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Abstract 

In the present mechanized world, digitalization has encroached almost every sphere of 

technology like biomedical information processing, defense applications, astrophysical data 

analysis, just to name a few. Biomedical information comprises of one dimensional or two 

dimensional signals which are received as output of different biomedical instruments. Defence 

technologies involve use of radar signals received as outputs of sensor devices. Watermarking 

is another application of digitalization in defense technologies that provides security to the 

secret information. Visible watermarking is also very much useful in the department of law to 

prove intellectual property rights. Astrophysical instruments acquire information generally in 

time series that is basically one dimensional series of data points indexed in order of time. The 

current globalized era is marked by a rapid increase in the use of wireless media to exchange 

information over globally distributed locations. This advancement and growth of 

technologically mediated information help provide medical care remotely by exchanging 

biomedical signals amongst various hospitals and diagnostic centers across the globe. It also 

helps in the area of defense by sharing the radar signals instantly via phone or internet. 

However, while transmitting, these signals may get affected by some unwanted components 

termed as noise which are adverse but inevitable. Removal of such unwanted components 

from the signals has remained challenging for the researchers since the earliest days of signal 

processing. For removing noise from signals, the use of digital filters has been proved to be 

more effective than the analog filters due to the flexibility of hardware efficiency provided by 

the digital filters. Among the two types of digital filters, Finite Impulse Response (FIR) filters 

are used more extensively compared to the Infinite Impulse Response (IIR) filters because of 

FIR filters' outstanding characteristic of stability and the capability of obtaining linear phase 

response. FIR filters take a discrete time signal as input and performs addition and 

multiplication operations to obtain the desired filtered discrete time output signal. Among 

various techniques proposed by several researchers to design FIR filters, the use of window 

functions is the most popular approach. For implementation of FIR filters, several soft 

computing approaches have also been proved to be effective. Limitations of conventional 

approaches such as window methods, frequency sampling methods used for filter design 

motivated us to use soft computing techniques to design FIR filters.  
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In this thesis, an innovative combined approach has been proposed to de-noise biomedical 

signals using the most effective window function Kaiser Window and Genetic Algorithm, well 

known evolutionary approach. Kaiser Window with varying passband and stopband ripples is 

initially used for filtration of noisy heart sound signals. Genetic Algorithm is then used to 

obtain the least noisy signal. Optimization of parameters used to design a digital filter using 

Kaiser Window function is also performed in this thesis using an adaptive Ant Weight Lifting 

Algorithm.  

Another approach for FIR filter design is to use optimized set of coefficients. In this thesis, we 

also make a comparative study of a few traditional algorithms in optimizing filter coefficients. 

A novel algorithm, namely Global Best Steered Cuckoo Search Algorithm, is also proposed for 

the same purpose. This new algorithm is proved to be much more efficient in filter design 

compared to the traditional algorithms in terms of passband ripple and stopband attenuation of 

the filters.  

Nowadays, many battery operated devices such as mobile phones, hearing aids, FM radios, 

etc. also use FIR filters. Due to the power starving nature of these devices, implementation of 

FIR filters with as low power as possible is of utmost necessity. Therefore, aiming to address 

the need for perpetually demanding high speed and low power devices, innovative techniques 

for implementing hardware efficient FIR filter are also proposed in this thesis. These 

techniques involve the use of fixed length coefficients and two innovative algorithms are 

proposed to obtain optimized coefficients. A new quantum algorithm, namely Global Best 

Steered Quantum Inspired Cuckoo Search Algorithm, is proposed in this thesis for obtaining 

optimized filter coefficients capable of acquiring desired filter responses. This algorithm is 

also proved to be effective in reducing the number of SPT terms. With the help of common 

sub-expression elimination technique, required number of adders is further minimized for 

hardware efficient filter implementation. We also proposed another new algorithm, namely 

Fast Converging Flower Pollination Algorithm, for the same purpose. These new algorithms 

have been proved to be much more effective compared to their traditional versions which have 

also been proved to be efficient in the domain of filter coefficient optimization compared to 

the conventional approaches like window methods and frequency sampling methods. 
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Chapter 1 

