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Abstract 

The channel routing problem (CRP) is the problem of computing a feasible routing 

solution for the nets present in a channel so that the number of tracks required to route 

the channel is minimized. A channel is a rectangular routing region that has two open 

ends, the left and right sides of the region, and the other two sides of the channel 

contains two rows of fixed terminals. The major cost factors that, in isolation or in 

combination, are normally minimized in CRP are the area, net wire length, via, and 

layer of interconnection. Besides, there are several other high performance factors like 

signal delay, power consumption, heat generation, hot spot formation, electrical 

hazards, and so on and so forth that are all research issues nowadays and these 

objectives are needed to be considered in channel routing to maximize the chip 

performance, even after a feasible routing solution is there. 

In this thesis, we have considered the problem of crosstalk minimization as a 

kind of electrical hazard that need to be reduced to enhance circuit performance. As 

fabrication technology advances and feature size reduces, devices are placed in closer 

to each other and interconnecting wire segments are assigned with narrower pitch, 

whereas the circuits’ operations are realized at higher frequencies. As a result, 

electrical hazards, viz., crosstalk between wire segments are evolved. More crosstalk 

means more noise and more signal delay that reduce the circuit performance. 

Therefore, it is desirable to develop channel routing algorithms that not only reduce 

the channel area but also crosstalk. Work on routing channels with reduced crosstalk 

is very important from high performance requirement for VLSI circuit synthesis. 

There are several theoretical problems on crosstalk minimization in two-layer 

channel routing, some of which are posed and proved as NP-complete in this thesis. 

Subsequently, this thesis includes algorithms that have been designed for reducing 

crosstalk in two-layer channel routing, devises algorithms for generation of a large 

number of random channel specifications, parallel algorithms for minimizing 

crosstalk, heuristics for lessening crosstalk for reduced area routing solutions in order 

to optimize cost and maximize circuit performance that are some of the prime 

contributions in brief to mention. In this work, we have studied the computational 

complexity issues of the crosstalk minimization problem for simple and general 



xiv 

instances of channel specification with a partition of nets so that the nets in a class of 

the given partition are to be assigned to the same track, the simple as well as general 

instances of channel specifications with only two-terminal nets but without any 

imposed partition of (non-overlapping) nets to tracks, the bottleneck crosstalk 

minimization problem, and so on and so forth in the  reserved no-dogleg two-layer 

VH channel routing model. 

In all these cases, the problems are considered when doglegging is allowed as 

well. We further investigate the existence of exact or heuristic algorithms and 

approximation algorithms for the abovementioned problems of crosstalk minimization 

in two-layer channel routing. This thesis also identifies that the crosstalk minimization 

problem in the three-layer VHV and HVH channel routing models are yet open for 

future researchers. 
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Chapter: 1 

Introduction to Crosstalk Minimization Problem 
 

 

1.1 Overview 

The eventual endeavour in the present age of Information Technology is information 

generation and dissemination of the same by anybody, anytime, and anywhere. Very 

Large Scale Integration (VLSI) technology has revolutionized the electronics industry 

and established the twentieth century as the computer age, but even now in the second 

decade of the twenty-first century, it is approaching its fundamental limits in the 

submicron process of miniaturization. These are needed due to the increasing 

demands of high speed, throughput, and overall performance in modern computing 

applications plus the explosive proliferation of data volume to be stored and 

processed, that necessitate a revolutionary supercomputing technology.  

From the beginning of 1960, Integrated Circuit (IC) fabrication technology 

has evolved from being able to integrate a few transistors in Small Scale Integration 

(SSI) to today’s integration of well over millions of transistors in Very Large Scale 

Integration (VLSI). Gradually from the very beginning to the present era, some 

generation of ICs with the number of transistors on a single chip growing from 4 to 

more than 40 million has been realized. A tentative time dependent numbers of 

transistors that have relatively been accumulated to realize scaled integrated circuits 

are shown in Table 1.1 as a growth of VLSI technology in the last five decades [1, 4, 

23, 24, 43, 69]. 

Table 1.1: Generation-wise Integrated Circuits. 

Generation of Integrated Circuits 

(ICs) 

Number of 

Transistors 
Number of Gates 

Small Scale Integration (SSI) 4 to 400 1 to 100 

Medium Scale Integration (MSI)  400 to 4,000  100 to 1,000 

Large Scale Integration (LSI)  4,000 to 40,000  1,000 to 10,000 

Very Large Scale Integration 

(VLSI) 
 40,000 to 4,00,000  10,000 to 1,00,000 

Ultra Large Scale / Wide Scale 

Integration (ULSI / WSI) 
4,00,001 and above 1,00,001 and above 



2 

 

Integrated circuits consist of a number of electronic components realized by a 

family of transistors, built by layering several different materials in a well-defined 

fashion on a silicon base called a wafer. For smaller ICs, transistor-transistor logic 

(TTL) is a well-accepted logic family, but nowadays, in general, metal oxide 

semiconductor field effect transistor (MOSFET), or only MOS, either in the form of 

an n- or a p-type, or in the complementary form has considerably been used in 

realizing most scaled and compacted VLSI circuits. By the way, at some point in 

time, Ultra Large Scale Integration (ULSI) or Wide Scale Integration (WSI) were the 

terms to convey the sense of level of integration beyond VLSI, but ultimately, 

worldwide academicians and industry people have accepted only VLSI as a 

generalized term to cover all these (ULSI / WSI) beyond a number of transistors that 

are accumulated in realizing a chip and ULSI / WSI as a generation of integrated 

circuits no longer exists. 

In practice, the designer of an IC transforms a circuit description into a 

geometric description, which is known as a layout. A layout consists of a set of planar 

geometric shapes in several layers. In some other words, a geometric description that 

is obtained from a circuit description while designing an IC is known as a layout. A 

layout consists of a set of planar geometric shapes in several layers, and then it is 

checked to ensure that it meets all the design requirements. Through some 

intermediate steps, the design files are then converted into pattern generator files, 

which are used to create patterns called masks by an optical pattern generator. During 

fabrication, these masks are used to pattern a silicon wafer using a series of 

photolithographic steps. 

 

 

 

 

 

Figure 1.1: Input and output to the physical design step. The circuit to be realized 

along with the design style is inputted while the layout is the output of this step. 
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The process of converting the specifications of an electrical circuit into a 

layout is called the physical design. In this step, the circuit a designer likes to design 

is obtained as the output of the circuit design step that is inputted to the physical 

design along with the design style as architecture (see Figure 1.1). This design style 

could either be full or semi-custom design, or standard cell design, or gate array 

design, or some of their combinations or variations. Besides, the output to the physical 

design step is the layout, which is supposed to be realized through fabrication in a 

laboratory. 

The physical design step is an extremely error prone and tedious process 

because of the minuteness of the individual components and the tight tolerance 

requirements. For about last two decades, the VLSI design is realized at the 

submicron level, where 1 micron (or micrometre)  1.0×106 metres. At present, the 

smallest geometric feature of a component can be as small as 14 nanometres, where 1 

nanometre  1.0×109 metres [14, 88]. However, it is expected that the feature size 

can be reduced even further within a couple of years. This small feature size may 

allow fabrication of as many as 40 million (or more) transistors on a 25 mm × 25 mm 

chip (or even less). 

Due to the requirement of exacting details for each component and 

interconnecting wire segment in the fabrication process and the accumulation of a 

very large number of components on a single semiconductor chip, the physical design 

process is not practical without the help of computers. As a result, almost all the 

phases of physical design comprehensively use different computer aided design 

(CAD) tools, and many phases have already been partially or fully automated. This 

automation of the physical design process has increased the level of integration, 

enhanced chip performance, and reduced the turn-around time. 

The VLSI physical design automation is essentially the study of different 

problems and associated algorithms, and the data structures related to the physical 

design process. There are problems in physical design that are polynomial time 

computable, but most of the problems in physical design are beyond polynomial time 

(or exponential time) computable. The objective of this phase is to study the optimal 

arrangement of devices on a plane (or sometimes in a three-dimensional space in the 

case of 3D design) and efficient interconnection schemes between these devices to 

obtain the desired functionality. Since the use of space on a wafer is quite expensive, 
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and the level of purity is never 100%, algorithms that designers develop must use the 

space very efficiently and competently so that the cost is lowered while the yield of 

the products is improved. 

Besides, a well-fashioned collection of components and devices (in different 

levels of design) along with their assignment over the chip floor assumes an important 

role in determining the performance of a chip. Algorithms intended for physical 

design are also expected to make sure that all the rules required for the fabrication are 

observed, and the layout is within the limits of tolerance of the fabrication process. To 

end with, the algorithms ought to be efficient and should be able to grasp and handle 

very large designs. Each algorithm not only leads to rapid turn-round time but also 

allows designers to iteratively improve the layouts. 

The overall fast growth in integration the chunky has been realized due to 

automation of various steps involved in design, verification, and fabrications of chips. 

In this thesis, we have primarily emphasized on developing techniques for crosstalk 

minimization in two-layer channel routing as one of the most important high 

performance factors in realizing the desired VLSI circuit. Now we briefly discuss the 

steps present in the VLSI chip design process in the following section. 

1.2 The VLSI Chip Design Process 

The VLSI design process starts with a given plan and specification of a VLSI circuit, 

follows a sequence of steps, and ultimately creates a packaged chip. A typical design 

process may be represented by a series of steps in the form of a flowchart as shown in 

Figure 1.2. This process starts with a system specification of the circuit we like to 

design up to the packaged marketable chip. To achieve a broad viewpoint, a sketch of 

all the steps of VLSI design process is briefed below [81]. 

1. System Specification: For the necessity of a high level representation of a 

system, at first we set down the specifications of the system to be designed. 

The factors that are considered in this process include: performance, 

functionality, and physical dimensions; the selection of fabrication technology, 

design style(s), and design methods are also taken care of. Stipulation for size, 

speed, power, and functionality of the VLSI system to be designed are 

expected as the end results. 
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2. Functional Design: Behavioural aspects of the system are considered and 

measured in this step. The outcome is usually a timing diagram or other 

relationships among the subunits. This information is used to get better the 

general design process and to lessen the complexity of the subsequent phases. 

  

 

 

 

 

 

 

 

   

  

              

Figure 1.2: The VLSI chip design process. 

3. Logic Design: In this step, the logic configuration (or structure) that stands for 

the functional design is derived and tested. The realized design is represented 

in the form of a textual, schematic, or graphic description. Usually, the logic 

design is represented by Boolean expressions. Then these expressions are 

reduced to attain the smallest and often simplest logic design that matches to 

the above functional design. These are also simulated and tested to confirm 

their correctness, or customized accordingly. 

4. Circuit Design: The aim of circuit design is to develop a circuit representation 

derived from the logic design. The Boolean expressions are transformed into a 
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circuit depiction by taking into consideration the speed, power requirements, 

and the electrical performance of different components of the original design. 

A designed circuit is usually obtained in the form of an entire circuit diagram. 

5. Physical Design: This is the most essential and central step in the whole 

process of developing a VLSI chip. In this step, the circuit representation of 

each component is changed into a geometric representation. This illustration 

is, in fact, a set of geometric patterns that perform the projected logic function 

of the related component. Connections among different components are also 

expressed as geometric patterns (or sketch). This geometric representation of a 

circuit is called a layout. The precise aspects of a layout also depend on design 

rules that are guidelines based on the inadequacies of the manufacturing 

process and the electrical properties of the production stuff. Physical design is 

a very complex process, and in order to handle the complexity of the problem, 

it is usually broken down into various sub-steps like partitioning, placement, 

routing, etc. Perhaps, the physical design consumes the maximum time among 

all steps in the VLSI design process. 

6. Design Verification: To ensure that the layout meets the system specification 

and the fabrication requirements, the created layout is verified in this step. 

Design verification consists of design rule checking (DRC) and circuit 

extraction (CE). DRC is a process that verifies that each individual geometric 

model must meet the design rules inflicted by the fabrication process. After 

checking the design rule violation(s), if any, the functionality of the layout is 

established by CE. This is a reverse engineering process that generates the 

circuit representation from the layout. 

7. Fabrication: After verification, the layout is ready for fabrication. The 

fabrication process is composed of quite a few steps: preparation of wafer, 

deposition, and diffusion of various materials on the wafer according to layout 

description. ICs consist of a number of electronic components, fabricated by 

layering several different materials in a well-defined fashion on a silicon base, 

known as a wafer. A typical wafer may be of 10 cm in diameter and can be 

used to produce tens or hundreds of chips. Before a chip is mass produced, a 

prototype (or archetype) is prepared and tested. 
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8. Packaging, Testing, and Debugging: To end with, the wafer is fabricated and 

diced in a fabrication laboratory where such a facility is available. Each chip is 

then packaged and tested to ensure that it meets all design specifications and 

functions properly. Based on the application, either the chips are packaged, or 

they are kept bare. 

The VLSI chip design process is a very big and complex process that involves 

iterations as and when necessary, both within a step and among different steps. The 

complete design process may be viewed as conversion and renovation of depiction in 

a variety of steps. In each step, a new illustration of the system to be designed is 

created and analysed. The manifestation is iteratively improved to meet system 

specifications, or often the system specifications are tuned accordingly. If some 

design violations are detected, particularly in the physical design step, then this step 

needs to be repetitive to rectify the faults. Interestingly, this is the reason for which 

the VLSI design process is also often called the VLSI design cycle. The purpose of 

VLSI CAD tools is to reduce the number of iterations and thus lessen the time-to-

market. 

1.3 The VLSI Physical Design Process 

The physical design is the most time consuming, droning, and error-prone process in 

the VLSI chip design cycle. The input to the physical design process is a circuit 

diagram, and the output is the layout of the circuit to be designed. This is carried out 

in a number of stages such as partitioning, floorplanning, placement, routing, and 

compaction. The different stages of the physical design process are shown in Figure 

1.3. Below we present a short outline of all the stages to give a broad perception of 

VLSI physical design [49, 77, 81]. 

1. Partitioning: A VLSI chip may contain several million transistors (or active 

devices). The layout of the whole circuit cannot be handled due to the 

limitation of memory space as well as available computation power. Thus, the 

circuit is usually partitioned by grouping the components into sub-circuits, 

known as blocks or modules. In practice, the partitioning process considers the 

following factors such as the size of the blocks, number of blocks, and number 

of interconnections among the blocks. The output of the partitioning stage is a 

set of blocks along with the interconnections required among the blocks at 
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some level of the hierarchy. The set of interconnections (or routing) required 

is referred to as a net-list. The partitioning process is hierarchical for designing 

a typical VLSI circuit, and at the topmost level a circuit may have between 5 

to 25 modules, and each module is then partitioned recursively into hundreds 

of smaller blocks. As for example, a VLSI chip hierarchy is shown in Figure 

1.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The VLSI physical design process. 

2. Floorplanning and Placement: The selection of good layout alternatives for 

each block as well as the entire chip is the main concern of this step. At some 
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after partitioning, as it is based approximately on the number and the type of 

components present in the block. Floorplanning is the placement of flexible 

blocks, i.e. blocks with fixed area but unknown dimensions. It is a much more 

difficult problem as compared to the placement problem. In floorplanning, 

several layout options and choices for each block are considered to substitute 

itself. Usually, the blocks are rectangular in shape, and the lengths and widths 
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of all the blocks are determined in addition to their locations; however, the 

lengths and widths of the blocks may vary within a prespecified range. 

The exact rectangular shape of a block is determined by the aspect 

ratio, i.e. aspect ratio is used to assign the block dimensions. The aspect ratio 

of a block is the ratio of the width (v) of the block to its length (h); see Figure 

1.5. Usually, there is an upper and a lower bound on the aspect ratio that a 

block can have such that the blocks cannot take shapes that are too long or 

very thin. 

       

Figure 1.4: An example VLSI chip hierarchy. 

 

 

 

 

 

Figure 1.5: Aspect ratio of a block, where v is the vertical dimension (or 

width) of the block and h is the horizontal dimension (or length) of the block. 
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Floorplanning is a very decisive and significant step in the VLSI 

physical design phase. This step sets up the foundation towards achieving the 

desired layout, though it is computationally quite hard. Very often the task of 

the floorplan layout is done by design engineers, rather than automated CAD 

tools. This is at times obligatory as the key components of an IC are often 

anticipated for specific locations on the chip. 

At the time of placement, the blocks are precisely located on the chip. 

The objective of placement is to discover a minimum area arrangement for the 

blocks that aids complete interconnections amongst themselves. Placement is 

characteristically completed in two phases. In the first phase, a preliminary 

placement is produced. In the second phase, the early placement is assessed, 

and iterative upgrading is made in anticipation that the layout has minimum 

area and obeys the rules of design specifications. Note that some space 

between neighbouring blocks is left vacant to allocate wires to connect the 

blocks. 

The judgment of the merit of placement is imperfect unless the 

subsequent routing phase is completed. Often a placement may direct to 

unroutable design, i.e. routing may not be feasible in the space available. In 

such a case, the next iteration of placement is essential. To bind the number of 

iterations of the placement algorithm, an approximation of the required routing 

space is used during the placement phase. Only a good placement algorithm 

can endow with a good routing scheme and a desired performance of the 

circuit. This is due to the fact that once the location of each block is made 

final, very little can be done to better the routing and on the whole the circuit 

performance. 

3. Routing: At some level of design, the circuit after the placement of modules 

on the chip floor is completed by producing interconnection amongst the 

blocks using the vacant region separating the blocks through which a careful 

interconnection is routed, which is known as routing. The routing problem 

consists of interconnections in the midst of adjacent blocks, according to a 

precise netlist, that has been assigned positions as a solution of a placement 

problem. The arrangement of a routing problem consists of the position of 
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terminals, the netlist that indicates which terminals are to be interconnected (in 

separation) and the routing space available for routing. 

 

 

 

 

 

Figure 1.6: (a) A channel is a rectangular routing region with fixed terminals 

only on its two opposite sides, and the other two opposite sides are open ends. 

(b) A switchbox is a (closed) rectangular routing region with fixed terminals 

on any three or all four sides of the region. 

 

 

 

 

  

 

Figure 1.7: (a) Layout of rectangular circuit blocks A through H and pins 

after placement, at some level of the hierarchy. Terminals are located on the 

periphery of blocks as well as on the boundary of the chip. Local (rectangular) 

routing regions (either channels or switchboxes) are separated by dotted lines. 

(b) Interconnection among the blocks after global routing through different 

local routing regions, as per the netlist. (c) Interconnection among the blocks 

after detailed routing showing each exact geometric assignment. 

Hence, the goal of the routing phase is to complete interconnections 

amongst the blocks according to a given netlist. At first, the space, known as 

the routing space (which is not covered by blocks) is divided into rectangular 

regions known as channels and switchboxes. As for example, a channel and a 

A Channel 

A Switchbox 

(a) (b) 

(a) (b) (c) 

A 
B 

C 

D 
E F 

G H 

A 
B 

C 

D 
E F 

G H 

A 
B 

C 

D 
E F 

G H 

1 1 

2 2 

3 

3 

3 

4 

4 

4 

5 

5 

5 

5 

6 

6 

7 7 

8 

8 

9 

9 

10 

10 10 

10 

10 

11 
11 



12 

 

switchbox are shown in Figures 1.6(a) and 1.6(b), respectively. Then, the 

routing in each subsequent (routing) region is completed to accomplish the 

entire desired circuit. The scheme of a routing algorithm is to complete all 

circuit connections using the shortest possible wire length and using only the 

channels and switchboxes. This is usually done in two phases, referred to as 

the global routing and detailed routing phases. 

Connections amongst the appropriate blocks of a circuit are completed 

in global routing forgetting (temporarily) about the precise geometric details 

of each wire and pin. For each wire, a global routing algorithm finds a list of 

channels and switchboxes that are to be used as course of the path for that 

wire. In other words, global routing specifies the ‘flexible route’ of a wire 

through different local routing regions in the routing space. Figure 1.7(a) 

shows a layout of circuit blocks A through H and pins after placement. The 

remaining space on the chip floor is known as the routing region that has been 

partitioned into a collection of local rectangular routing regions, distinctive by 

dotted boundaries, either a channel or a switchbox. Interconnection among the 

blocks after global routing using loose routes is shown in Figure 1.7(b), where 

same pins (or terminals), differentiated by distinct numbers, are electrically 

connected through wires, as per the given netlist. 

Detailed routing is the next step after global routing that performs each 

point-to-point connection between terminals (of the same pin number) on the 

blocks, as guided by global routing. In this step, the flexible (global) routing is 

transformed into the preferred exact routing by stating geometric information 

such as the width of wires along with their track and layer assignment. 

Channel routing and switchbox routing are the kinds of local routing that help 

to achieve detailed routing necessary for a chip. Figure 1.7(c) shows detailed 

routing for the layout of circuit blocks A through H followed by global 

routing. 

Routing is a premeditated and well-studied problem, and a few 

hundreds of articles have been published about all its usual facets. In view of 

the fact that most of the problems in routing are computationally hard, the 

researchers worldwide have paid attention generally on developing heuristic 

algorithms in the last four or more decades. Consequently, experimental 

estimation has become an essential part of all such algorithms and some 
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benchmarks have been standardized. Owing to the very nature of the routing 

problems, entire routing for all the connections can never be guaranteed in 

many a case. 

4. Compaction: It is essentially the assignment of condensing the layout in all 

dimensions, mainly along the orthogonal axes, such that the total area is 

concentrated as much as possible. By making a chip smaller, wire lengths are 

reduced which in turn reduces the signal delay amongst the components of the 

circuit. Along with a smaller area of a chip, it may result in realizing more 

chips on a given wafer, which in turn reduces the cost of manufacturing. At 

the same time, the compaction must make sure that no rules regarding the 

design and fabrication process are violated towards accomplishing a VLSI 

chip. 

The physical design process, like the VLSI chip design process, is iterative in 

nature and many steps such as global routing and detailed routing are repeated a 

number of times to acquire an improved layout. Besides, the quality of a result 

obtained in a step purely depends on the excellence of solution obtained in the 

previous steps. For example, a bad quality placement cannot expect a good quality 

routing. Thus, the earlier steps must have more persuasion on the overall quality of a 

solution. In other words, partitioning, floorplanning, and placement problems play a 

more significant role in determining the area and chip performance, as compared to 

routing and compaction. Since a placement scheme may create an unroutable layout, 

the chip might need to be re-placed and re-partitioned before another routing can be 

attempted. By and large, the whole physical design process may be repeated a number 

of times to achieve the goals of a design, and hence the physical design process is also 

often known as physical design cycle. The complexity of each step varies depending 

on the design constraints as well as the design style used [81]. 

1.4 Channel Routing 

The major goal of a routing algorithm is to provide area efficient connections for all 

the nets present in the circuit of a chip, such that none of the terminals remains 

disconnected and the overall routing area is minimized. A set of terminals that need to 

be electrically connected together constitutes a net. Terminals of the same net are 

given the same symbol (or the same integer label). 
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 The process of routing builds connections amongst the terminals on the 

periphery of different blocks (or modules) and also on the boundary of the chip floor. 

Connections are realized using wire segments assigned to different layers of 

interconnect. Usually, single layer routing is allowed for some special situations. 

Some technologies allow only two layers of wiring; this is referred to as two-layer 

routing. Connections between the wire segments assigned to adjacent layers are made 

using vias. 

   

 

 

 

 

 

 

Figure 1.8: (a) An (assumed) assignment of five blocks AE over the chip floor after 

the placement phase is over. (b) The overall routing space is divided into 12 

rectangles where the routing regions, 16, 9, and 10 are channels, and the remaining 

routing regions, 7, 8, 11, and 12 are switchboxes. (c) An alternative (or better) 

division of the overall routing space into only nine rectangles where the routing 

regions, 14, 6, and 7 are channels, and the remaining routing regions, 5, 8, and 9 are 

switchboxes. 

To simplify the routing process, the routing regions of a chip are divided into 

rectangular blocks. The perimeter of these blocks may contain pins that need to be 

connected. In local routing, routing within each rectangular routing region is done 

disjointedly one after another. As shown in Figure 1.6(b), a rectangular routing region 

with terminals assigned to fixed locations on three (or all four) sides is called a 

switchbox [82]. Producing the detailed connections within a switchbox is called the 

switchbox routing problem [31, 40, 82, 83, 85]. If terminals are assigned to fixed 

locations only on two opposite sides of a rectangular routing region, then such a 

region is called a channel (see Figure 1.6(a)) [32]. The problem of routing within a 

channel is called the channel routing problem [48, 49, 81, 96]. Note that a channel 
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may contain terminals on either or both of its two (opposite) open ends as well but 

these are no ways fixed; these are floating terminals. The position of these terminals 

gets fixed after a routing algorithm is executed for the channel. Moreover, channel 

routing is a kind of local routing in the detailed routing phase. 

A chip floor with only five blocks AE is shown in Figure 1.8(a), when 

placement is over. Except the blocks, the remaining space over the chip is known as 

the overall routing region, which is initially partitioned into 12 (local) rectangular 

routing regions, out of which there are eight channels, 16, 9, 10, and four 

switchboxes, 7, 8, 11, and 12, as shown in Figure 1.8(b). A different division of only 

nine rectangles of the overall routing space of the same chip is shown in Figure 1.8(c), 

where six routing spaces, 14, 6, and 7, are identified as channels, and the remaining 

three rectangles, 5, 8, and 9 are switchboxes. These channels and switchboxes are 

needed to be routed as the terminals of different nets are there on the periphery of 

different blocks and also on the boundary of the chip floor. 

At this point in time, we may mention that a channel area is adjustable as the 

blocks (with fixed terminals) may relatively move as needed, they may come closer or 

go apart, though a major goal of channel routing is to minimize the overall channel 

area required. This flexibility of relative movement of blocks is not feasible in the 

case of switchbox routing. In fact, whether a switchbox is completely routable for the 

nets present therein is the prime issue in routing a switchbox. In our study, we have 

been acquainted with the fact that routing a channel is a hard problem, and routing a 

switchbox is even harder than that. So, at the time of dividing the overall routing 

space other than the blocks on a chip floor, we need to provide a sequence of 

generating (local) rectangular routing regions (and route them) so that we have, if 

possible, more channels and less (or no) switchboxes. 

As a channel is a rectangular routing region bounded by two parallel rows of 

fixed terminals, the input to the channel routing problem is usually provided in the 

form of channel specification (or netlist) that contains two rows of terminals, TOP 

and BOTTOM. One such example channel specification is shown below whose net 

distribution along the length of the channel is depicted in Figure 1.9. 

TOP :   3   8   0   0   4   0   0   1   3   0   6   7   0   0   5   0   0   5 

BOTTOM :   0   0   4   2   0   2   0   0   0   8   0   0   6   7   0   0   1   0 
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Figure 1.9: An example channel of eight nets. Intervals of the nets are placed in four 

different tracks. Terminals are vertically aligned along the columns of the channel. 

The length of the channel (i.e. the number of columns) is 18. Arrows indicate the 

terminals to be connected, either at the top or at the bottom, to complete the required 

interconnection of all nets belonging to the channel. 

1.4.1 The Structure of a Channel 

A channel has two open ends, the left and right sides of the rectangular routing space. 

The other two sides, i.e. the top and bottom sides of the rectangle have two rows of 

fixed terminals. The top view of a channel is shown in Figure 1.9. It consists of 

terminals of eight different nets that are spread over 18 columns along the length of 

the channel. In other words, the terminals are aligned vertically in columns. A set of 

terminals that need to be electrically coupled together is called a net. The terminals of 

the same net are assigned the same number. Zeros are non-terminals, not required to 

be connected. Here, the channel contains only two-terminal nets; in general, a net in a 

channel may have two or more terminals as well. 

Characteristically, the connections required within a channel are specified as 

two equal sized lists of numbers, one for terminals of the upper row of the channel 

and the other for the terminals of the lower row of the channel. The size of each of 

these lists is the number of columns in the channel. As we have already mentioned, 

these lists together are called the netlist or channel specification [49, 96]. 

In general, in two-layer channel routing, rectilinear wire segments of the nets 

are assigned to a minimum number of tracks of a channel. Tracks are successively 

equispaced assumed horizontal lines parallel to two rows of fixed terminals. In order 

to achieve a routing solution, the horizontal wire segments of all the nets belonging to 

a channel are assigned to tracks, and the vertical wire segments are assigned to 

assumed equispaced columns (in succession). In two-layer channel routing, such a 
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kind of assignment of wire segments helps in realizing routing solutions for most of 

the channels. The structure of a channel is shown in Figure 1.10, and the routing 

models have been discussed in the following section. 

 

Figure 1.10: The structure of a channel, which is always rectangular in shape with 

two rows of fixed terminals situated at the pin locations. Rectilinear wire segments of 

different nets are assigned to different tracks and columns of the channel; tracks are 

parallel to the rows of fixed terminals and columns are perpendicular to the rows of 

fixed terminals. The left and right ends of the channel are open ends. If the number of 

columns (or the number of pin locations) is c, then the length of the channel is c+1. If 

the number of tracks required to route the channel is t, then the height of the channel 

is t+1. In reality, the height of a channel is determined by the number of tracks 

required to route the channel (that certainly vary from channel to channel). 

1.4.2 Channel Routing Models 

A routing algorithm that solves an instance of a channel must follow some routing 

model to route all its nets [49, 81]. There are several ways of assigning nets to realize 

a feasible routing solution. Accordingly, the models have their relative advantages 

and disadvantages. Some of the models are practically more acceptable, whereas 

some others might be less costly. On the other hand, there are simpler routing models, 

but the algorithm may fail to generate a high performance routing solution. So, there 

are trade-offs and debates among the researchers and industry people before accepting 

a particular model as the most practical one from fabrication and cost as well as 

performance points of view. Some of the important channel routing models are 

discussed below. 
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1. The Grid-based versus Gridless Routing Model 

In a grid-based routing model, a rectilinear grid is superimposed on the 

routing region, and the wires are restricted to follow paths along the grid lines. 

In the grid-based routing model, the tracks are equispaced, and the columns 

are also equispaced. These theoretical separations are finally visualized by a 

technology supported fabrication tool, which is accepted in general to 

accomplish a routing solution. This is an abstract routing model, but this 

routing model is received worldwide in realizing most of the routing solutions. 

     

Figure 1.11: (a) A routing solution in a grid-based routing model where two 

orthogonal wire segments of a net that reach a grid point are connected by a 

via. (b) No superimposed grid is present in a gridless routing model; pin 

locations are not necessarily equispaced, and the thickness of wire segments 

may also vary. 

A routing solution in a grid-based routing model is shown in Figure 

1.11(a) that contains five tracks and seven columns. A dotted grid is 

superimposed over the routing region. Intersections of orthogonal grid lines 
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are known as grid points where the vias are placed, through which the vertical 

and horizontal wire segments of a net are connected. 

On the other hand, any model that does not follow the ‘gridded’ 

structure is referred to as a gridless routing model. As a result, the gap 

between adjacent wire segments, either assigned to tracks or columns, varies 

from case to case. This routing model might be more acceptable from the real 

design point of view, where wire segments of different width (or diameter) are 

used, but a routing solution of this model is more expensive. 

 

 

 

 

Figure 1.12: (a) Routing in a reserved layer routing model. Here a channel is 

routed using two layers of interconnect; one layer is reserved for horizontal 

wire segments (firm segments), and the other layer is reserved for vertical wire 

segments (dashed segments). Vias are introduced at grid points to connect 

orthogonal wire segments of respective nets. (b) An unreserved layer routing 

solution for the same channel, where no layer is assigned for a given type of 

wire segments. In this routing solution, three nets are assigned to three 

different layers of interconnect, differentiated by the firm, smaller, and bigger 

dashed segments (while net 2 can also be assigned to the same layer of net 1). 

2. The Reserved Layer versus Unreserved Layer Routing Model 

In a reserved layer routing model, all horizontal wire segments are assigned to 

a particular layer, known as the horizontal layer (H), and all the vertical wire 

segments are assigned to a separate layer, known as the vertical layer (V) in 

the two-layer VH routing model. In the case of unreserved layer routing 

model, the wire segments may not follow any strict rule of their assignment to 

tracks; in fact, a routing algorithm for such a routing model is responsible for 

the assignment of wire segments. Figure 1.12(a) shows a reserved layer 

routing solution of a channel whereas an unreserved layer routing solution for 
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the same channel is shown in Figure 1.12(b). In this routing solution, net 2 

could also be assigned to the same layer of net 1. 

3. The Overlap versus Non-Overlap Routing Model 

In an overlap routing model, the wire segments of two different nets may 

overlap on adjacent layers. If such overlaps are not allowed, the model is 

called a non-overlap routing model. A routing solution of a channel in the 

overlap routing model is shown in Figure 1.13(a), whereas that for the same 

channel in the non-overlap routing model is shown in Figure 1.13(b). A non-

overlap routing model is more suitable from the viewpoints of design, 

fabrication, and performance as a routing solution in an overlap routing model 

may lead to more electrical hazards. 

            

Figure 1.13: (a) A routing solution in an overlap routing model, where a 

single track is used to assign the horizontal wire segments of two different nets 

in different layers of interconnects. (b) A non-overlap routing solution in an 

unreserved layer routing model that may require more tracks to route all the 

nets. 

4. The No-Dogleg versus Dogleg Routing Model 

In the case of dogleg routing (or doglegging), the horizontal wire segment of a 

net may be split into two or more parts and assigned to different tracks, and 

then the vertical connections are made accordingly using vertical wire 

segments. Figures 1.14(b) and 1.14(c) show such routing solutions where sub-

segments of different nets are assigned to different tracks. If the route for a net 

is allowed to have only one horizontal wire segment, then it is called a no-

dogleg route. Figure 1.14(a) shows a no-dogleg routing solution for the same 

channel instance. If the route for a net is allowed to dogleg only in those 
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columns in which it contains a terminal, then it is called a restricted dogleg 

route. This is explained in Figure 1.14(b), where doglegging is made in a 

column that contains an intermediate terminal of net 1. Otherwise, it is known 

as an unrestricted dogleg route. An unrestricted dogleg routing solution for the 

same channel instance is shown in Figure 1.14(c), where net 2 is doglegged in 

a column containing no terminal of net 2. 

 

Figure 1.14: (a) A no-dogleg routing solution. (b) A restricted dogleg routing 

solution, where net 1 is split (into subnets) in a column that contains a terminal 

of net 1. (c) An unrestricted dogleg routing solution, where net 2 is split (into 

subnets) in a column that does not contain a terminal of net 2. 

 

Figure 1.15: (a) A routing instance (of a channel) that has no no-dogleg (two-

layer) feasible routing solution in the reserved layer routing model. The “?” 

mark indicates that the third column of the channel is already occupied by the 

vertical wire segment of net 1 that has been assigned to the top track, and the 

vertical wire segment of net 2 that has been assigned to the bottom track, is not 

assignable to this column (to avoid short-circuit). (b) A feasible dogleg routing 

solution of the channel instance, where the horizontal wire segment of net 1 is 

split and assigned to different tracks (tracks 1 and 3) and the horizontal wire 

segment of net 2 is assigned to track 2; as a result, more vias are needed. 
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Often some routing instances may not be routable using only no-

dogleg routes in some specified routing model but can be routed using 

doglegging. One such situation is shown in Figure 1.15. In general, a routing 

instance may use less number of tracks when the nets present in it are allowed 

to dogleg. A channel instance with solutions in these two models illustrating 

this fact is shown in Figure 1.16. 

                                   

Figure 1.16: (a) A no-dogleg routing solution of a channel instance (that 

requires four tracks, means more area). (b) A doglegged routing solution of 

the same channel instance using only two tracks means less routing area 

(sacrificing more vias). 

 

Figure 1.17: (a) A routing solution in the knock-knee routing model where a 

grid point is shared by two nets assigned to various layers of interconnect. (b) 

A solution of the same channel in the Manhattan-diagonal routing model. Vias 

used in diagonal routing are specially designed; usually, the vias are fabricated 

in an octagonal shape in the 45-135 diagonal routing model. 

5. The Manhattan versus Knock-knee and Diagonal Routing Models 

Knock-knee is usually an unreserved layer routing model that allows two nets 

to share a grid point if they are in different (adjacent) layers of interconnect. 

This model may introduce an unavoidable undesired electrical property such 
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as coupling capacitance, caused due to bending of two different nets that 

overlap and share a grid point. Figure 1.17(a) shows a routing solution of a 

channel instance shown in Figure 1.16, in the knock-knee routing model that 

uses only one track to route this channel. 

On the other hand, unlike knock-knee, if a grid point is not shared by 

two different nets for their change of direction, but rectilinear wire segments 

are allowed to follow grid lines only, the routing model is known as 

Manhattan routing model. All solutions in Figure 1.16 follow the (reserved 

two-layer) Manhattan routing model. Diagonal routing model is the most 

advanced routing model where wire segments may follow diagonal routes, and 

often along with Manhattan routing. A routing solution, which allows wire 

segments to route in rectilinear as well as in diagonal direction, is known as a 

solution in the Manhattan-diagonal routing model. Figure 1.17(b) shows a 

routing solution for the channel instance shown in Figure 1.16 (as well as 

Figure 1.17(a)) in the Manhattan-diagonal routing model that also requires 

only one track to route this channel. 

Even then there are other routing models where we like to know the number of 

interconnecting layers, whether this is two-layer, three-layer, or multi-layer, to route a 

channel. To route a maximum number of channel instances, only two reserved layers 

are sufficient in achieving a feasible routing solution. Only for some special cases of 

channel specifications, computation of a feasible two-layer routing solution is not 

possible in some models of routing under consideration. 

In any case, amongst all these routing models discussed above, there are 

several trade-offs/issues to select a particular set of models as the most satisfactory 

rational routing model, as each of such models has their individual advantages and 

limitations. For example, an unreserved layer overlap routing model may require less 

routing area, but the performance in the reserved layer non-overlap routing model is 

much better. Routing algorithms devised for the non-overlap reserved layer routing 

model as well as the fabrication processes are modular in nature. On the other hand, 

doglegging may draw designers’ attention as these routing solutions are usually area 

efficient. However, all these routing solutions surely use more vias that increase the 

fabrication cost, and these solutions are more hazardous too from an electrical 

performance point of view. Often a routing instance might be most efficiently 
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routable only in the diagonal routing model, but in such a model either octagonal 

shaped or similar vias are needed to be designed which is complicated and costlier 

than square vias used in connecting rectilinear wire segments. 

So, merits and demerits are there for each of the routing models talked about. 

Anyways, based on the realistic scenarios and fabrications viewpoint, the most 

practical, modular, and performance driven routing model is the grid-based non-

overlap reserved layer no-dogleg Manhattan routing model, in which the majority of 

the designers, academicians, and industry people have given their attention and shown 

their curiosity, and published a maximum number of articles on routing [15, 32, 33, 

49, 51, 71, 96]. In this thesis too, we like to concentrate on the stated routing model in 

developing all our theoretical contributions and designing algorithms for crosstalk 

minimization in two-layer VH channel routing. 

1.4.3 Characterization of the Channel Routing Problem 

We consider an example channel specification as shown in Figure 1.18. This channel 

contains eight nets, whose terminals are to be connected to complete the required 

interconnection for computing a routing solution in the grid-based reserved two-layer 

no-dogleg Manhattan routing model. 

                          

 

 

 

 

 

       

 

Figure 1.18: An example channel instance, that contains eight nets, is considered for 

characterizing the channel routing problem. 

We know that the primary objective of the channel routing problem is to 

connect all the terminals using a minimum number of tracks (or channel area), where 

non-terminals are vacant terminals and not connected. Now, to minimize the number 

of tracks, of course, we require assigning the horizontal spans of all nets (belonging to 

a channel) to a minimum number of tracks. This can be done in several possible ways 

for the instance shown in Figure 1.18. Observe that the nets 4 and 7 can never be 
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assigned to the same track. The reason is that these intervals have horizontal spans 

that overlap with each other and there is only one (reserved) horizontal layer for 

assigning all horizontal wire segments in the VH routing model; otherwise, these two 

spans are to be short-circuited in a track. 

Such a constraint between a pair of nets for their assignment to tracks is 

known as the horizontal constraint, and all horizontal constraints in a given instance 

can be represented by an undirected graph, called the horizontal constraint graph 

(HCG). This graph can be constructed as follows. For every net, there is a vertex in 

the graph. There is an edge between two vertices of the graph if and only if the 

corresponding intervals have overlapping horizontal spans [49, 96]. Sometimes, this 

overlapping could be on a single point in a column, where the interval of a net 

terminates whereas that of another net originates. For example, this is true for the net-

pair 1 and 7 in the channel instance shown in Figure 1.18. The HCG thus obtained for 

the channel instance in Figure 1.18 is shown in Figure 1.19. 

 

 

 

 

 

 

 

Figure 1.19: The horizontal constraint graph (HCG) of the channel specification 

shown in Figure 1.18. 

Now the question that arises: Whether the interval (or the horizontal span) of 

net 6 (i.e. I6) is assignable to a track above the track to which net 5 (i.e. I5) to be 

assigned? Noticeably, the answer is ‘no’; this is because the ninth column of the 

channel contains a top terminal of net 5 and a bottom terminal of net 6. So, if the 

interval I6 is assigned to a track above the track where the interval I5 is assigned, then 

it results in an infeasible assignment as shown in Figure 1.20(a). In fact, to get a valid 

routing solution in the said model at least one track separation is necessary while 

assigning the intervals to tracks and I6 is always assigned below I5, as shown in Figure 

1.20(b). This forced constraint in the order of assigning nets from top to bottom along 
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the height of the channel is known as a vertical constraint [49, 96]. Here, we say that 

net 5 is vertically constrained to net 6. 

 

 

 

 

 

Figure 1.20: (a) An infeasible allocation of the intervals of two different nets to 

tracks due to the presence of a vertical constraint in the ninth column of the channel in 

Figure 1.18, and as a result the vertical wire segments of the nets get short-circuited. 

(b) A feasible allocation of the intervals of two different nets to tracks where the 

interval of a net with the top terminal is assigned to at least one track above the 

interval of a net with the bottom terminal to conform to the vertical constraint present 

in the column. 

 

 

 

 

Figure 1.21: The vertical constraint graph of the channel specification shown in 

Figure 1.18. 

The vertical constraints among the nets in a channel are represented by a 

directed graph, called the vertical constrains graph (VCG) defined as follows. For 

every net, we introduce a vertex, and there is a directed edge from vi to vj if and only 

if the corresponding net ni is vertically constrained to net nj. The VCG of the channel 

instance in Figure 1.18, is shown in Figure 1.21. 

The horizontal and vertical constraints are two important characterizations of a 

channel routing instance. The horizontal constraints determine whether two intervals 
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Ii and Ij of two different nets ni and nj, respectively, are assignable to the same track. 

The vertical constraints determine the order in which the intervals are to be assigned 

from top to bottom across the height of the channel. An undirected edge {vi, vj} in the 

HCG indicates that the corresponding intervals Ii and Ij are not assignable to the same 

track in routing a solution under the (grid-based) reserved two-layer (VH) (no-dogleg) 

Manhattan channel routing model. The channel density (or only density) of a channel 

is the maximum number of nets passing through a column. Let us denote the channel 

density by dmax. For the channel specification in Figure 1.18, the channel density, dmax 

is four, because at most four nets (n5, n4, n7, n8 or n2, n5, n6, n3) are involved in 

horizontal constraints in a column. 

On the other hand, a directed edge (vi, vj) in the VCG indicates that the net ni 

has to connect a top terminal and the net nj has to connect a bottom terminal at the 

same column position. Therefore, the interval Ii must be assigned to a track above the 

one to which the interval Ij is assigned. For an acyclic VCG, let us denote the length 

of the longest path in the VCG by vmax, where vmax is same as the number of vertices 

belonging to the path. Thus, for the channel instance shown in Figure 1.18, the length 

of the longest path in the (acyclic) VCG, vmax  4, comprising vertices v2, v1, v7, v8. 

1.4.4 A Lower Bound on the Number of Tracks 

Typically, there are various assumptions as well as objectives in solving a given 

channel instance. A routing model itself is a supposition that guides to the other 

beliefs as well; some of which are briefly mentioned here. As the input of a channel is 

given, that means the top row of terminals, as well as the bottom row of terminals, is 

given that are equal in length. Moreover, this implies that the channel length and 

hence the number of columns are also given, which is fixed for a given channel 

specification. 

A grid is assumed in a grid-based routing model, where rectilinear wire 

segments are allowed to route; terminals are vertically aligned along the columns. 

Among several mutually conflicting objectives, the prime objective is to minimize the 

channel height, which is reflected by minimizing the number of tracks or the channel 

area. 

Hence, we may define the channel routing problem as follows. The channel 

routing problem (CRP) is the problem of assigning the horizontal wire segments of a 
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given set of nets (in the form of netlist or channel specification) to tracks without any 

conflict (or satisfying constraints), so that the number of tracks required, and thus the 

channel area, is minimized. 

Note that we need at least dmax tracks, as well as at least vmax tracks to compute 

a two-layer routing solution under the reserved layer (no-dogleg) non-overlap 

Manhattan routing model when the channel consisting of a set of fixed terminals and 

the VCG for the channel is acyclic. Besides, when the VCG of a channel contains a 

cycle, then there is no question of computing the length of the longest path in the 

VCG, i.e. vmax. In such a case, a net that is belonging to a cycle in the VCG is 

supposed to be assigned above (or below) to itself, which is meaningless (or 

ambiguous). Therefore, for an acyclic VCG, max(dmax, vmax) is a lower bound on the 

number of tracks required for a routing solution in the two-layer VH channel routing 

model [49, 96]. This is because any two nets belonging to the set of nets in dmax must 

be assigned to two different tracks; the same is true for the set of nets in vmax. 

