been accomplished and included in this thesis, plenty of other allied tasks

is still there to do. Crosstalk may be minimized by sacrificing a tolerable limit of more

area. We observed in Chapter 3 that when t–1 blank tracks (i.e. the tracks containing

no interval of any net) are introduced into a t-track two-layer feasible routing solution

such that a blank track is inserted in between every pair of consecutive tracks of nets,

the resulting routing solution may not have any crosstalk (as the gap between two

adjacent tracks containing nets now is sufficiently large). However, this routing

solution uses almost twice the area of the initial routing solution, whereas our prime

interest of some VLSI chip design is to compute a routing solution of as minimum

area as possible. Thus, such a routing solution is, in general, not acceptable.

Nevertheless, this tradeoff between area and crosstalk in computing different two-

layer channel routing solutions can be exercised and experimented scrupulously.

As a part of work, in this thesis, we have designed heuristics for reducing

crosstalk in a given (two-layer) routing solution of the minimum area; however, it is

often enviable if the crosstalk is straightway reduced starting from a given channel

instance wherein the area is also minimized as much as possible. If we start with a

routing solution, often that forces to assign a pair of nets to be placed on the same

track that, in effect, may render more crosstalk. As such, for any given channel

instance, either simple or general, neither we can guarantee an optimal crosstalk two-

layer channel routing solution, nor we can compute a near-optimal one.

217

Moreover, instead of considering crosstalk along the length of the channel (i.e.

horizontal crosstalk) crosstalk along the height of the channel (i.e. vertical crosstalk)

may also play an important role, where we may assume it as well, as an issue of

optimization, or simultaneous consideration along with horizontal crosstalk. Crosstalk

along with congestion of interconnecting wires over a region of the chip floor, and

thus hot spot formation may attract scholars in future, and their synchronized

optimization might enhance the performance of a routing solution.

The problem of crosstalk minimization in three-layer and multi-layer channel

routing is still open in any routing model. Usually, there are two reserved three-layer

channel routing models: VHV and HVH. Among several other models, reserved

multi-layer channel routing models may include ViHi, Vi+1Hi, and ViHi+1, where

vertical and horizontal layers of interconnect alternate within a channel (along the

third dimension). Though we firmly believe that the problems are hard to solve, yet

the nature of the problems of crosstalk minimization in the three- and multi-layer

channel routing is still undiscovered.

At the same time, the issue of bottleneck crosstalk minimization is also open

in the aforementioned three- and multi-layer channel routing models. We have only

guessed the hardness of the problems; no necessary proofs have yet been established

along with devising efficient heuristics. In the two-layer VH routing model, the trivial

lower bound (l) on the number of tracks is max(dmax, vmax), where dmax is the channel

density and vmax is the length of the longest path in the vertical constraint graph

(VCG), which is acyclic [49, 96]. A non-trivial lower bound on the number of tracks

(in the two-layer VH routing model), for a general channel instance that does not

contain any cyclic VCG, has also been computed in [62]. We may note that this non-

trivial lower bound is never worse than the aforesaid trivial lower bound, l, in the

stated routing model. For a simple channel instance, however, in the two-layer VH

routing model, the supposed lower bound (l) is simply dmax, as dmax  vmax  1, which

is same for the three-layer VHV routing model for any channel, simple or general, or

any channel that contains a cycle in its VCG.

In the case of three-layer HVH routing model, the aforementioned lower

bound (l) is max(dmax2, vmax), where the VCG should also be free from any cyclic

vertical constraint. Accordingly, different lower bounds (l) on the number of tracks

are also there for different multi-layer channel routing models [49]. Now the question

218

is whether a channel instance has a routing solution in an assumed routing model

whose bottleneck crosstalk is no more than p ≥ 1, for any given integer p, where the

number of tracks required is at most q ≥ 0 more than the optimal? Evidently, a lower

bound (l) on the number of tracks required in a stated routing model is either less than

or equal to the optimal number of tracks required for a given channel. Consequently,

devising desired routing solutions where bottleneck crosstalk is no more than p, and

the number of tracks required is no more than q above the optimal number of tracks

could be a task for future researchers.