  Introduction 

1.1.  History and Evolution of Intelligent Signal Processing 

“Artificial Intelligence is whatever hasn’t been done yet” 

- Larry Tesler  

“Signal Processing is more than its beloved name” 

- Rabab Ward 

Signal processing has significant applications in many spheres of technologies like 

biomedical instrumentation, astrophysical instrumentation, sensor development, defense 

applications, weather forecasting, broadcasting in television and many more. Basically 

signal processing involves operation on signals with the aim of retrieving expedient 

information from the signals. For processing signals, processors or systems are required 

similar to a human seeing something and using his/her visual pathways to retrieve and 

process information in the brain about the observed scenario. In case of human 

processing of visual information, the processor is biological in nature. Signal processors 

may be a sensor, an electronic system, a mechanical system or even a computer program. 

All these processors are capable of extracting information from different one-

dimensional signals like video and audio signals, biomedical signals (heart sound, 

Electrocardiogram, Electroencephalogram, Electrooculogram, Intravascular ultrasound, 

etc.), astrophysical signals (solar radio flux, solar radiation, etc.), time series (daily 

temperature, annual rainfall of a place, etc.), seismic signals (movement of rocks due to 
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earthquake, volcanic eruption, etc.) as well as multi-dimensional signals like different 

images. Processing of signals involves the following operations. 

a. Simple Time-Domain Operations 

b. Filtering 

c. Generation of Complex-Valued Signals 

d. Amplitude Modulation 

e. Multiplexing and De-multiplexing 

f. Quadrature Amplitude Modulation 

All these operations can be performed cleverly using intelligent algorithms that are 

implemented using the concept of Artificial Intelligence (AI). Key notion behind the AI 

is making machines smart like human beings. Rapid advancements in AI in the last few 

decades also caused tremendous improvements in signal processing.  

Filtering is the most important as well as a very challenging task in signal processing. 

For filtering signals, or in other words to remove noise from signals, several intelligent 

techniques have been proved to be effective. In 1969, Gold and Jordan (1969) and in the 

next year Rabiner et al. (1970) used frequency sampling method for filter design which 

involves computation of filter coefficients by sampling the ideal filter in the frequency 

domain. In this method a specific frequency can be approximated by fixing most of the 

Discrete Fourier Transform coefficients and rejecting the unspecified coefficients that lie 

in the range of transition bands. These unspecified coefficients are optimized with an 

aim of minimizing a weighted approximation error over the desired frequency range. 

Optimization was carried out using an intelligent direct search approach. In case of 

optimal approaches, filter coefficients are obtained by minimizing the maximum error 

between the desired and the actual frequency response using different optimization 
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techniques. In the last two decades, invention of wide number of efficient soft computing 

techniques led to outstanding improvements in filter implementation approaches. 

1.2. General Concepts of Analog and Digital Signal Processing 

Signals can be classified into two types: analog and digital. Analog signals have an 

infinite number of values in a range, whereas digital signals can have only a limited 

number of values. Analog signal processing is based on the capability of analog systems 

to solve differential equations describing physical systems. It uses analog circuit 

elements like resistors, capacitors, transistors, diodes, etc. Analog signal processing was 

governing the last century until digital computers and microprocessors were started 

being used widely.  Digital signal processing involves numerical calculations. Two basic 

advantages of the digital approach over the analog approach for signal processing are 

flexibility and repeatability. Flexibility refer to the fact that the same hardware can be 

used for different kind of digital signal processing operations, while in core analog signal 

processing a system has to be designed for each operation. Repeatability in digital signal 

processing means that the same signal processing operation can be repeated several 

times obtaining the same results, whereas in analog systems, parameter variation may 

occur due to change in temperature or voltage.  