We may further make a note of that the HCG of a channel instance is an 

interval graph, which is a kind of perfect graph [8, 29, 34, 36, 70]. Further, it can be 

easily shown that dmax, the density of the channel, is same as the size of the maximum 

clique of the underlined interval graph [8, 29, 34, 36, 49, 70, 96]. 

1.4.5 Optimization Issues Involving the Channel Routing Problem 

So far, we have viewed the channel routing problem in an abstract framework. Based 

on this abstraction, there are some usual objectives that we would like to achieve. 

Some of the usual factors (or objectives) to optimize the cost of a routing solution are 

area minimization, wire length minimization, via minimization, layer minimization, 

and so on. All these cost factors are inter-related, and we need to assign priorities on 

them that can reflect a real situation. Here, we have discussed these factors in brief.  

1. Area: A primary objective in channel routing is to minimize the total routing 

area of a channel. Minimization of routing area (space) for each of them 

eventually, reduces the overall (global) routing area. If routing area is 

minimized, the cost of production is reduced, and yield is enhanced, as 

impurities (or defects in the wafer) could be avoided in realizing the same 

circuit which is smaller in size; and out of the same wafer, more chips are also 

produced. 
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2. Net wire length: Wire length is another important cost factor, as more wire 

means more cost. Also, a long wire is responsible for signal propagation delay. 

For some net, often long wires could be there as a part of design, but for 

critical nets and nets for power and ground lines, long wires are not allowable 

at all. Later on, we will find that long wires are hazardous from an electrical 

point of view as well. In VLSI channel routing, the total wire length 

minimization is an important problem, and this problem is much more 

important when the objective is to minimize the longest net. 

3. Via: A via is introduced to connect two orthogonal wire segments of a net or 

in a case where the necessity of a change of layer is a must. In a grid-based 

routing model, a via is placed at the corresponding grid point. Often in dogleg 

routing, the area is reduced sacrificing more vias. In CRP, vias are minimized 

to improve the alignment of masks. Besides, vias are often difficult to 

fabricate. Vias also increase delay and electrical hazards, and therefore, need 

to be reduced in high performance designs. 

4. Layer: Increase in the number of layers causes minimization of routing area. 

However, this increases the size of the chip in the third dimension and the cost 

of fabrication. Thus, one of the important objectives is not to introduce more 

layers, if a routing solution is achieved within a specified area using a 

minimum number of layers of interconnect. 

For general-purpose chips, the above objectives are attempted to minimize (or 

optimize) in isolation or sometimes, in combination. However, there are several high 

performance issues to make a routing solution reliable and practicable, even if the 

routing solution is feasible. For designing high performance chips, there are some 

supplementary objectives such as reducing crosstalk, signal delay, power 

consumption, heat generation, hot spot formation, and so on and so forth. If we could 

reduce all these factors in computing a routing solution, then a channel routing 

solution with high performance is obtained. Some of these are discussed in brief as 

follows. 

1. Crosstalk: Crosstalk is one form of noise and is a kind of electrical hazard, 

which is created due to the mutual capacitance between adjoining wires. 

Propagation delay increases and logic faults may occur because of increase in 
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crosstalk. Crosstalk between wires is proportional to the coupling capacitance 

which in turn is proportional to the coupling length, i.e. the total length of the 

overlap between (adjacent) wires. Crosstalk is also proportional to the 

frequency of operation and inversely proportional to the separating distance 

between wires. Therefore, for high performance routing, it is required to 

consider all these issues, and through minimization of crosstalk, these could 

all be reduced below a real limiting value. The aim should be to avoid 

overlapping wire segments that lie close to each other. 

 

2. Signal delay: Delay is another important criterion for high performance 

routing. In VLSI design, often it is possible that a critical path is cut many 

times by the partition [81], and thus, the delay in the path may be too long to 

meet the goals of high performance requirements. The design for high 

performance routing requires intelligent partitioning algorithms to reduce the 

cut size (that signifies interconnecting wires) as well as to minimize the delay 

in the critical path. Often the delay is a consequence of a result of electrical 

hazards (in the form of crosstalk) as has been mentioned above. 
 

3. Power consumption: In high performance routing, the power consumption by 

any net should be controlled; otherwise, there will be a mismatch of consumed 

power between nets. Thus, even distribution of power is an important issue in 

high performance routing. On the contrary, a spot over the chip could become 

more heated and may get melted. Thus, the proper cooling arrangement is also 

required for surviving of the chip. This problem is related to wire length 

minimization and even distribution of wires in routing. Nowadays, low power 

is one of the most important research domains in devising VLSI chips or any 

portable electronic gadgets. 
 

4. Hot spot: For high performance routing, there should never be a part of a 

channel which is highly congested. As a matter of fact, the propagation of 

signals may generate heat that could cross a specified (upper) limit. The spot 

with crossing heat limit is called a hot spot. Congestion of active components 

on a chip floor and wires in routing, power consumption, and hot spot 

formation, these are all interlinked. To remove hot spots, rerouting is an 

alternative way of probable solutions; otherwise, if rerouting fails to reduce 

congestion (of wires), the adequate cooling arrangement is necessary. 
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In this thesis, we study the crosstalk minimization problem in two-layer (VH) 

channel routing, in the routing models specified above, where we assume a pre-

computed channel routing solution with reduced area. In other words, our objective is 

to reduce crosstalk in a given channel routing solution (with a fixed number of tracks 

or channel area) by computing another routing solution (with reduced crosstalk) 

keeping the channel area same. In more details, the chapter-wise contribution of the 

thesis is briefly mentioned in the following section. 

1.5 Outline of the Thesis 

As fabrication technology advances the feature size reduces. The devices are placed 

closer to each other, and the interconnecting wire segments are assigned narrower 

pitches. However, the circuits’ operations are realized at higher frequencies. As a 

result, electrical hazards, viz., crosstalk between wire segments are produced. More 

crosstalk means more noise and more signal delay, and hence, a reduced circuit 

performance. Therefore, it is desirable to develop channel routing algorithms that not 

only reduce the number of tracks (i.e. channel area) but also crosstalk. The theoretical 

aspects of the computational problems along with the presence of crosstalk as an 

inherent electrical phenomenon in network-on-chip (NoC) and also in mixed-signal 

ICs in deep submicron digital CMOS technology introduced for devising VLSI 

circuits have been briefly discussed and reviewed in Chapter 2 of the thesis. 

In Chapter 3, we study several crosstalk minimization problems in two-layer 

VH channel routing in formal frameworks. We first introduce sum crosstalk 

minimization problem. The sum crosstalk is the amount of total crosstalk between 

horizontal wire segments of the nets that are assigned to adjacent tracks in a channel 

routing solution. Then we introduce bottleneck crosstalk minimization problem. The 

bottleneck crosstalk with respect to a feasible routing solution is the maximum 

amount of crosstalk due to overlapping between any pair of adjacent horizontal wire 

segments of two different nets. We show that these problems are intractable. This is 

true irrespective of whether non-overlapping nets are grouped for their assignment to 

tracks or not. In this chapter, we also address if there is a polynomial time 

approximation algorithm with guaranteed error bound for the crosstalk minimization 

problems, and subsequently prove that if P ≠ NP, there cannot exist such an 
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approximation algorithm. It is further shown that all these problems are also NP-hard 

even if doglegging is allowed. 

Hardness results obtained in Chapter 3 leaves one option to deal with these 

problems, design of efficient heuristics for them. In Chapter 4, we develop crosstalk 

minimization heuristics for the two-layer channel routing, where the channel instances 

are simple. Then we extend it to two-layer routing for general channel instances. For 

each such instance, two algorithms have been developed; one is Track Interchange, 

and the other one is Net Change. The algorithms are efficient enough in reducing 

crosstalk from 21% up to 36% for simple channel instances and on an average of 12% 

for general channel instances. 

Chapter 5 deals with designing algorithms for the generation of random 

channel instances, for their use in computing reduced crosstalk channel routing 

solutions in VLSI physical design. Channel instances are usually of two types: simple 

and general. A simple channel instance does not contain any vertical constraint, 

whereas a general channel instance contains both horizontal as well as vertical 

constraints. The novelty of the heuristics designed in Chapter 4 can be judged better if 

it works for a variety of a large number of randomly generated instances of the 

problem. In this chapter, we develop two random channel instance generators that 

vary from 14 to more than 33000 in channel length and from 10 to 15000 in the 

number of nets belonging to a channel. For each net number, we generate 200 simple 

as well as general random channel instances, with a varying number of terminals per 

net, and use each of them for reducing crosstalk. 

An exhaustive amount of computations has been performed in this research 

work to support all the algorithms developed in this thesis in Chapters 4 and 5. All 

results obtained have been included in Chapter 6 as part of experimentation relating to 

our work. A limited number of sample channel instances have been incorporated in 

this chapter though we have generated thousands of such instances of varying length. 

A selected set of routing solutions have also been presented in this chapter where we 

show an initial routing solution, a reduced crosstalk routing solution after the 

execution of the algorithm Track Interchange, and then a further reduced crosstalk 

routing solution after the execution of the algorithm Net Change. All our experimental 

results are highly encouraging. 
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In Chapter 7, we show that the algorithms Track Interchange and Net Change 

can be parallelised to get efficient parallel algorithms for simple instances of channel 

specifications. The Track Interchange algorithm uses a sorting algorithm which can 

also be easily parallelized. This readily gives us a parallel version of algorithm Track 

Interchange. Whereas, in the second algorithm, a processor, which is responsible for a 

net, searches for a blank space in some other track, if the net is interchangeable, such 

that this interchange reduces a maximum amount of crosstalk. The algorithms are 

efficient enough in terms of their computational complexity. 

The thesis is concluded in Chapter 8 with some probable open problems for 

future researchers. In this thesis, several issues relating to two-layer crosstalk 

minimization problem in channel routing have been considered and resolved. Even 

then, there are several other issues yet to be studied. Some of them are developing 

algorithms for computing two-layer channel routing solutions with better (or further 

reduced) bottleneck crosstalk without sacrificing area, algorithms for reduced 

crosstalk in two-layer dogleg routing solutions, and parallel algorithms for reducing 

crosstalk for general channel instances. The crosstalk minimization problem in the 

three-layer VHV and HVH channel routing models are yet open for potential 

investigators. 
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Chapter: 2 

Literature Survey on Crosstalk Minimization 

Problem 
 

 

2.1 Overview 

In this chapter, we briefly survey a few results on channel routing that are relevant to 

the work presented in this thesis. We view channel routing as a combinatorial problem 

and survey some fundamental intractability results for the area as well as wire length 

minimization in channel routing. Since the CRP is NP-hard for both the problems 

mentioned above, extensive research has been done on designing efficient algorithms 

for meeting some desired target as usual cost factor(s) to be optimized for routing 

channels. By the way, mainly in the last two decades, some high performance factors 

have been addressed in a discrete way, but plenty of work is yet to be done in this 

domain of research. Only very few researchers have worked on avoiding or 

minimizing crosstalk and among them almost none on channel routing as a part of 

high performance VLSI design for circuit synthesis. 

In this chapter, we have reviewed the effects and impact that crosstalk has on 

the performance and reliability of VLSI circuits and systems. With developments in 

VLSI fabrication technology, as feature size decreases and communicating wires are 

seated as close as possible, circuits also operate at higher frequencies. Thus, reduction 

in crosstalk among interconnecting wire segments is becoming an essential concern 

for VLSI physical design. In this chapter, we have also offered a short and snappy but 

informative survey of the various methods that researchers worldwide are 

implementing for a priori crosstalk avoidance or a posteriori crosstalk minimization in 

VLSI systems from the point of view of fabrication over the past few decades. 

In Section 2.2, we converse some basic terms and preliminaries pertinent to 

the discussion on computational complexity as given in [28, 66]. In this section, we 

also address some related problems on two-layer (VH) area and wire length 

minimization in channel routing, either that are polynomial time computable or NP-

hard. In Section 2.3, we present a concise survey of the development of evading 

and/or diminishing crosstalk in several spheres of research including network-on-chip, 
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inbuilt evasion in fabrication, optical network, nanometer design, circuits and 

communication systems, gate sizing, signal transition, interconnect spacing in analog 

and digital circuits, frequency domain, error control coding and bus-coding, routing in 

VLSI domain, and so on and so forth. Some soft computing based methods have also 

been adopted as has been included in this review. In Section 2.4, we summarize the 

chapter by making some comments on crosstalk minimization along with mentioning 

a few established intractable results in two-, three-, and multi-layer channel routing. 

2.2 Some Basic Terms and Preliminaries on the Theory of NP-

Completeness 

A decision problem  is a problem stated in terms of generic parameters for which 

the solution is either “yes” or “no”. That means either the guessed solution to a 

problem under consideration is a valid solution or the other, but we can check it in 

polynomial time. In general, all decision problems that can be solved in polynomial 

time by a nondeterministic computer belong to the class NP. Most of the apparently 

intractable problems encountered in practice, when phrased as decision problems, 

belong to this class [28, 66]. 

An instance I of problem  is obtained by assigning a set of specific values 

to the parameters of . The set of all (valid) instances of  is denoted by D, whereas 

Y  D is the set of all instances of  for which the solution is “yes”. P is the class 

of all decision problems each of which is polynomial time computable by a 

Deterministic Turing Machine (DTM). DTMs are related in polynomial time to the 

high-level programming languages. Therefore, if an algorithm can be devised for 

solving  whose computational space as well as time complexity is polynomial, then 

  P. For example, let us consider the following decision problem 1. 

Problem: Two-layer (VH) restricted dogleg channel routing problem of area 

minimization with multi-terminal nets in the absence of vertical constraints (1). 

Instance: A channel specification of length m (i.e. the length of TOP or BOTTOM 

sequence of fixed terminals) that contains n  m multi-terminal nets such that either 

the top terminal or the bottom terminal (or both) in each column is a non-terminal (or 

0, not to be connected), and a number t of tracks between TOP and BOTTOM. 
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Question: Is there a permissible assignment of the wiring of all nets in the channel in 

the two-layer (VH) restricted dogleg Manhattan channel routing model that uses no 

more than t tracks? 

To judge the nature of the problem 1, now we consider the following 

decision problem 2. 

Problem: Two-layer (VH) no-dogleg channel routing problem of area minimization 

with two-terminal nets in the absence of vertical constraints (2). 

Instance: A channel specification of length m (i.e. the length of TOP or BOTTOM 

sequence of fixed terminals) that contains n  m two-terminal nets such that either the 

top terminal or the bottom terminal (or both) in each column is a non-terminal (or 0, 

not to be connected), and a number t of tracks between TOP and BOTTOM. 

Question: Is there a permissible assignment of the wiring of all nets in the channel in 

the two-layer (VH) no-dogleg Manhattan channel routing model that uses no more 

than t tracks? 

Since there are no vertical constraints for channel instances in this domain of 

channel routing problem, polynomial time algorithms exist for finding a legal wiring 

using no more than density number of tracks for the problem 2 [49, 52, 53]. Thus, 

one needs only to compare the density of the channel and t to determine if a specific 

instance I2  Y2. Hence, we conclude by saying that 2  P. 

Now, it is interesting to observe that if 1 contains only two-terminal nets, 

then such an instance of 1 becomes an instance of 2 only, as allowing restricted 

doglegging in the case of multi-terminal nets is analogous to no-doglegging if the 

number of terminals per net is limited to exactly two. Therefore, we conclude that 1 

also belongs to P [49, 52, 53]. 

Incidentally, for some problem , there may not be any (optimal) polynomial 

time computable algorithm. However, if a guessed solution S for some instance I 

(for ) is given, the guess can be checked in polynomial time to verify if it 

corresponds to a “yes” or “no” solution in a reasonable amount of time (or in 

polynomial time) for . This is comparable by saying that there exists a polynomial 

time Non-Deterministic Turing Machine (NDTM) for solving . NP is defined to be 

the class of decision problems each of which can be solved in polynomial time by an 
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NDTM. It is known that P  NP [28]; that means a problem which is 

deterministically polynomial time computable is also non-deterministically 

polynomial time computable, but the reverse is not true. Thus, we may assert in some 

other words that when a problem is a polynomial time computable one, then a 

polynomial time computable non-deterministic algorithm (using NDTM) is there 

which is more powerful to solve the problem than a polynomial time computable 

deterministic algorithm (using DTM) to solve the same. However, it is yet to be 

proved whether P  NP or P  NP [28]. 

Consider the following problem 3 [41]. 

Problem: Two-layer (VH) no-dogleg channel routing problem of minimizing area 

with two-terminal nets (3). 

Instance: A general channel specification of length m (i.e. the length of TOP or 

BOTTOM sequence of fixed terminals) that contains n  m two-terminal nets, and a 

number t of tracks between TOP and BOTTOM. 

Question: Is there a permissible assignment of the wiring of all nets in the channel in 

the two-layer (VH) no-dogleg Manhattan channel routing model that uses no more 

than t tracks? 

3 is an example of a problem for which there is no known polynomial time 

algorithm that computes an optimal solution for each and every instance of this 

problem. However, given a set of routes in a guessed solution S3 for all the nets of an 

arbitrary instance I3 (for 3), we can check in polynomial time whether all these 

routes provide feasible (or valid) wiring for the channel. Moreover, the number of 

tracks present in S3 can also be compared to t. Thus, in polynomial time, a check can 

be made to verify whether the guessed solution S3 for the (assumed) random instance 

I3  Y3. This implies that 3  NP. 

In the theory of NP-completeness, there is always a pair of problems that is 

reducible (or transformable) to each other in polynomial time. In some other words, if 

a polynomial transformation is applied to an instance of the first problem, a matching 

instance of the second problem is produced, and if a polynomial transformation is 

imposed on an instance of the second problem, an analogous instance of the first 
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problem is obtained. Let us consider two decision problems x and y. A polynomial 

transformation from x to y is a function f : Dx  Dy such that 

1.  f has a polynomial time computable algorithm, and 

2.  Ix  Yx if and only if f(Ix)  Yy. 

If such a function f exists, then x is polynomial time transformable (or 

reducible) to y, which is denoted by x  y. Such a transformation shows (and 

proves) that y must be as hard as x. x and y are polynomially equivalent if x 

 y and also if y  x. A decision problem  is NP-complete if   NP and for 

every problem   NP,   . NP-complete problems form a class of polynomially 

equivalent problems such that if one problem in this class has an optimal polynomial 

time computable algorithm for its solution, then all problems in the class do have the 

same (means each of the remaining problems also has a polynomial time computable 

algorithm for its respective optimal solution) [28, 66]. 

LaPaugh proved that the circular arc colouring (CAC) problem is transferable 

to 3 in polynomial time [41, 49]. The decision version of the circular arc colouring 

problem is as follows [28, 49]. 

Problem: Circular arc colouring (CAC). 

Instance: A finite set of arcs of a circle and a positive integer k. 

Question: Is there an assignment of colours numbered 1 through k to the arcs such 

that any two arcs that overlap are assigned different colours? 

CAC is a well-known NP-complete problem [28]. Therefore, 3 is also NP-

complete [41, 49]. 

Now suppose that p is a new problem that belongs to NP. Also, let q is a 

known NP-complete problem. Moreover, say all instances of p can be restricted in 

the fashion that makes the restricted version p, exactly the same problem as q. 

Then solving p must be as hard as solving q. Thus, p must also be an NP-

complete problem. This technique of proving a (new) problem NP-complete is called 

proof by restriction [28]. Consider the following problem 4. 

Problem: Two-layer (VH) restricted dogleg channel routing problem of minimizing 

area with multi-terminal nets (4). 
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Instance: A general channel specification of length m (i.e. the length of TOP or 

BOTTOM sequence of fixed terminals) that contains n  m multi-terminal nets, and a 

number t of tracks between TOP and BOTTOM. 

Question: Is there a permissible assignment of the wiring of all nets in the channel in 

the two-layer (VH) restricted dogleg Manhattan channel routing model that uses no 

more than t tracks? 

It is easy to see that 4 reduces to 3 by restricting the number of terminals 

for each net belonging to the channel to two [41]. Therefore, 4 is NP-complete. 

Now we like to mention another problem 5 for minimizing wire length in 

two-layer channel routing. The problem is as follows. 

Problem: Total wire length minimization in two-layer (VH) no-dogleg channel 

routing (5). 

Instance: A general channel specification of multi-terminal nets and a positive 

integer k. 

Question: Does there exist a two-layer (VH) no-dogleg routing solution in the 

Manhattan channel routing model so that the total wire length is k or less? 

In [49, 57, 59], it has been proved that 5 is an NP-complete problem, and for 

proving the same the necessary polynomial time reduction is made from an instance 

of the well-known NP-complete problem sequencing to minimize weighted 

completion time (SEQ) [28] to it. Before we declare the sequencing problem, we 

necessitate explicating a few notations. T is a set of n tasks t1, t2, …, tn. For every task 

ti, l(ti) is the duration for which the task ti runs, w(ti) is the weight of task ti, and (ti) 

is the instant of time when the task ti is sequenced. 

Problem: Sequencing to minimize weighted completion time (SEQ). 

Instance: A set T = {t1, t2, …, tn} of tasks, a set of partial orders  on T, for each task 

ti  T a duration l(ti)  Z+, a weight w(ti)  Z+, and a positive integer k. 

Question: Does there exist a one processor schedule  for T that obeys the 

precedence constraints and for which i ((ti) + l(ti))∙w(ti), for 1  i  n, is at most 

same as k? 
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2.3 A Review on Crosstalk Avoidance and Minimization 

With advancements in fabrication technology, there is a constant reduction in 

minimum feature size in VLSI chips [2, 14, 88]. Subsequently, interconnecting wires 

are also being placed in closer proximity to minimize interconnection delay and the 

real estate required for routing. With the decrease in circuit delay, circuits start 

operating at higher frequencies. Thus, reduction in crosstalk becomes an important 

consideration for VLSI physical design. Crosstalk mainly arises due to the coupling 

capacitances between adjacent interconnecting wires. The crosstalk arising in the 

course of two wires is found to be proportional to the coupling length between them; 

the capacitance, in turn, is determined by the relative positions of the wires. The 

length of the overlapping segments of any two parallel interconnecting wires 

determines the coupling capacitance between them. The coupling capacitance is also 

inversely proportional to the distance separating two parallel wires. The coupling 

capacitance between a pair of orthogonal wires is negligible compared to that between 

a pair of parallel wires and is thus reasonably assumed to be non-existent. The 

frequency of the signals travelling through two parallel wires also affects the coupling 

crosstalk arising between them. 

Crosstalk results in noise which may lead to unexpected circuit behaviour. The 

absolute limit of crosstalk that can be tolerated depends on two things: the power 

driving the circuit and the sensitivity of the circuit. In order to reduce noise in any 

particular design, it thus becomes imperative to minimize the total crosstalk. In this 

chapter, we present a review of various crosstalk avoidance and minimization 

techniques that researchers have proposed over the past decades. While some of them 

try to incorporate changes in the design phase to avoid the generation of crosstalk, 

others attempt to modify the signal using different schemes so as to minimize the 

crosstalk arising due to the signals. 

2.3.1 Crosstalk in IC based Environment 

2.3.1.1 Simulated Annealing based Approach [76] 

In [76], the authors have devised a simulated annealing (SA)-based high-level 

synthesis algorithm for the purpose of minimization of crosstalk activity in any given 

data environment. They have focused on bus-based architectures as bus-lines usually 

have a well-defined neighbourhood. The main objective of the authors was to 
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minimize the crosstalk in the worst case scenario concerning signal transmission 

pattern. In order to achieve this, they have also incorporated bus reordering and data 

transfer invert encoding schemes in addition to synthesis moves. 

Experimental results suggest that there is a possibility of significant crosstalk 

reduction considering both resource and latency constraints. The devised framework 

has shown an average improvement of 23.5% over non-optimized designs. The 

authors have also claimed to have achieved up to 75% reduction in bus-lines without 

requiring shielding in the case of a set of nine DSP benchmarks. Furthermore, they 

have presented an idea for a circuit for the purpose of detection and elimination of on-

chip crosstalk. 

2.3.1.2 Signal Transformation Avoidance Technique [87] 

The problem of crosstalk manifests itself in integrated circuit design whenever 

overlapping stretches of wires are present. This is due to the parasitic coupling 

induced between the adjacent signal conducting wires. It has been intended in [87] to 

find a solution to this problem using a signal transformation avoidance technique. The 

authors have used simulated annealing to search for an optimal layout pattern that has 

the minimum crosstalk. They have modelled the crosstalk involved as a function of 

energy stored in capacitances, intending to reduce further the crosstalk by rearranging 

wire signal transition. The proposed framework has been able to bring about a 

reduction of about 24.4% in energy for the optimal result obtained and about 6.9% for 

the average result. 

2.3.2 In-built Crosstalk Avoidance in Fabrication 

2.3.2.1 An Alternative Layout Scheme for Crosstalk Avoidance [45] 

Advancements in fabrication technology have steered devices to enter the nanometer 

regime. This has led to the design of several new logic and memory architectures. The 

objective of these architectures is to achieve higher packing densities keeping power 

consumption and delay within acceptable limits compared to contemporary CMOS 

architectures. The minimum wire spacing attainable and thereby the maximum 

packing density achievable are constrained by the crosstalk induced in such nano-

scale devices. 

In [45], the authors have analyzed the crosstalk which is produced in sub-

lithographic programmable logic array architectures. They propose an alternative 
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layout scheme with the intention of reducing the effects of crosstalk in adjacent wires. 

Their proposed framework makes use of an interleaved layout scheme whereby two 

out-of-phase but non-overlapping clocks prevent simultaneous signal transition in two 

neighbouring wires. 

The results obtained by the authors suggest that their proposed framework 

provides better tolerance against the induced crosstalk compared to other sub-

lithographic programmable logic array architectures (crosstalk of about 30% of VDD 

compared to the worst case scenario of about 70% of VDD). The authors have also 

analyzed the effect of different parasitic capacitances on the induced crosstalk. 

2.3.2.2 Crosstalk Minimization in Optical Networks [72] 

A nonlinear crosstalk minimization algorithm that simultaneously considers self-

phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing 

(FWM) has been presented and experimentally assessed by the authors. For a passive 

optical network (PON), in the worst case scenario, a 1 dB power gain is reported by 

the authors for a bit error rate (BER) of 109. 

The authors have experimentally demonstrated the effectiveness of their 

proposed algorithm that is based on Volterra series and genetic algorithm (GA). The 

authors have reported improvements up to 1.8 dB in the Q factor, in the case of a 

WDM ring transporting 1610 Gbps on-off keying non-return-to-zero codes through 

the standard single-mode fiber, compared to the non-optimized scenario. 

2.3.2.3 Crosstalk Avoidance in Nanometer ICs [35] 

Application of multi-bit flip-flops (MBFFs) to bring about a reduction in clock power 

in modern nanometer ICs is a promising lower-power design technique. Researchers 

have been trying to utilize more MBFFs with as the larger number of bits as possible 

for more clock power saving. However, an MBFF with a larger number of bits may 

lead to serious crosstalk problems due to the close spacing of interconnecting wires 

belonging to different signal nets connected to the same MBFF. 

The authors have analyzed, evaluated, and compared the relationship between 

power consumption and crosstalk on the application of MBFFs with different 

numbers of bits. To solve the addressed problem, the authors have proposed a novel 

crosstalk-aware power optimization approach to optimize power consumption while 
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satisfying the crosstalk constraint. Experimental results show that the proposed 

approach is very effective in crosstalk avoidance when applying MBFFs for power 

optimization. 

2.3.2.4 Crosstalk Reduction in Fabrication Technologies [78] 

The authors of this paper have proposed to reduce crosstalk for deep submicron 

(DSM) and very deep submicron (VDSM) technologies to increase reliability and 

performance. The proposed methodology aims to reduce the switching activity of the 

data buses by an efficient data encoding technique. The authors have suggested that 

their anticipated technique can reduce the total crosstalk delay by around 36% to 40% 

compared to unencoded data and 0.3% to 32% compared to others techniques for 12-

bit, 21-bit, 38-bit, and 71-bit data buses. 

2.3.3 Crosstalk Reduction in Circuits and Systems 

2.3.3.1 Crosstalk Reduction in Communication Systems [92] 

In the context of the design of integrated high-density circuits, crosstalk is one of the 

major concerns. A wireless communication system can deviate significantly from its 

intended performance, especially in the high-frequency range. It has been studied in 

[92] that the relationship between the orientation of and the crosstalk between dual 

stripline. The authors have analyzed crosstalk effects in the frequency as well as time 

domains and have concluded that the near-end and far-end crosstalk, respectively, 

increases and decreases based on a change in the orientation of the stripline from 0 to 

90 degrees. 

2.3.3.2 A Gate Sizing Technique for Crosstalk Minimization [30] 

In [30], the authors suggest a novel gate sizing approach for circuit optimization in the 

presence of scarce information about the distributions of the process variations. The 

projected framework is said to rely on the concepts of utility theory and risk 

minimization for the multivariate optimization of parameters, namely, delay, dynamic 

power, leakage power, and crosstalk noise, via gate sizing. 

The authors have compared the results of single-metric optimization for 

dynamic power, leakage power, and crosstalk noise with equally weighted multi-

metric optimization and the results suggest that the proposed algorithm can achieve a 
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multifold speedup in execution times compared to the traditional approaches. The 

authors have designed the algorithm to allow for selective optimization of the metrics 

subject to relevant design requirements. To achieve this, the authors have proposed 

assigning a high weight vector to the particular metric that needs to be optimized. In 

such cases, the authors have optimized the corresponding metric at the cost of sub-

optimizing the other metrics. 

2.3.3.3 Encoding Schemes for Reduction in Signal Transition in Crosstalk 

Minimization [89] 

This paper recommends encoding schemes to achieve a reduction in transitions 

between the previous and present states of wire as well as transitions in adjacent 

wires. The reduction in transition improves the performance regarding power 

dissipation and crosstalk. The authors have classified groups of three wires into five 

types depending upon their respective nature of transitions of signals in the wire: 

Type-0, Type-1, Type-2, Type-3, and Type-4. 

Type-0 coupling occurs when all of the 3-bit wires are in the same state 

transition, i.e. from 000 to 111 with coupling capacitance being zero in this case. 

Type-1 coupling occurs when there is a transition in one or two of the wires, and the 

authors have denoted the coupling capacitance in this case by CC. A Type-2 coupling 

occurs when the central wire is in the same state transition with one adjacent wire and 

the opposite state transition with the other wire. The coupling capacitance assumed by 

the authors is 2CC in this case. A Type-3 coupling occurs when the central wire 

undergoes the opposite state transition with one of the other wires while the remaining 

one remains quiet, the coupling capacitance, in this case, being 3CC. In Type-4 

coupling, all three wire transitions in the opposite states with respect to each other 

with a coupling capacitance effect of 4CC. 

The authors have achieved switching activity reduction of 34.84% and 36.23% 

using their proposed methodologies Method 1 and Method 2, respectively. The 

coupling activity reduction of Method 1 and Method 2 is 20.00% and 20.54%, 

respectively. The encoding methods proposed by the authors apparently reduce the 

worst crosstalk effects significantly and transforms them to lesser harmful Type-0 and 

Type-1 couplings. The authors have suggested that Method 1 reduces Type-4, Type-3, 

and Type-2 couplings by 100%, 77.4%, and 50.0%, respectively and Method 2 
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achieves a reduction in Type-4, Type-3, and Type-2 couplings by 100%, 77.4%, and 

60.0%, respectively. 

2.3.4 Crosstalk Reduction in Communication 

2.3.4.1 Coding Scheme for Reduction of Signal Transition [77] 

This paper proposes a technique which reduces power consumption due to crosstalk in 

data buses which are fed to DSP / communication devices. The proposed coding 

technique reduces the transition activity in the input signals. The authors have 

suggested that this shall consequently result in the reduction of power consumption. A 

new bus coding technique has been proposed by the authors to achieve less power 

reduction in transmission. 

SPICE simulations have been carried out by the authors for interconnect lines 

of different dimensions at various technology nodes: 180, 130, 90, and 65 nm. The 

authors have claimed that their projected model achieves a reduction of 58.25% and 

35.00% in the switching activity and the power consumption, respectively, for 16-bit 

data buses. The authors have studied higher length data buses as well and claim to 

have achieved a reduction of 45.62% and 27.00% in the switching activity and the 

power consumption, respectively, for 256-bit data buses. 

2.3.4.2 A New Dielectric Structure to Reduce Crosstalk in ICs [46] 

To overcome crosstalk noise and delay uncertainty in modern very large scale 

integration (VLSI) design, a new dielectric structure has been suggested in [46] for 

integrated circuits. Near- and far-end crosstalk noises are reduced 45.2% and 15.0%, 

respectively. The authors have named their proposed structure, gradually low-K. The 

authors also suggest that the structure exhibits negligible side-effects in terms of delay 

and power consumption. 

According to their frequency domain simulations, the crosstalk measure has 

been reduced by 1 dB in the frequency range of 1–35 GHz for simulated structures 

with respect to the traditional low-K one. Moreover, according to the time domain 

simulations done by the authors, the proposed structure reduces the crosstalks: NEN 

(near-end noise) and FEN (far-end noise), by 45.2% and 15.0% in the test structure, 

respectively. 
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2.3.5 Crosstalk Avoidance in Network-on-Chip 

2.3.5.1 Crosstalk Avoidance in Network-on-Chips (NoCs) [65] 

Network-on-chip is evolving into a revolutionary method for the integration of 

multiple cores in a single system-on-chip (SoC). Widespread adoption of network-on-

chip (NoC) paradigm will only be possible if the signal integrity issues that arise due 

to crosstalk between adjacent wires are properly addressed. Incorporation of crosstalk 

avoidance coding (CAC) in NoC data streams can bring about a reduction in the worst 

case coupling capacitance of inter-switch wire segments and subsequently, a 

reduction in energy dissipated. The energy savings depend on the distribution of inter-

switch wires of different lengths and structure of the packet. 

The authors have proposed a method for reducing the energy dissipation by 

eliminating the need for CAC coding/decoding of payload flits at intermediate 

switches between communicating NoC cores. It has been observed in [65] that the 

maximum energy savings have been achieved for the folded-torus architecture due to 

the uniformly distributed long inter-switch wire segments. The authors have also 

presented how their method of modifying the packet structure and reducing the 

coding/decoding overhead makes it possible to achieve higher savings in energy in 

conjunction with crosstalk avoidance. 

2.3.5.2 Flow-Control in NoC for Avoiding Crosstalk [67] 

The authors have proposed a flow-control method, for tackling the challenge posed by 

crosstalk faults in network-on-chips (NoCs), which is power-efficient. The authors 

have identified opposite direction (OD) transitions as the source of crosstalk faults in 

NoC communication channels. The proposed method, named FRR (Flit Reordering / 

Rotation) by the authors, combines three coding techniques to eliminate the OD 

transitions entirely. 

The first coding technique mechanism is known as flit-reordering. It, as the 

name suggests, reorders flits of every packet to find a flit sequence that generates the 

least number of OD transitions. The second technique is flit-rotation. It logically 

rotates the content of every flit in a packet with respect to previously sent flit to 

achieve an even greater reduction in the number of OD transitions. The third 
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mechanism, known as flit-insertion, investigates flits to find the OD transitions which 

cannot be removed by the first and the second mechanisms. The third mechanism 

strives to eliminate the appearance of OD transitions by inserting null-flits between 

the required flits completely. 

The authors have evaluated their proposed FRR method in two ways. First, 

they have carried out VHDL-based simulations for 16- and 32-bit channels with the 

constraint that the maximum number of reorderings and rotations in the first and 

second mechanisms respectively are limited to 2, 4, and 8. Secondly, the authors have 

developed an analytical model to calculate and compare the expected number of OD 

transitions in an unprotected NoC as well as an FRR-enabled NoC. 

The authors have also suggested that the results obtained from both the 

simulation and the analytical model, confirm that the FRR method can completely 

remove crosstalk faults from NoC channels. Also, the authors also suggest that the 

FRR method provides remarkable power savings because the proposed method 

reduces the number of transitions in NoC channels by at least 32.8%. 

2.3.5.3 Optimization Techniques in NoC Design to Reduce Crosstalk [18] 

This paper presents several optimization problems occurring in VLSI interconnect, 

network-on-chip (NoC) design, and 3D VLSI integration, all possessing closed-form 

solutions obtained by well-solvable Quadratic Assignment Problems (QAP). The first 

type of problems deals with the optimal ordering of signals in a bus bundle such that 

the switching power, delay, and noise interference are minimized. The authors have 

extended a known solution of ordering the signals in a bus bundle to minimize the 

impact of crosstalk, i.e. the first order wire-to-wire parasitic capacitance occurring 

between adjacent wires into a model accounting for the secondary components of 

wire-to-wire parasitic capacitances as well. 

2.3.6 Crosstalk in Analog / Digital Circuits 

2.3.6.1 Impact of Crosstalk on Circuit Design [42] 

The crosstalk phenomenon and its impact on the design of mixed analog/digital 

circuits with high accuracy specifications have been demonstrated in this work. 

Generation of digital disturbs, propagation through the substrate, and effects on 
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analog devices have been considered, with particular emphasis on integrated circuits 

realized on the heavily doped substrate, where traditional shielding is less effective. 

Techniques to reduce analog/digital crosstalk have also been reviewed and discussed 

in [42]. 

2.3.6.2 Interconnect Spacing Technique for Crosstalk Minimization [47] 

Reduction of interconnect delay and interconnect power has become a primary design 

challenge in recent CMOS technology generations. The spacing between wires can be 

modified so that line-to-line capacitances can be optimized for minimal power under 

timing constraints. In [47], the authors have presented a novel algorithm for 

simultaneous multi-layer interconnect spacing that minimizes the total dynamic power 

dissipation caused by interconnection while maximum delay constraints are satisfied. 

The authors have introduced a multi-dimensional visibility graph to represent 

the problem, and a layout partitioning technique has been applied to solve the problem 

efficiently. The algorithm has been evaluated on an industrial microprocessor 

designed using the 32 nm technology, and the authors claim to have achieved a 5–

12% reduction in interconnect switching power. 

2.3.7 Crosstalk Avoidance in Interconnects 

2.3.7.1 A Frequency Domain Approach for Minimization of Crosstalk in High-

Speed Interconnects [19] 

In [19], the authors propose a frequency-domain approach to simulate efficiently and 

minimize the crosstalk between high-speed interconnects. They have discussed 

several methods in the text for modelling coupled transmission lines, at the same time 

considering numerous possible simulation strategies. The authors follow a 

straightforward yet rigorous frequency domain approach. As it exploits a harmonic 

balance technique, the approach can be used for linearly and non-linearly terminated 

micro-strip coupled lines. 

The authors have simulated a typical example of micro-strip interconnects, 

and they have compared their results with those obtained using time-domain methods, 

by other authors. The work suggests that the devised simulation method yields good 

accuracy. The authors have formulated a crosstalk minimization problem and have 

implemented the proposed method to solve it. 
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2.3.7.2 Error Control Coding to Reduce Crosstalk [44] 

The authors in [44] have suggested an energy-efficient error control code for the on-

chip interconnection link. The proposed code is capable of correcting any error 

patterns that includes random and burst errors up to 5 bits. The proposed decoding 

scheme has been designed based on single-error-correction–double-error-detection 

(SEC–DED) extended Hamming code and standard triplication error correction 

scheme. The triplication error correction scheme provides crosstalk avoidance by 

reducing the coupling capacitance of the interconnection wire. 

The authors suggest that the proposed code can provide high reliability 

compared to other error control codes. They have evaluated the performance of the 

proposed code by codec area, codec power, codec delay, residual flit error rate, link 

swing voltage, and link power. The proposed code has achieved low residual flit error 

rate and swing voltage, for any given reliability requirements of 105 and 1020
. A 

reduction in the swing voltage, in turn, reduces the link power consumption up to 68% 

compared to the existing methods. The authors have claimed that the low residual flit 

error rate achieved and the low link power consumed, make the proposed code 

appropriate for on-chip interconnection link. 

2.3.7.3 Bus-Coding Techniques for Crosstalk Avoidance [21] 

RC crosstalk effect in on-chip buses leads to some serious problems as propagation 

delay and dynamic power dissipation. The authors have presented two efficient bus-

coding techniques to reduce simultaneously dynamic power dissipation and wire 

propagation delay. The authors claim to have achieved improvements in both fronts 

compared to existing techniques. 

Simulation results presented by the authors show that the first proposed 

technique reduces coupling activity by 26.7–38.2% and switching activity by 3.7–

7.0% on 8-bit to 32-bit data buses, respectively. The second proposed coding 

technique reduces coupling activity by 27.5–39.1% and switching activity by 5.3–

9.0% on 8-bit to 32-bit data buses, respectively. The simulated results also suggest 

that both the proposed methods reduce dynamic power by 23.9–35.3% on 8-bit to 32-

bit data buses and total propagation delay by up to 30.7–44.6% on 32-bit data buses, 

and eliminate the Type-4 coupling. The proposed methods also claim to reduce total 
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power consumption by 23.6–33.9%, 23.9–34.3%, and 24.1–34.6% on 8-bit to 32-bit 

data buses with the 0.18 mm, 0.13mm, and 0.09 mm technologies, respectively. 

2.3.8 Crosstalk Minimization in Routing 

2.3.8.1 A Routing Framework for Crosstalk Avoidance [93] 

With the exponential reduction in feature size, the inter-wire coupling capacitance 

becomes the dominant factor of load capacitance. Coupling delay deterioration and 

crosstalk are two problems that arise with the reduction in feature size. The authors of 

this paper have proposed a timing-driven global routing algorithm that considers 

coupling effects and crosstalk avoidance. 

They claim that the proposed methodology differs from the existing ones in 

that the proposed global routing “framework” performs well regarding routability, 

timing, etc. and at the same time also facilitates the detailed routing stage in crosstalk 

avoidance. The authors have presented experimental results on industrial circuits that 

suggest how the algorithm leads to substantial delay reduction and effective crosstalk 

elimination. 

2.3.8.2 Switchbox Routing with Crosstalk Constraints [26] 

In [26], the authors have investigated the gridded switchbox routing problems with 

the aim of satisfying crosstalk constraints and minimizing the total crosstalk among 

the nets. The authors have proposed a new approach to the problems that employs 

existing switchbox routing algorithms and brings about an improvement in the routing 

results via respective reassignment of the horizontal and vertical wire segments to 

rows and columns, in an iterative fashion. The authors claim that this method is 

applicable to the channel routing problem with crosstalk constraints. The authors have 

proposed a novel mixed integer linear programming (ILP) formulation and efficient 

techniques to reduce the number of variables and constraints in the presented ILP 

formalism. The authors claim to have achieved encouraging experimental results. 

2.3.8.3 Crosstalk Minimization in Channel Routing [25, 27] 

In [25, 27], the authors have studied the gridded channel routing problem, with the 

purpose of satisfying crosstalk constraints for the nets. The authors have proposed a 

new approach that employs existing channel routing algorithms and achieves an 
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improvement upon the routing results by a permutation of the routing tracks. The 

authors have then presented a novel mixed integer linear programming (ILP) 

methodology and efficient techniques to reduce the number of variables and 

constraints in the presented ILP formalism. The authors have claimed to have 

achieved encouraging experimental results. 

2.3.8.4 Crosstalk Minimization in Microring-based Wavelength Routing 

Matrices [9] 

Silicon microring resonators (MRR) can be used for switching operations directly in 

the optical domain. Nevertheless, MRR-based switching fabrics have the probability 

of having limited scalability regarding port count because of the crosstalk 

accumulation caused due to the reuse of spatial wavelengths. The authors have 

considered an optical switching fabric (OSF) that is built using a wavelength-routing-

matrix (WRM), based on MRRs. The authors have highlighted the scalability issues 

and have proposed a new design. The authors have also suggested two different 

approaches to limit the spatial reuse of wavelength to enhance the scalability of 

MRRs making them suitable for future high-capacity OSFs. 

The authors have introduced an MRR-based switching fabric, which uses the 

periodical transfer function and tunability of MRRs to implement multiple wavelength 

assignments. Subsequently, the authors have presented and analyzed the matrix 

selection (MS) and matrix combination (MC) strategies to reduce the reuse of 

wavelength based on the exploitation of the proposed MRR-based WRM. The authors 

have claimed that the MS approach divides the wavelength reuse factor roughly by 

two, compared to the single WRM configuration. While on the other hand, the MC 

strategy has been claimed to reduce further crosstalk, significantly. The authors have 

described two possible applications for the MC strategy, the exhaustive algorithm 

(EA) and the greedy algorithm (GA). According to the authors, the complexity of the 

GA is considerably lower than the MS strategy, and the GA also produces a 

noticeably lower crosstalk than the MS strategy. The authors have stated that the GA 

can be believed a good candidate algorithm for controlling the proposed MRR-based 

WRM. 
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2.3.8.5 Simulated Annealing based Approach to Crosstalk Minimization in 

Gridded Channel Routing [39] 

With the rapid evolvement of VLSI fabrication technology, the inter-wire spacing in a 

VLSI is becoming closer. Consequently, it becomes imperative to minimize the 

crosstalk due to the coupling capacitances between the adjacent wires in the layout 

design of fast and safe VLSI circuits. The authors have presented an approach based 

on simulated annealing and segment rearrangement for minimization of crosstalk in 

an initially gridded channel routing. The authors have compared the proposed 

technique with previous track-oriented techniques, especially a track permutation 

technique whose performance is bounded by an exhaustive track permutation 

algorithm. The authors have claimed that the experimental results obtained indicate 

the proposed technique to be more effective than the track permutation technique. The 

efficiency is more pronounced in the case of test examples where there are only a few 

possibilities of track permutation and which have relatively large number of segments 

on track. However, the authors have conceded that the time complexity of the 

simulated annealing based approach is rather high. 