We would also like to point out a few more possible extensions of the

algorithms developed in Chapter 7 of this thesis as follows. The algorithms included

in the said chapter have been devised for simple channel instances only; these may

also be worthy in modifying the algorithm for general instances of channel

specifications with multi-terminal nets. A comprehensive version of algorithm

Parallel Net Change may produce much-reduced crosstalk routing solutions when

two overlapping nets (or a group of overlapping nets) exchange their tracks pairwise

(in a sequence). Computation of minimized crosstalk routing solutions in the case of

three- and multi-layer channel routing in different routing models may draw the

interest of future researchers. Also, doglegging may be introduced in all these cases.

On a broader scale, there are several opportunities for future research. For

example, routing congestion is a work in VLSI circuit synthesis that estimates and

optimizes delay as well as hot spots present in a circuit [79]. Delay and power related

issues have been considered and statistically analyzed and attempted to optimize for

VLSI in [84]. Power consumption is a burning issue that has also been acknowledged

by Sherwani in his renowned book entitled ‘Algorithms for VLSI Physical Design

Automation’ along with multi-chip module [81].

It is unlikely for high speed systems to achieve very low power while

enhancing system performance under the current trends for MOS technologies [95].

High performance circuits usually consume significant amounts of power due to

increase in frequency, bandwidth, and system integration, and this consumed power

leads to higher heat dissipation and in turn to higher working temperature(s). This not

only affects circuit performance directly, by slowing down the CMOS transistors on

ICs but also reduces the reliability. A circuit with considerable power consumption

requires extra cost to remove heat at the packaging level, and therefore, the reduction

219

of power dissipation is needed at the chip design stage. In general, it is advisable to

have an even temperature distribution for temperature sensitive circuits [95].

The thermal management of microprocessors has become an increasing

challenge in recent years because of localized high flux hot spots which cannot be

effectively removed by conventional cooling techniques. The work of Wang and Bar-

Cohen [90] describes the use of the silicon chip itself as a thermoelectric cooler to

suppress the hot spot temperature. As semiconductor-based technology has rapidly

developed, producing ever smaller and faster silicon-chip based computer processors,

effective cooling of these chips has remained an unsolved issue. As a consequence,

researchers have started developing ways to cool hot spots using tiny on-chip silicon

microcoolers [90, 91].

A three-dimensional analytical thermal model of the silicon chip, including

localized thermoelectric cooling, thermoelectric heating, silicon Joule heating, hot

spot heating, background heating, and conductive/convective cooling on the back of

the silicon chip, has been developed and used to predict the on-chip hot spot cooling

performance [90]. This work also investigates the effects of hot spot size, hot spot

heat flux, silicon chip thickness, microcooler size, the doping concentration in the

silicon, and parasitic Joule heating from electric contact resistances on the cooling of

on-chip hot spots [90].

Hot spots can severely degrade the performance and reliability of a

microprocessor. However, cooling methods addressing the entire chip can often cause

unnecessary over-cooling, as well as raise the cost, weight, and volume of the cooling

solution [90].

Building on prior analytical work, Bar-Cohen and Wang, both mechanical

engineers, developed a three-dimensional mathematical model of the thermal

behaviour of a silicon chip using computer software. The model accounts for all

aspects of heating and cooling on the chip, including localized cooling, hot spot

heating, background heating from nearby circuitry, and conductive/convective cooling

through the back of the chip.