1.3. Digital Filters for Signal Noise Removal 

In the present digital age of electronic appliances, dealing with signals has become a part 

and parcel of everyday modern life. During transmission via any media signals get 

affected by unwanted components; which is adverse but inevitable.  Elimination of such 

unwanted components, termed as noise, from transmitted signals proved to be an 

important as well as puzzling task for the researchers from the initial days of Signal 

Processing. Among a significant number of techniques proposed for removal of noise 

from signals, the use of digital filters has become most effectual in multiple ways. Digital 
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filters have much less design complexity and cost compared to the analog ones. Design of 

digital filters basically involves obtaining a perfect set of coefficients using programmable 

optimization algorithms. Another reason for the digital filters being more expedient for 

signal de-noising is the presence of high latency. Digital filters add noise caused by 

quantization but the noise is least effective, whereas analog filters add highly effective 

components based thermal noise. Moreover, analog filters have accuracy limitations due 

to component tolerances and undesired nonlinearities which make the digital filters more 

useful.   

1.4. Digital FIR Filter Design 

Digital filters (Antoniou, 1993; Smith, 2011; Sharma, 2009; Mitra, 2013) have extensive 

use compared to analog filters due to much lesser design overhead. Lower hardware cost 

and amazing behavior of altering characteristics with changes in the discrete values stored 

in the registers have made the digital filters more effectual than the analog ones. Digital 

filters can be classified into two types - Finite Impulse Response (FIR) Filter (Sharma, 

2009; Mitra, 2013; Proakis & Manolakis, 2015), and Infinite Impulse Response (IIR) Filter 

(Sharma, 2009; Mitra, 2013). In comparison to the IIR filters, FIR filters are more effective 

in digital audio and video signal processing due to the outstanding characteristics of 

stability and the capability of obtaining linear phase response. Output of FIR filters depend 

on the current and past input samples which can be realized non-recursively. Quantization 

in finite word-length does not generate much erroneous response which is another 

advantage of FIR filters over the IIR filters.       

Filter implementation involves determination of the coefficients that nearly approximate 

the desired filter characteristics. These desired characteristics are specified in the frequency 
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domain in terms of the desired magnitude and phase responses of the filters. For the ideal 

FIR filters, responses can be defined as follows.  

      
                                                                          

                                                                                                                          (1.1) 

This means in case of ideal filters, frequency response must be equal to 1 in the pass band, 

and equal to 0 in the stop band. 

Based on the filter order and symmetricity of the filter coefficients, filters are categorized 

into four types.   

i. Type I- Even order and symmetric coefficients,  

ii. Type II- Odd order and symmetric coefficients,  

iii. Type III- Even order and asymmetric coefficients, 

iv. Type IV- Odd order and asymmetric coefficients. 

For the symmetric FIR filters, number of filter coefficients     is computed as follows. 

  
   

 
  when M is odd,   

 

 
  when M is even                                                          (1.2)    

1.4.1. Conventional Approaches for  Digital FIR Filter Design 

The foremost step that the design of FIR filters involves is computation of filter 

coefficients. Among a considerable number of techniques proposed for finding the filter 

coefficients, Window method (Sharma, 2009), frequency sampling and optimal algorithm 

are the most efficiently used. The most commonly used fixed window functions are 

Rectangular, Hanning, Hamming, Blackman and Bartlett (Salivahanan, Vallavaraj, & 

Gnanapriya, 2007), (Sharma, 2009). In these window functions, values of passband ripple 

   and stopband ripple    are specific as well as same. Henceforth, result will show either 

too small pass band ripple or too large stop band attenuation. In variable window such as 

Kaiser (Sharma, 2009), the values of    and    are chosen by using the ripple control 
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parameter specified by the Designer. Application of the window function also has two 

effects on the amplitude response of the filter. First, the amplitudes of Gibbs’ oscillations 

(Chakravarti & Mehra, 2014) in the passbands and stopbands are directly related to the 

ripple ratio of the window. Second, transition bands are introduced between passbands and 

stopbands whose width is directly related to the main-lobe width of the window. In case of 

frequency sampling approach instead of having very few independent variables, this 

method lacked behind due to the presence of a large number of constraints and as well as 

fixed control over the band edge frequencies or the passband ripples. In case of optimal 

approaches, filter coefficients are obtained by minimizing the maximum error between the 

desired and actual frequency response using different optimization algorithms. An optimal 

approach for FIR filter design using Chebyshev sense was first developed by Herrmann 