2.4 Summary 

Crosstalk is a phenomenon that arises when a pair of conductors is placed in close 

proximity, separated by an insulator. Whenever electrical energy (signals) flows 

through these conductors, the entire arrangement behaves as a capacitor, resulting in 

the generation of coupling capacitance. This capacitance is directly proportional to the 

amount of overlap of the two conductors and is responsible for introducing noise into 

whatever it is that is being transmitted through the conductors. This phenomenon can 

be visualized in electrical power lines, communication lines, and in the micro-scale, in 

electronic circuits, between two interconnecting wires. The amount of noise directly 

affects the quality of signals being transmitted, and is needed to be kept within a limit 

or margin, suitably titled as noise margin. 

In the present scenario, with ever reducing feature sizes and higher speeds of 

operation, electronic circuit design faces the challenge of overcoming crosstalk noise, 

one of the most significant factors limiting IC design. Broadly speaking, there are two 

different approaches towards solving this problem: one involves modifications in the 
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design phase for crosstalk avoidance, and the other involves post-design 

modifications for crosstalk reduction. In this chapter, we have attempted to make a 

detailed study of various techniques for both crosstalk avoidance and/or reduction 

implemented by a number of researchers over the past few decades and the success 

they have had against this natural vice of electrical/electronic circuits. 

Moreover, theoretical studies in terms of knowing (and/or proving) the nature 

of a problem, whether it is intractable or polynomial time computable, measure the 

way of thinking in attacking a problem. Some problems that are solvable in 

polynomial time and some problems that are not, have been discussed at the 

beginning of this chapter, including a brief idea on the theory of NP-completeness. 

Now we mention a few more problems in channel routing that are NP-complete 

before we begin the next chapter on the hardness of crosstalk minimization in two-

layer channel routing. We have already mentioned that LaPaugh considered the area 

minimization problem in two-layer channel routing and proved its NP-hardness [41]. 

Szymanski established that the following problems in the rectilinear reserved two-

layer unrestricted dogleg routing model are NP-hard: (i) minimizing the number of 

tracks needed to route an arbitrary channel, and (ii) minimizing the total wire length 

of an arbitrary channel [86]. 

Schaper demonstrated that under the three-layer HVH routing model, the 

problem of routing a channel with a minimum number of tracks is NP-hard for the 

two-terminal no-dogleg case, and subsequently for the multi-terminal restricted 

dogleg case [80]. The multi-layer channel routing problems of area minimization in 

the ViHi, 2  i  dmax, and ViHi+1, 2  i  dmax1 routing models with alternating 

vertical and horizontal layers of interconnect are known to be NP-hard [49, 55, 56, 

58]. Besides, plenty of problems in wire length minimization for two-, three-, and 

multi-layer channel routing have been considered by researchers, and proved that 

these problems are also NP-hard [49, 57, 58, 59, 64]. 

 

 



Chapter: 3 

Hardness of Crosstalk Minimization in Two-Layer 

Channel Routing 
 

 

3.1 Overview 

The channel routing problem (CRP) has already been defined in Chapter 1. As 

mentioned earlier, the main objective is to minimize the channel area while 

interconnecting all nets belonging to a channel in a specified routing model. Beyond 

the usual cost factor(s), we consider crosstalk minimization as a high performance 

issue in computing a routing solution. In the previous chapter, we have seen how the 

crosstalk is taken care of by researchers worldwide, either by avoiding it as an a priori 

task or by minimizing it as an a posteriori problem in devising electrical, electronic, 

and VLSI circuits. By the way, the theoretical study in terms of proving the nature of 

several crosstalk minimization problems in two-layer channel routing, whether they 

are tractable or beyond polynomial time computable, is the major concern of this 

chapter. 

We have presumed the problem of crosstalk minimization as a problem of 

minimizing electrical hazards that should be reduced to in the circuit performance. As 

fabrication technology advances and feature size reduces, devices are placed 

increasingly closer to each other, interconnecting wire segments are assigned with a 

narrower pitch. However, the circuit operations are being realized at even higher 

frequencies. As a result, electrical hazards, viz., crosstalk between wire segments have 

significantly evolved. The crosstalk between wire segments is proportional to the 

coupling capacitance, which in turn is proportional to the coupling length, i.e. the total 

length of overlap between wire segments of two different nets. The crosstalk is also 

proportional to the frequency of operation and inversely proportional to the separating 

distance between wires. More crosstalk means more noise and more signal delay 

resulting in overall circuit performance. Therefore, it is desirable to develop channel 

routing algorithms that not only reduce the channel area but also the resulting 

crosstalk. Work on routing channels with reduced crosstalk is very important from the 

point of view of high performance requirements in VLSI circuit synthesis. 
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In this chapter, we show that the crosstalk minimization problem in the 

reserved two-layer Manhattan routing model is NP-hard for simple and general 

instances of channel specifications with given partitioning of nets so that the nets in a 

class of the partition are assigned to the same track. We have also investigated upon 

the simple as well as general instances of channel specifications with only two-

terminal nets, but without any imposed partition of (non-overlapping) nets to tracks. 

In addition, we introduce the problem of minimizing bottleneck crosstalk in the 

reserved no-dogleg two-layer channel routing model. We prove that the problem is 

also NP-hard. We further investigate the existence of polynomial time exact 

algorithms, and approximation algorithms for the above mentioned problems in two-

layer channel routing. We prove that the problems are NP-complete. We show that the 

problem is hard to approximate, too. In all these cases, the problems have also been 

studied with doglegging allowed as well. 

3.2 Crosstalk Minimization in Two-Layer Channel Routing 

3.2.1 Foundation of the Problem 

In the channel routing problem, the set of all terminals that need to be electrically 

connected together is called a net. In Figure 3.1, at most two columns of numbers 

having the same integer value (other than zero) uniquely define a two-terminal net. In 

other words, a net with only two terminals is called a two-terminal net. A vertical wire 

segment is a wire that lies in a column assigned to the vertical layer, whereas a 

horizontal wire segment is a wire that lies in a track assigned to the horizontal layer in 

a two-layer VH routing model. Tracks are horizontal lines that are usually equispaced 

along the height of the channel, parallel to the two rows of (fixed) terminals. 

A route for a net is a collection of horizontal and vertical wire segments spread 

across different layers, connecting all terminals of the net. A legal wiring of a channel 

is a set of routes that satisfy all the pre-specified conditions where no two wire 

segments, used to connect different nets, overlap on the same conducting layer. A 

legal wiring is also called a feasible routing solution. 

The CRP is specified by two m element vectors TOP and BOTTOM of 

integers, and a positive integer t. The objective is to find a feasible routing solution 

for the channel, if it exists, using no more than t tracks. An instance of the CRP is 

shown in Figure 3.1, where we have an assignment of intervals of the nets present in 
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the channel to four tracks only. Let Li (Ri) be the leftmost (rightmost) column position 

of net i, then Ii  (Li, Ri) is known as the interval (or span) of the net. 
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Figure 3.1: An example channel of eight nets. The intervals of the nets are placed in 

four different tracks. Terminals are vertically aligned along the columns of the 

channel. The length of the channel (i.e. the number of columns) is 18. Arrows indicate 

the terminals to be connected, either at the top or at the bottom, to complete the 

required interconnection of all nets. 

3.2.2 Models of Crosstalk Minimization 

Routing channels with reduced crosstalk are very important from the viewpoint of 

high performance [25, 27, 49], and it is desirable to develop channel routing 

algorithms that not only reduce channel area but also crosstalk. We define the amount 

of crosstalk between horizontal wire segments (i.e. intervals) of two different nets 

assigned to (two) adjacent tracks in a given routing solution, to be proportional to the 

amount of overlap of their horizontal spans. If two intervals do not overlap, there is no 

horizontal constraint between the nets; therefore, no crosstalk exists between them 

too. Further, we also assume that two overlapping intervals of two different nets that 

are not placed in adjacent tracks produces no significant crosstalk and it does not 

contribute anything to the overall crosstalk. In fact, technology itself is responsible for 

bringing the amount of this crosstalk within a permissible range of noise margin. 

For example, nets n5 and n8 would never produce any crosstalk, as the 

respective intervals, I5 and I8 do not overlap with each other in the channel instance 

shown in Figure 3.1, whereas nets n5 and n1 will result in accountable crosstalk as the 

respective intervals I5 and I1 overlap in the channel. The crosstalk between two nets is 

the same as the amount of overlapping between them if the nets are assigned to 
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adjacent tracks. This is measured in terms of the number of units of overlap between a 

pair of nets on adjacent tracks in a feasible routing solution. Similarly, if the nets n3 

and n8 are assigned to (two) adjacent tracks in a solution of the channel shown in 

Figure 3.1, then the amount of crosstalk between these two nets would be seven units. 

We assume that the amount of crosstalk, between vertical wire segments of 

two different nets placed in adjacent columns, is very small, and hence can be 

neglected. It is a matter of technology to keep a safe separation between (two) 

adjacent columns of a channel that crosstalk evolved due to vertical wire segments is 

always within some limit of tolerance. This is true even if the longest possible 

adjacency of vertical wire segments of two different nets (as the vertical wire 

segments are available due to the fixed terminals that cannot be altered) exists along 

the length of the channel. 

It may be noted that if more tracks are introduced into a feasible routing 

solution, then the amount of crosstalk may be reduced further (as some of the nets that 

were assigned to adjacent tracks are now mutually nonadjacent). Obviously, if t–1 

blank tracks (i.e. the tracks containing no interval of any net) are introduced to a t-

track feasible routing solution, where a blank track is placed between two consecutive 

tracks (of nets), the resulting routing solution will not have any crosstalk. However, 

this routing solution uses almost twice the area of the initial routing solution, whereas 

our prime interest is to compute a routing solution of the minimum possible area. So 

we assume a constraint that a fixed number of tracks are to be used in obtaining a 

minimum crosstalk routing solution. 

3.2.2.1 Types of Crosstalk Minimization 

Now we consider the problems of crosstalk minimization in two-layer channel 

routing. We first introduce the sum crosstalk minimization problem. Crosstalk in a 

reserved two-layer channel routing solution is the sum of all crosstalk between pairs 

of horizontal wire segments of nets that are assigned to adjacent tracks. The sum 

crosstalk minimization problem is to compute a feasible routing solution with a given 

number of tracks in which the total amount of crosstalk is minimized. Unless 

mentioned otherwise, by crosstalk minimization problem we refer to the sum crosstalk 

minimization problem. 
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In any routing solution, we define the bottleneck cost (or bottleneck crosstalk) 

as a maximum of all crosstalk between any pair of nets that are placed in adjacent 

tracks. There can be several routing solutions that use fixed number of tracks, but 

having different bottleneck crosstalk. We define the bottleneck crosstalk minimization 

problem as the problem of computing a k-track routing solution such that the 

bottleneck cost is minimized. 

Suppose that we are given a k-track routing solution. Note that it may be 

possible to reduce crosstalk further by interchanging some nets between a pair of 

tracks. This is explained in Figure 3.2, where a new assignment of tracks to the same 

solution reduces the amount of crosstalk from 15 units (as in Figure 3.1) to 10 units. 

So, one way of reducing the crosstalk is to suitably interchange the nets assigned to 

tracks in a given routing solution. Keeping this in view, we define the problem VHP 

of crosstalk minimization in two-terminal no-dogleg two-layer VH channel routing as: 

Given an a priori partition of nets such that the nets in a class of the partition can be 

assigned to a single track, a feasible routing solution can be obtained by assigning 

each class of nets to one track. This feasible solution has a fixed crosstalk. Every 

permutation of the classes can be considered a feasible solution with a fixed amount 

of crosstalk. The objective is to get a feasible solution (a permutation) with the 

minimum amount of crosstalk.  The problem is formally posed in the next section. 
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Figure 3.2: Track-wise reassignment of nets of the 4-track assignment of non-

overlapping intervals in Figure 3.1 so as to reduce the amount of crosstalk from 15 

units to 10 units. Here, intervals of tracks 2, 3, and 4 are now assigned to tracks 3, 4, 

and 2, respectively. 

However, it may not be possible to obtain the minimum crosstalk k-track 

routing solution in this way. This is because such an optimal solution may correspond 
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to a different net grouping. This is illustrated in Figure 3.3. Thus, we address the 

question: Is it possible to compute a k-track minimum crosstalk routing solution in 

polynomial time? 

Keeping this in view, in the next section, we pose two crosstalk minimization 

problems, VHS and VHG, of two-terminal no-dogleg two-layer VH channel routing, 

where the channel instances are free from a specific constraint in one case (i.e. in the 

absence of vertical constraints) and having both types of constraints present in it in the 

other case. In both cases, we like to compute a k-track two-layer routing solution 

without any given partition of nets (i.e. there is no class of nets in the form of the 

partition that is to be assigned to the same track) such that crosstalk is minimized. 
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Figure 3.3: Reassignment of nets in order to compute another 4-track routing solution 

of the channel instance in Figure 3.1, so as to reduce the amount of crosstalk from 15 

units to 8 units only. Here, net n5 is no longer in the group of nets n3 and n6; rather n5 

is with nets n8 and n7 now. Similarly, leaving n4 alone, n1 is with n2 now. 

The crosstalk minimization problems defined above are optimization problems 

where we need a k-track routing solution having a minimum amount of crosstalk. 

Often, such a routing solution may not be acceptable due to long overlapping of a pair 

of wire segments (high bottleneck) of two different nets on adjacent tracks. We define 

the maximum amount of overlap in any routing solution between a pair of adjacent 

nets as the bottleneck of that solution. Then the bottleneck crosstalk minimization 

problem is to find a feasible routing solution of given number of tracks such that the 

bottleneck of that solution is minimized. We define this problem as the bottleneck 

crosstalk minimization problem, BVHP, of two-terminal no-dogleg two-layer VH 

channel routing, given an a priori partition of nets so that the nets in a class of the 

given partition are to be assigned to the same track. 
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Our observation is that this problem of crosstalk minimization is practically 

more relevant in computing a high performance routing solution in some cases than 

the sum crosstalk minimization problems. As in the case of the sum crosstalk 

minimization problem, we can have two variations here as well; one with given 

partition of nets and the other one where there is no partition of nets. A more formal 

presentation of all these problems is given in the next section. 

3.3 Crosstalk Minimization in Channel Routing 

In computing a routing solution, our prime intention is to compute a solution that uses 

a minimum possible number of tracks (or minimum channel area). In addition to 

computing a routing solution with reduced area, in high performance routing our 

interest is also to obtain a routing solution with less electrical hazards (i.e. crosstalk), 

less signal propagation delay, less power consumption, less or no hot spot formation, 

and so on and so forth. 

The CRP of area minimization is itself an NP-complete problem [41, 49, 56, 

58, 61, 80, 86]. However, the problem is polynomial time solvable if the instances are 

free from any vertical constraint. In fact, there are polynomial time dmax-track routing 

solutions (or routing solutions of density number of tracks) for such instances [32, 49, 

52, 53]. Since the problem of minimizing area for instances of routing channel with 

only horizontal constraints is polynomial time solvable (using exactly dmax tracks), we 

define such instances as the simple instances of channel routing. A general channel 

instance contains both types of constraints in it. There can be several dmax-track 

minimum area routing solutions for simple channel instances. As discussed in Section 

3.2.2, these solutions are of the same area, but of different amount of crosstalk. We 

also discussed two ways to reduce crosstalk further. One way is to interchange the 

allotted tracks of all nets among the tracks without changing the net grouping. This 

way, we could get the improved solution as shown in Figure 3.2 than the one in 

Figure 3.1. The other way could be by breaking net groupings allotted to tracks, as 

obtained in Figure 3.3. 

Therefore, we have the following decision problem.  

Problem: VHP (Crosstalk minimization in two-terminal no-dogleg two-layer VH 

channel routing, given an a priori partition of nets). 
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Instance: I  (N, P, K), where N is a set of two-terminal nets, P is a partition of N nets 

into t non-overlapping classes of intervals, and K is a positive integer. 

Question: Does there exist an assignment of nets to t tracks such that (i) all nets in the 

same class in the given partition P are assigned to the same track, and (ii) the total 

crosstalk is at most K? 

In the next section, we prove that this problem is NP-complete. Now we 

formally pose the problems of crosstalk minimization, VHS for simple instances, and 

VHG for general instances of channel specifications in the absence of any partition P 

of nets, as follows. 

Problem: VHS (Crosstalk minimization in two-terminal no-dogleg two-layer VH 

channel routing for simple instances of channel specification). 

Instance: A simple channel specification I  (N, K) of N two-terminal nets with 

density dmax, and a positive integer, K. 

Question: Does there exist a dmax-track no-dogleg two-layer VH routing solution of 

the given channel specification so that the total crosstalk is at most K? 

Problem: VHG (Crosstalk minimization in two-terminal no-dogleg two-layer VH 

channel routing for general instances of channel specification). 

Instance: A general channel specification of two-terminal nets, and two positive 

integers, t and K. 

Question: Does there exist a t-track no-dogleg two-layer VH routing solution of the 

given channel specification so that the total crosstalk is at most K? 

In the next section, we prove that these problems are NP-complete. Now we 

formally present the bottleneck crosstalk minimization problem as follows. 

Problem: BVHP (Bottleneck crosstalk minimization in two-terminal no-dogleg two-

layer VH channel routing, given an a priori partition of nets). 

Instance: A simple channel specification with two-terminal nets, a partition, P of nets 

into classes of non-overlapping intervals, and a positive integer, B. 

Question: Does there exist an assignment of nets to |P| tracks such that (i) all nets in 

the same class in the given partition P are assigned to a track, and (ii) the amount of 

crosstalk between any two horizontal wire segments (or intervals) of two different 

nets on adjacent tracks is B or less? 
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We prove that this problem is also NP-complete in the next section. 

3.4 Theoretical Proofs 

3.4.1 Hardness of Crosstalk Minimization in the Absence of Vertical Constraint 

In this section, we show that VHP is NP-complete by reducing a variant of the 

Hamiltonian path (HP) problem to VHP. The problem HP is the following [13, 28, 

66]. 

Instance: An undirected graph G  (V, E). 

Question: Does G contain a Hamiltonian path? 

Before showing that VHP is NP-complete, we need to show that the following 

variant HP* of problem HP is also NP-complete. 

Problem: HP* (Weighted Hamiltonian path). 

Instance: An undirected weighted complete graph G*  (V, E*), with weight w(e)  1 

or 2 for each edge e  E*. 

Question: Does G contain a Hamiltonian path of weight n1, where n  |V|? 

Theorem 3.1: HP* is NP-complete. 

Proof: We first show that HP* belongs to NP. Given an instance of the problem, we 

take a certificate that is a sequence of n  |V| distinct vertices. The verification 

algorithm checks that this sequence contains each vertex exactly once and the sum of 

the weights of edges on this path is exactly n1. This algorithm can certainly be 

executed in polynomial time. Therefore, HP*  NP. 

To prove that HP* is NP-hard, we show that HP ≤P HP*. Let G  (V, E) be 

any instance of HP. We construct a corresponding instance of HP* as follows. We 

compute a complete graph G*  (V, E*), where E*  {(vi, vj) | vi, vj  V}, and for 

every edge e  E*, we assign weight w(e)  1, if e  E; otherwise, we assign weight 

w(e)  2. The instance of HP* can be obtained in polynomial time. The construction 

has been explained in Figure 3.4. 

We now show that the graph G has a Hamiltonian path HPP if and only if the 

graph G* has a weighted Hamiltonian path HPP* of weight n1, where n  |V|. 
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Suppose that the graph G has a Hamiltonian path HPP. The same path is also a 

Hamiltonian path in G*. We take HPP*  HPP. Each edge of this path has a weight of 

one. Thus, HPP* has weight exactly n1 in G*. Hence, if HPP is a Hamiltonian path 

in G, then HPP* is a weighted Hamiltonian path in G* with weight n1. 

 

 

 

 

 

  

  

   
    
 

 

   

 

 

 

   
    
 

 

   
    

 

   

 

 

   

    
     

      

       

   

    

     

   
  

Figure 3.4: (a) A graph instance G (V, E) of problem HP. (b) The graph G* (V, 

E*) of the corresponding instance of problem HP*,  computed from G. 

Conversely, suppose that the graph G* has a weighted Hamiltonian path HPP* 

of weight n1. Since HPP* has a length of exactly n1 (edges) and each edge in G* is 

of weight one or two, all edges on HPP* must have edge weight of exactly one. Thus, 

G  (V, E) 

v3 

v4 

v5 

v6 
v2 

v1 

(a) 

1 

1 

1 

1 

1 

1 

2 2 

2 

2 

2 

1 

2 

2 

2 

v3 

v4 

v5 

v6 
v2 

v1 

G*  (V, E*) 

(b) 



65 

 

all edges on this Hamiltonian path HPP* are edges in E as well. Let HPP be the set of 

all these edges in E. HPP is obviously a Hamiltonian path in G. This completes the 

proof.  

Now we show that VHP is NP-complete by reducing HP* to it. First, we show 

that VHP  NP. Given a feasible |P|-track no-dogleg two-layer VH routing solution 

for any instance I of VHP, we can verify in polynomial time whether (i) all the nets 

of the same class in the given partition P are assigned to the same track, and (ii) the 

total crosstalk is less than or equal to K, simply by checking the total amount of 

crosstalk between nets assigned to adjacent tracks. Therefore, VHP  NP.  
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Figure 3.5: (a) A complete graph G* (V, E*) of instance I of problem HP*. (b) The 

corresponding channel instance I of the crosstalk minimization problem VHP, where 

nets nij and nji are introduced into the channel corresponding to edge (vi, vj) (i < j) in 

G*. Here, N  {nij | j ≠ i} and the i-th class Pi{nij | 1 ≤ j ≤ n, j ≠ i}, is a set of non-

overlapping nets in I. {Pi | i 1, 2, ..., |P|} is the required partition P of nets. I  (N, 

P, K), where K is an integer, is the instance of VHP obtained. 
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To show that VHP is NP-hard, we consider the following reduction from 

problem HP* to VHP. We construct an instance I (N, P, K) of problem VHP from 

any instance I of the problem HP* by a polynomial time transformation as follows. 

Let the number of vertices of the graph in I be n. For every edge (vi, vj) (i < j), 

we introduce two two-terminal nets nij and nji in the channel. We place the two 

terminals of net nij at positions (5((2ni)(i1)2  (ji1))) 1 and (5((2ni)(i1)2 

 (ji1))) 5 of the top row of terminals. For net nji, we place the two terminals at 

positions (5((2ni)(i1)2  (ji1))) 2 and (5((2ni)(i1)2  (ji1))) 2 

w(vi, vj) of the bottom row of terminals. Assume that N {nij | i ≠ j} be the set of all 

n(n1) nets. Let Pi be the set of nets {nij | 1 j n, j i}. Observe that Pi  Pj   

and ⋃  𝑛
𝑖  1 Pi  N. Therefore, P  {Pi | i  1, 2, …, n} is a partition of all nets N into n 

classes. By construction, no two nets in the class Pi have any horizontal constraints 

between them; therefore, they can be assigned to a track. All remaining terminals are 

vacant terminals and thus, are not required to be connected. Obviously, I  (N, P, K), 

where K is an integer, is an instance of VHP. This completes the construction of the 

channel instance I. It can be constructed in polynomial time. It contains n(n1) nets 

and the length of the channel is 5n(n1). The construction of such a channel instance 

I from a graph instance I is explained in Figure 3.5. Observe from the figure that the 

channel density of I is two. In the following lemma we prove that it will always be 

two. 

Lemma 3.1: The channel density dmax of the constructed channel instance I is 2. 

Proof: Let Iij denotes the horizontal span (or interval) of net nij in I. There are exactly 

|E*| two-terminal nets nij (i < j), one for each edge (i, j). These nets have both the 

terminals at the top. By construction, all these nets have disjoint horizontal spans. 

There are |E*| nets nji (i < j), one for each edge in the graph; nji has both 

terminals at the bottom row. By construction, Iji is contained in Iij. Therefore, Iij  Iji  

. In all other cases, Iij  Iij  . Hence, the lemma.  

Corollary 3.1: In fact, Iij  Iji  Iji  w(vi, vj), where w(vi, vj) is the weight of the edge 

(vi, vj). In all other cases Iij  Iij  . 
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To complete the proof that VHP is NP-complete, we now establish the 

following lemma. 

Lemma 3.2: I has a weighted Hamiltonian path HPP* of weight n1 if and only if I 

has a feasible n-track no-dogleg two-layer VH routing solution with (i) all nets in a 

class Pi in the given partition P, assigned to the same track and (ii) the total crosstalk 

is exactly n1. 

Proof: Observe that net nij  Pi and nji  Pj. Now as Iij  Iji   and in all other cases 

Iij  Iij  , as per the proof of Lemma 3.1, their corresponding intervals overlap. 

This means that the nets in Pi and Pj cannot be assigned to a single track. Therefore, 

we need n  |P| tracks in any feasible solution of I. Thus, all nets in a class are 

assigned to a track, and no two nets in different classes are assigned to a track in any 

solution of I. 

Now we calculate the amount of crosstalk, ci,j, created between the nets in Pi 

and Pj if they are assigned to adjacent tracks. Again as Iij  Iji   and in all other 

cases Iij  Iij   (as in the proof of Lemma 3.1), no net in Pi, except nij, will make 

any crosstalk with some other net in Pj. By Corollary 3.1, nij and nji will produce a 

crosstalk of amount exactly w(vi, vj). Therefore, ci,j  w(vi, vj), is the amount of 

crosstalk created if Pi and Pj are assigned to adjacent tracks. 

Suppose that there is a weighted Hamiltonian path HPP*  v1, v2, , vn in I 

of weight n1. We show that there is a feasible n-track no-dogleg two-layer VH 

routing solution S for I with (i) all nets in a class Pi are assigned to a track and (ii) the 

total crosstalk is exactly n1. To get the feasible routing solution S, we assign all nets 

in Pi to the i-th track from the top. As the weight of the Hamiltonian path HPP* is n1 

and HPP* has exactly n1 edges, w(vi, vi+1)  1, i. Total crosstalk for this solution S 

is ∑  𝑛−1
𝑖 = 1 ci,i+1  ∑  𝑛−1

𝑖  1 w(vi, vi+1)  n1. 

Next, assume that Ihas an n-track feasible solution S with a crosstalk n1 in 

which all nets in 𝑃𝑖 are assigned to a track, i  1, 2, …, n. If Pi and Pj are assigned to 

(two) adjacent tracks in S, they contribute crosstalk of an amount of w(vi, vj), which is 

either 1 or 2. As the total crosstalk is exactly n1, each such pair of consecutive tracks 

contributes exactly one unit of crosstalk in S. Thus, w(vi, vj)  1, if Pi and Pj are 
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assigned to adjacent tracks in S. We construct a set of edges HPP* as HP*  {(vi, vj) | 

where Pi and Pj are adjacent in solution S}. Obviously, HP* is a Hamiltonian path in 

I. As w(vi, vj)  1, HP* is a Hamiltonian path of total weight n1 in I. Hence, the 

lemma.  

We summarize the result obtained in the following theorem. 

Theorem 3.2: VHP is NP-complete. 

The result of the CRP with the partition of nets established in this section 

equally holds for the general instances of channel specifications (where the partition is 

provided in such a way that no cyclic vertical constraint is formed). This is because 

the set of simple instances of channel specifications is a proper subset of the set of 

general instances of channel specifications considering both constraints are present in 

it. 

3.4.2 Hardness of Other Crosstalk Minimization Problems 

In this section, we consider the problems, VHS and VHG, of crosstalk minimization in 

two-layer VH channel routing problem where no partition of nets are provided as in 

VHP. Let us first consider the problem VHS. As defined in Section 3.3, here we are 

given a simple channel specification I  (N, K) of N two-terminal nets with density 

dmax and a positive integer K. VHS is required to find out if there exists a dmax-track 

no-dogleg two-layer VH routing solution such that the total crosstalk is at most K? In 

the next theorem, we prove that the problem is NP-complete. 

Theorem 3.3: VHS is NP-complete. 

Proof: A certificate here is a dmax-track no-dogleg two-layer VH routing solution S. 

We can find in polynomial time, the total amount of crosstalk in S, just by checking 

and summing up crosstalk between all adjacent tracks. Therefore, VHS  NP. Next, 

we show that VHS is NP-hard. We use proof by restriction method to prove the 

hardness of VHS. A feasible solution of VHS is a partition of nets into dmax classes of 

non-overlapping nets and an assignment of tracks, one to each class. Now there is an 

exponential number of such partitions of nets into dmax classes. If we restrict to a given 

partition, say P, the problem reduces to an instance of problem VHP. Now, as VHP is 

NP-hard, we claim that VHS is also NP-hard. Hence, the proof.  
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Now let us consider the problem VHG. In this problem, we are given a general 

channel specification of two-terminal nets, and two positive integers, t and K. We are 

asked whether there is a t-track solution to this channel instance such that the total 

crosstalk is at most K? VHG is obviously in NP as in the case of VHS and VHP. We 

claim NP-hardness of VHG, again by using the proof by restriction method. In VHG, 

we restrict to cases where t dmax, and there is no vertical constraint. The problem 

instance reduces to VHS. As VHS is NP-hard, we claim that VHG is also NP-hard. 

Therefore, we have the following theorem. 

Theorem 3.4: VHG is NP-complete.  

3.4.3 Hardness of Approximating Crosstalk Minimization 

In the previous sections, we have shown that the problem of two-layer crosstalk 

minimization is NP-complete for simple as well as general instances of channel 

specifications. This means that it is almost impossible to design polynomial time 

algorithms to solve these problems. A natural question arises: Whether there is any 

polynomial time approximation algorithm with guaranteed error bound to solve any 

one of these problems? In this section, we prove that the problem of developing such 

an approximation algorithm for any such problem is also NP-hard. 

First, we consider the simplest case, VHP. In fact, we show that it is 

impossible to design an approximation algorithm with ratio error  (  1), unless P  

NP. 

To establish this result, we formulate VHP as a general travelling salesman 

problem (TSP). The formulation is based on constructing a weighted undirected 

complete graph G, as described below. Let I  (N, P, K), be the instance of VHP, 

where N is the set of nets, P  {Pi | i  1, 2, …, t} is the partition of N into t disjoint 

classes of non-overlapping nets and K, a positive integer. 

We construct a complete graph G  (V, E) of t+1 vertices as follows. For every 

Pi, 1 i t, we introduce a vertex vi  V in G. For every pair (vi, vj) of vertices, we 

introduce an undirected edge (vi, vj). This edge is assigned a weight w(i, j)  ci,j, where 

ci,j is the total amount of crosstalk created by nets in Pi and Pj when they are assigned 

to adjacent tracks. We now introduce one more vertex v0 in V and t edges (v0, vi) of 

weight zero into the graph, where 1 i t. This completes the construction of G, a 

complete graph of t1 vertices. The construction is illustrated in Figure 3.6. 
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Figure 3.6: (a) A channel specification I  (N, P, K) of VHP of eight two-terminal 

nets. P  {P1, P2, P3, P4}, is a partition of P into four non-overlapping class of nets. 

Nets in Pi can only be assigned exclusively to one track. Note that this is only an input 

to the problem, not a routing solution. (b) The corresponding constructed graph 

instance G  (V, E) of five vertices of the TSP problem. Here vi is the vertex 

corresponding to Pi, i; v0 is the other vertex. Weights of all edges adjacent to v0 are 

zero. For all other edges, w(i, j)  ci,j. A tour T  v0, v4, v2, v1, v3, v0 of the TSP 

problem of the cost of 15 units. (c) The assignment of nets corresponding to the tour 

T, where Pi is assigned to the j-th track from the top if vi is the (j+1)-th vertex in T. 

This assignment of nets results in a routing solution with exactly 15 units of total 

crosstalk, the same as the cost of the tour. 
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In this example, we have considered a channel instance and a partition P of 

nets, as shown in Figure 3.6(a). The corresponding graph G for the TSP problem is 

shown in Figure 3.6(b). A tour T is also assumed here, and the cost of the tour c(T) is 

15 units. Following the tour (ignoring v0) of the TSP problem, we assign the nets in 

different classes of P of the channel instance to tracks along the height of the channel, 

as shown in Figure 3.6(c). The total amount of crosstalk of this assignment of nets as 

a routing solution is 15 units, which is the same as the cost of the tour. Now it is 

interesting to note the following lemma. 
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  where P1  {1, 5}, P2  {4, 2}, and P3  {3}. 
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(b) 

Figure 3.7: (a) A channel specification of VHP of five nets. Let P  {P1, P2, P3} be 

the given partition of P, which is not a solution to the instance. (b) The corresponding 

instance of general TSP problem, where the triangle inequality is not satisfied. This is 

because the cost of edge (v2, v3) (i.e. 3 units) plus the cost of edge (v3, v1) (i.e. 3 units) 

is less than the cost of edge (v1, v2) (i.e. 11 units). 

Lemma 3.3: For every tour, starting with v0, of the travelling salesman problem there 

is a unique |P|-track no-dogleg two-layer VH routing solution, and the amount of 

crosstalk in this routing solution is same as the cost of the tour. 
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Proof: Let T v0, v1, v2, …, vt, v0 be a tour for an instance of the travelling 

salesman problem (TSP) obtained with cost c(T). From tour T, if we delete vertex v0 

and its adjacent edges, the cost of the path from v1 through vt remains same as c(T). 

This is because, from the construction of graph G for a TSP instance, the weights of 

the edges (v0, v1) and (vt, v0) are zero. Accordingly, we could assign the sets of nets 

from top to bottom along the height of the channel, obeying t classes of the partition 

P, such that the nets in a class are assigned to the same track. In this assignment, nets 

corresponding to vi are assigned to track i, 1 i t, from the top of the channel. Thus, 

the nets corresponding to vt are assigned to the bottommost track, where t  |P|. 

Hence, a |P|-track no-dogleg two-layer VH routing solution is obtained. 

Now we prove that the amount of crosstalk of this routing solution is the same 

as c(T). Here we have just stated how the nets are assigned to tracks following their 

classes in P, along with the height of the channel. So for two consecutive vertices vi 

and vi1 in the path obtained (ignoring v0), 1 i t1, the corresponding sets of nets 

are assigned to two successive tracks i and i1, respectively, from the top of the 

channel. According to the construction of the graph, the weight of edge (vi, vi1) is 

same as the total amount of overlapping between the nets in the corresponding classes 

of P. Hence, the total crosstalk of the routing solution is same as the cost of the path 

consisting of vertices v1 through vt, which is the same as c(T), as the weights of the 

edges (v0, v1) and (vt, v0) are zero.  

It turns out from the above lemma that VHP can be formulated as a general 

TSP problem. Observe that an instance of the TSP problem thus obtained may not 

satisfy the triangle inequality, as explained in Figure 3.7. Also, we know that there is 

no approximation algorithm for the general TSP problem, with ratio error  (  1), 

unless P  NP [13, 28]. Therefore, we have the following theorem. 

Theorem 3.5: Unless P  NP, it is impossible to design an approximation algorithm 

for the no-dogleg two-layer VH channel routing problem of crosstalk minimization 

with the partition of nets for simple instances of channel specifications (VHP), with 

ratio error  (  1). 
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As the problem of crosstalk minimization with a partition in two-layer channel 

routing for simple instances of channel specifications is a special case of the general 

two-layer channel routing problem of crosstalk minimization, we claim the following. 

Theorem 3.6: Unless P  NP, it is impossible to design an approximation algorithm 

for the no-dogleg two-layer VH channel routing problem of crosstalk minimization 

without any partition of nets for general instances of channel specifications (VHG), 

with ratio error  (  1). 

3.4.4 Hardness of Bottleneck Crosstalk Minimization 

Now we prove that the bottleneck crosstalk minimization problem, BVHP is NP-

complete. Input here is the same as VHP. Let I  (N, P, B) the input instance of 

BVHP. We need to find if there is a feasible |P|-track assignment such that exactly one 

track is used to assign all nets in Pi and the maximum amount of crosstalk between 

two nets in (two) adjacent tracks of the solution is at most B. Obviously, a certificate, 

i.e. an assignment of the track to each Pi can be checked in polynomial time for the 

existence of nets in an adjacent track having overlap at most B. This proves that 

BVHP is in NP. 

To show the NP-hardness of BVHP, we use the same reduction as used in 

VHP. Let I be the original instance of HPP* and I  (N, P, B) be the constructed 

channel instance. By Lemma 3.2, I has a Hamiltonian path P of length n1 if and only 

if the corresponding track assignment of I, as mentioned in the lemma, produces 

exactly one unit of crosstalk between each pair of adjacent tracks. Let Pi and Pj be the 

classes of nets assigned to adjacent tracks in this solution. By construction, nij and nji 

are the only nets in these classes that can overlap. Thus, these two nets will produce 

crosstalk of one unit, and all the other nets will not produce any crosstalk. Therefore, 

the instance I will have a Hamiltonian path of length n1 if and only if instance I has 

an n-track solution with bottleneck crosstalk 1. Note that I has many feasible 

solutions with bottleneck crosstalk two. 

Theorem 3.7: BVHP is NP-complete. 
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Figure 3.8 (a) A channel instance. (b) The VCG of the channel instance. (c) A 

restricted dogleg routing solution for the channel instance in (a), where net 1 is 

doglegged and its horizontal sub-segments are assigned to the first track and the fifth 

track of the channel, from top to bottom. Vias are also shown, where two orthogonal 

wire segments of the same net intersect; these are used for changing layers of 

interconnect. 
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It becomes obvious that the bottleneck crosstalk minimization problem is NP-

complete without any partition of nets for simple as well as general instances of 

channel specifications. 

3.4.5 Hardness of Crosstalk Minimization in Doglegging 

So far, we have considered several crosstalk minimization problems in computing a 

routing solution for two-layer VH channel routing, using the shape of no-dogleg 

routes only. No-dogleg routing is simple, and it requires a minimum number of vias 

used for changing layers of interconnect. However, there are instances of CRP for 

which we may not have a feasible routing solution using only the shapes of no-dogleg 

routes. One such channel instance is shown in Figure 3.8(a). The VCG of this channel 

instance contains a cycle comprising vertices v1, v3, and v2 as shown in Figure 3.8(b). 

Thus, there is no feasible no-dogleg two-layer VH routing solution in the 

reserved Manhattan routing model in this case. Rather, in order to compute a feasible 

two-layer VH routing solution in the specified routing model, we need to split the 

horizontal span of a net into subnets (or subintervals) for their assignment to different 

tracks. This is known as doglegging, and the route is known as a dogleg route [15, 

49]. Even when a no-dogleg solution exists, use of doglegging may also help in 

computing a routing solution with a lesser number of tracks (or less channel area), 

sacrificing a few more vias [15, 49]. 

Usually, there are two kinds of doglegging within the span of a net. If the 

route for a net is allowed to dogleg only in those columns in which it contains a 

terminal, it is called a restricted dogleg route [15, 49]; otherwise, it is known as an 

unrestricted dogleg route [73]. In restricted dogleg routing, the horizontal span of a 

net is permitted to dogleg only at columns where it has a terminal. A restricted dogleg 

two-layer VH routing solution for the channel instance in Figure 3.8(a) is shown in 

Figure 3.8(c). Here, net 1 is doglegged and assigned to two different tracks, the 

topmost and bottommost tracks of the channel. 

We now consider channel routing with restricted doglegging for the instances 

with multi-terminal nets. We extend the NP-completeness of the results proved so far 

to this model by considering no-dogleg routing of instances restricted to two-terminal 

nets. Now it is easy to see that any problem with multi-terminal restricted dogleg two-

layer VH channel routing reduces to two-terminal no-dogleg two-layer VH channel 
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routing, by restricting the number of terminals for each net to two [41, 49]. So all the 

above results of NP-completeness proved in this chapter using no-dogleg routing 

imply that the problems of computing minimum crosstalk routing solutions (of given 

area) using restricted doglegging (with multi-terminal nets) are also NP-complete. 

All these results of crosstalk minimization equally hold for the general 

instances of channel specifications consisting of both horizontal and vertical 

constraints. This is because the set of instances of channel specifications without any 

vertical constraint is a proper subset of the set of general instances of channel 

specifications. 

3.5 Summary 

In this chapter, we have considered the problem of crosstalk minimization in two-

terminal no-dogleg two-layer VH channel routing and have proved that the problem is 

NP-complete for (i) the simple instances of channel specifications where there is no 

vertical constraint, and (ii) the general instances of channel specifications with both 

types of constraints present in it, with a partition of nets so that the nets in a class of 

the given partition are to be assigned to the same track. 

The problem of crosstalk minimization for simple, as well as general instances 

of channel specifications in two-terminal no-dogleg two-layer VH channel routing, 

has also been proved NP-complete, even if there is no such partition of nets (so that 

the nets in a class of the partition are to be assigned to the same track). We have 

considered the issue of the existence of polynomial time approximation algorithms for 

the CRP and proved that it is impossible to design such an approximation algorithm. 

The bottleneck crosstalk minimization problem has also been considered and proved 

to be NP-complete with and without any partition of nets. In addition, all these 

problems have been proved NP-hard, even if restricted doglegging is allowed. 

As the problem of crosstalk minimization is a hard problem, it is unlikely that 

a polynomial time algorithm can be developed to solve the problem; rather, devising 

heuristic algorithm(s) could be a probable solution strategy to solve available channel 

instances with mostly reduced crosstalk. In this thesis, in Chapter 4, we have 

developed heuristics for obtaining reduced crosstalk routing solutions. Experimental 

results based on the heuristics are computed that show a lot of improvement over 
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existing routing solutions of reduced area; these results have been included in Chapter 

6 of this thesis. The problem of crosstalk minimization in three-layer and multi-layer 

channel routing, however, is still an open problem in any routing model. 
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Chapter: 4 

Algorithms for Computing Two-Layer Reduced 

Crosstalk Channel Routing Solutions 
 

 

4.1 Overview 

In the previous chapter, we have shown that the crosstalk minimization problem for 

the reserved two-layer (VH) Manhattan channel routing is NP-hard for simple 

instances of channel specifications (i.e. the channels without any vertical constraint). 

It remains NP-hard for general instances of channel specifications which involve both 

horizontal and vertical constraints. In this chapter, we present two heuristics for 

computing reduced crosstalk two-layer channel routing solutions on given routing 

solutions of minimum area for simple as well as general channel instances. The 

performance of our algorithms is encouraging enough for most of the existing 

benchmark channels, and reduction in crosstalk for these channels is up to 28.34% for 

a given routing solution. By the way, for all the relevant instances, simple as well as 

general, generated in the next chapter, both the associated algorithms devised in this 

chapter have been executed, and results computed are included in Chapter 6. 

4.2 Area and Crosstalk Minimization in CRP 

Channel routing has been studied extensively in the layout of integrated chips in last 

four-and-a-half decades. The CRP of area minimization is an NP-hard problem [41, 

49, 80, 86]; several heuristic algorithms have been designed for routing channels in 

different routing models [10, 12, 15, 33, 49, 51, 54, 71, 73, 96]. The problem is 

polynomial time computable if the instances are free from any vertical constraint and 

we are interested only in resolving horizontal constraints in the two-layer VH channel 

routing model [32, 49]. The same algorithm is applicable in computing routing 

solutions for any channel instances in the Vi+1Hi routing models, where 1  i  dmax, 

with alternating vertical and horizontal layers of interconnect [49, 52, 53, 57]. 

Since the problem of minimizing area for the instances of routing channels 

without any vertical constraint is polynomial time solvable using only dmax tracks, 

such instances are termed as the simple channel specifications. Hashimoto and 
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Stevens [32] proposed a scheme for solving this problem. According to Schaper [80], 

it can be implemented in O(n(log n + dmax)) time, where dmax is the channel density 

and n is the number of nets in the channel. Later on, Pal et al. [49, 52, 53] developed 

and analyzed two different minimum clique cover based algorithms, MCC1 and 

MCC2, based on the scheme developed by Hashimoto and Stevens [32]. 

The first algorithm MCC1 is devised on a graph theoretic approach that runs in 

O(n + e) time, where n is the number of nets and e is the size of the horizontal non-

constraint graph (HNCG) [49, 51, 52, 53, 59], the complemented graph of HCG. The 

second algorithm, MCC2 is developed using a balanced binary search tree data 

structure that takes O(n log n) time for a channel with n nets [49, 52, 53]. Though 

routing solution of only dmax tracks is guaranteed for the simple channel instances in 

the stated routing models, it may not be a good routing solution from the resulting 

crosstalk point of view. 