The model predicts that when an electric current is applied to a region of

highly doped silicon (silicon with a high level of added impurities) on the back of a

chip, a cool region is created on the chip. If the cool region is located opposite a

220

microprocessor hot spot, it absorbs heat and lowers the hot spot temperature. This

localized cooling phenomenon occurs via the thermoelectric effect – the use of

electrical energy to transfer heat against the natural hot-to-cold thermal gradient. The

silicon and the metal lead that brings electric current to the back of the chip have very

different thermoelectric sensitivities. As a result, a cooling effect occurs at the

contact-cap and cap-silicon junctions and heat is pulled out of the hot spot [90, 91].

Similar microcooling systems have been proposed, such as thin-film

thermoelectric coolers (TFTECs) that consist of two layered ultra-thin semiconductor

lattices, such as silicon-germanium on top of silicon. Like the silicon microcoolers,

TFTECs are positioned on the back of the silicon chip to pull away heat. Among their

advantages are compactness and fast cooling response. One main disadvantage,

however, is that for TFTECs, a thermal interface resistance is present between the

chip and the thin film, reducing the cooling effect [91].

Whatever may be the situation, to achieve high performance routing/design in

VLSI, the factors to be given careful consideration are power dissipation density

caused by the distribution of components and connecting wires over the chip floor.

These factors often lead to congestion and the subsequent formation of hot spots. To

minimize all these, the power supplied to the circuit is to be diminished, and this

encourages research in the field of low power VLSI design [7, 17, 74, 94, 95]. Based

on congestion of wire segments that are placed closer to each other over a local

routing region crosstalk comes into existence [9, 25, 26, 27, 30, 39, 42, 45, 46, 75, 87,

89, 93]. Crosstalk is intensified if an aggressor net is placed around other nets.

Moreover, the amount and direction of current flowing through the different wires

located in the region often give rise to electrical hazards like crosstalk, hot spot

formation, and eventually, delay in propagating electrical signals.

Bibliography

[1] A Brief Look at Semiconductor Technology, 2014.http://www.cis.poly.edu

/cs2204/silicon.pdf.

[2] http://www.itrs.net/ITRS%201999-2014%20Mtgs,%20Presentations%20&%20-

Links/2013ITRS/2013TableSummaries/2013ORTC_SummaryTable.pdf.

[3] Akl S. G., Parallel Computation: Models and Methods, Prentice Hall, Upper

Saddle River, New Jersey, USA, 1997.

[4] Anand Kumar A., Fundamentals of Digital Circuits, Second Edition, Prentice-

Hall of India Learning Pvt. Ltd., New Delhi, 2009.

[5] Banerjee S., M. T. Dey, and S. Dutta, Difficult Channel Generation using

Genetic Algorithm, International Journal of Artificial Intelligence and

Applications, vol. 1, no. 4, pp. 145-157, 2010.

[6] Batcher K. E., Sorting Networks and Their Applications, Proceedings of the

AFIPS Spring Joint Computer Conference, vol. 32, AFIPS Press, Reston, VA,

pp 307-314, 1968. Reprinted in: C. L. Wu and T. S. Feng (Eds.):

Interconnection Networks for Parallel and Distributed Processing, IEEE

Computer Society, pp 576-583, 1984.

[7] Bellaouar A. and M. Elmasry, Low-Power Digital VLSI Design: Circuits and

Systems, Springer Science + Business Media, LLC, New York, 1995.

[8] Berge C. and V. Chvatal (Editors), Topics on Perfect Graphs, Elsevier Science

Ltd., North-Holland Mathematics Studies, 1984.

[9] Bianco A., D. Cuda, M. Garrich, G. G. Castillo, V. Martina, and F. Neri,

Crosstalk Minimization in Microring-based Wavelength Routing Matrices,

Proceedings of the IEEE International Conference on Global

Telecommunications Conference (GLOBECOM 2011), pp. 1-5, 2011.

[10] Burstein M. and R. Pelavin, Hierarchical Channel Router, INTEGRATION: The

VLSI Journal, vol. 1, pp. 21-38, 1983.

[11] Chao H.-Y. and M. P. Harper, A Difficult Channel Routing Generator, ECE

Technical Reports (TR-EE 95-1): Paper 108, Electrical and Computer

222

Engineering, Purdue University, Purdue e-Pubs: http://docs.lib.purdue.edu/ecetr

/108, 1995.

[12] Chen Y. K. and M. L. Liu, Three-Layer Channel Routing, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol.3, no. 2, pp.

156-163, 1984.

[13] Cormen T. H., C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, Third Edition, Prentice-Hall of India Learning Pvt. Ltd., New Delhi,

2010.

[14] Dasgupta S. and A. Bulusu, FinFET Device Circuit Co-Design: Issues and

Challenges: A Tutorial, Presented in the 28th International Conference on VLSI

Design and the 14th International Conference on Embedded Systems,

Bangalore, India, Jan 3-7, 2015.

[15] Deutsch D. N., A Dogleg Channel Router, Proceedings of the 13th ACM/IEEE

Design Automation Conference, pp. 425-433, 1976.

[16] Eckhoff. J., Extremal Interval Graphs, Journal of Graph Theory, vol. 17, no. 1,

pp. 117-127, 1993.

[17] EE Herald, Low Power VLSI Chip Design: Circuit Design Techniques, available

at: http://www.eeherald.com/section/design-guide/Low-Power-VLSI-Design.html.

[18] Emanuel B., S. Wimer, and G. Wolansky, Using Well-Solvable Quadratic

Assignment Problems for VLSI Interconnect Applications, Discrete Applied

Mathematics, vol. 160, no. 4, pp. 525-535, 2012.

[19] Ernesto Rayas-Sánchez, J., A Frequency-Domain Approach to Interconnect

Crosstalk Simulation and Minimization, Microelectronics Reliability, vol. 44,

no. 4, pp. 673-681, 2004.

[20] Eustace R. A., Intra-Region Routing, Ph.D. Thesis, Department of Computer

Science, University of Central Florida, Orlando, Aug. 1984.

[21] Fan C.-P. and C.-H. Fang, Efficient RC Low-Power Bus Encoding Methods for

Crosstalk Reduction, INTEGRATION: the VLSI Journal, vol. 44, no. 1, pp. 75-

86, 2011.

223

[22] Fishburn P. C., Interval Orders and Interval Graphs: A Study of Partially

Ordered Sets, New York: Wiley, 1985.

[23] Floyd T. L., Digital Fundamentals, Eleventh Edition, Pearson Education India

(Prentice-Hall), 2014.

[24] Frenzel L. E., Crash Course in Digital Technology, Second Edition, Newnes,

1998.

[25] Gao T. and C. L. Liu, Minimum Crosstalk Channel Routing, Proceedings of the

IEEE International Conference on Computer-Aided Design, pp. 692-696, 1993.

[26] Gao T. and C. L. Liu, Minimum Crosstalk Switchbox Routing, Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design, IEEE

Computer Society Press, pp. 610-615, 1994.

[27] Gao T. and C. L. Liu. Minimum Crosstalk Channel Routing, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 5,

pp. 465-474, 1996.

[28] Garey M. R. and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, New York, 1979.

[29] Golumbic M. C., Algorithmic Graph Theory and Perfect Graphs, Academic

Press, New York, 1980.

[30] Gupta U. and N. Ranganathan, A Utilitarian Approach to Variation Aware

Delay, Power, and Crosstalk Noise Optimization, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 19, no. 9, pp. 1723-1726, 2011.

[31] Hamachi G. T. and J. K. Ousterhout, A Switchbox Router with Obstacle

Avoidance, Proceedings of the 21st ACM/IEEE Design Automation Conference,

pp. 173-179, 1984.

[32] Hashimoto A. and J. Stevens, Wire Routing by Optimizing Channel Assignment

within Large Apertures, Proceedings of the 8th ACM Design Automation

Workshop, pp. 155-169, 1971.