We reiterate the presence of crosstalk between nets (or intervals) assigned to 

different tracks in a two-layer channel without any vertical constraint. If two intervals 

do not overlap, there is no horizontal constraint between them. That is, if there is a 

horizontal constraint between a pair of nets, there is a possibility of having a 

measurable crosstalk between them. We quantify crosstalk in terms of the number of 

units a pair of nets overlaps on adjacent tracks in a feasible routing solution. 

Consider the problem of minimizing crosstalk in a two-layer VH routing 

model. Suppose we have three intervals a, b, and c as shown in Figure 4.1(a), in a 

feasible routing solution of three tracks only. 

Since all three nets, a, b, and c overlap, we are compelled to assign them to 

three different tracks on the same horizontal layer in any feasible routing solution. 

However, the most interesting feature we can point out is that in Figure 4.1(a), nets b 

and c share 11 units of horizontal span in the channel, and nets c and a share 2 units; 

whereas in Figure 4.1(b), we have a net sharing of 4 units of horizontal span in total 

just by reassigning the nets to tracks. It is inevitable that the assignment of nets to 

tracks in Figure 4.1(b) produces a reduced crosstalk routing solution; in fact, it is the 

minimum crosstalk three-track routing solution in this particular case. On the other 

hand, we identify a channel specification as general, if both the constraints are present 

in it. We now consider the presence of vertical constraint in a channel, and the 
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situation evolved, due to this constraint. 
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Figure 4.1: Crosstalk minimization problem in two-layer VH channel routing, in the 

absence of vertical constraints. (a) A feasible three-track routing solution with three 

intervals of three different nets a, b, and c that are overlapping to each other. Nets b 

and c share 11 units of horizontal span in the channel (as they are assigned to adjacent 

tracks), and nets c and a share 2 units, amounting a total of 13 units’ cross coupling 

length. (b) Another feasible three-track routing solution for the same channel 

instance, with a total net sharing of 4 units of horizontal span; hence, a minimized 

crosstalk routing solution is obtained just by reassigning the nets to tracks. 
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Figure 4.2: Crosstalk minimization problem in two-layer VH channel routing, in the 

presence of vertical constraints. (a) A feasible routing solution with a vertical 

constraint (c, a). (b) A reduced crosstalk routing solution is gratifying the vertical 

constraint. 

Now, suppose that there is a vertical constraint (c, a) as shown in Figure 

4.2(a), as in some column we have a terminal of net c at the top row and a terminal of 

net a at the bottom row. In this case, we cannot alter the sequence of assigning the 
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intervals c and a in order to compute a reduced crosstalk feasible routing solution, as 

we did in the case of Figure 4.1. Rather in any feasible routing solution of this 

instance, we have to assign the interval of net c to a track above the track to which the 

interval of net a is assigned. In this case, in order to minimize crosstalk, we can alter 

the assignment of interval b to any of the three tracks conforming the vertical 

constraint. In fact, a minimum crosstalk feasible routing solution of this example is 

shown in Figure 4.2(b). 

In this chapter, we have developed two heuristic algorithms for minimizing the 

crosstalk in the reserved two-layer (VH) Manhattan channel routing model, where our 

intention is to minimize sum crosstalk. The sum crosstalk is the amount of total 

crosstalk between horizontal wire segments of different nets pair-wise that are 

assigned to adjacent tracks. The sum crosstalk minimization problem is to compute a 

feasible routing solution with a given number of tracks in which the total amount of 

crosstalk is minimized. In Chapter 3, we have proved that the problem of sum 

crosstalk minimization is NP-hard even if the channels are free from vertical 

constraints. Thus, developing deterministic polynomial time algorithms for 

minimizing the crosstalk is implausible. Developing heuristic algorithm(s) is the way 

out for dealing with the problem. 

4.3 Algorithms for Crosstalk Minimization 

In the previous section, we have mentioned that the crosstalk minimization problem in 

two-layer channel routing is NP-hard, even if the channel instances are simple. For 

this reason, we first develop a crosstalk minimization algorithm in two-layer channel 

routing, where instances are free from any vertical constraint. Then we extend it to 

two-layer routing with general channel instances. Before that, we reexamine the 

assignment of intervals in order to reduce crosstalk in two-layer (VH) channel 

routing, as has been illustrated in Figure 4.1, where the amount of crosstalk in Figure 

4.1(b) is reduced to 30.77% to that of in Figure 4.1(a). Hence, we have the following 

observation. 

Observation 4.1: The amount of crosstalk can be reduced if a net (or interval) of a 

smaller span is sandwiched by two nets (or intervals) of larger spans, or vice versa. 

This observation is the motivation for developing the first algorithm. 
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NP-completeness proofs, given in Chapter 3, of crosstalk minimization in two-

layer channel routing, with and without vertical constraints imply that a polynomial 

time algorithm for any one of these is unlikely to exist. Furthermore, results obtained 

in Section 3.4.3 entail that getting an approximation algorithm for the problem is also 

NP-hard. Hence, it makes sense to design appropriate heuristics for this problem. In 

this section, we present two heuristics for computing near optimal crosstalk routing 

solutions from a given routing solution of minimum area for simple instances of two-

layer CRP. The heuristics have also been subsequently generalized using a novel 

technique to compute a near optimal crosstalk routing solution from a routing 

solution of given area, for a general instance of two-layer CRP. 

We start with a two-layer feasible routing solution S of t tracks and compute 

another feasible routing solution Sof the same area (i.e. using exactly t tracks) with 

reduced total crosstalk. For the simple instances of CRP, we take the routing 

solutions, S, of dmax tracks, obtained by the algorithm Minimum_Clique_Cover_1 

(MCC1) [49, 52, 53]. On the other hand, for a general channel specification, we start 

with an existing routing solution obtained from the algorithm 

Track_Assignment_Heuristic (TAH) [49, 51]. 

In the first heuristic, we reassign the nets in Pi, track-wise, in a given routing 

solution S, so as to reduce the amount of overall crosstalk in computing S. In the 

second one, the nets that are reassignable to some other track(s) are shifted such that 

the total crosstalk is further reduced. Intelligently adapting these reassignments, we 

are able to design the heuristic for the general instances of CRP. 

4.3.1 The First Heuristic: Algorithm Track_Change 

4.3.1.1 The Basic Approach Used 

Let Pi be the set of nets assigned to the i-th track in the given solution S. This heuristic 

obtains a permutation P  (P1, P2, …, Pt) of P  (P1, P2, …, Pt) and assigns Pi to 

the i-th track, for all i  1, 2, …, t. Note that the groups of nets obtained in the area 

minimization problem are not changed here. Reduction in total crosstalk due to such 

reassignment of net groups can be observed in Figures 3.1 through 3.2. To get the 

permutation P (of P), the heuristic starts with the reduced vertical constraint graph 

(RVCG), introduced in [49, 56, 58, 59], of the minimum area routing solution S, and 
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in t iterative steps, it reassigns the net groups track-wise from the top to the bottom 

along the height of the channel. 

We often represent vertical constraints by the RVCG, a graph that represents 

all vertical constraints between groups of nets, where each group has a set of non-

overlapping intervals representing a clique in the horizontal non-constraint graph 

(HNCG) [49, 51, 52, 53, 59]. Note that an HNCG is the complement of the HCG of a 

given channel, and a clique of the HNCG corresponds to a set of non-overlapping 

intervals that may safely be assigned to a track in a routing solution. As the nets in a 

track of a routing solution S correspond to a clique in the HNCG, the RVCG can be 

used to represent the vertical constraints among the classes in P. The RVCG under 

consideration is computed for a given feasible two-layer VH channel routing solution 

S, and hence acyclic (or a DAG). 

The algorithm is ‘greedy’ that works iteratively. In the first iteration, it selects 

a source vertex (a vertex with indegree zero) in the RVCG whose nets are of the 

maximum horizontal span. Then it deletes the vertex along with its adjacent edges (if 

any) from the RVCG. In the i-th iteration, 2 i t, the algorithm selects a source 

vertex, say s, in the current RVCG (i.e. the modified RVCG at the beginning of the i-

th iteration) such that the nets in s are best fitted (in terms of reduction in crosstalk) 

for their assignment to the i-th track from the top row of the channel. After 

assignment of all the nets in s to the i-th track, s and its adjacent edges, if any, are 

deleted from the current RVCG and the modified RVCG is obtained for the next 

iteration. 

Clearly, for simple instances of CRP, the number of tracks t in S is the same as 

the density, dmax, of the channel. Further, the RVCG, in this case, contains no edges, 

as there is no vertical constraint in the channel instance I; therefore, it consists of 

exactly dmax isolated vertices (corresponding to dmax disjoint sets of non-overlapping 

intervals). Thus, we have to handle only the horizontal constraints present in I. The 

solution technique is similar to the solution of Interval Containment Problem (ICP) 

[16, 22]. Therefore, we need to present ICP and the algorithm for solving it. 

Problem: Interval Containment Problem (ICP). 

Instance: A set of n intervals such that for any pair of intervals i and j, 1 i, j n, 

either i contains j or j contains i. 
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Objective: Obtain an ordering of all n intervals on a real line, that the total 

overlapping of the consecutive intervals in the order is the minimum. 
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Figure 4.3: (a) An instance of problem ICP with six intervals u through z. (b) The 

intervals are sorted based on their spans in descending order. (c) A reassignment of 

intervals to tracks with reduced crosstalk. The sequence of reassignment is as follows: 

Net with the largest span, net with the smallest span, net with the second largest span, 

net with the second smallest span, and so on. Here, the amount of total overlapping is 

24 units, which is the lowest amount (of overlying based on adjacency of the 

intervals). 

Without any loss of generality, we assume that all 2n end points are distinct. 

To design a polynomial time algorithm for an instance of ICP, we perform the 

following two steps one after the other. First, we sort the intervals based on their 

spans and then reorder them in such a way that the amount of total overlapping of 

consecutive intervals in the new order is minimized. To get the intended ordering, we 

place the interval with the maximum span to the first position, the interval with the 

minimum span to the second position, the interval with the next to maximum span to 
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the third position, the interval with the next to minimum span to the fourth position, 

and so on. This is exactly the algorithm that we have followed in reordering the 

intervals. It is obvious that this ordering minimizes the sum of overlapping of 

consecutive intervals. This has been explained in Figure 4.3. Therefore, we have the 

following lemma. 

Lemma 4.1: A minimum cost ordering of intervals of the ICP of n intervals can be 

obtained if the intervals are assigned to a new order in the following way: (i) The 

interval with the maximum span is assigned to the first position, (ii) the interval with 

the minimum span is assigned to the second position, (iii) the interval with the next to 

maximum span is assigned to the third position, (iv) the interval with the next to 

minimum span is assigned to the fourth position, (v) and so on. If the intervals are 

arranged in non-ascending order of their spans, then the amount of total overlapping 

is same as twice the sum of spans of last (or smallest) n/2 intervals, if n is odd; 

otherwise, if n is even, that is same as twice the sum of spans of last (or smallest) n/2 

1 intervals plus the span of the (n/2+1)-th interval. 

Proof: The amount of overlap between two consecutive intervals is same as the span 

of the smaller one. After reassignment, we obtain an interval with smaller span 

flanked by two intervals of larger spans, and this is acquired after sorting the intervals 

based on their spans. Thus, the amount of total overlapping of the consecutive 

intervals in the new order is as follows. 

Clearly, if n is odd, then each of the n/2 intervals with their smaller relative 

spans is flanked by a pair of the remaining n/2 intervals with their larger relative 

spans. Therefore, the total overlap of intervals, in this case, is twice the sum of total 

span of n/2 smaller intervals. On the other hand, if n is even, then each of the n/21 

intervals with their smaller relative spans is flanked by a pair of (the elongated) n/2 

intervals with their larger relative spans, and the remaining interval (i.e. the (n/2)-th 

smallest interval) is assigned to the last position (or below but) adjacent to the (n/2)-th 

longest interval. Thus, the total amount of overlap, in this case, is twice the sum of 

spans of last (or smaller) n/21 intervals plus the span of the (n/2+1)-th interval (if 

the intervals are arranged in non-ascending order of their spans). 
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Observe that, the total overlap of consecutive intervals obtained by the 

algorithm matches the lower bound. None of the other orders, evidently, produces 

total overlap better than the solution obtained. Hence, we conclude the lemma.  

The problem of minimizing the crosstalk in CRP becomes the same problem 

of minimizing the total overlapping in ICP when instances are free from any vertical 

constraint, and the span of every net is contained in the span of some other net. In 

general, unlike ICP, we can have two or more non-overlapping intervals in each class 

Pi for their assignment to a track in CRP. The solution method used for ICP is not 

expected to produce an optimal solution for the minimum crosstalk CRP. The solution 

obtained is obviously an approximated routing solution. 

In designing a heuristic for the simple instances of CRP, we do the following. 

Assume a single hypothetical interval Ii for each Pi. The effective span of Ii is assumed 

to be the sum of spans of all nets in Pi. Further, we assume that the amount of overlap 

between Ii and Ij be ci,j, the amount of crosstalk created between Pi and Pj if they are 

assigned to adjacent tracks. The abstract ICP instance obtained is solved using the 

algorithm mentioned above. If j is the position of Ii in the final ICP order, all nets in 

Pi are assigned to the j-th track from the top. Note that the ICP instance obtained here 

may not satisfy the containment property. However, it can still be used to compute a 

reduced crosstalk routing solution. This gives us the first heuristic 

Track_Change_Simple. The execution of the algorithm has been explained in Figure 

4.3. 

The initial partition Pi of nets required by Track_Change_Simple is computed 

using the dmax-track routing solution S obtained by executing any one of the 

algorithms, Left Edge Algorithm (LEA) [32], or MCC1 or MCC2 [49, 52, 53], for a 

simple instance of channel specification. First, we compute the effective spans of 

intervals Ii for each Pi. The effective span tells about the use of a track; how much it is 

occupied or how much it is sparse. 

Subsequently, for a dmax-track routing solution S, we sort the set of all Ii’s in 

non-increasing order according to their effective spans. If we find two or more classes 

of nets having the same effective span, they are placed in the sorted sequence in non-

decreasing order of their total spans. The total span of nets belonging to a class Ii is 

the span between the starting column of the first net and the ending column of the last 
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net in Ii. Total span tells us how the nets are relatively distributed and/or separated 

over a track when two or more tracks are there with a same effective span of intervals. 

After having the desired sorting of all Pi’s, in non-increasing order of their 

effective span, we reassign them track-wise in the way as it is done in the case of ICP 

(Figure 4.3). Thus, in the final solution obtained, the first two sets of the sorted 

sequence having large effective spans, sandwich the dmax-th set (of least effective 

span). The second and third sets sandwich the (dmax1)-th set of this sequence, and so 

on. The sandwich of a track with a less effective span of intervals by a pair of flanked 

tracks with more effective spans of intervals is absolutely motivated by the geometry 

of the channel and the initial routing solution provided (or computed by us) as input to 

run the heuristic. This is all about the algorithm Track_Change_Simple, which is 

designed for a simple instance of CRP. 

4.3.1.2 Modification Introduced 

Now we introduce some changes in devising the algorithm Track_Change_General 

so that the modified heuristic is able to compute a two-layer reduced crosstalk VH 

routing solution starting from a (given) two-layer VH routing solution, S of t tracks, 

for a general instance of CRP. In this case, we need to satisfy vertical constraints in 

addition to the horizontal constraints present in the channel instance, in order to 

compute a desired feasible routing solution S. As a consequence, we are not in a 

position to compute a sorted sequence of vertices in the RVCG that would certainly 

lead to a two-layer feasible routing solution (as there are vertical constraints among 

the nets). In addition, the number of feasible solutions for some given routing 

solution, S can also be exponential with respect to the number of nets. Thus, instead of 

computing a sorted sequence, we devise two versions of this algorithm: In the first 

version, we consider all groups of nets belonging to the set of source vertices in a 

current RVCG and apply algorithm Track_Change_Simple for this set of vertices in 

isolation, and in the second version, we introduce a balanced binary search tree data 

structure, both in an iterative-cum-greedy manner. We now briefly describe the first 

version of the algorithm as follows. 

Based on the given routing solution S of t tracks for some general channel 

instance I, we first compute the RVCG, which is not edge-free now. We know that the 

RVCG represents vertical constraints between groups of nets, where each group has a 
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set of non-overlapping intervals assigned to a track in S. In other words, the nets in a 

track in S correspond to a clique in the HNCG, and t is the size of a clique cover of 

the underlying interval graph (based on the spans of nets as intervals), satisfying 

vertical constraints present in I. 

Thus, (i) the RVCG is used to represent the vertical constraints in S, and it 

contains exactly t vertices, as S is a routing solution of t tracks, (ii) a vertex in the 

RVCG corresponds to a set of non-overlapping nets assigned to a track in S, and (iii) 

there is a directed edge (u, v) in the RVCG, if there is a net ni u and another net nj 

v, such that (ni, nj) (or (vi, vj)) is a directed edge in the VCG. Obviously, the VCG 

as well as the RVCG, is cycle-free (or DAG), as S is a feasible two-layer VH routing 

solution. 

The first version of the algorithm iterates for p times, where p  t for a given t-

track two-layer VH routing solution S. For a feasible S, an acyclic RVCG is there, that 

must contain at least one source vertex at the beginning of each successive iteration. 

We may note that if there are k  1 source vertices in RVC1 (i.e. the initial RVCG), all 

(k groups of) nets belonging to these source vertices are set-wise assignable to the 

topmost k tracks of S (i.e. the solution we like to compute with reduced crosstalk). 

For this, we apply the algorithm Track_Change_Simple that has been devised in the 

previous section, only for the set of k source vertices in RVC1. Next, we delete all 

these vertices (along with adjacent edges) from RVC1 and obtain RVC2 (i.e. the 

modified RVCG at the beginning of the second iteration). 

Thus, we get a new set of source vertices in RVC2 to again apply the algorithm 

Track_Change_Simple on this set (of vertices) for computing the desired sequence of 

the corresponding groups of nets. In this case, it is necessary to check which end set 

(of non-overlapping intervals) of the computed sequence introduces less crosstalk 

with the set of intervals already assigned to the k-th track; then from the (k+1)-th track 

onwards the groups of nets are assigned to subsequent tracks using the sequence 

computed above, and the RVCG is further updated by deleting the source vertices 

(along with adjacent edges) in RVC2 to obtain RVC3 (if any, for the next iteration). 

This process is continued till the RVCG is exhausted; that means all the t groups of 

(non-overlapping) nets are assigned to tracks and a reduced crosstalk routing solution 

S is computed. This version of the algorithm is viewed at a glance in the next section. 
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The method devised for the second version of the algorithm is now described as 

follows. 

This version of the algorithm Track_Change_General starts with the RVCG 

of a given minimum area routing solution, S of t tracks for a general channel instance 

I, and in t iterative steps, track-wise it reassigns the nets from top to bottom along the 

height of the channel. Let RVCi be the RVCG at the beginning of the i-th iteration, 1 

i t, and Si be the set of source vertices in RVCi. Si must contain at least one 

element at the beginning of the i-th iteration. This is because the given routing 

solution S is a feasible two-layer routing solution in the specified routing model 

without any cyclic vertical constraint and the corresponding RVCG is also acyclic. In 

the i-th iterative step, we select a source vertex, say s, from RVCi, so that the nets in s 

are best fitted (in terms of reduction in crosstalk) for their assignment to the i-th track 

from the top row of the channel. After assignment of all the nets in s to the i-th track, 

s and its adjacent edges (if any) are deleted from RVCi, and the RVCG for the next 

iteration is obtained. The algorithm terminates exactly after t iterations and computes 

S, for a given routing solution, S of t tracks. 

4.3.1.3 More on Implementation Details 

Now we state how each iterative step of the second version of the algorithm 

Track_Change_General works in computing S. In the first iteration of this version of 

the algorithm, we assign the nets corresponding to the source vertex, s such that the 

effective span of intervals of all the nets in s among the source vertices in RVC1 (i.e. 

the initial RVCG) is maximum. The idea of selecting such a source vertex, s for the 

topmost track is justified by the following fact. Without loss of generality, we may 

assume that the amount of crosstalk between the nets in the first track and the fixed 

terminals at the top row of the channel is negligible. 

From the second track onwards in successive iterations, we select such a 

source vertex, s from RVCi for assigning the (non-overlapping set of) nets (assigned to 

a track) in S to the i-th topmost track of the channel, 2 i t, that renders a minimum 

amount of crosstalk with the nets already assigned to the (i1)-th track. Now we state 

how a source vertex, s from RVCi is selected so that the corresponding nets deserve 

their assignment to the i-th topmost track. 
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To compute s efficiently, we maintain a balanced binary search tree data 

structure among the set of source vertices in RVCi based on their effective spans of 

intervals. From this binary search tree, we particularly trace two source vertices 

having the minimum and the maximum effective spans of intervals. Both elements 

can be computed in O(log t) time. According to this heuristic, the nets either 

belonging to the source vertex with a maximum effective span of intervals or the 

source vertex with a minimum effective span of intervals are best assignable to the i-

th track. This can be computed in a constant amount of additional time by separately 

computing and comparing crosstalk between the nets already assigned to the (i1)-th 

track and the nets belonging to two end vertices (in inorder) in the balanced binary 

search tree amongst the source vertices in RVCi. 

If these two effective spans of intervals in RVCi are same (this is true only 

when all the source vertices in RVCi are having the same effective span of intervals), 

we compute their total spans of intervals, as defined earlier. It may also happen that a 

few (two or more but not all) source vertices are having the same effective span of 

intervals in RVCi. In that case, we arrange these source vertices in reverse order based 

on their total spans of intervals within the same balanced binary tree structure. 

The computation of total spans of intervals is motivated by considering the 

design issues of (i) percentage utilization of a track, (ii) congestion of nets over the 

region near the i-th track, (iii) amount of overlapping between the nets in adjacent 

tracks, and (iv) sometimes, vertical wire length minimization, if situation supports. 

All these aspects are suitably incorporated in all the phases of the heuristics designed 

in this chapter, and these are extremely important in synthesizing VLSI physical 

design from high performance routing point of view. Nonetheless, if the source 

vertices in RVCi are differentiated by creating another balanced binary search tree 

based on their total spans of intervals, we select the vertex that is the best fit (in terms 

of reduction in crosstalk) to the i-th topmost track; otherwise, we assign the nets of 

any one of them arbitrarily. 

It is clear from the heuristics illustrated above that the final solution 

Scomputed using algorithm Track_Change_General is a feasible routing solution of 

exactly t tracks, as it always assigns the nets from the top to the bottom of the channel 

and in each iteration of assigning the nets, it selects a source vertex from the current 
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RVCG. This completes the design of the heuristic Track_Change_General. The steps 

of both the versions of this algorithm are now presented in the following section. 

4.3.1.4 Algorithms at a Glance 

In this section, we first view the algorithm Track_Change_Simple and then view both 

the versions of the second heuristic, i.e. algorithm Track_Change_General. In each of 

the cases, the input to the algorithm is a feasible two-layer VH routing solution of a 

respective channel instance, and the output is a reduced crosstalk channel routing 

solution. The algorithms at a glance are as follows. 

Algorithm Track_Change_Simple() 

Input: A simple channel instance and a feasible two-layer VH routing solution of the 

channel. 

Output: A reduced crosstalk routing solution. 

Begin 

Step 1: For (i  1 to dmax) do 

 Begin 

Step 1.1: If (i  dmax/2), then 

Assign the i-th set of non-overlapping intervals to the (2i–1)-th track 

Else 

Assign the i-th set of non-overlapping intervals to the 2(dmax–i+1)-th 

track. 

End if 

 End 

 End for 

End 

 

Algorithm Track_Change_General_Version_I() 

Input: A general channel instance and the RVCG of a feasible two-layer VH routing 

solution of the channel. 

Output: A reduced crosstalk routing solution. 

Begin 

Step 1: Set p  1. 

Step 2: Set RVCp  RVCG. 
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Step 3: Repeat until the RVCG is exhausted 

Begin 

Step 3.1: Select the source vertices in RVCp and put them in a set Sp. 

Let Sp  {t1, t2, …, tk | each ti, 1 i k, is a source vertex in RVCp}. 

Step 3.2: Apply Track_Change_Simple() on set Tk of tracks containing non-

overlapping sets of intervals in S, corresponding to set Sp of vertices in 

RVCp. 

Step 3.3: Assign the sets of nets associated with the vertices in Sp as has been 

sequenced as the output of Step 3.2 (or the reverse sequence) for the 

set Tk of tracks to the current topmost |Tk| (empty) tracks, for which the 

amount of crosstalk is minimum. 

Step 3.4: Delete the set Sp of vertices (along with their edges) from RVCp, and 

modify the graph (i.e. RVCp). 

Step 3.5: Set p  p+1. 

End 

End 

Algorithm Track_Change_General_Version_II() 

Input: A general channel instance and the RVCG of a feasible two-layer VH routing 

solution of the channel. 

Output: A reduced crosstalk routing solution. 

Begin 

Step 1: Set RVCi  RVCG. 

Step 2: For (i  1 to t) do 

 Begin 

Step 2.1: Construct a balanced binary search tree, BSTi of the source vertices 

in RVCi based on their (sets of non-overlapping nets’) effective spans 

of intervals to tracks (and total spans of intervals, whenever required). 

Step 2.2: Assign a desired set of non-overlapping intervals associated to a 

vertex vi in BSTi to the i-th track. 

 Delete vertex vi along with its adjacent edges, if any, from RVCi.  

 End 

 End for 

End 
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4.3.1.5 Computational Complexity 

We first derive the computational time complexity of the algorithm Track_Change 

_Simple. As sorting is the prime task of this algorithm over dmax sets of non-

overlapping nets based on their effective spans of intervals and if needed, total spans 

of intervals, the time required by this algorithm is O(dmax log dmax) in the worst case. 

Thus, we conclude the following. 

Theorem 4.1: The algorithm Track_Change_Simple computes a feasible two-layer 

VH routing solution Swith a reduced crosstalk for a given two-layer VH routing 

solution S of a simple channel instance, where a pair of nets in Sis assigned to the 

same track that was assigned to the same track in S. The time complexity of the 

algorithm is O(dmax log dmax), where dmax is the density of the simple channel. 

We now analyze the time complexity of algorithm Track_Change_General. 

As this algorithm (in its first version) executes the tasks of the algorithm 

Track_Change_Simple, so algorithm Track_Change_General requires at least the 

same time that of Track_Change_Simple. Note that the value of dmax is same as O(n) 

in the worst case when each set contains a single net (or on an average a constant 

number of nets). Moreover, the RVCG is computed from the given routing solution, S 

of t tracks in O(t + l)  O(n) time, as both t and l are same as O(n), where l is the 

length of the given channel specification comprising n nets in total. As the size of the 

set of source vertices in one iteration is O(n), the best fit source vertex, s from RVCi is 

computed in time O(log n), as these vertices have already been organized in a 

balanced binary tree (in the second version of the algorithm), whose computation time 

is O(n log n). There can be at most 2t insertions and deletions in total as every vertex 

of the RVCG can only be inserted and deleted exactly once in the balanced binary tree 

data structure. Modification of the RVCG, as a whole, takes O(t) time. Now as the 

heuristic iterates for t times and t  O(n), the overall computational complexity of the 

algorithm Track_Change_General is O(n log n) time for a general channel 

specification of n nets, in the worst case. Hence, we conclude the following. 

Theorem 4.2: The algorithm Track_Change_General computes a feasible two-layer 

VH routing solution Swith reduced crosstalk for a given two-layer VH routing 

solution S of a general channel instance, where a pair of nets in Sis assigned to the 
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same track that was assigned to the same track in S. The time complexity of the 

algorithm is O(n log n), where n is the number of nets belonging to the channel. 

4.3.2 The Second Heuristic: Algorithm Net_Change 

Algorithm Track_Change_General is efficient enough in minimizing the maximum 

amount of crosstalk belonging to a given routing solution of a channel by reassigning 

the nets track-wise, obeying vertical constraints. The initial net grouping is never 

changed. However, it may so happen that an optimal solution actually corresponds to 

a different net grouping. Thus, algorithm Track_Change_General, presented in the 

previous section, can further be improved by interchanging nets among different 

classes in the partition P. In the next heuristic, our objective is to interchange a pair of 

nets assigned to two different tracks only when (i) the nets are horizontally 

constrained to each other, (ii) the interchange does not introduce any horizontal 

constraint violation due to overlapping with other nets, (iii) the interchange does not 

introduce any vertical constraint violation in computing S, and (iv) the resulting 

crosstalk (after interchanging the nets) is reduced. 

4.3.2.1 The Method Used 

Notice that the tasks mentioned above are not easy at all. Moreover, we do not know 

the sequence of interchanging pairs of nets such that a maximum amount of crosstalk 

can be reduced. Furthermore, a particular net may be interchanged O(n) times among 

the tracks without giving any remarkable gain in overall crosstalk, and making the 

complexity of the algorithm very high. That is why in this heuristic instead of 

allowing net-to-net swapping, we shift a net to some other track where a suitable 

blank space is available and this shifting results in a reduction of overall crosstalk. For 

some net x, if several such shifting is possible, we perform the particular shifting of x 

that maximizes the reduction in crosstalk. 

In this heuristic, we sort the nets that are interchangeable (or exchangeable 

with a blank space in some other track) from left to right in S with respect to their 

starting column positions in the channel. Then we consider such exchangeable nets 

one after another, and for some particular exchangeable net x we search out a track 

where the net is best fitted in terms of the overall crosstalk minimization without 

violating any vertical constraint. The sequence of substituting a net with a suitable 
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blank space in some other track plays the most important role in reducing the amount 

of crosstalk. In general, there are an exponential number of such sequences, and it is 

not possible to presume all of them to compute an optimal solution. Thus, we consider 

a constant number of such sequences to allow interchanging of position (of the span 

or interval) of a net with a blank space on some other track. 

Such sequences may be computed in several ways. In our algorithm, we 

compute the sequences by sorting of exchangeable nets (or blank spaces) (a) from 

top-left to bottom-right and (b) from bottom-left to top-right in a solved two-layer 

routing solution, S with respect to their starting column positions in the channel. 

Similarly, such sequences may also be allowed by sorting of exchangeable blank 

spaces (or nets) (a) from top-right to bottom-left and (b) from bottom-right to top-left 

in a solved two-layer routing solution, S with respect to their starting column 

positions from right to left along the length of the channel. In this context, it is 

imperative to mention that several such constant numbers of sequences may be 

identified and allowed to go through this heuristic before we accept the routing 

solution S with the least amount of total crosstalk in it. Moreover, this heuristic may 

repeatedly be executed a constant number of times, if the reduction in crosstalk can 

further be achieved in each case. Next, we view the algorithm at a glance in the 

following section. 

4.3.2.2 Algorithm Net_Change at a Glance 

We may note that this version of the algorithm is written in a generalized manner, 

which is applicable for simple channel instances as well as general channel instances. 

In any case, we assume a valid two-layer routing solution of t tracks, where in each 

track there are N  1 nets (as a variable). The steps of the algorithm are as follows. 

Algorithm Net_Change() 

Input: A feasible two-layer routing solution, S of t tracks, i.e. a valid assignment of 

tracks for all nets belonging to a channel. 

Output: A reduced crosstalk routing solution, S. 

Begin 

Step 1: For i  1 to t do 

For j  1 to N do 
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Begin 

Step 1.1: Crosstalk  0. 

Step 1.2: Calculate the crosstalk incurred by net nj in track ti due to 

overlapping of nj at track ti with the nets assigned at track ti–1 (if ti is 

not the first track) and track ti+1 (if ti is not the last track). Store the 

sum of these crosstalk for nj in ctold.  

Step 1.3: If ctold > 0, then 

 Begin 

Step 1.3.1: Find out the range (tp, tq) of tracks, p  q, such that net nj 

can be interchanged with a suitable blank span in a track 

between tp and tq, both tracks inclusive, and no vertical 

constraint violation is introduced. 

Step 1.3.2: Find out track ts, p  s  q, if any, such that the assignment 

of net nj to ts produces a minimum sum of total crosstalk with 

the nets in its adjacent (upper and lower) tracks, and vertical 

constraints with other nets are also maintained. Store this sum 

of crosstalk for nj in ctnew. 

Step 1.3.3: If ctnew < ctold, then remove the horizontal span (i.e. 

interval) of net nj from ti and place it to ts. Vertical wire 

segments for net nj are connected accordingly. 

End 

Step 1.4: Crosstalk  Crosstalk + ctnew. 

End 

End for 

End for 

End 

Without loss of generality, we may assume that the channel instance is simple, 

and the number of tracks required for such an instance is the same as the density, dmax 

of the channel, and in that case, t is replaced by dmax in Step 1 above. In addition, in 

the case of simple channel instances, there is no question of vertical constraint 

violation, as the channels are free from any vertical constraint; so this checking is 

superfluous in such a case (see Steps 1.3.1 and 1.3.2 of the algorithm). Furthermore, if 

ti is the first track, we may assume that ti–1 is the row of top terminals rendering no 
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crosstalk in practice; similarly, if ti is the last track, we may assume that ti+1 is the 

row of bottom terminals rendering no crosstalk (see Step 1.2). Notice that the range 

(tp, tq) of tracks, as mentioned in Step 1.3.1, is applicable for a general channel 

instance where net nj assigned to a track ti is sandwiched by vertical constraints (by 

other nets that are assigned above and below to nj); otherwise, for the given routing 

solution of a simple channel instance, tp may be assumed as the topmost track whereas 

tq as the bottommost track. 

4.3.2.3 Computational Complexity 

Now we analyze the time complexity of algorithm Net_Change. For a given t-track 

routing solution S of n nets, the heuristic requires O(t) iterations, each requiring O(n) 

time. Now since t  O(n), the algorithm takes O(n2) time in the worst case as for each 

of the O(n) interchangeable nets (or blank spaces) in S, the heuristic searches blank 

spaces (or nets) in at most O(n) tracks of the given routing solution S of the channel. 

For the case of simple channel specifications, the worst case complexity is O(ndmax), 

as for each of the n nets (or blank spaces) in the channel we have to search blank 

spaces (or nets) in at most O(dmax) tracks in a given density routing solution, S of the 

channel. Therefore, we have the following theorem. 

Theorem 4.3: The algorithm Net_Change computes a feasible two-layer VH routing 

solution with near optimal crosstalk for a given routing solution of a general channel 

instance in O(n2) time, where n is the number of nets belonging to the channel. 

4.4 Experimental Results 

In this section, we present the performance of our heuristic algorithms. First of all, we 

have dealt with only the simple instances of channel specifications. Unfortunately, 

such instances are hardly available in practice. That is why we randomly generate a 

large number of such instances of channel specifications. We have used all these 

instances to compute the amount of crosstalk in the routing solutions using the 

algorithms MCC1 (to compute the initial crosstalk of the routing solutions), 

Track_Change (to compute the drastically reduced crosstalk routing solutions from 

the routing solutions computed by MCC1 [49, 52, 53]), and Net_Change (to compute 

the further reduced near optimal crosstalk routing solutions). 
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Figure 4.4: Performance graph for crosstalk minimization in channel routing for 

simple channel instances. 

According to the generation of simple channel instances, a channel of length 

2p has exactly p nets, and each column of each of the constructed instances contains a 

non-terminal either at the top or at the bottom. For each channel length, we have 

generated 60 random instances, each of which is used to compute crosstalk using the 

algorithms stated above one after another. The total crosstalk is measured in each 

case, and an average over the total crosstalk is computed for each of the algorithms 

for a fixed channel length. These results are included in Table 4.1. The overall 

reduction in crosstalk using algorithm MCC1 through algorithm Net_Change helps to 

compute the percentage reduction in crosstalk on an average. The data obtained in the 

last column of the table are truly interesting. On an average for all the 540 instances 

of randomly generated channel specifications, the overall reduction in crosstalk is 

35.24%. The performance graph in Figure 4.4 shows the variation of crosstalk on an 

average as the channel length increases, for the routing solutions computed using 

algorithm MCC1 through algorithm Net_Change. The graph also helps to visualize 

the amount of overall reduction in crosstalk for the channel instances of the same 

length using our algorithms. 
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Table 4.1: Average crosstalk in the computed routing solutions for some randomly 

generated simple channel instances using different algorithms and percentage 

reduction in overall crosstalk. 

Channel 

Length 

Amount of Crosstalk 

MCC1 Track_Change_Simple Net_Change % Reduction 

22 26 16 15 42.31 

28 49 33 32 34.69 

34 64 45 44 31.25 

40 94 64 63 32.98 

46 120 82 79 34.17 

52 185 122 120 35.14 

58 236 160 156 33.90 

64 276 174 169 38.77 

70 327 220 216 33.95 

Now, we summarize the performance of our algorithms for several existing 

channel instances as follows. Here, we have dealt with the general instances of 

channel specifications, and there are a number of such instances of benchmark 

channels including the famous Deutsch’s Difficult Example (DDE) [49, 96]. We have 

considered all these instances to quantify the amount of reduction in crosstalk in the 

computed routing solutions starting from the two-layer routing solutions obtained 

using TAH, the well-known Track_Assignment_Heuristic that is designed for 

computing minimum area routing solutions [49, 51]. We have considered all two-

layer no-dogleg routing solutions computed using TAH, as given in Table 4.1 (in page 

# 102) and shown in different solutions (Figures 4.4-4.17 in pages 103-112) given by 

Pal [49]. We have assumed all these solutions as the initial routing solutions and 

executed them using the algorithms developed in this chapter one after another. In 

other words, we have computed the reduced crosstalk routing solutions for all the 

aforesaid benchmark examples following a two-phase implementation, where in the 

first phase solutions are computed through algorithm Track_Change_General, and 

these solutions are subsequently used as input to compute further reduced crosstalk 

routing solutions following algorithm Net_Change. All the results are included in 

Table 4.2. 
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Table 4.2: Amount of crosstalk computed after each of the algorithms and percentage 

reduction in the overall crosstalk. 

Example 
Number of 

Tracks 

Amount of Crosstalk 

TAH Track_Change_General Net_Change % Reduction 

Ex. 1 12 201 201 (0) 196 (1) 02.49 

Ex. 2 15 414 397 (1) 396 (1) 04.35 

Ex. 3(a) 16 564 519 (1) 506 (1) 10.28 

Ex. 3(b) 18 602 507 (1) 502 (1) 16.61 

Ex. 3(c) 19 795 771 (1) 732 (3) 07.92 

Ex. 4(b) 19 953 901 (1) 845 (2) 11.33 

Ex. 5 20 942 724 (1) 675 (2) 28.34 

DDE 29 1510 1435 (1) 1181 (3) 21.79 

r1 23 1519 1482 (1) 1421 (2) 06.45 

r2 20 1071 1034 (1) 1034 (0) 03.45 

r3 18 784 728 (2) 690 (3) 11.99 

r4 18 1262 1260 (1) 1206 (1) 04.44 

Ex. 3(b).1 21 518 504 (1) 393 (2) 24.13 

Ex. 3(c).1 18 846 818 (1) 775 (3) 08.39 

The amount of crosstalk using the algorithm TAH is the initial crosstalk [49, 

51] as shown in column TAH. Each of the relevant columns, Track_Change_General 

and Net_Change, shows the computed crosstalk obtained using the corresponding 

algorithm. The first algorithm provides significantly reduced crosstalk routing 

solutions from the initial routing solutions computed using TAH in the first phase of 

implementation, and the second algorithm computes the further reduced crosstalk 

routing solutions based on the routing solutions computed using the first algorithm, in 

the second phase of implementation of our algorithm. Numbers within parentheses in 

these columns indicate the additional number of times the corresponding algorithm is 

executed in obtaining a better routing solution of minimum crosstalk. Percentage 

reduction column is obtained by computing the overall reduction in crosstalk, starting 

from the initial routing solution computed using TAH [49, 51]. 
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(a) 

 

(b) 

 

(c) 

Figure 4.5: (a) A minimum area routing solution for Ex. 3(b) using algorithm TAH 

[49, 51]. (b) A minimum crosstalk routing solution for Ex. 3(b) using algorithm 

Track_Change_General. (c) A minimum crosstalk routing solution for Ex. 3(b) using 

algorithm Net_Change. 
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(a) 

 

(b) 

 

(c) 

Figure 4.6: (a) A minimum area routing solution for the Ex. 5 using algorithm TAH 

[49, 51]. (b) A minimum crosstalk routing solution for the Ex. 5 using algorithm 

Track_Change_General. (c) A minimum crosstalk routing solution for the Ex. 5 using 

algorithm Net_Change. 
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(a) 

 

(b) 

 

(c) 

Figure 4.7: (a) A minimum area routing solution for the DDE using algorithm TAH 

[49, 51]. (b) A minimum crosstalk routing solution for the DDE using algorithm 

Track_Change_General. (c) A minimum crosstalk routing solution for the DDE using 

algorithm Net_Change. 
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(a) 

 

(b) 

 

(c) 

Figure 4.8: (a) A minimum area routing solution for the r3 using algorithm TAH [49, 

51]. (b) A minimum crosstalk routing solution for the r3 using algorithm 

Track_Change_General. (c) A minimum crosstalk routing solution for the r3 using 

algorithm Net_Change. 
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(a) 

 

(b) 

 

(c) 

Figure 4.9: (a) A minimum area routing solution for the Ex. 3(b).1 using algorithm 

TAH [49, 51]. (b) A minimum crosstalk routing solution for the Ex. 3(b).1 using 

algorithm Track_Change_General. (c) A minimum crosstalk routing solution for the 

Ex. 3(b).1 using algorithm Net_Change. 
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The results obtained here are highly encouraging. For example, in the case of 

Ex. 5, the reduction in overall crosstalk is 28.34%, which is the maximum among the 

example channels under consideration; see Figure 4.6 for all these routing solutions. 

For the famous DDE, the overall reduction in crosstalk is 21.79%, which is very 

inspiring and motivating from the point of view of performance driven routing for 

VLSI circuit synthesis. The routing solutions for the DDE are shown in Figure 4.7. 

Three other sets of similar routing solutions for instances Ex. 3(b), r3, and Ex. 3(b).1 

are shown in Figures 4.5, 4.8, and 4.9, respectively. In all these figures, the solution in 

(b) shows the reassignment of tracks indicating the initial track numbers (TN) in the 

allied solution in (a) to the left of each channel. Besides, the amount of crosstalk (CT) 

between the nets assigned to adjacent tracks is shown to the right of the solutions. 

4.5 Summary 

In Chapter 3, we have considered several crosstalk minimization problems in two-

layer (VH) channel routing and proved that the problems are NP-hard for simple as 

well as general instances of channel specifications, with or without any partition of 

nets such that the nets in a class of the given partition are to be assigned to the same 

track, or there is no such partition. In the same chapter, the issue of the existence of 

polynomial time approximation algorithms for CRP has also been considered and 

proved that the design of such an algorithm is also not plausible. The bottleneck 

crosstalk minimization problem has also been considered, and so on and so forth. 

Thus, devising heuristic algorithm(s) is a reasonable solution strategy for computing 

reduced crosstalk routing solutions that has been considered in this chapter. 

More specifically, in this chapter, we have devised two prime algorithms (with 

their variations) for minimizing crosstalk in two-layer channel routing, both for 

simple as well as general channel instances. As simple instances are hardly available 

in the literature, we have randomly generated only nine sets of smaller simple 

channels (using the associated algorithm developed in Chapter 5), each set containing 

60 in number, for computing desired routing solutions. For general channel instances, 

we have presumed two-layer routing solutions of 14 benchmark channel instances 

existing in the literature, and for each of them, we have executed subsequent crosstalk 

minimization algorithms for computing mostly reduced crosstalk routing solutions. 

All these results have been included in this chapter. 
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By the way, a very large number of simple as well as general channel 

instances have been generated, executing the instance generators devised in the next 

chapter, each of which has been considered for computing some initial routing 

solution, and then carried out for obtaining a reduced crosstalk routing solution in 

Chapter 6. Truthfully, this is not possible to include all those instances along with all 

hardcopy routing solutions in this small span of thesis; rather, a very selective number 

of instances have been included as generated randomly and also a very few routing 

solutions have been incorporated in Chapter 6 to illustrate the depth of 

experimentation executed in this thesis. The experimental results based on the 

heuristics are computed that show lot of improvement over existing routing solutions 

of reduced area. 
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Algorithms for Generation of Random Channel 

Specifications 
 

 

5.1 Overview 

In this chapter, we have developed algorithms for generating random channel 

instances for their use in computing channel routing solutions in VLSI physical 

design. Channel instances are usually of two types: simple and general, and there are 

usually two kinds of inherent constraints involving channel routing problem: 

horizontal constraint and vertical constraint. Simple channel instances do not contain 

any vertical constraint, whereas, general channel instances contain both horizontal as 

well as vertical constraints. 

Most of the optimization problems in two-, three-, and multi-layer channel 

routing are NP-hard and, in fact, very few are polynomial time computable. Hence, 

for each of the NP-hard problems in channel routing, it is unlikely to design a 

polynomial time deterministic algorithm. Developing heuristic algorithm may be a 

rational way out that hopefully provides good solutions for most of the instances 

available in the literature. The novelty of a heuristic algorithm is judged better if it 

works for a variety of a large number of randomly generated instances of the problem. 

5.2 A Review on Channel Instance Generation 

Channel routing performs a dominant role in VLSI physical design. The number of 

active components on a chip has significantly increased nowadays in order to meet the 

growing demands of functionality. Maximum layout schemes begin with the 

positioning of modules on a chip and subsequently moves on to wiring terminals, to 

be electrically linked to separate modules, together. A useful tactic for resolving such 

a problem is partitioning the chip hierarchically into a set of rectangular channels, 

subsequently routing each channel one after the other. This successfully splits a 

difficult problem into smaller and easily solvable (similar) subproblems. Due to its 

significance from the point of view of layout automation, the channel routing problem 

(CRP) has been studied comprehensively. With regard to channel routing problem, 
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Deutsch’s examples [15, 49, 96] have been extensively used as benchmarks for the 

purpose of evaluation of the performance of proposed algorithms, with special 

attention given to the so-called Deutsch’s Difficult Example (DDE) [49, 96]. 

Researchers have been motivated by the following facts to find ways of generating a 

large number of random channel instances for use as routing standards. 

 The available benchmarks represent a really small subset of real problems. As 

a result, they ideally, may not represent the existing complexity of the 

contemporary as well as future designs. 

 The number of active components on a chip keeps increasing at a considerably 

rapid rate. Hence, testing on only traditional benchmarks may prove to be 

inadequate for the purpose of evaluation of the performances of new channel 

routing algorithms, proposed by researchers. 

 It is quite possible that a proposed algorithm works pretty well for the 

benchmarks, yet not for other instances. 

One of the earlier efforts has been made in [80]. The author in this dissertation 

has generated a large number of random channel instances with specific 

characteristics for the purpose of performing experiments on channel routers. The 

author has used Rivest’s random channel generator (rewritten by Eustace in C [20]). 

The inputs to the channel generator used are as follows: 

 n – the number of columns in the channel 

 d – the density of the channel 

 f – the fraction of used pins 

 r – the average number of terminals per net 

 a – the Boolean flag controlling production of cyclic vertical constraints 

 s – the initial random seed 

The fraction of used pins points out the percentage of pins that actually are 

connected to a circuit. The flag, a, has a value TRUE if no cyclic vertical constraints 

are required to be generated. As for example, a call to Rivest n  150, d  30, f  

0.75, a  TRUE, s  0 would produce an output file with vectors TOP, BOTTOM, 

LEFT, and RIGHT for a channel with 150 columns and density 30. The channel 
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would have 75 percent of its pins connected to circuits, and there would be no cyclic 

vertical constraints. 

In the article [11], the authors have developed a random channel routing 

generator. The proposed system is capable of generating difficult channel routing 

instances of random size. The authors have also introduced and explained the major 

constraints on a CRP. The proposed algorithm is able to generate CRP instances 

which can be routed without any doglegs. The authors have suggested that the 

proposed algorithm should prove to be useful for the purpose of testing the 

performance of new algorithms for channel routing. Moreover, due to the arbitrary 

size of the generated CRPs, they quickly become intractable with the increase in the 

number of nets. As a result, exhaustive search techniques become infeasible. The 

authors have stated that for some of the generated examples, there is a significant 

difference between the optimal solution and the traditional lower bounds. The authors 

have also indicated that consideration of the interaction of constraints is significant for 

the purpose of developing channel routing algorithms. 

In another article [5], the authors have tackled the same problem of random 

channel routing instances but with the help of a genetic algorithm. The authors have 

suggested that for all the generated cases, they have found better specifications (or 

channel instances) compared to well-known existing benchmarks. The random 

channels generated in this article have been claimed to be difficult to route due to 

them having higher horizontal and vertical constraints. For example, compared to the 

DDE [49, 96] having 72 nets and 174 columns, the five random channels generated by 

the authors all have been shown to be more difficult to route. The authors have 

claimed that the proposed algorithm can also be extended to generate even more 

difficult channels, those that cannot be routed using two-layer no-dogleg routing 

algorithms and can only be routed using two-layer dogleg, or three- or multi-layer 

routing algorithms. 

5.3 A Prelude to the Generation of Random Channel Instances 

In this chapter, we are interested in generating random channel specifications for 

channel routing problem. To do so, we first generate channel specifications having 

two-terminal nets only, where none of the channel specifications contains any vertical 

constraint. Such channel specifications that do not have any vertical constraint are 
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known as simple channel specifications. Then we modify our requirement for 

computing general channel instances with multi-terminal nets so that we can generate 

channel specifications containing two- or more than two-terminal nets; also 

containing vertical constraints. 

We know that the two-layer channel routing problem of area minimization is 

polynomial time solvable for simple channel specifications [32, 49, 52, 53], but the 

problem of crosstalk minimization in two-layer channel routing is NP-hard even if the 

channel specifications are free from any vertical constraint. So, it is unlikely that there 

exists a polynomial time algorithm for computing two-layer minimum crosstalk 

channel routing solutions even for the simple instances of channel specifications. 

Incidentally, such channel instances are hardly available in the literature. A very few 

channel instances are available in the literature, usually known as benchmark channel 

specifications, each of which contains both horizontal as well as vertical constraints 

[49, 96]. 
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Figure 5.1: An example channel of eight nets; zeros are non-terminals or vacant 

terminals, not to be connected. Intervals of the nets are placed in four different tracks. 

Terminals are vertically aligned along the columns of the channel. The length of the 

channel is 18. Arrows indicate that the terminals to be connected, either at the top or 

at the bottom, to complete the required interconnection of all the nets present in the 

channel. 

A channel specification is usually obtained in the form of two m-element 

vectors TOP and BOTTOM indicating the top and bottom terminal lists, respectively, 

of a channel. We often may use channel specification and channel instance 

interchangeably. A channel is a rectangular routing region containing two sets of 

fixed terminals on two of its opposite sides, say top and bottom, and the other two 
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sides, the left and right sides of the rectangle, are open ends. The left and right sides 

of the rectangle may contain terminal(s) of net(s), but the terminal position(s) is (are) 

not fixed before having a routing solution. The fixed terminals at the top and the 

bottom are (usually) aligned vertically in columns. The set of terminals that need to be 

electrically connected together is called a net. A channel specification with a set of 

eight two-terminal nets in a channel is shown in Figure 5.1; the length of the channel 

is 18. 

In order to obtain simple channel specifications, in this chapter, we develop an 

algorithm for generating instances of such (simple) channel specification in random. 

There are several problems in channel routing that are hard in nature even if the 

channel specifications are free from any vertical constraints; such randomly generated 

simple channel specifications can be utilized to compute (desired) routing solutions 

while evaluating the performance of the heuristic algorithms designed for those 

problems. In the next section (i.e. in Section 5.4), we formulate the steps necessary for 

developing the algorithm to generate simple routing channel instances. Then we 

generalize the algorithm in generating general channel routing instances in Section 

5.5. All the experimental results computed for generation of simple as well as general 

channel instances are included in Section 5.6. Usefulness in developing such 

algorithms in Sections 5.4 and 5.5 are briefly described in Section 5.7. In Section 5.8, 

we summarize the chapter with a few remarks. 

5.4 Generation of Simple Channel Specifications 

Let us assume, the number of nets be n in a channel that is being generated. So the 

channel length would be of 2n if no blank column (containing no terminal at the top as 

well as at the bottom) or trivial column (containing both the terminals of the same net) 

is introduced into the channel. In generating random channel specifications of simple 

in nature, we introduce a non-terminal (i.e. a vacant terminal) either at the top or at 

the bottom randomly, and the other side of the column would contain a terminal of a 

net. Our next task is to obtain the starting and the ending column positions of a two-

terminal net, and on which side it would be (i.e. to obtain the terminal position of the 

net), at the top or at the bottom, randomly along the length of the channel. In this 

respect, we like to fix up and maintain a set of criteria while generating the random 

channel specifications, as follows. 
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 Though it is needless to mention that the net numbers are nothing 

but symbols to differentiate themselves, we like to obtain channel instances 

where the net numbers would present randomly along the length of the 

channel, i.e. the nets are not sorted in succession based on their starting 

column positions from left to right or from right to left (along the length of the 

channel) or something of that sort. 

 Nets should be of different spans (or intervals), and they would 

present randomly along the length of the channel. If Li (Ri) is the leftmost 

(rightmost) column position of net ni, then Ii  (Li, Ri) is known as the span (or 

interval) of the net. As for example, the span of net 7 in Figure 5.1 is 9, and 

that of net 5 is 2. This criterion tells that all the smaller (or larger) nets are not 

accumulated on a side along the length of the channel. 

 Generally, in practice, a channel contains smaller nets in large 

number and larger nets a few. Nets are defined smaller or larger based on their 

relative spans (or intervals) over the length of the channel. However, the 

number of nets with a fixed span (say, 5 nets of span 3 each, 2 nets of span 7 

each, etc.) is not fixed; otherwise, the randomness of the channel to be 

generated may suffer. Only we can say that there would be a large number of 

smaller nets and a few larger nets, but we do not precisely specify the exact 

spans of different nets or the number of nets of a fixed span. Obviously, the 

number of nets with some intermediate spans is neither more nor less. 

Essentially, this criterion helps us in generating random channel instances 

where the number of nets gradually reduces as their spans increase along the 

length of the channel. 

In order to generate the desired channel specifications, as guided by the 

criteria stated above, we now describe the channel specification generating procedure 

as follows. Let us assume the channel instance we want to generate is C that contains 

n nets, and its length is m  2n (as each of the n nets is a two-terminal net and we are 

not introducing any blank column or trivial column into C). We can simply generate 

two column numbers randomly for each net, and immediately place them at the top or 

at the bottom of the selected columns randomly. The problems that may arise in this 

method are that of generating the same number (as a net) more than twice (that means 
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the net that has already been assigned) and the same column position c in C, 1  c  

m, is accessed for assigning net j, which has already been occupied by net i, j  i, after 

starting the procedure (that can be considered as a collision). Finding out of a free 

column (where no net has yet been assigned) in some iteration might enhance the cost 

of the procedure (in terms of computational complexity) beyond some limit, and even 

if we use linear probing technique for such collision resolution (like hashing), it may 

result in some channel specification, which may not satisfy one or more criteria, 

mainly the third criterion described above. 

Thus, generation of random column numbers for the nets is not a problem at 

all; even different methods for generating random numbers are easily available in the 

literature, among which we can use any one of them. The problem gets apparent 

whenever a collision occurs because we cannot predict anything about the generation 

of random numbers. To get rid of this collision situation, we may think of the problem 

in a different way so that randomness remains unaffected. 

5.4.1 Formulation of the Problem 

In the preceding part of this section, we formulate the problem towards developing the 

algorithm to generate simple channel routing specifications, based on the overview of 

generating the same as discussed earlier. The channel specification may be thought as 

a linear list of two-tuple elements, where each element corresponds to a column in the 

channel (that is being generated) and the two tuples correspond to the top and the 

bottom terminal positions at each column. The length of the lists is same as the length 

of the channel (say m), where n-number of nets are to be introduced when the channel 

is completely generated. For each list element we generate a net number; put it in one 

of the two-tuples, i.e. either at the top or at the bottom, and the other side would 

contain a non-terminal. 

At the very beginning, all the elements of the linear list of the two-tuple 

assumed above are initialized with zeros. In our algorithm, we replace 2n ( m) zeros 

in total in this two-tuple list, in order to generate a desired simple channel instance, 

where columnwise only one zero is randomly replaced by a net number. In order to 

generate such a channel specification, we assume another list of length m, which is 

same as the length of the channel specification that is being generated. Initially, the 
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list contains the natural numbers starting with zero onwards (i.e. 0 through m1), i.e. 

each element i in the list contains the number i1, 1  i  m. 

We consider a singly linked linear list L of m nodes and initialize the 

information field of node i (L(i) → info) by i1, where 1  i  m. In other words, the 

linear list L contains the column numbers 0 through m1 of channel C to be 

generated. Initially, all the columns are free, as we have not yet assigned any net to a 

column. If some net is assigned to column c, 0  c  m1, then the node with 

information c is deleted from L and keeps L as the list of free or available columns for 

the nets yet to be assigned. For each net i, 1  i  n, we randomly choose a node N 

from the existing list L of free nodes, retrieve its information part, which is a free 

column number in C, and store i in the free column. Thus, if N contains c in L, we 

replace c by i and delete N from L. In effect, channel C would contain a terminal of 

net i at column c. Furthermore, in identifying the side (TOP or BOTTOM) of the 

channel, we choose another random number that signifies whether i is assigned at the 

top or at the bottom of c so that the other side of c is allotted for a non-terminal (i.e. 

0). We treat this terminal as the position of the initial terminal of net i. 

The problem of selecting a particular node in L may also arise for multiple 

times, if we do not delete the selected node from L. That is why we assign the current 

net to the column obtained by randomly selecting a node in L as stated above and 

delete the node from L. In the same iteration (i.e. for net i) we generate the final 

terminal for net i too. 

While generating the position of the final terminal of net i, 1  i  n, we have 

to keep in mind the last criterion of generating random channel specification stated 

above (in Section 5.4), which is relating to spans of nets to be introduced in C. Here 

our intention is to generate many smaller nets and a few nets with larger spans. In 

order to obtain a random channel specification, we generate some smaller (positive) 

random numbers that would be added to or subtracted from column number c that is 

already selected randomly as the initial column position of net i. At first, we generate 

smaller random numbers and assign the nets with lesser spans along the length of the 

channel. Gradually, L becomes sparse as the nets are assigned to C, and even for 

randomly generated smaller numbers nets with larger spans are evolved during later 

iterations. 
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As every time a new node with a new column number (as its information part) 

is selected, we can always be able to use the column successfully for a new net 

without any conflict, and in this way, the problem of multiple occurrences of the same 

random number could be resolved. 

5.4.2 The Algorithm and Its Complexity 

This is the way how a random channel C of n two-terminal nets is generated, where 

the length m of the channel specification is same as 2n, and C contains no vertical 

constraint in it. The algorithm based on the tentative formulation of the problem 

(towards developing the algorithm) described in the previous subsection, is given 

below. 

Algorithm: Simple_Random_Channel_Generator 

Input: Number of nets (n) to be introduced into the channel (C) to be constructed. 

Output: A random simple channel specification of length m  2n. 

Begin 

Step 1: Set free_node  m. // It is the variable that keeps the number of nodes (i.e. 

free columns) currently existing in L. 

Create a singly linked linear list (L) of m  2n nodes. Each node i has two fields, 

where L(i)info contains the column number of the channel to be constructed, and 

L(i)link contains the address of the next node. 

Step 2: For (i  1 to m) do 

Begin 

Set L(i)info  i1 

End 

Step 3: Select a suitable random number generator, Random(), to generate the 

random numbers and initialize the generator by a valid (may be a varying 

quantity) seed value. 

Step 4: For (i  1 to n) do 

Begin 

 Step 4.1: Set initial  Random(free_node). 

 Step 4.2: Search L linearly, and get the content of L(initial)info 

 Set initial_col  L(initial)info. 
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 Step 4.3: Delete node L(initial). 

 Set free_node  free_node – 1. 

 Step 4.4: Select any suitable function to determine max_offset. 

 Set offset  Random(max_offset). 

 Step 4.5: If (initial + offset ≤ free_node), then 

 Set final  initial + offset 

 Else 

 If (initial – offset ≥ 0 and initial – offset ≤ free_node), then 

 Set final  initial – offset 

 Else 

 Set final  Random(free_node) 

 End if 

 End if 

 Step 4.6: Search L linearly, and get the value of L(final)info. 

 Set final_col  L(final)info. 

 Step 4.7: Delete node L(final). 

 Set free_node  free_node – 1. 

Step 4.8: initial_col and final_col contain the two terminals of the net under 

consideration (i.e. net i). Select top/bottom randomly, and assign i to these 

two columns. 

 End 

End 

Now we compute the computational complexities in generating such a random 

channel specification C as follows. In C, we have n nets in total. In addition, m is also 

of the order of n. Initially, we create a singly linked linear list L of order n. For each 

net i, 1  i  n, to be introduced into the channel, we randomly select a node N from 

the existing list L of free nodes and retrieve its information part to determine the 

initial terminal position of net i in a column in C. This linear search on the linked 

linear list L (of length 2n) takes time O(n). At the same iteration, we also determine 

the final terminal position of net i in a similar way, and that also takes time O(n). So 

for each net i, 1  i  n, O(n) time is required for finding out its terminal positions (in 

two different columns) in generating C. Thus, for a channel C that contains n nets, the 
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total time required is (n2). Hence, the time complexity in generating C is (n2). 

Needless to mention that in generating C, we have used (n) dynamic space of 

computer memory. We summarize the complexity results in the following theorem. 

Theorem 5.1: Algorithm Simple_Random_Channel_Generator randomly generates 

simple channel specifications of only two-terminal nets without introducing any 

vertical constraint in it. The algorithm takes time O(n2), and space O(n), where n is 

the number of nets introduced into the channel. 

Now we illustrate the algorithm in generating a simple channel specification in 

the following subsection. 

5.4.3 An Illustration 

In this subsection, we illustrate the algorithmic procedure developed in this chapter 

and motivate the steps while creating a simple channel specification, C. Let us 

consider C would contain n  10 nets. Therefore, the length of the channel, m is 

supposed to be 20. Now we create a singly linked linear list, L of length 20 (that 

means L contains 20 nodes), where node i is initialized with number i1, 1  i  20. 

Hence, the initial list L with its information fields in successive nodes is as follows, 

which are same as the column numbers of the channel instance C under construction. 

0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19 

For the sake of generating channel instance C, initially we assume that C 

contains only non-terminals, and the initial node numbers contain all the nodes as 

shown below. 

Initial Node Numbers:  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 

Remaining Column  

 Numbers:    0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 

TOP:                             0  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0 

BOTTOM:                    0  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0 

In the overview in Section 5.1, we have discussed that we are intended to 

introduce a large number of smaller spanned nets and a small number of larger 

spanned nets (and a few neither larger nor smaller in their spans). In the algorithm, 

developed in this chapter, we have introduced the nets in increasing order, 1 through 
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n. So, naturally the smaller numbered nets are also smaller in their spans and larger 

numbered nets are eventually larger in spans. Though net numbers are having no 

special significance other than differentiating themselves, in order to break this usual 

trend in generating channel specifications, we follow a statistical measure assumed as 

follows. 

In Table 5.1, the percentage of free columns (of the channel to be generated), 

i.e. the percentage of free nodes available in the node list is introduced in the left 

column. The right column contains the allowable percentage of remaining free nodes 

for computing the maximum offset (i.e. max_offset) of a net under consideration in an 

iteration. The maximum offset is a number that determines the maximum span (or 

interval) of the net that at most we like to provide for the net under consideration. 

Offset (i.e. offset) is a randomly generated number in the range of zero through 

max_offset that we essentially employ as the span (or interval) of the allied net. After 

obtaining the terminal locations in two different columns for a net, we again generate 

two random numbers; if the number is odd (even) for a column, then at that column 

we assign the terminal position at the top (at the bottom) for the net under 

consideration. 

Table 5.1: An assumption on the allowable percentage of remaining free nodes for 

computing max_offset, based on available free nodes in the list (or available free 

columns in the channel) in percentage. 

Percentage of Free Nodes in 

the List (or Percentage of Free 

Columns in the Channel) 

Allowable Percentage of 

Remaining Free Nodes for 

Computing max_offset 

91 – 100 0 – 10 

81 – 90 0 – 20 

71 – 80 0 – 30 

61 – 70 0 – 40 

51 – 60 0 – 50 

41 – 50 0 – 60 

31 – 40 0 – 70 

21 – 30 0 – 80 

11 – 20 0 – 90 

1 – 10 0 – 100 
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Now we briefly describe the basis of introducing max_offset. Max_offset is the 

maximum allowable range of span (or interval) of a net. The offset is a randomly 

generated number within the range of max_offset (starting from zero). Thus, certainly 

a smaller numbered net may have a span 10% (as offset) of the total length of the 

channel to be generated, whereas a larger numbered net may have a span of 0% (i.e. a 

minimum of one unit span) of the same (at some other iteration, as offset). 

Table 5.1 is self-explanatory when we consider a channel of length 100 in 

determining the allowable range of offset (i.e. zero through max_offset) for a net in 

subsequent iterations of the algorithm. This has been shown in Table 5.2. Based on 

our assumption in Table 5.1, the distribution of the allowable max_offset follows a 

normal curve. 

Now, we go back to our illustration when the channel specification under 

generation of length 20 had only non-terminals at the top as well as at the bottom. The 

first iteration starts with net number 1. Say, initial node, randomly selected, is 4. The 

content of this node is 3, i.e. the column number of the initial terminal is 3. It is a free 

node and is assigned as the initial terminal of net 1. Now the node (i.e. node 4) is 

deleted from L, and after deletion of node 4, the status of the list (i.e. L) is as follows. 

Table 5.2: Allowable range of offset for a typical channel of length 100, based on 

available free nodes in the list (or available free columns in the channel). 

Free Nodes in the List or 

Free Columns in the Channel 

Allowable Range of Offset 

(0 – max_offset) 

91 – 100 0 – 10 

81 – 90 0 – 18 

71 – 80 0 – 24 

61 – 70 0 – 28 

51 – 60 0 – 30 

41 – 50 0 – 30 

31 – 40 0 – 28 

21 – 30 0 – 24 

11 – 20 0 – 18 

1 – 10 0 – 10 

 

Remaining Node Numbers:   1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19  

Remaining Column  

 Numbers:             0  1  2  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 
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Now the list has 19 free nodes. We take a variable free_node to keep this free 

node count. Each time when a node is deleted from the list, the value of free_node is 

decremented by 1. According to Table 5.1, the max_offset of the node to be selected 

randomly for the final terminal of the net is 10% of 19 free nodes, which belongs to 

the range of percentage of free nodes 91 – 100, which is same as 1.9. Taking the floor 

of this value, we get the max_offset that equals to 1. (Taking the ceiling may work 

equally good or another for this experimentation in computing the value of 

max_offset.) 

Based on this value of max_offset, the allowable range of offset is 0 – 1. Say, 

the number selected randomly for computing the final column position of net 1 is 0 

(from the range of the above offset). To determine the final column position for net 1, 

we add 0 to 4, which is the initial node number for this net. So, the final column 

position of net 1 is the content of the fourth remaining free node of list L, which is 

also same as 4. So, the span of net 1 is from column (number) 3 to column (number) 

4. Node 4 is deleted from the list (i.e. L), and variable free_node is decremented to 18. 

The exact terminal positions for net 1 at these columns are selected randomly, as 

stated above. Say, the terminal position at column 3 is at the top (as an odd number is 

randomly generated) and at column 4 is at the bottom (as an even number is randomly 

generated). The generated channel is currently as follows. 

Column Number:     0   1   2   3   4   5   6   7   8   9  10 11 12 13 14 15 16 17 18 19 

TOP:                 0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 

BOTTOM:               0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 

Now the status of the remaining free nodes and the remaining column numbers 

are as shown below. 

Remaining Node Numbers:     1  2  3  4  5  6  7  8   9   10 11 12 13 14 15 16 17 18 

Remaining Column Numbers: 0  1  2  5  6  7  8  9  10  11 12 13 14 15 16 17 18 19 

Say, in a similar way we have executed six more iterations in assigning nets 2 

through 7 into the channel being constructed, and the generated channel is currently as 

follows. 
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Column Number:      0   1   2   3   4   5   6   7   8   9  10 11 12 13 14 15 16 17 18 19 

TOP:                   0   0   3   1   0   7   2   0   0   0   0   0   0   0   4   0   0   6   4   5    

BOTTOM:             7   2   0   0   1   0   0   3   0   0   0   6   0   5   0   0   0   0   0   0 

Furthermore, let us consider the status of the remaining free nodes and the 

unassigned column numbers, before introducing net 8, are as follows. 

Remaining Node Numbers:       1   2   3   4   5   6 

Remaining Column Numbers:   8   9  10 12 15 16 

The remaining three nets are 8, 9, and 10, and the number of free columns is 

six. Then for net number 8, following the algorithm, say, initial  4. Therefore, 

initial_col, i.e. the initial column number for net 8 is 12. Now the available free_node 

is five, and the list of remaining column numbers does not contain column number 12. 

Next, in a similar way, we compute the max_offset for net 8, which is same as four. 

So, the range of offset is 0 – 4. Say, three is randomly selected as the value of offset. 

Thus, final is found by adding three to initial, i.e. final  4+3  7, which is greater 

than the number of the available free nodes (i.e. 5). In this case, we subtract offset 

from initial to get the other node. Therefore, final  43  1, and final_col  8. So, 

selecting sides (top or bottom) for the terminal positions of net 8 randomly and after 

assigning them to the channel, the generated channel specification is as follows. 

Column Number:     0  1   2   3   4   5   6   7   8   9  10  11 12 13 14 15 16 17 18 19 

TOP:                  0  0   3   1   0   7   2   0   0   0   0   0   8   0   4   0   0   6   4   5 

BOTTOM:            7  2   0   0   1   0   0   3   8   0   0   6   0   5   0   0   0   0   0   0 

Before consideration of net 9, the status of the remaining free nodes and the 

column numbers where nets have not yet assigned, are as shown below. 

Remaining Node Numbers:      1    2     3    4 

Remaining Column Numbers:  9   10  15  16 

Two nets (9 and 10) are still to be assigned, and there are four free columns 

available for these assignments. Say, initial  4, and hence, initial_col  16. Node 4 is 

deleted; so, free_node  3. The max_offset calculated is 2; say, 0 is generated as 

offset. Hence, final  4+0  4, which is, in turn, greater than the value of free_node 
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available. Thus, we follow the first Else-part of Step 4.5 of algorithm 

Simple_Random_Channel_Generator. Even if we go backward, i.e. subtract 0 from 4, 

the value of final remains unchanged, and therefore, we do not get any valid node as 

node 4, as currently, the list is containing only three free nodes. In such cases, where 

both addition of offset to the initial and then subtraction of offset from the initial result 

in invalid nodes (as final > free_node as well as final < 1), we may select any node 

from L randomly, which gives a valid node and a valid column number. Say, the 

randomly selected node for final is 3. Thus, node 3 gives column number 15; hence, 

final_col  15. Say, the side for the initial terminal of net 9 is randomly selected as the 

top, and that of the final terminal is randomly selected as the bottom. After 

assignment of net 9, the channel is as follows. 

Column Number:  0   1   2   3   4   5   6   7   8   9  10 11 12 13 14 15 16 17 18 19 

TOP:               0   0   3   1   0   7   2   0   0   0    0   0   8   0   4   0   9   6   4   5    

BOTTOM:         7   2   0   0   1   0   0   3   8   0    0   6   0   5   0   9   0   0   0   0 

For net 10, i.e. the last net to be introduced only two columns are free of the 

channel being constructed. The status of the remaining free nodes and the unassigned 

column numbers, before introducing net 10, are as follows. 

Remaining Node Numbers:      1    2 

Remaining Column Numbers:  9   10 

This is the case where only two free columns remaining to be assigned and the 

L has exactly two nodes (node 1 and node 2). Then we randomly compute the initial 

column number for this net, and compute max_offset, randomly select offset, and 

compute so on and so forth for the final column position of net 10, as stated above. As 

at the beginning of this iteration, we had only two free columns, so for the assignment 

of terminal positions for the last net (i.e. net 10), eventually we must assign the 

terminals in these two columns only; of course, sides of these two terminals are again 

selected randomly. The finally generated channel specification is as follows. 

Column Number:  0   1   2   3   4   5   6   7   8   9  10 11 12 13 14 15 16 17 18 19 

TOP:               0   0   3   1   0   7   2   0   0   0    0   0   8   0   4   0   9   6   4   5    

BOTTOM:         7   2   0   0   1   0   0   3   8  10  10  6   0   5   0   9   0   0   0   0 
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Figure 5.2: (a) The generated simple channel specification that contains 10 nets; the 

length of the constructed channel is 20. (b) The horizontal constraint graph of this 

(generated) simple channel instance comprises two components, as none of the nets in 

this channel instance passes through both columns 8 as well as 9. 

Now we analyze the channel specification generated above. No doubt that this 

channel specification is a simple channel specification, as in each column of this 

channel a non-terminal is present either at the top or at the bottom. Nets with their 

spans (or intervals) belonging to the channel are shown in Figure 5.2(a); Figure 5.2(b) 

shows the horizontal constraint graph of this channel. In a horizontal constraint 

graph, n vertices are introduced corresponding to n nets belonging to a channel, and 

two vertices are connected by an edge if and only if the spans (or intervals) of the 

associated nets overlap in the channel [49, 96]. Table 5.3 shows how the nets in the 

channel generated are spanned over the length of the channel, as the net number 

increases. Nets are also randomly stretched over the length of the channel. In addition, 

the table shows the leftmost column position and the rightmost column position of 

each of the nets that are randomly generated and introduced into the channel. From 

this table, it is clear that the spans of the nets also do not increase as the net numbers 

v8 

v10 

v5 

v6 v9 

v4 

v2 

v3 

v7 

v1 



126 

increase; rather max_offset as well as offset play their roles in obtaining the desired 

random spans (or intervals) of the nets to be introduced into the randomly generated 

channel specifications. 

Table 5.3: Spans (or intervals) of different nets introduced into the randomly 

generated channel specification, shown in Figure 5.2(a). 

 

Net 

Number 

Leftmost Column 

Position 

Rightmost 

Column Position 

Span 

(or Interval) 

1 4 5 1 

2 2 7 5 

3 3 8 5 

4 15 19 4 

5 14 20 6 

6 12 18 6 

7 1 6 5 

8 9 13 4 

9 16 17 1 

10 10 11 1 

 

5.5 Generation of General Channel Specifications 

5.5.1 An Overview 

In the previous section, we have described how to generate random channel instances, 

containing only two-terminal nets, and there are no vertical constraints between any 

pair of nets. In general, (benchmark) channel specifications that are found in literature 

may have vertical constraints and nets may contain more than two terminals, i.e. there 

may be one or more than one terminals in between two end terminals of a net. Thus, 

the procedure described above is applicable only to some special type of channel 

specifications that are known as simple channel instances. However, we can tune the 

procedure explained above, so that it becomes capable of generating channel instances 

having vertical constraints and nets may contain more than two terminals. In 

generating such general channel specifications, we assume that there is an upper 

bound on the number of terminals and this number to be no more than six for the few 

nets that are introduced into the channel being constructed. 
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5.5.2 Formulation of the Problem 

Suppose, we like to generate a random channel instance that consists of N nets (N > 

0). So, the only input to be given here is the number of nets, i.e. N. Each net is 

assumed to be of k terminals (2  k  6). We need to place these N nets along the 

length of the channel. Also, there may be some non-terminals spread over the channel 

that should be incorporated in the specification. In order to generate a random general 

channel specification, first, we have to estimate the length of the channel (L) in a way 

such that it is long enough to accommodate proposed terminals of all the nets as well 

as non-terminals. If ki is the number of terminals of net i, then the total number of 

terminals for all the nets can be computed by adding the number of terminals for each 

net. For example, if there are 10 nets in the channel then the total number of terminals 

for 10 nets is K  k1 + k2 + … + k10. If NT is the number of non-terminals, then the 

total number of terminals is P  K + NT. These P terminals are evenly distributed over 

top and bottom positions of the channel specification along the length of the channel, 

in a random fashion. 

Now we can calculate the estimated length of the channel as L  P/2. As an 

illustration, say, there are five nets having two terminals each, three nets having three 

terminals each, and there are a 5-terminal and a 6-terminal net of a general channel 

specification to be generated of ten nets. Also, say, the number of non-terminals (NT) 

is seven. Thus, the total number of terminals is calculated as follows: 

P  K + NT  (2×5 + 3×3 + 5×1 + 6×1) + 7  30 + 7  37. 

Hence, L  P/2  19. 

So, the channel of length L is now capable of accommodating K terminals and 

NT non-terminals. In general, there are more nets having fewer terminals, and the 

random distribution of terminals should follow this constraint. Now, we have to locate 

the terminals of the nets at top/bottom positions in different columns in a random 

fashion. In order to place them properly, we have used three auxiliary lists, described 

as follows. 

1. NET_LIST: The length of this list is also N. Initially, the list is filled in 

with positive integers from 1 to N. An instance of the list is given below. 

NET_LIST: 1  2  3  4  5  6  7  8  9  10 
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This list tells that the nets to be introduced into the random general 

channel specification that is to be generated. 

2. TERM_COUNT: The length of this list is N, i.e. same as the number of 

nets. Each location of this list is used to store the number of terminals (k) for a 

net. For example, if N  10, then TERM_COUNT may be looked like as:  

TERM_COUNT: 2  2  2  2  2  3  3  3  5  6 

This means that there are five nets of two terminals each, three nets of 

three terminals each, and two nets having five and six terminals only. 

3. TERM_LIST: The length of this list is 2L, i.e. same as the sum of the 

total number of top plus total number of bottom terminal positions. Initially, 

the list is populated by positive integers started from 1 up to 2L. For the above 

example, as 2L  38, so TERM_LIST must have positive integers from 1 to 38 

as shown below. 

TERM_LIST: 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  

21 22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38 

Now, it is the time to describe how a channel specification, C is generated 

with the help of these three auxiliary lists. At the very beginning of generating a 

desired random general channel specification, we initialize all the 2L top and bottom 

terminal positions of the channel by zeros. Then we start with generating the channel 

specification in N successive iterations. In each iteration, we select a net number, i, 

randomly and locate its terminals in different columns (c) in C, and again randomly 

determine the terminal position, either at the top or at the bottom in column c for net i. 

First, we randomly select an element p from NET_LIST and remove the element from 

the list immediately; the length of NET_LIST is reduced accordingly. Thus, p is the 

net, whose terminals are to be assigned to different columns in C. Now, an element k 

from TERM_COUNT is selected randomly, and the entry is deleted, and the size of 

this list is also reduced as before. Thus, p is considered as a k-terminal net. Say, we 

have selected the sixth entry from NET_LIST and the ninth entry from 

TERM_COUNT; so p  6 and k  5, i.e. p (or net 6) is a 5-terminal net, whose 

terminal positions are to be determined now. 
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For each of these k terminals we generate a random number, r and select the r-

th element (which we denote by another number s) from TERM_LIST and delete the 

element as before, which results in a reduction of the length of TERM_LIST. The 

number s is now located at column c  s/2; if s is odd (even), then p (the net under 

consideration) is placed at the top (bottom) position in column c. When all the 

terminals of net p are assigned in different columns, we are left with TERM_LIST of 

length reduced by k, i.e. the length of TERM_LIST is same as 2L–k, at the beginning 

of the second net/iteration under consideration. 

In this way we extract elements from the three lists and using them, we fill in 

the top and bottom positions of column c, and after N iterations, we obtain the desired 

channel specification. Note that based on the initialization of the channel specification 

of length L (with all terminal positions containing only zeros), ultimately 2L–K 

terminal positions are left unassigned with some net terminals; so, these terminal 

positions contain only non-terminals for the generated channel specification. A formal 

description of this algorithm is stated in step-by-step in the following subsection. 

5.5.3 The Algorithm 

This is the way how a random general channel instance of multi-terminal nets is 

generated, where the length of the channel specification is L. The algorithm based on 

the tentative formulation of the problem (towards developing the algorithm) described 

in the previous subsection, is given below. 

Algorithm: General_Random_Channel_Generator 

Input:  Number of nets (N) to be introduced into the channel to be constructed. 

Output: A random general channel specification as a vector (Channel) of length L. 

Top (Bottom) list is denoted by Channel.top (Channel.bottom). 

Begin 

Step 1: [Determination of length L of channel C to be generated] 

Step 1.1: For each net, i (1  i  N), randomly estimate a number ki as the 

number of terminals. 

 Set K  k1 + k2 + … + kN. 

Step 1.2: Randomly estimate the total number of non-terminals (NT). 

 Set P  K + NT. 

Step 1.3: If P is odd, then 
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Begin 

 Step 1.3.1: Set NT  NT + 1. 

Step 1.3.2: Set P  P + 1. 

End 

Step 1.4: Set L  P/2. 

Step 2: [Initialize TERM_COUNT, NET_LIST, and TERM_LIST] 

Step 2.1: For i  1 to N do 

 TERM_COUNT[i]  ki. 

Step 2.2: For i  1 to N do 

 NET_LIST[i]  i. 

Step 2.3: For i  1 to P do 

 TERM_LIST[i]  i. 

Step 3: [Create the channel specification] 

Step 3.1: For i  1 to L do 

Begin 

Step 3.1.1: Set Channel[i].top  0. 

Step 3.1.2: Set Channel[i].bottom  0. 

End 

Step 3.2: For i  1 to N do 

Begin 

Step 3.2.1: Randomly select an element p from NET_LIST.  

Delete p from NET_LIST, and reduce the length of NET_LIST by 1. 

Step 3.2.2: Randomly select an element k from TERM_COUNT. 

 Delete k from TERM_COUNT and reduce the length of TERM_COUNT. 

Step 3.2.3: For j  1 to k do 

 Begin 

Step 3.2.3.1: Randomly select an element s from TERM_LIST. 

Delete s from TERM_LIST and reduce its length. 

Step 3.2.3.2: Set c  s/2. 

If s is odd, then  

Channel[c].top  p 

Else 
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Channel[c].bottom  p 

End 

End 

End 

Now we illustrate the algorithm in generating a general channel specification 

in the following subsection. 

5.5.4 An Illustration 

Let us illustrate the algorithm with the help of the example considered in Section 

5.4.3; see Figure 5.2(a). Here, the number of nets (N)  10, the number of terminals 

(K)  30, the number of non-terminals (NT)  8. Thus, P  38 and the length of the 

channel (L)  19. The initial state of the three auxiliary lists and the status of the 

channel to be generated are as shown below. 

NET_LIST   : 1  2  3  4  5  6  7  8  9  10 

TERM_COUNT : 2  2  2  2  2  3  3  3  5   6 

TERM_LIST  : 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20 

   21  22  23  24  25  26 27  28  29  30  31  32  33  34  35  36  37

   38 

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

TOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BOTTOM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Let us assume, at the first iteration, the sixth entry from NET_LIST is selected 

randomly, which is 6, and the ninth element is randomly selected from 

TERM_COUNT, which is 5. So, p  6 and k  5. Therefore, net 6 is a 5-terminal net. 

Now we need to select randomly five elements from TERM_LIST, one after another; 

those are required in knowing the columns where net 6 has its terminals. Say, the 

selected elements from TERM_LIST are 5, 12, 15, 22, and 25. Thus, the column 

positions for the terminals of net 6 are calculated as follows. The first column 

position of net 6 is c  5/2  3, and as 5 is an odd number, this terminal of net 6 is 

assigned to the top at the third column of the channel. Similarly, other four terminal 

positions for net 6 are column 6 at the bottom, column 8 at the top, column 11 at the 
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bottom, and column 13 at the top. The lists are modified accordingly. After the first 

iteration, the status of the three lists and the generated channel after introducing net 6 

are as follows. 

NET_LIST   : 1  2  3  4  5  7  8  9  10 

TERM_COUNT : 2  2  2  2  2  3  3  3   6 

TERM_LIST  : 1  2  3  4  6  7  8  9  10  11  13  14  16  17  18  19  20  21  23     

       24  26  27  28  29  30  31  32  33  34  35  36  37  38 

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

TOP 0 0 6 0 0 0 0 6 0 0 0 0 6 0 0 0 0 0 0 

BOTTOM 0 0 0 0 0 6 0 0 0 0 6 0 0 0 0 0 0 0 0 

In the second iteration, say, the fourth entry from NET_LIST (i.e. 4) and the 

sixth entry from TERM_COUNT (i.e. 3) are randomly selected. It means that net 4 is 

a 3-terminal net that is to be introduced into the newly constructed channel C. Say, 

the elements that are chosen randomly from TERM_LIST are 11, 14, and 20, which 

implies that the terminal positions of net 4 are column 6 at the top, column 7 at the 

bottom, and column 10 at the bottom. The lists are modified accordingly. After the 

second iteration, the modified lists are as shown below. 

NET_LIST   :  1  2  3  5  7  8  9  10 

TERM_COUNT :  2  2  2  2  2  3  3  6 

TERM_LIST       :  1  2  3  4  6  7  8  9  10  13  16  17  18  19  21  23  24  26  27     

 28  29  30  31  32  33  34  35  36  37  38 

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

TOP 0 0 6 0 0 4 0 6 0 0 0 0 6 0 0 0 0 0 0 

BOTTOM 0 0 0 0 0 6 4 0 0 4 6 0 0 0 0 0 0 0 0 

  

In this way, if we follow 10 successive iterations, the first two auxiliary lists 

become empty, and eventually we generate a desired general channel specification, 

whose all nets’ terminals are assigned to different columns along the length of the 

channel. The finally generated channel specification may be some sort of the 

following channel. 
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Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

TOP 8 0 6 1 5 4 0 6 2 1 2 7 6 9 0 9 10 9 0 

BOTTOM 5 8 0 2 0 6 4 3 0 4 6 9 9 3 10 0 7 9 10 
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Figure 5.3: (a) The generated general channel specification whose length is 19 and 

that comprises 10 nets. (b) The vertical constraint graph of this generated general 

channel specification. Incidentally, it consists of two components and does not 

contain any cyclic vertical constraint. 

The channel with 10 nets is shown in Figure 5.3(a). The vertical constraint 

graph of this channel is shown in Figure 5.3(b). Vertical constraints among a set of 

nets determine a relative ordering over the nets along the height of the channel [49, 

96]. The vertical constraint graph (VCG) consists of n vertices for n nets present in a 

channel. If a column of the channel contains terminals of two different nets, say a and 

b, at the top and at the bottom, respectively, then in the vertical constraint graph, a 

directed edge is introduced from vertex va to vertex vb. 
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Table 5.4 shows how the nets in the generated channel are spanned over its 

length, as the net number increases. Furthermore, terminal count, i.e. the number of 

terminals per net is also shown in the table. Data show the randomness of the 

generated channel instance. 

Table 5.4: Spans (or intervals) of different nets introduced into the randomly 

generated general channel specification, shown in Figure 5.3(a). The number of 

terminals per net is also shown in this table in the rightmost column of Terminal 

Count. 

Net 

Number 

Leftmost 

Column Position 

Rightmost 

Column Position 

Span 

(or Interval) 

Terminal 

Count 

1 4 10 6 2 

2 4 11 7 3 

3 8 14 6 2 

4 6 10 4 3 

5 1 5 4 2 

6 3 13 10 5 

7 12 17 5 2 

8 1 2 1 2 

9 12 18 6 6 

10 15 19 4 3 

 

5.5.5 The Complexity of the Algorithm 

We now analyze the computational complexities of algorithm General_Random_ 

Channel_Generator. Suppose N nets are introduced in generating a general channel 

instance; so, the number of iterations required is N. In each iteration, we need to 

search some random locations from the three auxiliary lists. The length of each of the 

lists TERM_COUNT and NET_LIST is same as the number of nets, i.e. N, and also the 

length (2L) of TERM_LIST is linearly dependent on N, i.e. L is O(N). If we represent 

all these lists by singly linked linear lists, then the sequential search time for each list 

is dependent on their length. As the length of each of these (three) lists is O(N), and as 

they are searched in a sequential manner, the total time to search the lists is O(N) + 

O(N) + O(N), i.e. O(N). So, for N iterations, as we like to introduce N nets into the 

channel, the total time complexity is O(N2). Also, the space complexity is dependent 

on the length of each of all these lists, which is O(N). Consequently, the space 
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requirement is bounded by O(N). We summarize the complexity results in the 

following theorem. 

Theorem 5.2: Algorithm General_Random_Channel_Generator randomly generates 

general channel specifications of multi-terminal nets that contain both horizontal as 

well as vertical constraints in it. The algorithm takes time O(n2), and space O(n), 

where n is the number of nets introduced into the channel. 

5.5.6 Removal of Cyclic Vertical Constraints 

In this subsection, we like to mention an additional checking that is often necessary to 

know whether a generated general channel instance contains any cyclic vertical 

constraints. This is because there are some routing models, like the reserved two-layer 

no-dogleg Manhattan channel routing model [15, 49, 51, 52, 53, 54, 80, 96], where 

vertical constraint violation occurs if a general channel instance contains a cyclic 

vertical constraint. So, in order to make the vertical constraint graph of a generated 

general channel instance acyclic we do the following task that we explain here with 

the help of a suitable example. 

 

 

 

  

   

 

  

 

  

  

  

  

 

Figure 5.4: The vertical constraint graph of a randomly generated general channel 

instance that contains a cycle among nets 10, 2, 4, 6, and 3. 

Let us consider a randomly generated general channel instance is as follows. 
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                  2   0   6   5   9   1   4   0  10  10   6   8   7   10  4   0   2   0   3   10 

                  5   9   3   0   6   7   0   6   2    0    8   0  10   0   6   8   4   1  10   0 

The vertical constraint graph (VCG) of this channel instance is shown in 

Figure 5.4 that contains a cycle. We identify the cycle(s) using the well-known depth-

first search (DFS) algorithm on the directed VCG in time O(n+e), where n is the 

number of nets in the generated channel instance and e is the number of edges in the 

VCG. 

After a cycle in the VCG is detected, we dissolve the cycle by destroying a 

vertical constraint belonging to this cycle. We may destroy any one of the vertical 

constraints in this cycle based on some logic so that the resulting VCG is acyclic. 