[33] Ho T.-T., S. S. Iyengar, and S.-Q. Zheng, A General Greedy Channel Routing

Algorithm, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 10, no. 2, pp. 204-211, 1991.

224

[34] Hougardy S., Classes of Perfect Graphs, Discrete Mathematics, vol. 306, pp.

2529-2571, 2006.

[35] Hsu C.-C., M. P.-H. Lin, and Y.-T. Chang, Crosstalk-Aware Multi-Bit Flip-Flop

Generation for Power Optimization, INTEGRATION: the VLSI Journal, vol. 48,

pp. 146-157, 2015.

[36] Hsu W.-L. and T.-H. Ma, Fast and Simple Algorithms for Recognizing Chordal

Comparability Graphs and Interval Graphs, SIAM Journal on Computing, vol.

28, no. 3, pp. 1004-1020, 1999.

[37] Hwang K., Advanced Computer Architecture: Parallelism, Scalability,

Programmability, McGraw-Hill, Inc., New York, 1993.

[38] JáJá J., An Introduction to Parallel Algorithms, vol. 17. Reading: Addison-

Wesley, 1992.

[39] Jhang, K.-S., S. Ha, and C. S. Jhon, Simulated Annealing Approach to Crosstalk

Minimization in Gridded Channel Routing, VLSI Design, vol. 7, no. 1, pp. 85-

95, 1998.

[40] Joobbani R., An Artificial Intelligence Approach to VLSI Routing, Kluwer

Academic Publishers, Boston, USA, 1986.

[41] LaPaugh A. S., Algorithms for Integrated Circuit Layout: An Analytic

Approach, Ph.D. Thesis, Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge, 1980.

[42] Liberali V., R. Rossi, and G. Torelli, Crosstalk Effects in Mixed-Signal ICs in

Deep Submicron Digital CMOS Technology, Microelectronics Journal, vol. 31,

no. 11, pp. 893-904, 2000.

[43] Lincoln B., Introduction to Digital Electronics, First Edition, Pearson Education

India, 2014.

[44] Maheswari, M. and G. Seetharaman, Multi-Bit Random and Burst Error

Correction Code with Crosstalk Avoidance for Reliable on Chip Interconnection

Links, Microprocessors and Microsystems, vol. 37, no. 4, pp. 420-429, 2013.

[45] Manem H. and G. S. Rose, A Crosstalk Minimization Technique for

Sublithographic Programmable Logic Arrays, Proceedings of the Ninth IEEE

225

International Conference on Nanotechnology (IEEE NANO 2009), pp. 218-221,

2009.

[46] Moghaddam S. A. and N. Masoumi, Analysis and Simulation of a Novel

Gradually Low-K Dielectric Structure for Crosstalk Reduction in VLSI,

Microelectronics Journal, vol. 39, no. 12, pp. 1751-1760, 2008.

[47] Moiseev K., S. Wimer, and A. Kolodny, Timing-Constrained Power

Minimization in VLSI Circuits by Simultaneous Multilayer Wire

Spacing, INTEGRATION: the VLSI Journal, vol. 48, pp. 116-128, 2015.

[48] Mukherjee A., Introduction to nMOS and CMOS VLSI Systems Design,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, 1986.

[49] Pal R. K., Multi-Layer Channel Routing: Complexity and Algorithms, Narosa

Publishing House, New Delhi (Also published from CRC Press, Boca Raton,

USA and Alpha Science International Ltd., UK), 2000.

[50] Pal R. K., Absolute Area Approximation in Channel Routing is NP-Hard,

Journal of Informatics and Mathematical Sciences, vol. 1, nos. 2-3, pp. 121-137,

2009.

[51] Pal R. K., A. K. Datta, S. P. Pal, M. M. Das, and A. Pal, A General Graph

Theoretic Framework for Multi-Layer Channel Routing, Proceedings of the

Eighth VSI/IEEE International Conference on VLSI Design, pp. 202-207, Jan. 4-

7, 1995.