Anyway, following DFS with source vertex v1, edge (v3, v10) may be identified as a 

back edge that we could destroy by splitting the column containing a terminal of net 3 

at the top and a terminal of net 10 at the bottom into two, as shown underlined below 

in two consecutive columns of the channel. 

2   0   6   5   9   1   4   0  10  10   6   8   7  10   4   0   2   0   3   0  10 

5   9   3   0   6   7   0   6   2    0    8   0  10   0   6   8   4   1   0  10   0 

In this way, the channel length is increased by one. So, for a randomly 

generated general channel instance with p cycles in its VCG, at most p columns may 

require being introduced in order to generate a desired channel instance without any 

cycle in its VCG. 

5.6 Experimental Results 

In this section, we include all the experimental results that are computed for 

generation of simple as well as general channel instances. In practice, the instances 

we have generated randomly contain 10 through 15000 nets in a channel, and for each 

number of nets 200 such instances are generated. Results that are shown in different 

tables and curves in this section are computed by making an average on all such 200 

randomly generated channel instances for a specific number of nets. As for example, 

consider Table 5.5, where we show the experimental results obtained following 

algorithm Simple_Random_Channel_Generator. This table shows the minimum as 

well as the maximum span of nets out of 200n nets in generating 200 random simple 

channel instances of n nets each. Incidentally, we may observe in the first row of the 
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table, the minimum span is one unit only whereas the maximum span of a net (out of 

2000 nets) is almost spanned over the length of the channel, which is 19 units. The 

average span per net is also shown in Table 5.5, and in the last row of this table, we 

see that the average span per net is 4.852 units only (that is actually the average span 

of 2000 nets here). 

Table 5.5: Experimental results of randomly generated simple channel instances; 200 

instances are generated for each number of nets, and a row in this table shows the data 

out of all these 200 instances for a given net number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

The maximum span of a net out of 30,00,000 nets that are introduced in 

generating 200 random simple channel instances, each of which contains 15000 nets, 

Number 

of Nets 

Minimum / Maximum 

Span per Net 

Average Span 

per Net 

10 1 / 19 4.852000 

20 1 / 39 10.599500 

40 1 / 79 21.971500 

60 1 / 103 29.509000 

80 1 / 159 41.075125 

100 1 / 175 51.174000 

150 1 / 277 74.469733 

200 1 / 360 98.519850 

300 1 / 536 145.046333 

400 1 / 730 200.074325 

500 1 / 951 252.453620 

600 1 / 1143 303.903500 

700 1 / 1336 362.000243 

800 1 / 1502 406.109000 

900 1 / 1757 463.381778 

1000 1 / 1976 516.205790 

1500 1 / 2930 763.650047 

2000 1 / 3898 1048.163660 

4000 1 / 7844 2063.192635 

6000 1 / 11895 3049.836172 

8000 1 / 15670 3995.323902 

10000 1 / 19622 5052.101507 

12000 1 / 23783 6006.648183 

15000 1 / 29814 7422.525149 
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is 29814 units whereas the average span per net of all the nets introduced in these 

channels is 7422.525149 units only; see the last row of Table 5.5. In another form, we 

view these computed results as shown in Figure 5.5. In this figure, the number of nets 

is available along X-axis, and the average span per net is obtained along Y-axis of the 

plot. The figure shows regularity in changing the average span per net as the number 

of nets introduced into the channels changes. The relation is very close to linear, as 

the average span per net is almost half of the number of nets introduced into the 

channels of the same net number (also see Table 5.5). 

 

Figure 5.5: The variation of average span per net over the number of nets introduced 

into a randomly generated simple channel instance. Here essentially 200 instances of 

a particular net number are generated randomly, and the average span per net is 

obtained by making an average of spans of all those nets that are introduced into the 

said channels. 

Now we consider the experimental results that are computed following 

algorithm General_Random_Channel_Generator. The results are included in Table 

5.6. Here also, we randomly compute 200 general channel instances for a given 

number of nets. Note that here in generating general channel instances the channels 

that are generated for a particular net number may have different channel lengths; this 

is unlike in generating simple channel instances, where the channel length is always 
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same as 2n for a channel with n nets (as we introduced 50% non-terminals there to 

avoid vertical constraints). Here the generated channel lengths vary from around 1.5 

to 2.2 times (as minimum to maximum channel lengths obtained) of the number of 

nets belonging to the channel; see the second column of Table 5.6. Incidentally, the 

average channel length (of 200 generated channel instances of a given net number) is 

approximately 1.8 – 1.9 times of the number of nets introduced into the channel; see 

the third column of the table. 

Table 5.6: Experimental results of randomly generated general channel instances; 200 

instances are generated for each number of nets, and a row in this table shows the data 

out of all these 200 instances for a given net number. 

Net 

Number 

Min / Max 

Channel 

Length 

Average 

Channel 

Length 

Average 

Number of 

Terminals 

per Net 

Average Number 

of Non-

Terminals per 

Channel 

Average 

Span 

per Net 

10 14 / 20 16.485000 2.592500 7.045000 5.539000 

20 29 / 42 35.765000 2.807500 15.380000 9.914000 

40 59 / 86 73.290000 2.881875 31.305000 18.232125 

60 90 / 131 111.075000 2.911583 47.455000 27.340167 

80 121 / 175 148.760000 2.922750 63.700000 36.178312 

100 154 / 222 188.245000 2.959200 80.570000 45.017050 

150 229 / 330 280.715000 2.941833 120.155000 65.774600 

200 307 / 444 376.395000 2.959200 160.950000 86.965850 

300 461 / 666 564.755000 2.959200 241.750000 127.570717 

400 614 / 888 752.845000 2.959200 322.010000 168.568050 

500 768 / 1110 941.090000 2.959200 402.580000 209.976840 

600 921 / 1331 1129.190000 2.959200 482.860000 251.071517 

700 1075 / 1553 1317.510000 2.959200 563.580000 291.667157 

800 1228 / 1775 1505.690000 2.959200 644.020000 334.257887 

900 1382 / 1997 1693.960000 2.959200 724.640000 374.271572 

1000 1535 / 2219 1882.115000 2.959200 805.030000 414.723735 

1500 2303 / 3329 2823.130000 2.959200 1207.460000 622.300127 

2000 3071 / 4438 3764.190000 2.959200 1609.980000 822.438110 

4000 6141 / 8876 7528.400000 2.959200 3220.000000 1628.330819 

6000 9212 / 13314 11292.625000 2.959200 4830.050000 2432.932756 

8000 12282 / 17752 15056.740000 2.959200 6439.880000 3186.042123 

10000 15353 / 22190 18821.120000 2.959200 8050.240000 3948.734045 

12000 18423 / 26628 22585.100000 2.959200 9659.800000 4736.121187 

15000 23029 / 33285 28231.470000 2.959200 12074.940000 5918.711587 
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More specifically, we like to mention the following. In generating a general 

channel instance, we have introduced only 2- to 6-terminal nets with the following 

five sets of percentage range that are also selected randomly in our implementation. 

The percentage ranges are {50, 30, 10, 7, 3}, {40, 35, 15, 5, 5}, {60, 20, 15, 3, 2}, 

{40, 30, 20, 6, 4}, and {45, 30, 15, 7, 3}. Observe in each of these sets a higher 

percentage is usually used for nets with a smaller number of terminals, and the vice-

versa. As for example, consider the third set where 60% 2-terminal nets, 20% 3-

terminal nets, 15% 4-terminal nets, 3% 5-terminal nets, and 2% 6-terminal nets are to 

be introduced. As a result of this in generating a channel having lesser number of nets, 

like 10, 20, etc., the higher terminal net may not be introduced there in generating 

general channel instances. 

 

 

Figure 5.6: The variation of different parameters that are obtained as experimental 

results in generating general channel instances randomly as the number of nets 

introduced into the generated channels increases. The parameters that are considered 

here are average channel length, average number of non-terminals per channel, 

average span per net, and the average number of terminals per net. In reality, here 200 

instances of a particular net number are generated randomly, and a parameter is 

computed by making an average of the said parameter of all those nets that are 

introduced into the said channels of a given net number. 

0

5000

10000

15000

20000

25000

30000

0 2000 4000 6000 8000 10000 12000 14000 16000

Average Channel Length

Average Number of Terminals per Net

Average Number of Non-Terminals per Channel

Average Span per Net



141 

 

Hence, the question arises about the average number of terminals per net, the 

average number of non-terminals per channel, and the average span per net for the 

randomly generated general channel instances, where a specific number of nets are 

introduced. These parameters are also computed in our implementations that are 

included in columns 4 through 6 in Table 5.6. Incidentally, the average number of 

terminals per net approximately varies from 2.6 to 2.96 (which is almost constant), the 

average number of non-terminals per channel is roughly 80% of the net number, and 

the average span per net is 50 – 40% (in units) of the net number, as the number of 

nets increases in generating general random channel instances. We also may view 

these results, along with their variation, as shown in Figure 5.6. 

Both the algorithms Simple_Random_Channel_Generator and General_Ran-

dom_Channel_Generator have been implemented in C on an Intel Pentium Dual-Core 

machine having a 794 MHz clock. Furthermore, the implementations are done using 

Microsoft Visual C++ 6.0 on a platform of Microsoft Windows XP Professional 

(Version 2002) with CPU T2080@1.73GHz and with a support of 504 MB RAM. 

The CPU times required are not shown in the tables, but these are mostly negligible 

up to channels with 10000 nets in generating 200 channel instances of the same 

number of nets introduced there. 

We have used the seed increment for generating a channel as 65000 over the 

channel count plus one. Here the channel count is 200, as we like to generate 200 

random channel instances over a continuum of 65000 (as the maximum seed value), 

where no two generated instances are identical to each other; rather, the instances 

generated are likely to be evenly distributed over the continuum. Experimental results 

show the beauty of the data obtained based on different parameters of generated 

channel instances, as most of the parameters vary linearly as the number of nets 

increases in generating random channel instances. 

5.7 Usefulness in Developing the Algorithms 

In channel routing problem, usually, the primary objective of a router is to compute a 

routing solution for some channel instance that uses a minimum number of tracks (or 

minimum channel area). In addition, in high performance routing our interest is also 

to compute a routing solution with less electrical hazards (i.e. crosstalk), less signal 
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propagation delay, less power consumption, less or no hotspot formation, and so on 

and so forth. 

Crosstalk is one of the most important high performance optimization criteria 

in (channel) routing that is to be reduced to achieve better performance out of the 

routing solution. There are some techniques for minimizing crosstalk in a different 

channel and switchbox routing models [23, 24, 25, 39]. Usually, there are two types 

of crosstalk minimization problem in channel routing, namely, sum crosstalk 

minimization and bottleneck crosstalk minimization; see Chapter 3. Sum crosstalk is 

the amount of total crosstalk between horizontal wire segments of the nets that are 

assigned to adjacent tracks. The sum crosstalk minimization problem is to compute a 

feasible routing solution with a given number of tracks in which the total amount of 

crosstalk is minimized. 

On the other hand, bottleneck crosstalk with respect to a feasible routing 

solution is the maximum amount of crosstalk due to overlapping between any pair of 

horizontal wire segments of two different nets that are assigned to (two) adjacent 

tracks in a routing solution. Thus, the bottleneck crosstalk minimization problem is 

the problem of finding a feasible routing solution with a given number of tracks, such 

that the amount of bottleneck crosstalk is minimized. Incidentally, all these problems 

along with some other problems of crosstalk minimization have been proved NP-hard, 

and all these results have been included in Chapter 3 of this thesis. 

The channel routing problem of area minimization being an NP-hard problem 

[41, 49, 50, 60, 61, 63, 80, 86], several heuristic algorithms have been proposed for 

routing channels in different routing models [10, 12, 33, 49, 51, 54, 71, 73, 80, 96]. 

The problem is polynomial time solvable if the channel instances are free from any 

vertical constraint, and there are algorithms for computing a routing solution using 

exactly density number of tracks for each of such instances [32, 49, 52, 53]. Since the 

problem of minimizing area for an instance of channel routing with only horizontal 

constraints is polynomial time solvable (in computing a routing solution using exactly 

density number of tracks), we call them as simple channel instances of channel 

routing. We define a channel specification as general if both the constraints are 

present in it. 
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However, the crosstalk minimization problem for two-layer channel routing, 

both in the case of simple as well as general channel instances, is NP-hard, as has 

been proved herein. That is, there exists no polynomial time algorithm for computing 

a reduced crosstalk two-layer channel routing using the routing model under 

consideration (i.e. the reserved two-layer (VH) Manhattan channel routing model), 

even if the instances are free from any vertical constraint. As a result, several heuristic 

algorithms have been developed to minimize crosstalk for two-layer channel routing 

for simple as well as general instances of channel specifications, which have been 

included in Chapter 4 of this thesis. Incidentally, there are a few general channel 

instances available in the literature as benchmark channel instances [49, 96]; however, 

those are not sufficient in executing the heuristic algorithms developed for reducing 

crosstalk. On the other hand, no simple channel instances are available in the 

literature. So, it is an obvious necessity in developing algorithms so that a huge 

number of simple and general channel instances can be generated (randomly) for 

using them in executing the heuristic algorithms developed for several NP-hard 

channel routing problems. The algorithms developed in this chapter meet that 

requirement. 

Furthermore, it may be mentioned that following the illustration in Section 

5.4.3, we show how a random simple channel instance is generated using algorithm 

Simple_Random_Channel_Generator whose vertical constraint graph does not 

contain any directed arc; the associated horizontal constraint graph is shown in Figure 

5.2(b). On the other hand, algorithm General_Random_Channel_Generator generates 

a general channel instance whose illustration is available in Section 5.5.4; the 

associated vertical constraint graph is shown in Figure 5.3(b). In computing a general 

channel instance, a cycle may also be evolved in its vertical constraint graph. Section 

5.5.6 resolves such constraints using an algorithmic technique so that eventually 

cycles are removed from a generated general channel instance. This is how a huge 

number of simple and (desired) general channel instances are randomly generated 

following the algorithms developed in this chapter. All generated instances are 

utilized in computing reduced crosstalk channel routing solutions for the algorithms 

developed in the previous chapter, and all associated results have been reported in the 

next chapter (i.e. in Chapter 6). 
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5.8 Summary 

In this chapter, we have developed algorithms for generating random channel 

instances for both simple and general in nature for channel routing problem in VLSI 

physical design. Simple channel instances do not contain any vertical constraint, 

whereas general channel instances contain both horizontal as well as vertical 

constraints [48, 49, 80, 81, 96]. Simple channel instances that are generated in this 

chapter are all containing only two-terminal nets; simple channel instances of multi-

terminal nets, based on some requirements, can also be generated. General channel 

instances that are randomly generated in this chapter contain two-terminal as well as 

multi-terminal nets. These general channel instances may also contain cyclic vertical 

constraints; however, for the channel routing model under consideration (that is the 

reserved two-layer Manhattan channel routing model), we have removed those cyclic 

vertical constraints such that a solution in two-layer routing is always guaranteed. 

This has also been explained in this chapter. 

The algorithms that are developed in this chapter are able to generate a very 

large number of channel instances of any (possible) number of nets. In any case, the 

said algorithms are extremely useful when we require a large number of channel 

instances. As most of the problems in two-, three-, and multi-layer channel routing are 

computationally hard to solve [41, 49, 50, 55, 56, 57, 58, 59, 61, 63, 80, 86], for each 

of these problems it is unlikely to design a polynomial time deterministic algorithm. 

Rather, developing heuristic algorithm may be a probable way out that hopefully 

provides good solutions for most of the instances available in the literature. 

Incidentally, a very few (general) benchmark channel instances are available in the 

literature [49, 96]. So, to execute all these heuristic algorithms (that are developed for 

NP-hard channel routing problems) and to judge their novelty, a variety of a large 

number of similar kind of channel instances are required that we may generate with 

the help of the algorithms developed in this chapter. In fact, the convergence of results 

of a heuristic algorithm is well established when the algorithm of a problem is 

executed for a substantial number of randomly generated similar (channel) instances, 

and the final result is computed making an average on all of them. 

 



Chapter: 6 

Experimental Results on Generating Random 

Channel Instances and Computing Two-Layer 

Reduced Crosstalk Channel Routing Solutions 
 

 

6.1 Overview 

In this thesis, we have considered the problem of crosstalk minimization in two-layer 

channel routing. We have already developed the previous three chapters for dealing 

with the same. In Chapter 3, we have marked out several problems in crosstalk 

minimization and subsequently proved their hardness. In order to acquire a large 

number of channel instances, we have devised two algorithms for generating random 

channels: one for the simple instances of channel specifications and the other for the 

general instances of channel specifications, in Chapter 5. The crosstalk minimization 

problem in two-layer (VH) channel routing is NP-hard. Thus, if a routing solution, S 

of t tracks, is given and we are supposed to compute a reduced crosstalk channel 

routing solution, S using the same t number of tracks (i.e. without enhancing the area 

of routing), then the task that we can think of immediately is to design heuristic 

algorithms to solve most of the instances of the problem under consideration. 

In this light of thinking, in this thesis, we have devised two principal 

algorithms for reducing crosstalk in Chapter 4. These algorithms have also been 

implemented in Chapter 4 for a smaller number (540 only, in nine sets containing 60 

channels in each set for a given number of nets) of randomly generated simple 

channel instances and also for a set of 14 existing benchmark channel instances; all 

these results are also included there. 

Four noteworthy algorithms have been developed in the previous two chapters 

of this thesis, and we have randomly generated an enormous number of channel 

instances of both kinds. Even then, in order to comprise a particularly tiny subset of 

some of these as representative generated instances as well as representative hardcopy 

routing solutions produced by the subsequently reduced crosstalk channel routing 

algorithms, we essentially include this chapter in the form of computed experimental 

results as has been depicted in different tables. 
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6.2 Generation of Random Channel Instances 

The random channel instance generating algorithms have been developed in Chapter 

5. We have developed two algorithms for generating such instances; one for the 

simple channel instances and the other for the general channel instances. The simple 

channel instances do not contain any vertical constraint whereas the general channel 

instances do have both the constraints. The length of a randomly generated simple 

channel specification of n nets is exactly 2n, and each of the nets present in such a 

channel is a two-terminal net. In this context, a general channel specification contains 

two-terminal as well as multi-terminal nets with varying length of the channel. In 

more detail, these are explained in the following two subsections by depicting some of 

the randomly generated instances, the status of the routing solutions computed, and 

some of the selected sets of hardcopy routing solutions after execution of each of the 

algorithms. 

As simple channel instances are hardly available in the literature, and general 

(benchmark) channel instances are not much, in this work we have created a large 

number of random channel instances of both types. In making the generated instances 

as random as possible along the length of the channel, we follow some measures of 

assumed standard, as has been briefly mentioned again. 

(i) In our randomly generated channel instances the nets (that are made 

different by numbers) appear randomly, i.e. the nets are not sorted in 

succession based on their starting column positions from left to right (or 

from right to left) along the length of the channel. We may remember that 

the net numbers signify nothing but symbols to discriminate themselves. 

(ii) Nets of different spans (of intervals) are supposed to appear randomly 

along the length of the channel. This criterion tells that all the smaller (or 

larger) nets are not accumulated (or concentrated) on a side of the channel. 

(iii) We may assume that as a general practice, a channel includes a large 

number of smaller nets and less large nets. Here the smaller or larger nets 

are differentiated by their relative spans (or intervals). Observably, the 

number of nets with some intermediate spans is neither more nor less. 

Thus, this criterion tells that the number of nets steadily decreases as their 

spans increase along the length of the channel. 
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(iv) Also, a general channel instance contains a percentage of non-terminals. 

6.2.1 Generation of Simple Channel Instances 

In this work, as we concentrate on minimizing crosstalk in two-layer channel routing, 

for net pairs assigned to adjacent tracks (in a routing solution), that depends on only 

the horizontal spans of different nets, we usually do not bother how much the vertical 

wire segments of two different nets overlap on two adjacent columns. In fact, as the 

pin-to-pin separation is determined by the allowable process technology, and we 

usually have no control over a given channel specification (that are the TOP and 

BOTTOM vectors of a channel), we do not like to impose any additional constraint in 

assigning terminal locations, either at the top or at the bottom, of a two-terminal net 

while generating a simple channel instance for a given number of nets. 

We have already mentioned that for a given number of nets we have generated 

200 random simple channel instances (where the number of nets introduced in a 

channel varies from 10 through 15000; see Table 5.5), but there is no scope to show 

all these instances by making this thesis unnecessarily thicker, and that could be 

boring as well to a reader to go through. Besides, larger instances might take pages to 

depict. Thus, as a matter of fact, we only include a reasonably small number of such 

instances (that containing a smaller number of nets), with their associated information 

for simple channel specifications. First, we include only six simple sample channels 

each containing a total number of 10 nets. For all the nets belonging to all the 200 

randomly generated instances, the average span of nets obtained is 4.8520 (see Table 

5.5). 

Sample simple channel # 1 that contains only 10 nets: 

Column #    1   2   3   4   5   6    7   8   9  10  11  12  13  14  15  16  17  18  19  20 

TOP 2   0   5   2   8   0  10   0   0    0    4    0    0    0  10    7    4    0    9    6 

BOTTOM    0   9   0   0   0   5    0   8   1    1    0    3    7    3    0    0    0    6    0    0 

The total span of nets  48 and the average span of nets of this channel  4.80. 

Sample simple channel # 2 that contains only 10 nets: 

Column #      1   2   3    4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 

TOP 10   0   9    0   0   0   6   0   7    4    7    0    0    0    3    0    0    0    1    0 

BOTTOM      0   8   0  10   8   9   0   4   0    0    0    5    5    6    0    3    2    1    0    2 
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The total span of nets  26 and the average span of nets of this channel  2.60. 

Sample simple channel # 3 that contains only 10 nets: 

Column #    1    2   3   4   5   6   7   8    9  10  11  12  13  14  15  16  17  18  19  20 

TOP 4    0   0   0   4   0   0   0  10    0    6    8    0    1    2    3    9    0    0    0 

BOTTOM    0  10   7   9   0   5   6   7    0    5    0    0    1    0    0    0    0    2    3    8 

The total span of nets  52 and the average span of nets of this channel  5.20. 

Sample simple channel # 4 that contains only 10 nets: 

Column #    1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 

TOP 3   9   1   0   2   0   5   3   8    0    0    0    8    0  10    0    4    0    0    0 

BOTTOM    0   0   0   1   0   2   0   0   0    5  10    4    0    7    0    7    0    6    9    6 

The total span of nets  46 and the average span of nets of this channel  4.60. 

Sample simple channel # 5 that contains only 10 nets: 

Column #    1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 

TOP 0   0   9   0   1   0   7   8   6    0  10    5    3    0    0    0    0    0    2    0 

BOTTOM    9   4   0   4   0   1   0   0   0    7    0    0    0    8    6  10    3    5    0    2 

The total span of nets  36 and the average span of nets of this channel  3.60. 

Sample simple channel # 6 that contains only 10 nets: 

Column #    1   2    3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 

TOP 1   6  10   0   4   0   9   5   6    0    3  10    8    0    2    0    0    0    0    1 

BOTTOM    0   0    0   4   0   8   0   0   0    3    0    0    0    5    0    2    9    7    7    0 

The total span of nets  62 and the average span of nets of this channel  6.20. 

Now, we include four simple sample channels each containing a total number 

of 20 nets, two channels each holding 40 nets, two similar channels each having 60 

nets and only one channel of 80 nets. The average span per net for all nets belonging 

to all 200 randomly generated instances for a given number of nets is included in 

Table 5.5. 

Sample simple channel # 1 that contains only 20 nets: 
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Column #      1    2    3    4    5    6    7   8   9  10  11  12  13  14  15   16  17  18  19  20  21 

TOP 14   20  18   0    0  15  13   0   2    0    0    0    5    0    0   18    1    0  12    6  10 

BOTTOM      0    0    0  10  19    0   0  20   0  16    2    6    0  14    9    0     0    1    0    0    0 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34   35  36  37  38  39   40 

TOP   0    3     0     0     0    8     0     0    0    7    0    0    0   11    0    4  15  16     0 

BOTTOM    13    0   19     5     9    0   17     7    3    0   12   4  17     0    8    0    0    0   11 

The total span of nets  224 and the average span of nets of this channel  11.20. 

Sample simple channel # 2 that contains only 20 nets: 

Column #      1    2    3   4   5   6    7   8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP   0    0  20   7   0   0  18   0  19    5    3    0    3    0    0    0  10    0    0    0  18 

BOTTOM    14    4    0   0   5  10    0   4    0    0    0  15    0  13   7  20    0  16  14    8    0 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34  35  36  37  38  39   40 

TOP   0  13     0   17     0    8     0     2    0    2    6  15    0    0  11    9    0    0     0 

BOTTOM    12    0   19    0    12    0   17     0   11   0    0    0  16    6    0    0    9    1     1 

The total span of nets  168 and the average span of nets of this channel  8.40. 

Sample simple channel # 3 that contains only 20 nets: 

Column #      1    2    3   4    5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP   0    0  19   0  11   0   0   0   2  15  16    0  14    9  10    0  13    0    0    0    3 

BOTTOM    12    9   0  15   0  18   2   8   0    0    0  17    0    0    0    3    0  12    8    5    0 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34   35   36  37  38  39   40 

TOP   0   20    7   13     0    4     6     0    0    1    0    0     0   10    0   17    6   7     0 

BOTTOM    11     0    0    0    18    0     0     1  20    0    4    5   16     0  14    0     0   0   19 

The total span of nets  278 and the average span of nets of this channel  13.90. 

Sample simple channel # 4 that contains only 20 nets: 

Column #      1    2    3    4    5    6    7    8   9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP   0    0  14    8  20    0    0    0   0    3  20    0  18    0    1    0    4    0  17    0    9 

BOTTOM    19    8    0    0   0   17    3  18   5    0    0    4    0    1    0  11    0  14    0   16   0 

Column #    22   23   24   25   26  27  28   29  30  31  32  33  34   35  36   37  38  39   40 
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TOP   5   13    0   13     0    7    0   10    0    0    0    9    7   19    0   12     6    2     2 

BOTTOM      0    0   16    0    11    0  12    0   10    6  15    0    0    0   15    0      0    0     0 

The total span of nets  154 and the average span of nets of this channel  7.70. 

Sample simple channel # 1 that contains only 40 nets: 

Column #      1    2    3    4    5    6    7    8    9  10  11  12  13  14  15   16  17  18  19  20  21 

TOP 18    0  20    4  28    0    6    0  13    6    0    0  37    1  33     0  31    0    0    0  28 

BOTTOM      0  39    0    0    0  20    0  34    0    0    4  40    0    0    0    25   0   30    1  38   0 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34   35  36  37  38  39   40   41 

TOP 38   12    0    23    0   40    0     0    3  37    0   13    8   26   0   29    0    9   39   24 

BOTTOM      0    0   22     0   18    0     3     8    0   0   12     0    0    0  19    0   26    0     0    0 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61 

TOP  0    11    0  27   0  22   11   0    0   36    0  21   0   25    0  23   0  30    0   19 

BOTTOM    33     0    9    0  24   0     0  29  14    0   15   0  34    0   15   0  31   0   16    0 

Column #    62   63   64   65   66  67   68   69  70  71  72  73  74   75  76  77  78  79   80 

TOP 35   32    0    27    0    0     0    35   0   17   0   21    0     5    7   2    0   10    0 

BOTTOM     0     0   14     0   17    5   36     0   32   0    7    0   16     0    0   0    2    0    10 

The total span of nets  598 and the average span of nets of this channel  14.95. 

Sample simple channel # 2 that contains only 40 nets: 

Column #      1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP 39  28  34    0  37    0    0   0   18    0    0  30  38    0  38    0  23    6  40    2  37 

BOTTOM      0   0    0   40   0   33  25  31    0   21   6   0    0   28   0   22    0    0    0    0    0 

Column #    22   23   24   25   26  27   28   29  30  31  32   33  34   35  36   37  38  39   40 

TOP   0    2   17    26    0   11    0      0    0    1    0     0    4    4     0   33    0   27  24 

BOTTOM    12    0     0     0   15    0   29    26    1    0  39   24    0    0   17     0    5    0     0 

Column #    41   42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61 

TOP 11    0    12    0   0    8   29   0   21   0   10   5   13    0  36    0  34    0  15   3   25 

BOTTOM      0   22     0  16   7    0    0   18    0  10    0    0    0    9    0    7    0    8    0    0    0 
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Column #    62   63   64   65   66  67   68   69  70  71  72  73  74   75  76  77  78  79   80 

TOP   0   23   31   20    0   14    0     0    0    0    0   32   0    36   0   14   0     0    0 

BOTTOM      3    0     0     0    19    0   30    9   35  13  19   0   27    0   16   0   35  20   32 

The total span of nets  804 and the average span of nets of this channel  20.10. 

Sample simple channel # 1 that contains only 60 nets: 

Column #      1    2    3   4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP   3    0  27   6  58    0  51    0    0    0  26    0  45    0  56    0    0  26  48    0   0 

BOTTOM      0  36   0    0    0  39    0  54    9  41    0  49   0   50    0  17    5    0    0    5   7 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34  35  36  37  38  39   40   41 

TOP   0   42     0   49     0  17   14   32    0    2    0  27    0    0    0  31    0  34     0   41 

BOTTOM    56    0    43    0    42   0     0    0   37    0  14    0    7  37    2   0   52    0   33    0 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62 

TOP   0   24    0  60  31  25    0  22    0    0    0  47    0  44    0  16    0  54    0    0    0 

BOTTOM    19    0  19    0    0    0  18    0  59    3  18    0    4    0  60    0   53   0    6  57   28 

Column #    63   64   65   66  67   68   69  70  71  72  73  74   75  76  77  78  79   80   81   82 

TOP   0     0   11    0   36    0    46    0  47    0    0    0   23    0  13    0  35     0     0     0 

BOTTOM      4   38    0   59    0   53     0   30   0  48  20  24    0   29    0  52    0   55   58   38 

Column #    83   84   85   86   87   88   89  90  91  92  93  94  95   96  97  98  99  100  101 

TOP 39     0   21   11   16     0     0    0  12    0  13    0  32     1  57  10  35     0    55 

BOTTOM      0   34    0     0     0    40     9   22   0  33   0   30    0     0    0    0    0   44     0 

Column #    102   103   104   105   106  107   108   109  110  111  112  113  114   115  116 

TOP    0     50      0       0       0      0      23      28    0     12    25    29     0      43     0 

BOTTOM       8      0       1      21     45    10      0        0    20     0      0      0     46      0     15 

Column #    117   118   119   120 

TOP   8       0      15     51  

BOTTOM      0      40      0       0 

The total span of nets  1980 and the average span of nets of this channel  33.00. 

Sample simple channel # 2 that contains only 60 nets: 



152 

 

Column #      1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP 53    0    0    0    0    0   11   0    0    0  13    0    3  12  39   0   54   0   13  59  20 

BOTTOM      0  46   57  56  26  58   0  31  11    3   0   24    0   0    0   51   0   24    0   0    0 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34   35  36  37  38  39   40   41 

TOP  0    41    0     0    0    50    0    42   0   49   0     0    0   37   0    0     0  37     0     0 

BOTTOM    29     0   49   45   12   0    48     0  43    0  42   29  26    0  57   6    33   0   52    20 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62 

TOP   0    0    0   31   0    6    0     0    0  47    0    0    0  60    2    5   0   56   0    0    0 

BOTTOM    14   28  41   0   60   0   33  53    5    0  18  14   44   0    0    0  54    0  38  30  46 

Column #    63   64   65   66  67   68   69  70  71  72  73  74   75  76  77  78  79   80   81   82 

TOP 34     0     0     0    0     0   10    0    1    0   9     0     0    0  48    0  25     0   35   55 

BOTTOM      0   10     1     9    2   30     0  36    0  17   0   47   16  23   0   52   0   18     0     0 

Column #    83   84   85   86   87   88   89  90  91  92  93  94  95   96  97  98  99  100  101 

TOP   0     0     0     0   32     0   40  21  15   0   28  27  59    0   17    0    0    0     16 

BOTTOM    32   58   21   38    0    39    0    0    0    7    0    0    0     8    0   35  32   44     0 

Column #    102   103   104   105   106  107   108   109  110  111  112  113  114   115  116 

TOP   0      55     19     50      0      4       0      36      0      0      0     15    0       25    4 

BOTTOM      7       0       0       0      27     0      45      0      43    22    34     0    40       0     0 

Column #    117   118   119   120 

TOP  22      0      51     19  

BOTTOM      0       8       0       0 

The total span of nets  1680 and the average span of nets of this channel  28.00. 

Sample simple channel # 1 that contains only 80 nets: 

Column #      1    2    3    4    5    6    7     8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP   0    0  49    0    0    0   77  76  74  13  78    0  46    0   0   27  58    0  79    0    0 

BOTTOM      48  67   0  47  66  50   0    0    0    0    0   28   0  24  26   0    0   71   0   37  61 

Column #    22   23   24   25   26  27  28   29  30  31  32  33  34   35  36  37  38  39   40   41 

TOP   0   77   21   13     0  41    0   61    0    0    0    0    0   25    0  52    0  63   57   20 

BOTTOM    53    0     0     0    65    0  24    0   69  21  34  70  54    0   62   0   60   0     0     0 
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Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62 

TOP   0     0    0  36    0    0    0  44    0    0    0  38    0  11    4   42    0    2    0    0    0 

BOTTOM    11   51    9    0   39   4   68   0   55  69  45   0   28   0    0    0    9    0   43  34  80 

Column #    63   64   65   66  67  68   69  70  71  72  73  74   75  76  77  78  79   80   81   82 

TOP   2     0     0     0  18    0   20    0  59  72  12    0   22    0  42    0    0   10   29     0 

BOTTOM       0   26   44   68   0   27    0   39   0    0    0   67    0   47    0   12  29     0     0   64 

Column #    83   84   85   86   87   88   89  90  91  92  93  94   95   96  97  98  99  100  101 

TOP 31     0     0     0   56     0   30  17  46    0  58    0    0     0    0    0   73     0    33 

BOTTOM      0   48   17   66     0   23    0    0    0   80   0     6   45   37   1   25   0     22    0 

Column #    102   103   104   105   106  107   108   109  110  111  112  113  114   115  116 

TOP   50      6      0       1       0     31      49     74     0    52     0      0      0      15     3 

BOTTOM       0       0     76      0      33     0        0      0     10     0     19    41    18      0      0 

Column #    117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132 

TOP  38     0      0      0      0      0     65    14    32     0     72     0     78     8     16     0 

BOTTOM      0     75    16    23    36    55     0      0      0     19     0      3      0      0      0     59 

Column #    133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148 

TOP  54     0      0      0     73     0     53    64    35     0     62     0     43     0      0      0 

BOTTOM      0     15    30    60     0      8      0      0      0     51     0     14     0     57     5     79 

Column #    149   150   151   152   153   154   155   156   157   158   159   160 

TOP  32     40     75      0      70      0       7       0       0       0      63       0 

BOTTOM      0       0       0     56       0      35      0      40      5       7       0       71 

The total span of nets  3968 and the average span of nets of this channel  49.60. 

In this section, we have included only 15 sample simple channel instances (out 

of 4800 instances) of smaller in size that we have generated randomly using algorithm 

Simple_Random_Channel_Generator developed in Chapter 5 of this thesis. We may 

observe that in each column of all these generated instances a non-terminal is there 

that is not to be connected, and all the nets are only two-terminal nets. Multi-terminal 

nets can also be generated randomly with necessary modification in the devised 

algorithm, but as we allow only no-dogleg routing, from the crosstalk minimization 
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point of view, it does not matter whether the nets introduced are either two-terminal 

nets or multi-terminal nets. Thus, the simple channel instances that we have generated 

are all two-terminal nets only. In the next section, we show some example general 

channel instances (of smaller in size) that we have generated randomly using the 

generalized version of the algorithm. 

6.2.2 Generation of General Channel Instances 

General_Random_Channel_Generator is the algorithm that we have devised in 

Chapter 5 to generate general channel instances each of which contains both 

horizontal as well as vertical constraints. Generated instances also contain multi-

terminal nets with the number of terminals varying from 2 through 6. In such a case, 

we are supposed to introduce an additional number of non-terminals (as a percentage 

of total number of terminals of different nets), where the pins along a column can both 

be non-terminals (or 0’s), as a column can also be a trivial column (containing 

terminals of the same net) [49]. Moreover, as the number of terminals per net is not 

fixed (including the number of non-terminals), the channel length for a given number 

of nets is also varying. 

We may further note that in generating a general channel instance a cycle may 

be introduced into the vertical constraint graph of the channel under construction, and 

for the exclusion of each such cyclic vertical constraint, we have added one extra 

column into the channel to break a vertical constraint belonging to the cycle. This is 

also a part of the generation of a general channel instance of our desire, as a channel 

specification containing cyclic vertical constraint is not fully routable in the assumed 

reserved two-layer no-dogleg Manhattan channel routing model. 

To execute the algorithm General_Random_Channel_Generator in this thesis, 

we have randomly generated 4800 total random channels for 24 sets of nets each 

having 200 instances of our choice; the outcome of this experimentation is included in 

Table 5.6. Interestingly, we have the following observation out of the table. On an 

average, the minimum channel length is 1.5 times the number of nets, and the 

maximum length of a channel is approximately 2.25 times, although the average 

channel length is less than two times. The most interesting observation is that the 

average number of terminals per net approaches 2.9592 as the number of nets 

increases; initially, it starts from 2.5925 when the number of nets is 10 only. The 



155 

 

 

 

average number of non-terminals per channel is roughly 21% of the total number of 

pin locations belonging to a channel. Moreover, as the number of nets increases, the 

average span per net decreases, and this attenuation starts from approximately 33.5% 

of the average length of the channel and reduces up to 21% of the same, where it 

becomes almost steady. 

It has already been mentioned that as we did in generating general channel 

instances, for a given number of nets we have produced 200 random channel 

instances, where the number of nets introduced in a channel varies from 10 through 

15000 (see Table 5.6). Next, in this thesis, we include only a rationally small number 

of such instances (that containing a smaller number of nets), with their associated 

information for general channel specifications. First, we include only six sample 

general instances each containing 10 nets per channel; for all nets belonging to all 200 

randomly generated instances, the average span of nets obtained is 5.5390 (see Table 

5.6). 

Sample general channel # 1 that contains only 10 nets: 

Column #      1   2    3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19 

TOP 10   6  10   6   0   3   8   7   1    9    2    0    3    5    4    0  10    0    8 

BOTTOM      0   0    0   9   5   3   1   0   2    8    3    0    8    7    4    5    0    4    4 

The total span of nets  68 and the average span of nets of this channel  6.80. The 

number of terminals of this channel  28; thus, the number of non-terminals  10 and 

the average number of terminals per net  2.8, as the channel length is 19. 

Sample general channel # 2 that contains only 10 nets: 

Column #      1   2    3   4   5   6   7   8    9  10  11  12  13  14 

TOP   6   4    9   4   0   4   8   6  10    2    3    0    9    2 

BOTTOM      7   0  10   4   8   5   7   1    5    1    5    8    3    0 

The total span of nets  53 and the average span of nets of this channel  5.30. The 

number of terminals of this channel  24; thus, the number of non-terminals  4 and 

the average number of terminals per net  2.4, as the channel length is 14. 

Sample general channel # 3 that contains only 10 nets: 

Column #    1   2   3    4   5   6   7   8    9  10  11  12  13  14  15  16  17 
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TOP 2   9   0  10   0   5   3  10   1   6    3    9    4    8    0    7    6 

BOTTOM    0   0   2    0   5   1   7   0    3   8    4    0    5    8    0   10   8 

The total span of nets  64 and the average span of nets of this channel  6.40. The 

number of terminals of this channel  25; thus, the number of non-terminals  9 and 

the average number of terminals per net  2.5, as the channel length is 17. 

Sample general channel # 4 that contains only 10 nets: 

Column #      1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19 

TOP   0   0   0   1   0   1   6   3   0   8    9    0    5    3   10    7    2    0    4 

BOTTOM    10   8   1   1   8   8   9   0   6   3    0    0    4    7    7     2    5    2    0 

The total span of nets  57 and the average span of nets of this channel  5.70. The 

number of terminals of this channel  27; thus, the number of non-terminals  11 and 

the average number of terminals per net  2.7, as the channel length is 19. 

Sample general channel # 5 that contains only 10 nets: 

Column #    1    2   3   4    5   6   7   8   9  10  11  12  13  14  15 

TOP 0    0   9   8  10   1   1   0   0    8    4    7    5    0    9 

BOTTOM    0  10   7   4    5   6   8   1   2    2    3    6    2    8    3 

The total span of nets  65 and the average span of nets of this channel  6.50. The 

number of terminals of this channel  24; thus, the number of non-terminals  6 and 

the average number of terminals per net  2.4, as the channel length is 15. 

Sample general channel # 6 that contains only 10 nets: 

Column #    1   2    3   4   5   6   7   8   9  10  11  12  13  14  15  16 

TOP 0   0   9   6  10   0   5   0   8    3    3    2    2    0    7    3 

BOTTOM    8   8   4   6    1   1   6   1   4  10    7    2    3    2    5    9 

The total span of nets  58 and the average span of nets of this channel  5.80. The 

number of terminals of this channel  27; thus, the number of non-terminals  5 and 

the average number of terminals per net  2.7, as the channel length is 16. 

Among other smaller randomly generated general channel instances, now we 

include merely four general sample channels each containing a total number of 20 

nets, four similar channels each holding 40 nets, two similar channels each having 60 

nets, two such channels each holding 80 nets, and only one channel of 100 nets; the 
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average span per net for all nets belonging to all 200 randomly generated instances for 

a given number of nets along with other associated data are included in Table 5.6. 

Sample general channel # 1 that contains only 20 nets: 

Column #      1    2    3    4    5    6    7   8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP  19   5    0  18    5  11  18   1  11    0  17    0    0    9    2  16    2  13    8    0    0 

BOTTOM      0  19    0    5   0   19    5   0    6    6    1    6  18    2    0  12  17  18    0    9    4 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34   35  36  37  38  39   40   41 

TOP 12    0     7    13   17    8    0    17    0  13  14  10   0     0   10   0    3    3    15    0 

BOTTOM     4   14     4     8     0     0    0    17  18  20  15  10   7    12  17   3   10   3    20   16 

The total span of nets  190 and the average span of nets of this channel  9.50. The 

number of terminals of this channel  60; thus, the number of non-terminals  22 and 

the average number of terminals per net  3.0, as the channel length is 41. 

Sample general channel # 2 that contains only 20 nets: 

Column #      1    2    3    4    5    6   7    8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP   0    0    0  10  20    9   9    9    9  19   0    6    4    6   16    5    8  14  16   7   15 

BOTTOM    19    2  14  15    2  13   8  17  16  13   4    5   17  14    6  10    0  11  14  15    0 

Column #    22   23   24   25   26  27   28   29  30 

TOP   0    7   12   11    1    20   12   15    0 

BOTTOM    18    3     0   12   18    3     1   18    0 

The total span of nets  155 and the average span of nets of this channel  7.75. The 

number of terminals of this channel  50; thus, the number of non-terminals  10 and 

the average number of terminals per net  2.5, as the channel length is 30. 

Sample general channel # 3 that contains only 20 nets: 

Column #       1    2     3   4    5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP   19  19  16   0    8   0   0  10  2    8   7   12  17  17  10   0    9   15   3   14    5 

BOTTOM       0    0   13   0  14   9   8   2   0  14   2    2    0    8    8    7    7   11   0   18  19 

Column #    22   23   24   25   26   27   28   29   30   31   32   33   34   35 

TOP  6   20    5     1    15    1    20   17    6    18     4   12     4   18 

BOTTOM    13    1   16   10     0     3    1    19    11    4      5    4    15    0 
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The total span of nets  250 and the average span of nets of this channel  12.50. The 

number of terminals of this channel  58; thus, the number of non-terminals  12 and 

the average number of terminals per net  2.9, as the channel length is 35. 

Sample general channel # 4 that contains only 20 nets: 

Column #      1    2    3    4    5    6    7    8   9   10  11  12  13  14  15  16  17  18  19  20  21 

TOP   9    9  19    6  17  19    0  20   0   18  15  15   0   10    8    0   10    8  19  12   8 

BOTTOM     11   9    9    0  16  17    6    1  18   18   1    0    0   15    8    8    8   11  13    7   0 

Column #    22   23   24   25   26  27  28   29  30  31  32  33  34   35  36   37  38 

TOP             16   14     7   10     0  12    3     5    0    2   4    4   14    0    5   20   0 

BOTTOM    18  18     0     0     0    7   17    2    0    2    2    3     4    4    5   14  13 

The total span of nets  209 and the average span of nets of this channel  10.45. The 

number of terminals of this channel  60; thus, the number of non-terminals  16 and 

the average number of terminals per net  3.0, as the channel length is 38. 

Sample general channel # 1 that contains only 40 nets: 

Column #      1    2    3    4    5    6    7    8    9  10  11  12  13  14  15   16  17  18  19  20  21 

TOP   0    0    0  13    0    9  34  23  13    0    0  24  11    0  12   30  20    0    9  27  12 

BOTTOM     11   0    0  34  34    0  35    0  11    0  39  34  18    0  35   31  15  13  26  21  21 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34   35  36  37  38  39   40   41 

TOP 20   39     0   33   18  26   24   24    0  34    1    0    6    1   26  22  31  40   34   23 

BOTTOM    18   20   12   24   15  20   35     6    6  18    6    0  28    0   35  33  17  15   40    0 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61 

TOP 29   19  19  28  14    7   35  16   8   37   8   37  38   3   17  37    2  32  38   2 

BOTTOM    10  19  36  19  37  14  25  40  31  21  38   2   26   2   10   8   28   3    7    4 

Column #    62   63   64   65   66  67   68   69  70  71  72  73 

TOP 37   14   28     4    25   5    37    5   29   0   38  29 

BOTTOM    21  27   29   22   32   0     8   16   5   30   0   36 

The total span of nets  782 and the average span of nets of this channel  19.55. The 

number of terminals of this channel  123; thus, the number of non-terminals  23 

and the average number of terminals per net  3.075, as the channel length is 73. 
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Sample general channel # 2 that contains only 40 nets: 

Column #      1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP   0    0  15    0    0    0  36    1    1   0   26  17  35    0   0     0  15   0   34  24  40 

BOTTOM     35   0    0    0    0    0    0    1  36   1   19   0   15  12  36  17  29  38  32  26  19 

Column #    22   23   24   25   26  27   28   29  30  31  32   33  34   35  36  37  38  39  40 

TOP 24    4    21   30    0   13    2    34  12  34   0    30   0    13  13  39  20   0   14 

BOTTOM    10    4     4     4    32  31   10   39   0   21   2    20  38   23  25  35  29  20  20 

Column #    41   42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61 

TOP 23    0    37  29  11  25  29    5   0    6    3   21   0    0   23   3   27  27  27  32   0 

BOTTOM    33    0    25  14  28  34   0   18   5    0   31   0   11   0    9   20  35   0    0   22   7 

Column #    62   63   64   65   66  67   68   69  70  71 

TOP 27    6    37    9     0    8    16   40  16  28 

BOTTOM     8    28    0     0    18   0    22    0    7   33 

The total span of nets  590 and the average span of nets of this channel  14.75. The 

number of terminals of this channel  103; thus, the number of non-terminals  39 

and the average number of terminals per net  2.575, as the channel length is 71. 

Sample general channel # 3 that contains only 40 nets: 

Column #      1    2    3    4    5    6    7    8    9  10  11  12  13  14  15   16  17  18  19  20  21 

TOP 38  23  37    0  23   0  37    0  34  12  31    0   0   34  16    2    0    2   36  32  30 

BOTTOM      0    0  23    8   35   0    0    0    0    8  30   33  12  17  30    0   29   0    0   31   0 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34   35  36  37  38  39   40   41 

TOP 16   38   28   28   31  16     1    0   11  16  14   0   22   24    4   0   15    6     0     9 

BOTTOM     26    1     1   12   16  11     9    0   33  29  24  35  32  39  25  37   0   22     0   40 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61 

TOP 21   21  21   3    3  15    3    3  14  14  28    7    0  38  18  20  34  13  20  32 

BOTTOM    19    4    6    3    3   22    0  17  21  19  29  26  37  40  35  20  20  25  10  15 

Column #    62   63   64   65   66  67   68   69  70  71  72  73  74  75  76  77 

TOP   0    7    27   27   27  35    0     5   10    0  19  13    0    0    5    0 

BOTTOM    27   27   34   40   25    5    5     5   36   18  39  29   5     0    0    0 
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The total span of nets  838 and the average span of nets of this channel  20.95. The 

number of terminals of this channel  120; thus, the number of non-terminals  34 

and the average number of terminals per net  3.0, as the channel length is 77. 

Sample general channel # 4 that contains only 40 nets: 

Column #      1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP  38  38   0   31   0   39   0    3    0  27  31  30   0     0  30  25  32  18  38   0    0 

BOTTOM     21  21  21  27  21   0   34   0    3  37   0   18  34    8   8   16  34  27   4    4    6 

Column #    22   23   24   25   26  27   28   29  30  31  32   33  34   35  36  37  38  39  40 

TOP  0    22   26    4    10  23   39     0  28  24  23   31  10    6   13  40  10  36  35 

BOTTOM     4     8    34   10     4   33   14   13  20  20  16   20  14   22   35  38  40    0  36 

Column #    41   42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61 

TOP 20   20   40  19  11   7   12  40  29  15  15  33   5    9    2   24   5    7   28  12   2 

BOTTOM    34    9    20  30    0   0   39  26  11  22  19  28   0    5   32  17  35  15  25  29  11 

Column #    62   63   64   65 

TOP  0     0     1     1 

BOTTOM    37   36   17     0 

The total span of nets  704 and the average span of nets of this channel  17.60. The 

number of terminals of this channel  110; thus, the number of non-terminals  20 

and the average number of terminals per net  2.75, as the channel length is 65. 

Sample general channel # 1 that contains only 60 nets: 

Column #      1    2    3   4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP   0   22   0   0   54   0  54  55    0  44  40   0   40  44  47  27  40   0    9    0   29 

BOTTOM      0    0    0  59  22   0  22  22   54   0  50   0    0   27   0    9   48   9    0    0    7 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34  35  36  37  38  39   40   41 

TOP 34    9   10   46   45  45   29   22    0   0   23  26   0    0   23  31  36   0     0    43 

BOTTOM    26   29    0   29   44  41    7    44  50  22   0   50  32  40    0    0    0   50   35   31 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62 

TOP 50   34  30  41  27  50  51  32  17  23  17  39   0   17  24  21   0   14  42  48  13 

BOTTOM    37     0  10  23  34    0  30  41    8  43  30   0     8   47  18   8   33  33  25  15  14 
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Column #    63   64   65   66  67   68   69  70  71  72  73  74  75  76  77  78  79   80   81   82 

TOP 36   25    0   38  21   24   19  13  13  13  12   0   57  47  60  25   0    43   49   39 

BOTTOM    33  19   49  12  28    0    47   42   0   25   0  15    0   49   0   18    0    0   24     0 

Column #    83   84   85   86   87   88   89  90  91  92  93  94  95  96  97  98  99  100  101 

TOP 38  19   43   34   52     0     0    0    0  58    3    3    3    0   20  38   0    58     0 

BOTTOM    48  33   12   19   32   38   30  39  36  55  39  11  58  20   24  43   3     3     59 

Column #    102   103   104   105   106  107   108   109  110  111  112  113  114   115  116 

TOP  56      2      37     35     46     6      53      2     58     5      0     52    53      0     51 

BOTTOM      0      57      3       0       2      0       5      58    45    20     1     58     0       0      1 

Column #    117   118   119   120   121   122   123   124   125   126   127 

TOP  60      6      53     11      0       0       1       0       0      16     20 

BOTTOM      0       1       0      28      0      16      4       0      56     53      4 

The total span of nets  1791 and the average span of nets of this channel  29.85. 

The number of terminals of this channel  187; thus, the number of non-terminals  

67 and the average number of terminals per net  3.1167, as the channel length is 127. 

Sample general channel # 2 that contains only 60 nets: 

Column #      1    2    3    4    5    6    7    8    9   10  11  12  13  14  15  16  17  18  19  20  21 

TOP   0   39  42  25  30  25   0   42  25  30   0    0   29  39   0   34   0   54   5   35  21 

BOTTOM     41  48  25  41   0   34  58  59  23  26  43   0   44   0    0   60  46   0   40   5   15 

Column #    22   23   24   25   26  27   28   29  30  31  32  33  34   35  36  37  38  39   40   41 

TOP 35   60    0   32   45  16   15   49  50  36  51  58    7   35  54  35  33  11   35   16 

BOTTOM     5    15   43    0   40   21    0     7   39  52  41  38  47   15  26  54  44  23   28   27 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62 

TOP  0    27  27  40  28  29  20  57  31   0     3  11   8   22  41  17  48  52  24    0    0 

BOTTOM    28   53  45  39   1   20   0   35  24   3     0    1   3   53  38    8    3    9  37    0   50 

Column #    63   64   65   66  67   68   69  70  71  72  73  74   75  76  77  78  79   80   81   82 

TOP 17  54   20   22  19   48   55   2   19  10  12  48    4    4   12    9  18   46   58   52 

BOTTOM    56    6    0    32   48   37    4    6     4    0    0   49   37  59  56    2   0   51   47   14 
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Column #    83   84   85   86   87   88   89  90  91  92 

TOP 36   33  18    0    60   13   58   24  14  55 

BOTTOM    31    0   19   18   13   47   10   13  13  57 

The total span of nets  1515 and the average span of nets of this channel  25.25. 

The number of terminals of this channel  157; thus, the number of non-terminals  

27 and the average number of terminals per net  2.6167, as the channel length is 92. 

Sample general channel # 1 that contains only 80 nets: 

Column #      1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP  80   0   38   0   17  30   0    0   61  68   0   76  66   8   17   8   50   0   38  17   8 

BOTTOM     50  44  48   0   73  62  79  79   0   73  58  74    8  71  53   0   30   0   59  52  13 

Column #    22   23   24   25   26  27  28   29  30  31  32  33  34   35  36  37  38  39   40   41 

TOP 63   35    0     6     0   78  75   64  44   5    1    6    1     0   33  57   0   35   33   56 

BOTTOM    35    0     0   35   53   57  76   24  62  54  62  44  33    5   47  54  14   3    50   13 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62 

TOP 42   12  72  19    0  37  51  48  78  24  67   4   67  58  12   0   28  70   0   74  74 

BOTTOM      0    0   38  44  25  12  12    0    3  34  53  57  34  31   0   64  34  53  65  28  14 

Column #    63   64   65   66  67  68   69  70  71  72  73  74   75  76  77  78  79   80   81   82 

TOP 19   41   67    7   65  67    7   20  63  20  76   0    27  59  66  21  55    9    25   61 

BOTTOM     65    4    32    9    0   26   79  60  23  41  75   7    26   7   22  52  74   80   16   71 

Column #    83   84   85   86   87   88   89  90  91  92  93  94  95  96  97  98  99  100  101 

TOP 62  16   21   49   59   36   45  78  56  47  68    0  16  29  67  37  10    55   67 

BOTTOM    31  77    0     0    49   26   54  15  27  26  16   21  63  59  18  40  40    29   22 

Column #    102   103   104   105   106  107   108   109  110  111  112  113  114   115  116 

TOP   0      78     26     39     15     0      77     77     23   69    60    32     0      45     0 

BOTTOM     40     36      0     70      69    11      2      51     10   42    11     0     46     43    77 

Column #    117  118  119  120  121  122  123 

TOP  49     0     76    72     2     78    46 

BOTTOM     18    43    39    46    39     0     43 
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The total span of nets  2611 and the average span of nets of this channel  32.6375. 

The number of terminals of this channel  210; thus, the number of non-terminals  

36 and the average number of terminals per net  2.625, as the channel length is 123. 

Sample general channel # 2 that contains only 80 nets: 

Column #       1    2    3    4    5    6    7     8    9   10  11  12  13  14  15  16  17  18  19  20  21 

TOP   33   0   28   0    0   75   0    32  45  48  49   0   34  46   0   55   0   69  45  63  80 

BOTTOM      76  20  76  31   0   73  38   48  34   0   73  38  64  33  46  11  46   0    0   55    0 

Column #    22   23   24   25   26  27  28  29  30  31  32  33  34  35  36  37  38  39   40   41 

TOP 38   39   80   33   80  61   0   31   43   0    0   78   6   74   0   31   0   23    0    50 

BOTTOM    46  33   80    0    31  11  16  20  28   61  63  39  39    0   0   67   0    0    48   16 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62 

TOP 37   55  13  16  13  19   0   78  53   6    0    0    0   72  32   0   55  72   0   76  19 

BOTTOM     0    13   0    55  61   0    6    0   16  52  59  53  79  38  39  38  38  72   61  79   0 

Column #    63   64   65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82 

TOP 37   53    0    0  14  39  14   0    23  65  75  22  17  49  30  73  24  10  12  29 

BOTTOM     39  14   37   59  45   0    0  14   48   0   53  22  72  12  22  22  17  73   0  37 

Column #    83   84   85   86   87   88   89  90   91  92  93  94  95  96  97  98  99  100  101 

TOP  0    66    0    71   70    0     0   25  10   0   73   0    0     0    0  15    8    43   71 

BOTTOM     0     0     0    29   10   29   10   0    0    4    9   27  35   24   8    4    8    35    9 

Column #    102   103   104   105   106  107   108   109  110  111  112  113  114   115  116 

TOP  75     25     60     25     73     0      64     15     0     25    78    54    51     18    74 

BOTTOM      8       1      64     18     74   55     18      0     50    64     1     67     0       57    51 

Column #    117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132 

TOP  21     0     56     0     52     0      0     18    44    35    60    30     0     26    59    29 

BOTTOM     29    70    41    50     0     70    68    42    58    62     0      0     69     0     27    60 

Column #    133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148 

TOP  40    78     0     77     0      7     54    58    44    71     7     26     5      65     5     7 

BOTTOM     70     0     77    42    77    59    77     0     57      0     70    54    58     57    21   77 
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Column #    149   150   151   152   153   154   155   156   157   158   159   160   161   162 

TOP   5       0       0       0       0      62     58     57     68      0       0       2       0      60 

BOTTOM     41      5      47     36      0       0      77     36      47      0      66      3       0      36 

Column #    163   164   165   166   167   168   169   170 

TOP   0      56     40     68      0      66      2       3 

BOTTOM     51     26      2       0       0       0       0       2 

The total span of nets  2927 and the average span of nets of this channel  36.5875. 

The number of terminals of this channel  250; thus, the number of non-terminals  

90 and the average number of terminals per net  3.125, as the channel length is 170. 

Sample general channel # 1 that contains only 100 nets: 

Column #      1    2    3    4    5    6    7     8    9  10  11  12  13  14  15  16  17  18  19  20  21 

TOP  42   0    0   35   0   67  42   49   0   0    0    0    0   46   8   42   0   72   0    0    0 

BOTTOM     46   0   10  21   0   46   0     0    0  10   9    0   10  71  35    0   0   20  79   0    8 

Column #    22   23   24   25   26  27  28   29  30  31  32  33  34   35  36  37  38  39   40   41 

TOP   0   46    0    81   71  88   9    26  26  83   0    0   71    0    0    0    0    0    47    0 

BOTTOM      0    0    88   81    9    0   42   76  26   6   35  46   0    98  67  81   0   21   35   88 

Column #    42   43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62 

TOP 84   59  81  68  38  77  95   0    0    0   67   2    2   92  49  20  66   0    0    0    0 

BOTTOM      0   65  61  94  24  76  18  18   20   6   74  78   2    2    0  74  24  11  30  26  75 

Column #    63   64   65  66  67   68   69  70  71  72  73  74   75  76  77  78  79   80   81   82 

TOP 18    0    0    0   41    0    97   0   93  64  58  52   97  91   3   52  72    0     0    50 

BOTTOM     97   65  53  75   53    0    91  97  97  11   0    0    32  87  32   0    0     0     0     0 

Column #    83   84   85   86   87   88   89  90  91  92  93  94  95   96  97  98  99  100  101 

TOP 77    0   52     0   91    0    60   54  74   0    3    0   34    0   45  30   0     34   58 

BOTTOM    43  40   99   76   32   71    0    0   79   0    0   52  64   44  38  98   0      0    44 

Column #    102   103   104   105   106  107   108   109  110  111  112  113  114   115  116 

TOP  62     47     58     45     56    72     44     89     0     41    62     0      4      90      0 

BOTTOM     45      0      76     44     59     0      64     89     4     87    96     0     99     59     80 
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Column #    117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132 

TOP  83    34    45    89     0     85    43    84    51    48    61    44    86    89     4     40 

BOTTOM     83     0     65    78   76    44     92    48    87    50    31    79    70    62    16     0 

Column #    133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148 

TOP  57    65   100   54     0     23     0      51     0     54    12    12    12    28    0      51 

BOTTOM     63    45     0     66    94    53     68    31    28    29    15     82    55    23   80      0 

Column #    149   150   151   152   153   154   155   156   157   158   159   160   161   162 

TOP  51     90     51     31      0       0      73     96      0      19     25      0      69     56 

BOTTOM     28      0     77     80     73      1      55     60     51      23    74     29     19     14 

Column #    163   164   165   166   167   168   169   170   171   172   173   174   175   176 

TOP   0       0       0       1      23     16     94     25     70     37      1      78      0      54 

BOTTOM     87    14     57     27     64     36     82     95     98     73     77     96     60     27 

Column #    177   178   179   180   181   182   183   184   185   186   187   188   189   190 

TOP  14     94     82      7       7      17     86     13      5      99     15      5      37      5 

BOTTOM      0       0      85     77     13      7      22      0      48     27      0      5      85     62 

Column #    191   192   193   194   195   196   197   198   199   200   201   202   203   204 

TOP   5       0      48     36      0      33     13     22      0      69     87    100    93     73 

BOTTOM     92     90      0       5      69      0      99      0      87      0      39     27    70      22 

Column #    205   206   207   208   209   210   211   212   213 

TOP   0       0      80     17     39     37      0      57     33 

BOTTOM      0       0       0      22      0      94     63      0       0 

The total span of nets  5023 and the average span of nets of this channel  50.23. 

The number of terminals of this channel  309; thus, the number of non-terminals  

117 and the average number of terminals per net  3.09, as the channel length is 213. 

In this section, we have included only 19 sample general channel instances 

(out of 4800 instances) of smaller in size that we have generated randomly using 

algorithm General_Random_Channel_Generator developed in Chapter 5 of this 

thesis. Even in these example general channel specifications, we may observe that 

there are blank columns (containing only non-terminals) or trivial columns (pins hold 
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terminals of the same net) that have also been introduced randomly into the channel. 

In general, the channel lengths vary for a given number of nets, as the number of 

terminals per net is not fixed, and the number of non-terminals is also determined 

randomly. The minimum number of terminals for each net introduced is restricted to 

two, and the maximum is six. All these generated channels contain vertical constraints 

and never contain any cyclic vertical constraints. 

Based on a different objective under consideration, viz., wire length 

minimization or routing for multi-layer channels, different sets of channels with 

dissimilar or special criteria can also be devised with suitable changes as desired in 

the instance generating algorithms developed in this thesis (in Chapter 5). Now, in the 

next section, we include some of the hardcopy routing solutions (for channel instances 

that are smaller in length), for both simple as well as general, that we have computed 

after execution of the algorithms devised in Chapter 4. For a selected set of random 

channel instance generated, first of all, we have computed an initial routing solution 

(using some relevant algorithm), then we have implemented crosstalk minimization 

algorithms Track_Change and Net_Change one after another, and obtained minimized 

crosstalk routing solutions. Results we have acquired are highly encouraging. 

6.3 Results of Crosstalk Minimization Algorithms 

Crosstalk minimization algorithms Track_Change and Net_Change have been 

designed in Chapter 4, and most of the implemented results are included in this 

chapter. Results for only 540 simple channel instances (nine sets of simple channels 

each comprising 60 smaller randomly generated channel specifications) have been 

depicted in Table 4.1 along with 14 existing benchmark (general) channel instances 

(in Table 4.2), and only five hardcopy routing solutions are included there. 

In this section, we incorporate most of the exhaustive computations we have 

made as a part of our research in the form of tables, where each datum in each of the 

tables represents an average value of a vast number of instances of a similar kind. 

Parenthetically, as the number of instances we have handled is large, scopes for 

showing all routing solutions is very little (as we have included even less than 0.31% 

of all channel instances we have randomly generated in the previous section). 

However, we have illustrated a reasonable number of hardcopy routing solutions that 

we may find next, mostly for (randomly generated) smaller channel specifications. 
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Table 6.1: Performance of crosstalk minimization algorithms Track_Change_Simple 

and Net_Change after their successive execution for computing reduced crosstalk 

routing solutions for simple channel instances in two-layer no-dogleg (channel) routing. 

Number 

of nets 

Initial 

crosstalk 

after 

MCC1 

Crosstalk after 

algorithm 

Track_Change 

_Simple 

Reduction in 

crosstalk after 

Track_Change 

_Simple (%) 

Crosstalk 

after 

algorithm 

Net_Change 

Reduction in 

crosstalk 

after Net 

_Change (%) 

10 25 16 36.00 16 36.00 

15 69 47 31.88 46 33.33 

20 131 90 31.30 88 32.82 

25 221 155 29.86 153 30.77 

30 322 226 29.81 223 30.75 

35 465 330 29.03 326 29.89 

40 611 439 28.15 434 28.97 

45 797 569 28.61 562 29.49 

50 1012 733 27.57 726 28.26 

60 1483 1089 26.57 1079 27.24 

70 2045 1522 25.57 1509 26.21 

80 2745 2031 26.01 2016 26.56 

90 3484 2618 24.86 2598 25.43 

100 4290 3196 25.50 3173 26.04 

110 5264 3945 25.06 3919 25.55 

120 6284 4784 23.87 4754 24.35 

130 7450 5590 24.97 5557 25.41 

140 8661 6588 23.93 6549 24.39 

150 9999 7570 24.29 7527 24.72 

160 11430 8721 23.70 8675 24.10 

170 12877 9881 23.27 9832 23.65 

180 14533 11224 22.77 11166 23.17 

190 16261 12462 23.36 12400 23.74 

200 18163 13928 23.32 13860 23.69 

220 21869 16855 22.93 16782 23.26 

240 26109 20145 22.84 20051 23.20 

260 30828 23855 22.62 23764 22.91 

280 36235 28104 22.44 28009 22.70 
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Number 

of Nets 

Initial 

Crosstalk 

after 

MCC1 

Crosstalk after 

algorithm 

Track_Change 

_Simple 

Reduction in 

crosstalk after 

Track_Change 

_Simple (%) 

Crosstalk 

after 

algorithm 

Net_Change 

Reduction in 

crosstalk 

after Net_ 

Change (%) 

300 41255 32078 22.24 31962 22.53 

320 47153 36617 22.34 36484 22.63 

340 53362 41378 22.46 41235 22.73 

360 60281 46714 22.51 46562 22.76 

380 67050 52369 21.90 52205 22.14 

400 74467 58258 21.77 58073 22.02 

420 82586 64563 21.82 64362 22.07 

440 90378 70731 21.74 70520 21.97 

460 98804 77236 21.83 77001 22.07 

480 108033 84561 21.73 84317 21.95 

500 117339 92054 21.55 91800 21.77 

600 168910 132363 21.64 132024 21.84 

700 231763 182698 21.17 182235 21.37 

800 303586 238811 21.34 238273 21.51 

900 383901 304147 20.77 303468 20.95 

1000 474072 374947 20.91 374182 21.07 

6.3.1 Results of Crosstalk Minimization Algorithms for Simple Channel Instances 

In this section, we include the results of crosstalk minimization algorithms for simple 

channel instances we have devised in Chapter 4 of this thesis. Specifically, for this 

experimentation, we have randomly generated 200 instances for a given number of 

nets, and the data in a row are obtained by making an average of each set of relevant 

200 executed data, where the number of nets varies from 10 through 1000 only. In 

carrying out this test, we have not considered even larger channel instances as we 

interestingly observed that the percentage reduction in crosstalk is getting saturated to 

a value a little below 21% after execution of algorithm Track_Change_Simple and a 

value a bit above 21% after execution of algorithm Net_Change, when the algorithms 

are implemented in succession, over the initial amount of crosstalk measured in the 

first density routing solutions after execution of algorithm Minimum_Clique_Cover_1 

(MCC1) [49, 52, 53], as the number of nets goes above 800. The amount of average 

crosstalk (after execution of respective algorithm) is rounded off to its nearest integer 
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value (for a given number of nets), and the percentage reduction in crosstalk is also 

calculated up to two decimal places. All these results have been included in Table 6.1 

as the performance of both the crosstalk minimization algorithms developed in this 

thesis and employed one after the other. 

The variation in crosstalk minimization (as shown in Table 6.1) is graphically 

depicted in Figure 6.1, where the percentage reduction in crosstalk in respective 

routing solutions is included after each of the algorithms Track_Change_Simple and 

Net_Change. Now we include some of the selected hardcopy routing solutions that we 

obtained after execution of each of the algorithms MCC1, Track_Change_Simple, and 

Net_Change. These routing solutions are shown in Figures 6.2 through 6.19 for 

channels containing nets 10 through 150. In each of these figures, (a) displays the 

routing solution obtained after MCC1, (b) depicts the significantly reduced crosstalk 

routing solution after execution of Track_Change_Simple, and (c) includes the mostly 

reduced crosstalk routing solution obtained after execution of algorithm Net_Change. 

 

Figure 6.1: Percentage reduction in crosstalk (of routing solutions) versus the number 

of nets after successive executions of each of the algorithms, Track_Change_Simple 

and Net_Change over the initial amount of crosstalk of routing solutions computed 

after algorithm Minimum_Clique_Cover_1 for simple instances in two-layer no-

dogleg channel routing. 
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Figure 6.2: (a) The initial crosstalk of a simple channel instance comprising 10 nets 

(and channel length 20) is 47 units after execution of Minimum_Clique_Cover_1. (b) 

Crosstalk after execution of algorithm Track_Change_Simple is 22 units. (c) 

Crosstalk after execution of algorithm Net_Change is 21 units only. 
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Figure 6.3: (a) The initial crosstalk of a simple channel instance comprising 15 nets 

(and channel length 30) is 83 units after execution of Minimum_Clique_Cover_1. (b) 

Crosstalk after execution of algorithm Track_Change_Simple is 32 units. (c) 

Crosstalk after execution of algorithm Net_Change is also 32 units only. 
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Figure 6.4: (a) The initial crosstalk of a simple channel instance comprising 20 nets 

(and channel length 40) is 180 units after execution of Minimum_Clique_Cover_1. (b) 

Crosstalk after execution of algorithm Track_Change_Simple is 84 units. (c) 

Crosstalk after execution of algorithm Net_Change is also 84 units only. 
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(b) 
 

 
 

(c) 
 

Figure 6.5: (a) The initial crosstalk of a simple channel instance comprising 25 nets 

(and channel length 50) is 229 units after execution of Minimum_Clique_Cover_1. (b) 

Crosstalk after execution of algorithm Track_Change_Simple is 106 units. (c) 

Crosstalk after execution of algorithm Net_Change is also 106 units only. 
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Figure 6.6: (a) The initial crosstalk of a simple channel instance comprising 30 nets 

(and channel length 60) is 473 units after execution of Minimum_Clique_Cover_1. (b) 

Crosstalk after execution of algorithm Track_Change_Simple is 295 units. (c) 

Crosstalk after execution of algorithm Net_Change is also 295 units only. 
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Figure 6.7: (a) The initial crosstalk of a simple channel instance comprising 35 nets 

(and channel length 70) is 510 units after execution of Minimum_Clique_Cover_1. (b) 

Crosstalk after execution of algorithm Track_Change_Simple is 264 units. (c) 

Crosstalk after execution of algorithm Net_Change is also 264 units only. 
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Figure 6.8: (a) The initial crosstalk of a simple channel instance comprising 40 nets 

(and channel length 80) is 776 units after execution of Minimum_Clique_Cover_1. (b) 

Crosstalk after execution of algorithm Track_Change_Simple is 450 units. (c) 

Crosstalk after execution of algorithm Net_Change is 448 units only. 
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Figure 6.9: (a) The initial crosstalk of a simple channel instance comprising 50 nets 

(and channel length 100) is 1242 units after execution of Minimum_Clique_Cover_1. 

(b) Crosstalk after execution of algorithm Track_Change_Simple is 771 units. (c) 

Crosstalk after execution of algorithm Net_Change is 770 units only. 
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Figure 6.10: (a) The initial crosstalk of a simple channel instance comprising 60 nets 

(and channel length 120) is 1571 units after execution of Minimum_Clique_Cover_1. 

(b) Crosstalk after execution of algorithm Track_Change_Simple is 813 units. (c) 

Crosstalk after execution of algorithm Net_Change is 793 units only. 
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Figure 6.11: (a) The initial crosstalk of a simple channel instance comprising 70 nets 

(and channel length 140) is 2291 units after execution of Minimum_Clique_Cover_1. 

(b) Crosstalk after execution of algorithm Track_Change_Simple is 1308 units. (c) 

Crosstalk after execution of algorithm Net_Change is 1304 units only. 
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Figure 6.12: (a) The initial crosstalk of a simple channel instance comprising 80 nets 

(and channel length 160) is 2921 units after execution of Minimum_Clique_Cover_1. 

(b) Crosstalk after execution of algorithm Track_Change_Simple is 1810 units. (c) 

Crosstalk after execution of algorithm Net_Change is 1805 units only. 
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Figure 6.13: (a) The initial crosstalk of a simple channel instance comprising 90 nets 

(and channel length 180) is 2917 units after execution of Minimum_Clique_Cover_1. 

(b) Crosstalk after execution of algorithm Track_Change_Simple is 2270 units. (c) 

Crosstalk after execution of algorithm Net_Change is 2199 units only. 



177 

 

 

 

 

 

        

(a) 

 

 

        

(b) 

 

 

        

(c) 

 

 

Figure 6.14: (a) The initial crosstalk of a simple channel instance comprising 100 

nets (and channel length 200) is 4525 units after execution of 

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm 

Track_Change_Simple is 3223 units. (c) Crosstalk after execution of algorithm 

Net_Change is 3132 units only. 
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Figure 6.15: (a) The initial crosstalk of a simple channel instance comprising 110 

nets (and channel length 220) is 5772 units after execution of 

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm 

Track_Change_Simple is 4281 units. (c) Crosstalk after execution of algorithm 

Net_Change is 4208 units only. 
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Figure 6.16: (a) The initial crosstalk of a simple channel instance comprising 120 

nets (and channel length 240) is 6725 units after execution of 

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm 

Track_Change_Simple is 4151 units. (c) Crosstalk after execution of algorithm 

Net_Change is 4031 units only. 
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Figure 6.17: (a) The initial crosstalk of a simple channel instance comprising 130 

nets (and channel length 260) is 7648 units after execution of 

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm 

Track_Change_Simple is 4750 units. (c) Crosstalk after execution of algorithm 

Net_Change is 4689 units only. 
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Figure 6.18: (a) The initial crosstalk of a simple channel instance comprising 140 

nets (and channel length 280) is 8054 units after execution of 

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm 

Track_Change_Simple is 4718 units. (c) Crosstalk after execution of algorithm 

Net_Change is 4697 units only. 
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Figure 6.19: (a) The initial crosstalk of a simple channel instance comprising 150 

nets (and channel length 300) is 11316 units after execution of 

Minimum_Clique_Cover_1. (b) Crosstalk after execution of algorithm 

Track_Change_Simple is 7049 units. (c) Crosstalk after execution of algorithm 

Net_Change is 6978 units only. 
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6.3.2 Results of Crosstalk Minimization Algorithms for General Channel Instances 

In this section, we include the results of crosstalk minimization algorithms for general 

channel instances we have devised in Chapter 4 of this thesis. Incidentally, in this 

thesis, we have developed two versions of the algorithm Track_Change_General; in 

each case starting from a two-layer no-dogleg routing solution that has been computed 

after execution of algorithm Track_Assignment_Heuristic (TAH) [49, 51] devised for 

computing minimum area channel routing solutions for general instances of channel 

specifications. To start with a minimum area two-layer channel routing solution of our 

desire, one may implement any one of many other existing channel routing algorithms 

as well [10, 33, 49, 51, 71, 73, 96]. Nevertheless, after a feasible two-layer routing 

solution is obtained, we compute the RVCG, which is a directed acyclic graph (DAG) 

of the solution. 

We may recall that both the versions of algorithm Track_Change_General are 

iterative in nature. In the first version of the algorithm, we consider all source vertices 

of the current RVCG in some iteration, and apply algorithm Track_Change_Simple 

(using the concept of effective span of intervals of the tracks, and total span of 

intervals, if needed) for that set of source vertices for their assignment to the current 

available topmost tracks as directed by the step of reassignment of the algorithm. In 

the second version, in each iteration, a most suitable source vertex from the current 

RVCG is identified for its assignment to the current topmost track such that the 

overall crosstalk is assumed to be reduced. This algorithm is greedy in nature. 

In particular, the first version of algorithm Track_Change_General has been 

implemented in Chapter 4 and executed for the existing 14 benchmark channel 

instances; results are included in Table 4.2. We may straightforwardly observe from 

the table that the results computed are encouraging enough. However, as the number 

of existing general channel instances is not much and we have developed a random 

channel instance generator in Chapter 5, both for creating simple as well as general 

channel instances, for the implementation of both the versions of algorithm 

Track_Change_General, we have randomly produced 200 general channel instances 

and executed each of them to obtain the performance of our algorithms. These results 

have been included in Tables 6.2 and 6.3. Results in Table 6.2 show the average 

implemented data for a given number of nets (varying from 20 to 2000) after 
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execution of algorithm Track_Change_General_Version_I and results in Table 6.3 

include the same after execution of algorithm Track_Change_General_Version_II. 

Table 6.2: The performance of crosstalk minimization algorithms Track_Change 

_General_Version_I (with the concept of Track_Change_Simple) and Net_Change 

after their successive execution for computing reduced crosstalk routing solutions for 

general channel instances in two-layer no-dogleg (channel) routing. 

Number 

of Nets 

Initial 

crosstalk 

after 

TAH 

Crosstalk after 

algorithm 

Track_Change 

_General 

Reduction in 

crosstalk after 

Track_Change 

_General (%) 

Crosstalk 

after 

algorithm 

Net_Change 

Reduction 

in crosstalk 

after Net_ 

Change (%) 

20 135 125 7.41 118 12.59 

40 564 530 6.03 494 12.41 

60 1363 1291 5.28 1202 11.81 

80 2475 2347 5.17 2183 11.80 

100 3997 3808 4.73 3534 11.58 

150 9042 8626 4.60 8028 11.21 

200 16260 15498 4.69 14395 11.47 

250 25293 24174 4.42 22492 11.07 

300 36612 35004 4.39 32577 11.02 

350 49708 47552 4.34 44228 11.02 

400 65032 62164 4.41 57691 11.29 

450 82857 79077 4.56 73323 11.51 

500 102922 98324 4.47 91530 11.07 

600 148035 141247 4.59 131355 11.27 

700 201940 192513 4.67 179071 11.32 

800 265574 252957 4.75 235523 11.32 

900 336455 320481 4.75 298856 11.18 

1000 412991 393305 4.77 366015 11.37 

1500 938379 890801 5.07 831324 11.41 

2000 1665471 1579930 5.14 1468851 11.81 

In performing this test, we have not considered even larger channel instances 

(containing number of nets more than 2000) as we intriguingly observed that the 

percentage reduction in crosstalk is approaching to a value of approximately 5% after 

execution of algorithm Track_Change and a little above 11% after execution of 
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algorithm Net_Change, when we implement the first version (using the concept of 

effective span of intervals) of the algorithm. This comparison is visibly different in 

the case of implementing the second version (using greedy method) of the algorithm. 

In this case, the percentage reduction in crosstalk is becoming saturated to a bit above 

2%, which is much less, after execution of algorithm Track_Change and to a value of 

approximately 11% after execution of algorithm Net_Change. 

 

Figure 6.20: Percentage reduction in crosstalk (of routing solutions) versus number of 

nets after successive execution of each of the algorithms, Track_Change_General 

(with the concept of Track_Change_Simple) and Net_Change over the initial amount 

of crosstalk of routing solutions computed after algorithm Track_Assignment 

_Heuristic (TAH) for general instances in two-layer no-dogleg channel routing. 

Thus, the first version of the algorithm (i.e. Track_Change_General_Version 

_I) performs better over its second version (i.e. Track_Change_General_Version_II), 

though after execution of algorithm Net_Change for all routing solutions obtained 

after each of the versions of algorithm Track_Change_General, the percentage 

reduction of crosstalk is roughly the same for a huge number of randomly generated 

channel instances, as the number of nets in a channel increases. To be clearer, as we 

may observe in the tables, all these algorithms have been implemented in a sequence, 
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over the initial amount of crosstalk measured in the optimal or near-optimal routing 

solutions computed after execution of algorithm Track_Assignment_Heuristic (TAH) 

[49, 51]. The amount of average crosstalk (after execution of respective algorithm) is 

rounded off to its nearest integer value (for a given number of nets), and the 

percentage reduction in crosstalk is also calculated up to two decimal places. All these 

results have been included in Tables 6.2 and 6.3 as the performance of all the 

crosstalk minimization algorithms developed in this thesis and executed one after the 

other. 

Table 6.3: The performance of crosstalk minimization algorithms Track_Change 

_General_Version_II (using Greedy approach) and Net_Change after their successive 

execution for computing reduced crosstalk routing solutions for general channel 

instances in two-layer no-dogleg (channel) routing. 

Number 

of nets 

Initial 

crosstalk 

after 

TAH 

Crosstalk after 

algorithm 

Track_Change_ 

General (Greedy) 

Reduction in 

crosstalk after 

Track_Change 

_General (%) 

Crosstalk 

after 

algorithm 

Net_Change 

Reduction 

in crosstalk 

after Net_ 

Change (%) 

20 135 127 5.93 120 11.11 

40 564 540 4.26 499 11.52 

60 1363 1312 3.74 1214 10.93 

80 2475 2386 3.60 2198 11.19 

100 3997 3875 3.05 3568 10.73 

150 9042 8787 2.82 8100 10.42 

200 16260 15851 2.52 14516 10.73 

250 25293 24648 2.55 22658 10.42 

300 36612 35760 2.33 32824 10.35 

350 49708 48596 2.24 44546 10.38 

400 65032 63666 2.10 58105 10.65 

450 82857 81039 2.19 73881 10.83 

500 102922 100788 2.07 92086 10.53 

600 148035 144816 2.17 132193 10.70 

700 201940 197677 2.11 180150 10.79 

800 265574 259729 2.20 236978 10.77 

900 336455 329553 2.05 300532 10.68 

1000 412991 404210 2.13 368171 10.85 

1500 938379 918524 2.12 836159 10.89 

2000 1665471 1624401 2.47 1471997 11.62 
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The deviation in crosstalk minimization (as shown in Tables 6.2 and 6.3) is 

graphically depicted in Figures 6.20 and 6.21, where the percentage reduction in 

crosstalk in allied routing solutions versus number of nets is included after each of the 

algorithms Track_Change_General (for both of its versions I and II, respectively) and 

Net_Change, over the initial two-layer channel routing solutions computed after 

Track_Assignment_Heuristic (TAH). Now we include some of the selected hardcopy 

routing solutions that we obtained after execution of each of the algorithms TAH, 

Track_Change_General, and Net_Change. These routing solutions are shown in 

Figures 6.22 through 6.32 for channels containing nets 20 through 250. In each of 

these figures, (a) displays the routing solution obtained after TAH, (b) depicts the 

significantly reduced crosstalk routing solution after execution of Track_Change 

_General, and (c) includes the mostly reduced crosstalk routing solution obtained 

after execution of algorithm Net_Change. 

 

Figure 6.21: Percentage reduction in crosstalk (of routing solutions) versus the 

number of nets after successive execution of each of the algorithms, Track_Change 

_General (using Greedy approach) and Net_Change over the initial amount of 

crosstalk of routing solutions computed after algorithm Track_Assignment_Heuristic 

(TAH) for general instances in two-layer no-dogleg channel routing. 
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Figure 6.22: (a) The initial crosstalk of a general channel instance comprising 20 nets 

(track number 12 and channel length 48) is 228 units after execution of Track_Assign-

ment_Heuristic. (b) Crosstalk after execution of algorithm Track_Change_General is 

181 units. (c) Crosstalk after execution of algorithm Net_Change is 165 units only. 

 

(a) 

 

 

(b) 

 

 

(c) 
 

Figure 6.23: (a) The initial crosstalk of a general channel instance comprising 40 nets 

(track number 20 and channel length 89) is 565 units after execution of Track_Assign-

ment_Heuristic. (b) Crosstalk after execution of algorithm Track_Change_General is 

452 units. (c) Crosstalk after execution of algorithm Net_Change is 437 units only. 
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Figure 6.24: (a) The initial crosstalk of a general channel instance comprising 60 nets 

(track number 24 and channel length 117) is 1338 units after execution of 

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm 

Track_Change_General is 1077 units. (c) Crosstalk after execution of algorithm 

Net_Change is 1059 units only. 

 

 
(a) 
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(c) 

 

Figure 6.25: (a) The initial crosstalk of a general channel instance comprising 80 nets 

(track number 35 and channel length 181) is 2676 units after execution of 

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm 

Track_Change_General is 2404 units. (c) Crosstalk after execution of algorithm 

Net_Change is 2253 units only. 
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Figure 6.26: (a) The initial crosstalk of a general channel instance comprising 100 

nets (track number 39 and channel length 216) is 3375 units after execution of 

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm 

Track_Change_General is 2890 units. (c) Crosstalk after execution of algorithm 

Net_Change is 2488 units only. 
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Figure 6.27: (a) The initial crosstalk of a general channel instance comprising 120 

nets (track number 47 and channel length 250) is 4832 units after execution of 

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm 

Track_Change_General is 4269 units. (c) Crosstalk after execution of algorithm 

Net_Change is 3942 units only. 
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Figure 6.28: (a) The initial crosstalk of a general channel instance comprising 150 

nets (track number 60 and channel length 335) is 9314 units after execution of 

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm 

Track_Change_General is 8490 units. (c) Crosstalk after execution of algorithm 

Net_Change is 7977 units only. 
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(c) 

Figure 6.29: (a) The initial crosstalk of a general channel instance comprising 180 

nets (track number 74 and channel length 358) is 12077 units after execution of 

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm 

Track_Change_General is 10974 units. (c) Crosstalk after execution of algorithm 

Net_Change is 10116 units only. 
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(c) 

Figure 6.30: (a) The initial crosstalk of a general channel instance comprising 200 

nets (track number 73 and channel length 487) is 17769 units after execution of 

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm 

Track_Change_General is 17116 units. (c) Crosstalk after execution of algorithm 

Net_Change is 14750 units only. 
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(c) 

Figure 6.31: (a) The initial crosstalk of a general channel instance comprising 220 

nets (track number 87 and channel length 480) is 18897 units after execution of 

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm 

Track_Change_General is 17141 units. (c) Crosstalk after execution of algorithm 

Net_Change is 14933 units only. 
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(c) 

Figure 6.32: (a) The initial crosstalk of a general channel instance comprising 250 

nets (track number 97 and channel length 516) is 21377 units after execution of 

Track_Assignment_Heuristic. (b) Crosstalk after execution of algorithm 

Track_Change_General is 18205 units. (c) Crosstalk after execution of algorithm 

Net_Change is 16292 units only. 
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6.4 Summary 

In this chapter, we have made some experimentation in two phases; in the first phase, 

our objective is to generate desired random channel instances of both types, simple 

and general, and in the second phase, we have shown hardcopy routing solutions for 

some of the selected instances, where for each channel three routing solutions are 

there with their associated amount of crosstalk. Experimental results have been 

included in tables; some are in respective chapters, either Chapter 4 or Chapter 5, and 

the remaining are in this chapter. Crosstalk is measured after computation of initial 

routing solutions, and then subsequently for the solutions obtained after execution of 

algorithms Track_Change and Net_Change. 

Parenthetically, in this thesis, we have randomly generated as many as 4800 

each of simple channel specifications and general channel specifications, ranging the 

number of nets 10 through 15000 in 24 sets of channels, where each set comprises 

200 instances. Out of all these instances, in this chapter, we have depicted merely 15 

smaller sample simple channel instances (only 0.3125% of total generated instances 

of this type) and no more than 19 smaller sample general channel instances (only 

0.3958% of total generated instances of this kind). 

Also, in this chapter, we have included minimized crosstalk channel routing 

solutions for some initially computed two-layer channel routing solutions. For simple 

channel instances, we have executed MCC1 [49, 52, 53] to obtain the initial density 

routing solutions, and for general channel instances, we have executed TAH [49, 51] 

to acquire the initial routing solutions of minimum possible area. After obtaining each 

such initial channel routing solution, we have carried out respective algorithms 

Track_Change and Net_Change one after the other; hardcopy routing solutions of just 

18 simple channel instances (only 0.2045% of total generated instances of this type) 

and no more than 11 general channel instances (only 0.2750% of total generated 

instances of this kind) have been included in this chapter. Computed results are 

included in tables, for a large number of randomly generated channel instances. 

Graphs are also drawn for showing a reduction in crosstalk after execution of 

associated algorithm for minimizing crosstalk; these show the deviation in percentage 

reduction in crosstalk as the number of nets increases. 

 

 



 
 

 
 

Chapter: 7 

Parallel Algorithms for Computing Two-Layer 

Reduced Crosstalk Channel Routing 

 

 

7.1 Overview 

It has already been mentioned several times in this thesis that based on the 

advancement of fabrication technology, devices and interconnection wire segments 

are placed as close as possible, and circuits operate at higher frequencies. These result 

in crosstalk between interconnecting wire segments. As the work on routing channels 

with reduced crosstalk is a very important area of current research [19, 21, 25, 27, 30, 

39, 47, 49, 75, 87, 92, 93], we have already studied extensively the crosstalk 

minimization in two-layer channel routing for VLSI circuit synthesis. In Chapter 3, 

we have proved a host of crosstalk minimization problems NP-hard. Subsequently, 

sequential crosstalk minimization algorithms have been developed in Chapter 4 both 

for the simple as well as the general channel instances. 