[52] Pal R. K., A. K. Datta, S. P. Pal, and A. Pal, Resolving Horizontal Constraints

and Minimizing Net Wire Length for VHV Channel Routing, Technical Report,

no.: TR/IIT/CSE/92/01, Department of Computer Science and Engineering, IIT,

Kharagpur (1992).

[53] Pal R. K., A. K. Datta, S. P. Pal, and A. Pal, Resolving Horizontal Constraints

and Minimizing Net Wire Length for Multi-Layer Channel Routing,

Proceedings of the IEEE Region 10’s Eighth Annual International Conference

on Computer, Communication, Control and Engineering (TENCON 1993), vol.

1, pp. 569-573, 1993.

226

[54] Pal R. K. and A. Pal, An Efficient Graph-Theoretic Algorithm for Three-Layer

Channel Routing, Proceedings of the Fifth IEEE International Conference

on VLSI Design, pp. 259-262, 1992.

[55] Pal R. K., S. P. Pal, A. K. Datta, and A. Pal, NP-Completeness of Multi-Layer

No-Dogleg Channel Routing, and an Efficient Heuristic, Proceedings of the

Sixth VSI/IEEE International Conference on VLSI Design, pp. 80-83, 1993.

[56] Pal R. K., S. P. Pal, and A. Pal, On the Computational Complexity of Multi-

Layer Channel Routing, Technical Report no.: TR/IIT/CSE/92/02, Dept. of

Computer Sc. & Engg., IIT, Kharagpur, 1992.

[57] Pal R. K., S. P. Pal, and A. Pal, Wire Length Minimization in Multi-Layer

Channel Routing: Complexity Results, and Efficient Algorithms, Technical

Report no.: TR/IIT/CSE/93/07, Dept. of Computer Sc. & Engg., IIT, Kharagpur,

1993.

[58] Pal R. K., S. P. Pal, and A. Pal, On the Computational Complexity of Area, and

Wire Length Minimization in Multi-Layer Channel Routing, Proceedings of the

Third National Seminar on Theoretical Computer Science (NSTCS 1993), pp.

103-119, 1993.

[59] Pal R. K., S. P. Pal, and A. Pal, Minimizing Net Wire Length in Multi-Layer

Channel Routing, Proceedings of the CSA Silver Jubilee Workshop on

Computing, and Intelligent Systems, pp. 171-188, 1993.

[60] Pal R. K., S. P. Pal, and A. Pal, Absolute Approximation for Channel Routing is

NP-Hard, Proceedings of the Fourth National Seminar on Theoretical Computer

Science (NSTCS 1994), pp. 28-39, 1994.

[61] Pal R. K., S. P. Pal, and A. Pal, On the Computational Complexity of

Approximate Area Minimization in VLSI Design, Proceedings of the

International Conference on Computer Systems and Education (ICCSE 1994),

pp. 378-380, 1994.

[62] Pal R. K., S. P. Pal, and A. Pal, An Algorithm for Finding a Non-Trivial Lower

Bound for Channel Routing, INTEGRATION: the VLSI Journal, vol. 25, no. 1,

pp. 71-84, 1998.

227

[63] Pal R. K., S. P. Pal, A. Pal, and A. K. Dutta, NP-Completeness of Multi-Layer

no-Dogleg Channel Routing and an Efficient Heuristic, Proceedings of the Sixth

IEEE International Conference on VLSI Design, pp. 80-83, 1993.

[64] Pal R. K. and S. Sen Sarma, Wire Length Minimization in Routing and

Performance Enhancement in VLSI Design: A Tutorial, Presented in the Fourth

IEEE VLSI Design and Test Workshops 2000 (IEEE VDAT 2000); VLSI Design

and Test: Milestones and Challenges, Edited by C. P. Ravikumar, pp. 70-71,

Phoenix Publishing House Pvt. Ltd., New Delhi, 2000.

[65] Pande P. P., A. Ganguly, H. Zhu, and C. Grecu, Energy Reduction through

Crosstalk Avoidance Coding in Networks on Chip, Journal of Systems

Architecture, vol. 54, no. 3, pp. 441-451, 2008.

[66] Papadimitriou C. H., Computational Complexity, Addison-Wesley Publishing

Co., Reading, Massachusetts, 1995.

[67] Patooghy A., S. G. Miremadi, and H. Tabkhi, A Reliable and Power Efficient

Flow-Control Method to Eliminate Crosstalk Faults in Network-on-

Chips, Microprocessors and Microsystems, vol. 35, no. 8, pp. 766-778, 2011.

[68] Quinn M. J., Parallel Computing: Theory and Practice, Second Edition,

McGraw-Hill, Inc., New York, USA, 1994.

[69] Rajaraman D. and V. Rajaraman, Computer Primer, Second Edition, Prentice-

Hall of India Learning Pvt. Ltd., New Delhi, 2012.

[70] Ramirez Alfonsin J. L. and B. A. Reed (Editors), Perfect Graphs, John Wiley

and Sons Ltd., Chichester, 2001.

[71] Reed J., A. Sangiovanni-Vincentelli, and M. Santomauro, A New Symbolic

Channel Router: YACR2, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 4, no. 3, pp. 208-219, 1985.

[72] Reis J. D., M. V. Drummond, A. L. Teixeira, R. N. Nogueira, P. Monteiro, S.

Shinada, N. Wada, and G. M. Beleffi, Experimental Demonstration of a

Nonlinear Effects Crosstalk Minimization Algorithm, Proceedings of the

National Fiber Optic Engineers Conference, p. JThA32, Optical Society of

America, 2010.

228

[73] Rivest R. L. and C. M. Fiduccia, A ‘Greedy’ Channel Router, Proceedings of

the 19th ACM/IEEE Design Automation Conference, pp. 418-424, 1982.

[74] Roy K. and S. Prasad, Low Power CMOS VLSI Circuit Design, John Wiley and

Sons, Inc., New York, 2000.

[75] Saini S. and S. B. Mandalika, A New Bus Coding Technique to Minimize

Crosstalk in VLSI Bus, Proceedings of the Third IEEE International Conference

on Electronics and Computer Technology (ICECT 2011), vol. 1, pp. 424-428,

2011.

[76] Sankaran H. and S. Katkoori, Simultaneous Scheduling, Allocation, Binding,

Re-Ordering, and Encoding for Crosstalk Pattern Minimization During High-

Level Synthesis, IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 19, no. 2, pp. 217-226, 2011.

[77] Sarrafzadeh M. and C. K. Wong, An Introduction to VLSI Physical Design, The

McGraw-Hill Companies, Inc., New York, USA, 1996.

[78] Sathish A. and M. Madhavi Latha, Data Encoding Technique for Crosstalk

Delay Reduction on Fault Tolerant Data-Bus in DSM Technology, Procedia

Engineering, vol. 38, pp. 2967-2972, 2012.

[79] Saxena P., R. S. Shelar, and S. Sapatnekar, Routing Congestion in VLSI

Circuits: Estimation and Optimization, Springer, New York, USA, 2007.

[80] Schaper G. A., Multi-Layer Channel Routing, Ph.D. Thesis, Department of

Computer Science, University of Central Florida, Orlando, 1989.

[81] Sherwani N. A., Algorithms for VLSI Physical Design Automation, Kluwer

Academic Publishers, Boston, 1993.

[82] Smith L., An Analysis of Area Routing, Ph.D. Thesis, Stanford University,

California, 1983.

[83] Soukup J., Fast Maze Router, Proceedings of the 15th ACM/IEEE Design

Automation Conference, pp. 100-102, 1978.