Since the problem of minimizing crosstalk is NP-complete in channel routing, 

heuristics have been developed for reducing crosstalk, and the heuristics designed are 

essentially sequential in nature. In this chapter, we study the problem for obtaining 

efficient parallel algorithms. We present two such parallel heuristic algorithms for 

computing reduced crosstalk routing solutions. 

In Chapter 4, we have developed several sequential algorithms for reducing 

crosstalk in two-layer channel routing. The algorithms devised, in this chapter, too 

start from a given two-layer feasible routing solution of a channel whose crosstalk is 

assumed as the initial amount of crosstalk of the said channel. Our proposed heuristics 

are much better in computational complexity than their sequential counterparts 

invented in Chapter 4. 

7.2 A Revisit to the Channel Routing Problem 

In VLSI physical design it is required to realize a specified interconnection among 

different modules using minimum possible area. This is known as the routing 

problem. One of the essential types of routing strategies is channel routing [49, 81, 
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96]. A net is a set of terminals that need to be electrically connected together, and the 

terminals of the same net are assigned the same number. Different numbers (as 

diverse symbols) signify different nets that must not ne shorted; terminals not to be 

connected are assigned the number zero. 

Like earlier chapters, in this chapter too we consider the reserved two-layer 

Manhattan routing model, where one layer is reserved for horizontal wire segments 

and the other layer is reserved for vertical wire segments. The connection between a 

horizontal and a vertical wire segment of the same net in adjacent layers is achieved 

by means of a via (a contact along the third dimension). 

In this chapter, we represent horizontal constraints using the complement of 

the horizontal constraint graph (HCG). We call the complement of the HCG, HC  (V, 

E), the horizontal non-constraint graph (HNCG) and denote it by  HNC  (V,E),  

where V  is the set of vertices corresponding to the intervals, and E  {{vi, vj} | {vi, 

vj}  E}. The notation of the HNCG was introduced in [49, 51, 52, 53, 57] to 

represent horizontal constraints. Note that a clique of the HNCG corresponds to a set 

of non-overlapping intervals that may safely be assigned to the same track in a routing 

solution. 

We may recall that the channel routing problem (CRP) is the problem of 

assigning the horizontal wire segments of a given set of nets to tracks obeying the 

constraints present in a channel so that the number of tracks required (and hence the 

channel area) is minimized. We say that a routing solution is feasible if all constraints 

are satisfied and the nets can be assigned to the channel without any conflict. 

Like most of the earlier chapters, in this chapter too, we consider the crosstalk 

minimization problem as performance driven channel routing. As fabrication 

technology advances, devices and interconnection wires are being placed in closer 

proximity and circuits are being operated at higher frequencies. This results in 

crosstalk between wire segments. Crosstalk between wire segments is proportional to 

the coupling capacitance, which is, in turn, proportional to the coupling length (the 

total length of the overlap between wires). Crosstalk is also proportional to the 

frequency of operation and inversely proportional to the separation between wires. 

Therefore, it is important that these factors be considered in the design of channel 

routing algorithms. The aim should be to avoid long overlapping wire segments 

and/or the wire segments that lie close to each other on the same layer [25, 27]. 
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It is desirable to design channel routing algorithms that consider the factor of 

minimizing crosstalk. The main objective in performance driven routing is to reduce 

signal delays due to crosstalk. Note that the crosstalk minimization problem in the 

reserved two-layer Manhattan routing model is NP-hard, even for the channels 

without any vertical constraints; all these results have been established in Chapter 3 of 

this thesis. Since minimizing crosstalk is NP-hard, polynomial time heuristics have 

been devised for reducing crosstalk that are included in Chapter 4. All these ideas 

prior to this chapter, which are introduced as heuristics, are essentially sequential 

algorithms. In this chapter, we have developed two fast parallel heuristics to compute 

reduced crosstalk routing solutions, in the reserved two-layer Manhattan routing 

model, for simple channel instances that are free from any vertical constraint. Our 

proposed algorithms have been developed based on the same notion that has been 

utilized while devising the algorithms presented in Chapter 4. However, the 

algorithms proposed in this chapter are much better from the point of view of 

computational complexity than the sequential ones. 

We know that parallel processing is an efficient style of information 

processing that emphasizes concurrent execution of independent events in the 

computing process. The parallel events may appear in the resources at the same time 

instance, and pipelined events may occur in overlapped time spans. These concurrent 

events are attainable in a computer system at various processing levels. 

Parallel processing and distributed processing are closely related. In some 

cases, we use certain distributed technique to achieve parallelism. As data 

communication technology advances, the distance between parallel and distributed 

processing become small. So in recent time, we may see distributed processing as a 

form of parallel processing in a special environment [3, 37, 68]. We know that most 

of the problems belonging to VLSI physical design process are typically NP-hard [49, 

81], and subsequent heuristics developed to execute these problems take significant 

amount of time sequentially. Thus, developing parallel heuristics might be a novel 

way out to resolve the problems. In this chapter, we consider the problem of crosstalk 

minimization in two-layer channel routing for the instances without any vertical 

constraint and develop parallel heuristics to resolve them. To design parallel 

algorithms for computing reduced crosstalk routing solutions, we consider the 

sequential algorithms for simple channel instances developed in Chapter 4 and make 
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them parallel. Analytical results in terms of computational complexity of the 

algorithms developed in this chapter are excellent. 

In the following section, we discuss the crosstalk minimization problem in the 

context of area minimization problem in channel routing. Subsequently, we propose 

two parallel heuristics for reducing crosstalk and analyze their complexity issues. 

7.3 Area and Crosstalk Minimization in Channel Routing 

As the channel routing problem (CRP) of area minimization is an NP-complete 

problem [41, 49, 80, 86], several (polynomial time) heuristics have been proposed for 

solving the problem [10, 12, 15, 33, 49, 51, 54, 71, 73, 80, 96]. We know that the 

CRP of area minimization is polynomial time computable if the instances are free 

from any vertical constraints and we are interested only in resolving horizontal 

constraints in the two-layer VH routing model [32, 49, 52, 53]. 

Since the problem of minimizing area for the instances of routing channels 

without any vertical constraint is polynomial time solvable (using exactly dmax tracks), 

such instances are defined as simple channel instances. Hashimoto and Stevens 

proposed a scheme for solving this problem [32], and according to Schaper, it can be 

implemented in O(n (log n + dmax)) time, where dmax is the channel density and n is the 

number of nets belonging to the channel [80]. Later on, Pal et al. developed and 

analyzed two different algorithms MCC1 and MCC2 [49, 52, 53], based on the 

Hashimoto and Stevens’s scheme. The first algorithm MCC1 uses a graph theoretic 

approach and runs in O(n + e) time, where n is the number of nets and e is the size of 

the HNCG of the given simple channel. The second algorithm MCC2 is achieved 

using a balanced binary search tree data structure that runs in time O(n log n), where n 

is the number of nets. The details of the algorithms are available in [49]. Though a 

routing solution of only dmax tracks is guaranteed for a simple channel specification in 

polynomial time in the stated routing model, it may not be a good routing solution 

from the resulting crosstalk point of view. 

We have already observed in Figure 4.1, the presence of crosstalk between 

nets (or intervals) assigned to different tracks in a two-layer channel without any 

vertical constraint. Note that if two intervals do not overlap, there is no horizontal 

constraint between the nets. That is, if there is a horizontal constraint between a pair 

of nets, there is a possibility of having accountable crosstalk between them if the nets 
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are assigned to adjacent tracks. We compute crosstalk in terms of the number of units 

a pair of nets overlaps on adjacent tracks in a feasible routing solution, as we defined 

and measured it earlier too. 

In this context, we like to remember VHP, the crosstalk minimization problem 

in (two-terminal no-dogleg) two-layer VH channel routing (given an a priori partition 

of nets), posed in Chapter 3. Subsequently, we keep in mind VHS, the crosstalk 

minimization problem in (two-terminal no-dogleg) two-layer VH channel routing for 

simple instances of channel specifications that has also been posed in the same 

chapter. 

Note that the problem of area minimization for a simple channel instance is 

polynomial time solvable, and there exist several algorithms to compute a routing 

solution for such an instance using exactly density number of tracks [32, 49, 52, 53]. 

However, the noticeable feature is that the crosstalk minimization problem in two-

layer VH channel routing for such instances of channel specifications is NP-hard; see 

Chapter 3 of this thesis. Thus, we like to point out the following: The crosstalk 

minimization problem is not only important from its practical outlook of computing 

high performance routing solutions, it is equally motivating to observe the same as a 

combinatorial optimization problem. 

In the next section, we present two parallel algorithms to compute reduced 

crosstalk routing solutions for existing routing solutions of minimum area for simple 

instances of CRP. 

7.4 Parallel Algorithms for Minimizing Crosstalk 

It has been proved in Chapter 3 that the crosstalk minimization problem in two-layer 

channel routing is NP-hard even for the simple instances of channel specifications. 

Observe that, for any feasible two-layer VH routing solution S, we can compute 

another routing solution S* with the total amount of crosstalk equals to zero. Suppose 

we have a two-layer feasible routing solution S of t tracks. In computing S*, we 

merely introduce t1 blank tracks into the routing solution S, where between each pair 

of adjacent tracks in S a blank track is placed in. As a result we must not have any 

crosstalk in S*, following the process of measuring crosstalk we have made and the 

geometry of the routing model we have assumed. Thus, S* is obtained as a valid 

routing solution of nearly 2t tracks without any crosstalk in it. 
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Here the main thing we like to emphasize is the following. If we provide 

sufficient space between the wires assigned to adjacent tracks (and layers), the 

amount of crosstalk will eventually be reduced. However, we all know that the area 

minimization problem is the most important cost optimization problem in VLSI 

physical design. Therefore, we must not encourage in computing such a routing 

solution S* that takes almost twice the area of S. So it is a trade-off between routing 

area and the resulting crosstalk in routing a channel. That is why, instead of 

computing S*, we start with S of t tracks, compute another feasible routing solution S 

of the same t tracks with reduced total crosstalk, as we did in devising sequential 

crosstalk minimization algorithms in Chapter 4. To do that, we consider the routing 

solutions S, that are computed using MCC1 for the simple instances of channel 

specifications [49, 52, 53], as the area minimization problem of two-layer channel 

routing is polynomial time computable; however, the subsequent crosstalk 

minimization problem is NP-hard even for such instances of routing channels. 

7.4.1 Algorithm 1: Parallel Track Interchange 

The Parallel Track Interchange algorithm is naturally evolved from the theory of 

reducing crosstalk (see Figure 4.1). The algorithm starts with a t-track two-layer 

feasible routing solution S that is computed using MCC1 [49, 52, 53] for a simple 

instance of the channel specification and computes another t-track two-layer feasible 

routing solution S with a reduced total crosstalk. In the algorithm, we first compute in 

parallel the effective spans of intervals of all the tracks in S. The effective span of 

intervals of track i is obtained by adding the actual spans of intervals of all the nets 

assigned to track i in S. Then, we sort the tracks in descending order according to their 

effective spans of intervals. 

In the proposed algorithm, our intention is to sandwich the track (comprising 

net(s)) with the minimum effective span of intervals into the tracks (comprising nets) 

with the maximum and the next to maximum (or the second maximum) effective 

spans of intervals. Then we sandwich the track (comprising net(s)) with the next to 

minimum (or the second minimum) effective span of intervals into the tracks 

(comprising nets) with the second and the third maximum effective spans of intervals, 

and so forth and so on. The flanked assignment of a track (comprising net(s)) with a 

less effective span of intervals by a pair of tracks (comprising nets) with more 
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effective spans of intervals is absolutely motivated by the geometry of the channel 

and the initial routing solution given as input to execute the algorithm. In other words, 

in order to compute S, we reassign the tracks of intervals from the computed sorted 

sequence as the following. Suppose    {1, 2, 3, …, t–2, t–1, t} is the sorted 

sequence of tracks in descending order in their effective spans of intervals. Here our 

desired sequence of effective spans of intervals is   {1, t, 2, t–1, 3, t–2, …} 

to assign the nets from top to bottom in t different tracks, and hence the resulting 

solution S is obtained. 

One more clarification in our Parallel Track Interchange algorithm is required 

when we have two or more tracks with the same effective span of intervals. In this 

case in sorting those tracks of the same effective span of intervals, we compute the 

total span of intervals of each such track. The total span of intervals of the nets 

assigned to a track in S is the separation of columns between the starting column of 

the first net and the terminating column of the last net, i.e. the span of the track used. 

Here we sort such tracks with the same effective span of intervals in ascending order 

based on their total spans of intervals in computing , as stated above. This is done in 

ascending order being motivated that the nets belonging to a track with more total 

span of intervals are more distributed over the track, and its reassignment to a track 

will eventually result in reducing long overlapping (i.e. crosstalk) between the nets in 

this track and the nets assigned to its adjacent track(s). If there are two or more tracks 

with the same total span of intervals, we sort them arbitrarily. Hence,  is computed 

from the given routing solution S,  is computed from  as stated above, and 

following the sequence of tracks in  we reassign the nets to tracks from top to 

bottom of the channel, and a routing solution S with reduced total crosstalk is 

obtained. Each of these steps is computed in parallel. This completes the presentation 

of the parallel heuristic algorithm Parallel Track Interchange. We use EREW PRAM 

model for the implementation of these steps of the algorithm. Details of 

computational complexity are presented next. 

7.4.1.1 Computational Complexity of Algorithm Parallel Track Interchange 

Now we analyze the time complexity of the algorithm Parallel Track Interchange. In 

order to do that, we consider an Exclusive Read Exclusive Write (EREW) Parallel 

Random Access Machine (PRAM), where a control unit issues an instruction to be 
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executed simultaneously by all processors on their respective data. In our algorithm 

we primarily perform three sorts of computation, as follows: (1) Trackwise 

computation of effective span of intervals (and total span of intervals, whenever 

required), (2) Trackwise sorting of nets based on their effective spans of intervals (and 

total spans of intervals, whenever required), and (3) Trackwise reassignment of nets to 

tracks in computing S. Initially, we keep all the information (i.e. starting column 

position, terminating column position, span of the interval, etc.) related to each of the 

n nets belonging to a simple channel specification in the shared memory of the 

PRAM. 

We assign one processor to each track in the given routing solution S of a 

channel. Let Pij be the i-th processor assigned for the j-th track in the initial solution, 

S. An Exclusive Read (ER) instruction is executed by all processors, where processors 

gain access to share memory for the purpose of reading the horizontal span(s) of the 

net(s) associated to tracks in a one-to-one fashion. Thus, when this instruction is 

executed, p processors simultaneously read the contents of p distinct memory 

locations such that each of the p processors involved reads from exactly one memory 

location and each of the p memory locations involved is read by exactly one 

processor. 

For a given j, we compute the sum of all values read by Pij. Observe that this 

sum of values read by Pij, for all i, can be computed in parallel. Furthermore, each 

sum can be computed in parallel for all j. As sum of m numbers can be computed in 

O(log m) time using O(m) processors on an EREW PRAM machine, the Step (1) of 

computing the effective span of nets/intervals (and total span of intervals, whenever 

required) in all tracks can be computed in O(log n) time using O(n) processors on an 

EREW PRAM, where n is the number of nets belonging to the channel; however, the 

best value of n (the number of processors involved) is dmax for a density routing 

solution S of a simple channel instance. This completes the Step (1) of the parallel 

algorithm. 

Step (2) of the parallel algorithm can be thought of sorting dmax elements [6]; i-

th element is the effective span of the net(s)/interval(s) in the i-th track in S. Now, n 

elements can be sorted in O(log n) time using O(n) processors on a Concurrent Read 

Exclusive Write (CREW) Parallel Random Access Machine (PRAM) machine [38]. 

Note that we need to sort dmax elements here, and dmax ≤ n. Therefore, using O(n) 
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processors, Step (2) can be implemented in O(log n) time on a CREW PRAM 

machine. Since a concurrent read (CR) instruction by n processors can be simulated 

on an EREW PRAM machine in O(log n) time using the same number of processors, 

this step of the algorithm can be implemented in O(log2 n) time using O(n) processors 

on an EREW PRAM. 

Now we reassign the nets based on the sorted sequence obtained in the 

previous step, and compute S. A more succinct formulation of this part of the 

algorithm is given next as algorithm PRAM_Reassignment. 

Algorithm: PRAM_Reassignment 

For all i  1 to dmax do in parallel 

If i  dmax/2, 

then i  2i  1 

Else i  2(dmax  i + 1) 

End if 

End for 

In algorithm PRAM_Reassignment, the statement 

“For all i  1 to dmax do in parallel” 

means that all processors Pi, 1  i  dmax, perform the step simultaneously. Obviously, 

this PRAM step takes O(1) time. Note that no concurrent access is required. 

Therefore, the algorithm can be implemented on an EREW PRAM only. Thus, the 

trackwise reassignment of nets takes constant time using an EREW PRAM machine 

using dmax processors. 

Now we compute the overall computational complexity of the algorithm 

Parallel Track Interchange. All steps can be performed in parallel in O(log n) time 

using O(n) processors on a CREW PRAM machine. If an EREW PRAM machine is 

used, all steps can be performed in parallel in O(log2 n) time using O(n) processors. 

We summarize the correctness and the computational complexity of the algorithm 

Parallel Track Interchange in the following theorem. 

Theorem 7.1: The algorithm Parallel Track Interchange computes a two-layer VH 

routing solution with reduced total crosstalk on a PRAM model for simple channel 
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instances. The time and processor complexity of this algorithm are O(log n) and O(n), 

respectively, if a CREW PRAM machine is used. Instead, if an EREW PRAM machine 

is used, the time and processor complexities become O(log2 n) and O(n), respectively. 

7.4.2 Algorithm 2: Parallel Net Change 

The heuristic, Parallel Track Interchange, presented in the previous section, is simple 

but efficient enough to reduce substantial amount of crosstalk over a given routing 

solution where the nets are free from vertical constraints, merely by reassigning the 

nets trackwise. An attempt has been made to reduce the crosstalk further using 

heuristic Parallel Net Change. 

Observe that, if two nets are (i) horizontally constrained to each other, (ii) the 

interchange does not introduce any horizontal constraint violation due to overlapping 

with some other nets, and (iii) the resulting crosstalk after swapping the nets is 

reduced, then these two nets can be interchanged to reduce crosstalk further.  

Incidentally, we do not talk about vertical constraint violation as the instances under 

consideration are only simple channel specifications. Nevertheless, this is not at all a 

clear-cut task, since we do not know a priori the sequence of pairs of nets to be 

exchanged so that a maximum amount of crosstalk is reduced. Furthermore, a 

particular net can be swapped O(dmax) times (where dmax is O(n)) over the tracks 

without giving any remarkable gain in the overall crosstalk, and that might make the 

problem of minimizing crosstalk drastically cost expensive. As a consequence, in this 

algorithm, without swapping a pair of nets we do exchange a net with a blank space in 

some other track if this substitution reduces the overall crosstalk. For some net x, if 

several such swapping is possible, we perform the exchange that results in the 

maximum reduction in crosstalk. 

We define a net, in a given routing solution S of dmax tracks, that could be 

swapped with a blank space in some other track as an interchangeable net; otherwise, 

as a non-interchangeable net. Note that each non-interchangeable net pi, 1  i  n, 

assigned to a track s, 1  s  dmax, in S, must also be assigned to track s in S. 

However, an interchangeable net qi, 1  i  n, assigned to a track t, 1  t  dmax, in S, 

may be assigned to a possibly different track t in S. It might so happen that an 
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interchangeable net cannot be swapped though there is a blank space in some other 

track in S, as there is no gain in crosstalk out of that exchange. 

Theoretically, there can be O(n) such interchangeable nets in S for a channel 

comprising n nets in total, though it is unlikely as the channel instances are simple and 

the solutions under consideration are all density routing solutions. Thus, as a matter of 

fact, only a few interchangeable nets are there in such an initial routing solution S, 

which is assumed as the preferred routing solution (with mostly reduced crosstalk) 

computed after algorithm Parallel Track Interchange. This claim could be verified 

based on the reduction in crosstalk after algorithm Net_Change over the amount of 

crosstalk obtained after algorithm Track_Change_Simple, included in Table 6.1 and 

visualized in Figure 6.1, which is just about 1% reduction or even less. 

Furthermore, if among n nets in total, the channel density dmax is O(n), only 

then a bulk of the remaining nets may be interchangeable nets as they do not belong to 

density columns (in S). However, in such a situation, most of such nets are not 

required to be shifted if their adjacent tracks are blank (that do not render any 

crosstalk) in the given routing solution S. Thus, even for an interchangeable net, 

searching for a necessary span of blank space in some other track could often be a 

superfluous task. In accordance with the above, the steps of the algorithm Parallel Net 

Change state below how the heuristic works and searches for a blank space for an 

interchangeable net qi in some other track in order to compute S. 

Algorithm: Parallel Net Change 

Input: A density routing solution, S, of a simple channel instance. 

Output: Another density routing solution, S, of S with reduced crosstalk. 

Begin 

Step 1: O(n) processors are employed to identify the interchangeable nets in S, where 

processor Pi is deployed for net ni, 1  i  n, all in parallel.  

Step 2: For each interchangeable net ni, Pi computes the amount of crosstalk in S 

involving ni; all processors do the same in parallel. 

Step 3: If the amount of crosstalk for an interchangeable net ni in S is zero, then ni is 

kept in its own track in computing S. 

Else 
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Pi searches for a track (with necessary blank span) where ni could be 

reallocated in order to compute S, all in parallel. 

Step 3.1: If only one such a track, t, is found for only one interchangeable net 

ni, where ni could be reallocated (means the crosstalk for ni in its new 

track is reduced in comparison to that in S), then ni is shifted to track t; 

otherwise, ni is kept in its earlier track in S, all in parallel. 

Else 

Step 3.1.1: If two or more such (blank) spaces in different tracks are 

found for only one interchangeable net ni, where ni could be 

reallocated (means the crosstalk for ni in two or more of its new 

tracks is reduced in comparison to that in S), then ni is shifted 

to a new track where it is best fitted (means the reduction in 

crosstalk is maximum); otherwise, ni is kept in its earlier track 

in S, all in parallel. 

End if 

End if 

Step 3.2: If two or more overlapped interchangeable nets are found assignable 

to just one new track t, where each of them could be reallocated in 

isolation, then the best such net is shifted to track t (whose reallocation 

mostly reduces the crosstalk in computing S); otherwise, all such nets 

are kept in their earlier tracks in S, all in parallel. 

Else 

Step 3.2.1: If p  2 overlapped interchangeable nets are found 

assignable to a set of q  p new adjacent tracks, where these 

could be reallocated, then we call Parallel Track Interchange, 

only on this set of interchangeable nets for their reallocation to 

the targeted set of blank tracks in order to compute S. If such 

reallocation results more crosstalk, two tasks are performed as 

follows, all in parallel. (1) The alternate even numbered 

reallocated net(s) is (are) kept in the new track(s) and the 

alternate odd numbered reallocated net(s) is (are) revert back to 

its (their) earlier track(s) in S (keeping these allocated tracks 

blank). (2) The alternate odd numbered reallocated net(s) is 
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(are) kept in the new track(s) and the alternate even numbered 

reallocated net(s) is (are) revert back to its (their) earlier 

track(s) in S (keeping these allocated tracks blank). Now, 

among the (three) routing solutions, S and the two computed 

after (1) and (2) above, the one with the minimum crosstalk is 

regarded as the preferred minimum crosstalk routing solution 

S.  

End if 

End if 

End 

It is straightforward to observe that each interchangeable net does not contain 

any density column. In other words, the zonal density [49, 51] of each interchangeable 

net is less than dmax in S, as there is at least one blank track spanned by the net where 

it could be swapped and S is a density (or dmax-track) routing solution. The zonal 

density of net i in S is the maximum density of the columns within the span/interval of 

net i. 

Now, if the interchangeable nets are pairwise nonoverlapping, each of them 

could be moved to the blank places in the new tracks, in order to compute S, using an 

EREW PRAM machine. If there are two or more overlapped interchangeable nets (as 

has been included in Step 3.2) that could be shifted to the blank places in a new track, 

then we need to shift the net that reduces the crosstalk by maximum amount. For this 

reason, we use a priority CRCW PRAM model [3]. 

Here, we like to mention one more point in performing two additional tasks 

(1) and (2), as has been included in Step 3.2.1, where we observe that after 

reallocation of intervals the computed routing solution S might contain more 

crosstalk in comparison to that in S. Then we like to revert back a subset of 

intervals/nets to their earlier tracks tentatively keeping an alternate/non-adjacent half 

of them to the newly allocated tracks. This certainly enhances the scope of reduction 

in crosstalk further as concentrated intervals (for their consecutive presence over the 

tracks in computing S) are now distributed over the (blank) tracks in alternation (in 

order to compute S). However, if the resulting crosstalk in S is found to be more than 

that in S, we accept S as the final solution with no reduction in crosstalk. 
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On the other hand, to satisfy the case 2  p  q, where p is the number of 

overlapped interchangeable nets (which is equal or less) and q is the new set of 

adjacent blank tracks (which is equal or more), the algorithm Parallel Net Change can 

successively be executed for a constant number of times, if there is a further improved 

routing solution in terms of minimizing crosstalk. Thus, we presume that the newly 

computed routing solution S as S to start for computing even a probable better routing 

solution for subsequent interchangeable nets (or zones of columns) exposed in S. If S 

is superior than S in terms of minimizing crosstalk (i.e. the amount of crosstalk in S is 

less than that in S), we accept it; otherwise, the algorithm terminates without any 

further iterations. We now analyze the computational complexity of the algorithm. 

7.4.2.1 Computational Complexity of Algorithm Parallel Net Change 

In the heuristic Parallel Net Change, we assign a processor to each of the 

(interchangeable) nets in S. Further, we assume that blank spaces in the present 

solution are stored in the global (shared) memory. In addition, for each processor Pi, 1 

 i  n, we have the interval information of blank spaces in all the tracks in S in the 

form of sequential search of the blank spaces available in other tracks in S. Note that 

the data structure contains at most O(dmax) information (of blank spaces) for each 

interchangeable net. Moreover, for each interchangeable net, the initial crosstalk due 

to a net is measured in Step 2 in constant time as all processors do it in parallel. 

However, the interchangeable net identification (in Step 1) and the track where it 

could possibly be reallocated (in Step 3) can be performed in time O(dmax), as S is a 

dmax-track routing solution. 

The problem of reallocation of an interchangeable net to a blank space in other 

track becomes a bit tricky, when there are more interchangeable nets and less blank 

spaces. Here the question of selecting a subset of interchangeable nets arises that 

should get more priority for their transfer. This task is performed by executing a 

Concurrent Write (CW) to the memory corresponding to blank spaces. As we need the 

maximum reduction in crosstalk, we assume that an interchangeable net (or the 

corresponding processor) succeeds in writing its value. This means that we need a 

priority CRCW PRAM for implementation of our algorithm. Therefore, we conclude 

the following. 
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Theorem 7.2: The algorithm Parallel Net Change computes a dmax-track two-layer 

VH routing solution with reduced total crosstalk on a priority CRCW PRAM from a 

dmax-track two-layer VH routing solution of a simple channel instance by reassigning 

nets to some other tracks of the given routing solution. The time and processor 

complexity of this algorithm are O(dmax) and O(n), respectively. 

Corollary 7.1: As the sequential algorithm for the problem presented in Section 

4.3.2.3 takes O(ndmax) time, this Parallel Net Change algorithm is cost optimal. 

Corollary 7.2: As a concurrent read/write instruction by n processors on a CRCW 

PRAM can be simulated on an EREW PRAM in O(log n) time, Parallel Net Change 

algorithm can be simulated on an EREW PRAM in O(dmax log dmax) time using O(n) 

processors. 

7.5 Summary 

In this chapter, we have developed two parallel heuristics for the problem of 

computing reduced crosstalk routing solutions in two-layer VH channel routing for 

the simple instances of channel specifications. The first algorithm Parallel Track 

Interchange runs in time O(log n) on a CREW PRAM using O(n) processors; whereas 

the second algorithm Parallel Net Change runs in O(dmax) time using O(n) processors 

using a priority CRCW PRAM. The second parallel algorithm is cost optimal. On an 

EREW PRAM, they can be implemented respectively in time O(log2 n) and O(dmax 

log dmax) using the same number of processors. The sequential counterparts of these 

algorithms take time O(dmax log dmax), and O(ndmax), respectively. Both parallel 

algorithms are substantially faster than their sequential counterparts. 

Here we like to point out a few possible extensions and open problems as 

mentioned below. (i) It may be investigated to design similar algorithms for the 

general instances of channel specifications with multi-terminal nets where both the 

horizontal as well as vertical constraints are present in two-layer channel routing. (ii) 

A generalized version of algorithm Parallel Net Change may produce better routing 

solutions in terms of reduction in crosstalk when two overlapping nets interchange 

their tracks. (iii) Researchers may also be interested in computing much reduced 

crosstalk routing solutions in the expense of negligibly more channel area. (iv) Instead 
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of starting from a given routing solution researchers may also compute good routing 

solutions directly optimizing crosstalk and some other cost optimization factor(s) of 

CRP. (v) Minimized crosstalk routing solutions in the case of three- and multi-layer 

channel routing might draw the current interest of research. Also, doglegging may be 

introduced in all these cases. 

 

 



 

 

 

 

Chapter: 8 

Conclusion 
 

 

8.1 Contribution of the Thesis 

VLSI fabrication technologies now allow multiple layers of interconnection in 

integrated circuits. Even then, several works in two-layer channel routing are still due 

for their execution and experimentation for high performance challenges. Theoretical 

issues are also getting importance from the viewpoint of combinatorial optimization.  

The thesis starts with an introductory chapter where the channel routing 

problem (CRP) along with its inherent constraints and different routing models have 

been described. The interesting and important matters related to CRP have also been 

elaborated in the same chapter. These include usual as well as several high 

performance issues involving CRP. 

Chapter 2 is the one, which is committed to almost all allied concerns relating 

to electrical hazards, rather crosstalk, in several associated domains of research fields 

in VLSI including network, fabrication technology, communication (or signal 

transition), and so forth and so on. In the same chapter, before the literature survey, 

we have briefly discussed on the theories of NP-completeness and NP-hardness and 

mentioned a class of allied problems. 

As have already been cited several times, the thesis primarily focuses on the 

crosstalk minimization problem in two-layer channel routing. Undoubtedly, it is an 

important problem whose fair consideration makes a routing solution satisfactory 

from its high performance stand. As a consequence, there were some theoretical 

apprehensions. This thesis has resolved most of them. Specifically, in Chapter 3 we 

have considered the issues on the hardness of crosstalk minimization in two-layer 

channel routing including the simplest of all crosstalk minimization problems. In this 

chapter, we have proved that the crosstalk minimization problem in the reserved two-

layer Manhattan routing model is NP-hard for the simple and the general instances of 

channel specifications with partitioning of nets so that the nets in a class of a given 

partition are assigned to the same track. 
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In the same chapter, we have also investigated upon the simple as well as the 

general instances of channel specifications with only two-terminal nets, but without 

any imposed partition of (non-overlapping) nets to tracks. This, being a more general 

case, is also NP-complete. Moreover, we have introduced the problem of minimizing 

bottleneck crosstalk in the reserved no-dogleg two-layer channel routing model. We 

have proved that the problem is NP-hard too. 

On completion of the proof of NP-completeness of the crosstalk minimization 

problem, one should look for the next best possible option. This is nothing but to look 

for an approximation algorithm to solve the problem. We have further proved in this 

chapter that this is not possible. We have proved that if P ≠ NP, it is impossible to 

design an approximation algorithm for the (crosstalk minimization) problem even in 

no-dogleg two-layer channel routing. These remain so even if doglegging is allowed. 

The only option that remains with us to tackle the problem is to design 

efficient heuristics for the problem. In Chapter 4, we have developed two efficient 

heuristics for simple instances of channel specifications. They have been found to 

produce optimal / near optimal routing solutions in most of the cases. Afterward, the 

heuristics have also been generalized to compute an optimal / near optimal crosstalk 

routing solution of a general instance of two-layer channel routing in a novel manner. 

The performance of our algorithms is encouraging enough for most of the existing 

benchmark channels. Moreover, the experimental results obtained on the execution of 

the heuristics show a lot of improvement over the existing routing solutions of 

reduced area. 

We know that the efficiency of a heuristic is well established when it is 

executed for a variety of a large number of randomly generated similar (channel) 

instances, and the final upshot is computed making an average on all of them. 

Incidentally, the simple channel instances are hardly available in the literature. Also, a 

very few general channel instances, commonly known as benchmark channel 

specifications, are available in the literature. For these reasons, we have developed 

algorithms for generating random channel instances in Chapter 5, for the purpose of 

running the heuristics developed in Chapter 4. 

Simple channel instances that are (randomly) generated in Chapter 5 are all 

containing only two-terminal nets; simple channel instances with multi-terminal nets 



215 

 

 

 

can also be created. General channel instances that are also randomly generated in 

this chapter contain two- as well as multi-terminal nets. Furthermore, the devised 

algorithms can create channel instances of any number of nets containing any number 

of terminals per net. 

Chapter 6 of this thesis is based on experimental results of most of the 

implementations made in this thesis, principally for all the algorithms designed in 

Chapters 4 and 5. The first pair of algorithms for reducing crosstalk devised in 

Chapter 4 has also been right away executed in the same chapter for a smaller 

number of randomly generated simple channel instances and also for a set of only 14 

existing benchmark (general) channel specifications. All these results have also been 

included there in Chapter 4. However, in Chapter 5, a second pair of algorithms has 

been developed, and these have been formulated for generating random channel 

instances. Precisely, in Chapter 5, at once we generate two sets of channel 

specifications at random, simple as well as general, each containing 4800 instances 

in total, for 24 sets of a given number of nets ranging from 10 through 15000. 

On the other hand, in Chapter 6, we first randomly generate as many as 8800 

simple channel instances containing a number of nets ranging from 10 to 1000 for 

further experimentation of reducing crosstalk. Likewise, herein, we also have 

produced 4000 general channel instances containing a number of nets ranging from 20 

to 2000. For a particular net number, exactly 200 instances have been produced. We 

observed that for a maximum number of nets as mentioned above, the instances, on an 

average, get saturated in terms of reducing crosstalk when these are allowed to go 

through the relevant Track_Change and Net_Change algorithms (devised in Chapter 

4). 

Essentially, Chapter 6 contains only a number of small simple as well as 

general channel instances and shows only a little number of hardcopy routing 

solutions for inclusion in the thesis. For each example channel with reasonably shorter 

in length and lesser number of nets, three routing solutions have been presented: (a) 

The first one displays the minimum area routing solution against after a standard 

existing routing algorithm, (b) the second one depicts the significantly reduced 

crosstalk routing solution after execution of the first crosstalk reduction algorithm, 

Track_Change, and (c) the third one includes the mostly reduced crosstalk routing 

solution obtained after execution of algorithm Net_Change. Graphs have also been 
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drawn for showing a reduction in crosstalk after execution of each associated 

algorithm for minimizing crosstalk; these demonstrate the deviation in percentage 

reduction in crosstalk as the number of nets increases. The reduction in crosstalk in 

each case is extremely significant. 

Chapter 7 is the last contributory chapter of the thesis in which we have 

developed two simple, efficient parallel heuristics for computing reduced crosstalk 

routing solutions for simple instances of channel specifications. The parallel 

algorithms presented herein demonstrate that the algorithms devised in Chapter 4 can 

eventually be parallelized to get efficient parallel algorithms. 

8.2 Open Problems and Future Scopes 

Now at the end of the thesis, we would like to draw attention to some possible open 

problems that future researchers may consider as their field of work. Although several 

works have been accomplished and included in this thesis, plenty of other allied tasks 

is still there to do. Crosstalk may be minimized by sacrificing a tolerable limit of more 

area. We observed in Chapter 3 that when t–1 blank tracks (i.e. the tracks containing 

no interval of any net) are introduced into a t-track two-layer feasible routing solution 

such that a blank track is inserted in between every pair of consecutive tracks of nets, 

the resulting routing solution may not have any crosstalk (as the gap between two 

adjacent tracks containing nets now is sufficiently large). However, this routing 

solution uses almost twice the area of the initial routing solution, whereas our prime 

interest of some VLSI chip design is to compute a routing solution of as minimum 

area as possible. Thus, such a routing solution is, in general, not acceptable. 

Nevertheless, this tradeoff between area and crosstalk in computing different two-

layer channel routing solutions can be exercised and experimented scrupulously. 

As a part of work, in this thesis, we have designed heuristics for reducing 

crosstalk in a given (two-layer) routing solution of the minimum area; however, it is 

often enviable if the crosstalk is straightway reduced starting from a given channel 

instance wherein the area is also minimized as much as possible. If we start with a 

routing solution, often that forces to assign a pair of nets to be placed on the same 

track that, in effect, may render more crosstalk. As such, for any given channel 

instance, either simple or general, neither we can guarantee an optimal crosstalk two-

layer channel routing solution, nor we can compute a near-optimal one. 
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Moreover, instead of considering crosstalk along the length of the channel (i.e. 

horizontal crosstalk) crosstalk along the height of the channel (i.e. vertical crosstalk) 

may also play an important role, where we may assume it as well, as an issue of 

optimization, or simultaneous consideration along with horizontal crosstalk. Crosstalk 

along with congestion of interconnecting wires over a region of the chip floor, and 

thus hot spot formation may attract scholars in future, and their synchronized 

optimization might enhance the performance of a routing solution. 

The problem of crosstalk minimization in three-layer and multi-layer channel 

routing is still open in any routing model. Usually, there are two reserved three-layer 

channel routing models: VHV and HVH. Among several other models, reserved 

multi-layer channel routing models may include ViHi, Vi+1Hi, and ViHi+1, where 

vertical and horizontal layers of interconnect alternate within a channel (along the 

third dimension). Though we firmly believe that the problems are hard to solve, yet 

the nature of the problems of crosstalk minimization in the three- and multi-layer 

channel routing is still undiscovered. 

At the same time, the issue of bottleneck crosstalk minimization is also open 

in the aforementioned three- and multi-layer channel routing models. We have only 

guessed the hardness of the problems; no necessary proofs have yet been established 

along with devising efficient heuristics. In the two-layer VH routing model, the trivial 

lower bound (l) on the number of tracks is max(dmax, vmax), where dmax is the channel 

density and vmax is the length of the longest path in the vertical constraint graph 

(VCG), which is acyclic [49, 96]. A non-trivial lower bound on the number of tracks 

(in the two-layer VH routing model), for a general channel instance that does not 

contain any cyclic VCG, has also been computed in [62]. We may note that this non-

trivial lower bound is never worse than the aforesaid trivial lower bound, l, in the 

stated routing model. For a simple channel instance, however, in the two-layer VH 

routing model, the supposed lower bound (l) is simply dmax, as dmax  vmax  1, which 

is same for the three-layer VHV routing model for any channel, simple or general, or 

any channel that contains a cycle in its VCG. 

In the case of three-layer HVH routing model, the aforementioned lower 

bound (l) is max(dmax2, vmax), where the VCG should also be free from any cyclic 

vertical constraint. Accordingly, different lower bounds (l) on the number of tracks 

are also there for different multi-layer channel routing models [49]. Now the question 



218 

 

is whether a channel instance has a routing solution in an assumed routing model 

whose bottleneck crosstalk is no more than p ≥ 1, for any given integer p, where the 

number of tracks required is at most q ≥ 0 more than the optimal? Evidently, a lower 

bound (l) on the number of tracks required in a stated routing model is either less than 

or equal to the optimal number of tracks required for a given channel. Consequently, 

devising desired routing solutions where bottleneck crosstalk is no more than p, and 

the number of tracks required is no more than q above the optimal number of tracks 

could be a task for future researchers. 

We would also like to point out a few more possible extensions of the 

algorithms developed in Chapter 7 of this thesis as follows. The algorithms included 

in the said chapter have been devised for simple channel instances only; these may 

also be worthy in modifying the algorithm for general instances of channel 

specifications with multi-terminal nets. A comprehensive version of algorithm 

Parallel Net Change may produce much-reduced crosstalk routing solutions when 

two overlapping nets (or a group of overlapping nets) exchange their tracks pairwise 

(in a sequence). Computation of minimized crosstalk routing solutions in the case of 

three- and multi-layer channel routing in different routing models may draw the 

interest of future researchers. Also, doglegging may be introduced in all these cases. 

On a broader scale, there are several opportunities for future research. For 

example, routing congestion is a work in VLSI circuit synthesis that estimates and 

optimizes delay as well as hot spots present in a circuit [79]. Delay and power related 

issues have been considered and statistically analyzed and attempted to optimize for 

VLSI in [84]. Power consumption is a burning issue that has also been acknowledged 

by Sherwani in his renowned book entitled ‘Algorithms for VLSI Physical Design 

Automation’ along with multi-chip module [81]. 

It is unlikely for high speed systems to achieve very low power while 

enhancing system performance under the current trends for MOS technologies [95]. 

High performance circuits usually consume significant amounts of power due to 

increase in frequency, bandwidth, and system integration, and this consumed power 

leads to higher heat dissipation and in turn to higher working temperature(s). This not 

only affects circuit performance directly, by slowing down the CMOS transistors on 

ICs but also reduces the reliability. A circuit with considerable power consumption 

requires extra cost to remove heat at the packaging level, and therefore, the reduction 
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of power dissipation is needed at the chip design stage. In general, it is advisable to 

have an even temperature distribution for temperature sensitive circuits [95]. 

The thermal management of microprocessors has become an increasing 

challenge in recent years because of localized high flux hot spots which cannot be 

effectively removed by conventional cooling techniques. The work of Wang and Bar-

Cohen [90] describes the use of the silicon chip itself as a thermoelectric cooler to 

suppress the hot spot temperature. As semiconductor-based technology has rapidly 

developed, producing ever smaller and faster silicon-chip based computer processors, 

effective cooling of these chips has remained an unsolved issue. As a consequence, 

researchers have started developing ways to cool hot spots using tiny on-chip silicon 

microcoolers [90, 91]. 

A three-dimensional analytical thermal model of the silicon chip, including 

localized thermoelectric cooling, thermoelectric heating, silicon Joule heating, hot 

spot heating, background heating, and conductive/convective cooling on the back of 

the silicon chip, has been developed and used to predict the on-chip hot spot cooling 

performance [90]. This work also investigates the effects of hot spot size, hot spot 

heat flux, silicon chip thickness, microcooler size, the doping concentration in the 

silicon, and parasitic Joule heating from electric contact resistances on the cooling of 

on-chip hot spots [90]. 

Hot spots can severely degrade the performance and reliability of a 

microprocessor. However, cooling methods addressing the entire chip can often cause 

unnecessary over-cooling, as well as raise the cost, weight, and volume of the cooling 

solution [90]. 

Building on prior analytical work, Bar-Cohen and Wang, both mechanical 

engineers, developed a three-dimensional mathematical model of the thermal 

behaviour of a silicon chip using computer software. The model accounts for all 

aspects of heating and cooling on the chip, including localized cooling, hot spot 

heating, background heating from nearby circuitry, and conductive/convective cooling 

through the back of the chip. 

The model predicts that when an electric current is applied to a region of 

highly doped silicon (silicon with a high level of added impurities) on the back of a 

chip, a cool region is created on the chip. If the cool region is located opposite a 
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microprocessor hot spot, it absorbs heat and lowers the hot spot temperature. This 

localized cooling phenomenon occurs via the thermoelectric effect – the use of 

electrical energy to transfer heat against the natural hot-to-cold thermal gradient. The 

silicon and the metal lead that brings electric current to the back of the chip have very 

different thermoelectric sensitivities. As a result, a cooling effect occurs at the 

contact-cap and cap-silicon junctions and heat is pulled out of the hot spot [90, 91]. 

Similar microcooling systems have been proposed, such as thin-film 

thermoelectric coolers (TFTECs) that consist of two layered ultra-thin semiconductor 

lattices, such as silicon-germanium on top of silicon. Like the silicon microcoolers, 

TFTECs are positioned on the back of the silicon chip to pull away heat. Among their 

advantages are compactness and fast cooling response. One main disadvantage, 

however, is that for TFTECs, a thermal interface resistance is present between the 

chip and the thin film, reducing the cooling effect [91]. 

Whatever may be the situation, to achieve high performance routing/design in 

VLSI, the factors to be given careful consideration are power dissipation density 

caused by the distribution of components and connecting wires over the chip floor. 

These factors often lead to congestion and the subsequent formation of hot spots. To 

minimize all these, the power supplied to the circuit is to be diminished, and this 

encourages research in the field of low power VLSI design [7, 17, 74, 94, 95]. Based 

on congestion of wire segments that are placed closer to each other over a local 

routing region crosstalk comes into existence [9, 25, 26, 27, 30, 39, 42, 45, 46, 75, 87, 

89, 93]. Crosstalk is intensified if an aggressor net is placed around other nets. 

Moreover, the amount and direction of current flowing through the different wires 

located in the region often give rise to electrical hazards like crosstalk, hot spot 

formation, and eventually, delay in propagating electrical signals. 
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