[84] Srivastava A., D. Sylvester, and D. Blaauw, Statistical Analysis and

Optimization for VLSI: Timing and Power, Springer, New York, USA, 2005.

https://scholar.google.co.in/citations?user=zT8cqLkAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=P3JdmqAAAAAJ&hl=en&oi=sra
https://books.google.co.in/books?hl=en&lr=&id=epKOsDvckK8C&oi=fnd&pg=PA1&dq=Statistical+Analysis+and+Optimization+for+VLSI:+Timing+and+Power+Ashish+Srivastava,+Dennis+Sylvester,+and+David+Blaauw&ots=RINSpNzY8H&sig=Dm9FQuBr5GU7d3x5KFL28xtXnpY
https://books.google.co.in/books?hl=en&lr=&id=epKOsDvckK8C&oi=fnd&pg=PA1&dq=Statistical+Analysis+and+Optimization+for+VLSI:+Timing+and+Power+Ashish+Srivastava,+Dennis+Sylvester,+and+David+Blaauw&ots=RINSpNzY8H&sig=Dm9FQuBr5GU7d3x5KFL28xtXnpY

229

[85] Supowit K. J., A Minimum Impact Routing Algorithm, Proceedings of the 19th

ACM/IEEE Design Automation Conference, pp. 104-112, 1982.

[86] Szymanski T. G., Dogleg Channel Routing is NP-Complete, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 4, no. 1, pp.

31-41, 1985.

[87] Terapasirdsin A. and N. Wattanapongsakorn, Crosstalk Minimization in VLSI

Design using Signal Transition Avoidance, Proceedings of the IEEE

International Symposium on Communications and Information Technologies

(ISCIT 2010), pp. 911-915, 2010.

[88] Velivala S., Verification Challenges at Advanced nodes: A Tutorial, Presented

in the 28th International Conference on VLSI Design and the 14th International

Conference on Embedded Systems, Bangalore, India, Jan 3-7, 2015.

[89] Verma S. K. and B. K. Kaushik, Crosstalk and Power Reduction using Bus

Encoding in RC Coupled VLSI Interconnects, Proceedings of the Third IEEE

International Conference on Emerging Trends in Engineering and Technology

(ICETET 2010), pp. 735-740, 2010.

[90] Wang P. and A. Bar-Cohen, On-chip Hot Spot Cooling using Silicon

Thermoelectric Microcoolers, Journal of Applied Physics, AIP Publishing, vol.

102, issue 3, 2007.

[91] Wang P., A. Bar-Cohen, B. Yang, G. L. Solbrekken, and A. Shakouri,

Analytical Modeling of Silicon Thermoelectric Microcooler, Journal of Applied

Physics, vol. 100, 014501, 2006.

[92] Wang Y., S. Yang, X. Li, Y. Cao, and H. Yang, Research on Orientation

between Dual Stripline for Minimizing Crosstalk in Integrated High-Density

Circuits, Proceedings of the Second IEEE International Conference on

Computer Engineering and Technology (ICCET 2010), vol. 6, pp. V6-221,

2010.

[93] Xu J., X. Hong, T. Jing, L. Zhang, and J. Gu, A Coupling and Crosstalk-

Considered Timing-Driven Global Routing Algorithm for High-Performance

Circuit Design, INTEGRATION: The VLSI Journal, vol. 39, no. 4, pp. 457-473,

2006.

230

[94] Yeap G. and A. Wild, Introduction to Low-Power VLSI Design, International

Journal of High Speed Electronics and Systems, vol. 7, Issue 2, 1996.

[95] Yeap G. K. and F. N. Najm (Editors), Low Power VLSI Design and

Technology, World Scientific, Singapore, 1996.

[96] Yoshimura T. and E. S. Kuh, Efficient Algorithms for Channel Routing, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 1, no. 1, pp. 25-35, 1982.