(Herrmann, 1970). In this method frequency response of the optimal low pass filter was 

assumed to be equiripple in both the pass band and stop band. The number of ripples in 

each band was made fixed, a set of non-linear equations describing the filter were also 

developed using an iterative descent method. Only disadvantage of this technique is 

restriction in filter length of about 40. This limitation of Herrmann’s approach was rectified 

by Hofstetter et al. (Hofstetter, Oppenheim, & Siegel, 1971), by developing an algorithm, 

called as “leminiscent of the Remez exchange algorithm”. But both of these methods result 

in extra ripple or maximum ripple filters, which are restricted subsets of optimal minimax 

filters. These methods also have the shortcoming of not accommodating the pass band and 

stop band cut-off frequencies of the filters. Another efficient optimal approach for 

designing non-recursive digital filter was designed in 1972 using Chebyshev 

approximation (Parks & McClellan, 1972). This technique comprised multi pass band - 

stop band filters, differentiators and Hilbert transformers, in addition to the conventional 

low pass, high pass, band pass and band stop filters, but this algorithm does not permit 
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independent selection of passband and stopband ripples where as it selects a ratio of 

passband and stopband ripples. 

1.4.2. Soft Computing in Digital FIR Filter Design 

Soft Computing is an emerging approach in computation that tries to mimic the astonishing 

ability of the human mind to reason and learn in an environment of uncertainty. The main 

goal of soft computing is to develop intelligent machines to provide solutions to the hard 

hitting real world problems. The term “Soft computing” was introduced by Lotif Zadeh in 

1981. It is an assortment of evolutionary computing, neural network and fuzzy logic. Soft 

computing techniques resemble biological processes more closely than traditional 

techniques, which are largely based on formal logical systems, such as sentential 

logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft 

computing techniques are intended to complement each other. Components of soft 

computing are shown in chart below. 

 

 

 

 

 

 

 

 

Figure 1.1: Taxonomy of Soft Computing 
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Neural Network was used for sharp linear phase FIR filter design synthesized by using 

basic and multistage frequency response masking techniques. The method was proposed 

using a batch back-propagation neural network algorithm with a varying learning rate 

mode. Construction of filters using combining Genetic Algorithm and Neural Network was 

proved to be effective. Recently design and analysis of low pass FIR filters was also 

performed using different types of learning algorithms in artificial neural network for 

comparative study. Fuzzy logic is another soft computing approach that has been used 

proficiently for filter design in isolation as well as with combination of several 

metaheuristic algorithms. Different types of metaheuristic algorithms including Genetic 

Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization, 

Artificial Bee Colony Optimization, Cuckoo Search Algorithm and their advanced versions 

have been widely used for FIR filter design, specifically for filter coefficient optimization, 

in the present decade.  

1.5. Motivations 

Most of the FIR filters designing techniques are based on Window method, Optimal 

Sampling Method and Frequency Sampling Method. Optimal approaches involve the use 

of Mixed Integer Linear Programming, thereby leading to higher computation time, 

whereas suboptimal approaches are faster, but they do not assure optimal results. Heuristic 

Algorithms (Kokash, 2018;, Kenny, Nathal, & Saldana, 2014; Eiselt & Sandblom, 2000) 

have an outstanding characteristic of searching within its neighborhood to obtain optimal 

solution. Hence, using heuristic optimization algorithms for obtaining perfect set of filter 

coefficients is much worthy. Obtaining the parameters required for implementing filters 

using Kaiser Window function and obtaining least noisy signal from a set filtered signal are 

two promising optimization problems that can be solved using heuristic algorithms.  
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1.5.1. Why Metaheuristics? 

Heuristic search algorithms do not guarantee satisfactory results to the optimization 

problems with inadequate information. This limitation of heuristic search motivated to use 

a progressive search technique known as Metaheuristic (Yang X. S., 2010; Yang X. S., 

Metaheuristic Optimization, 2011) for solving hard hitting optimization problems (Desale 

et al., 2015). Most of the metaheuristic algorithms are motivated by some astonishing 

natural phenomena. These algorithms are essentially known as Nature Inspired 

Metaheuristics. 

1.5.2. Why Quantum Inspired Metaheuristics? 

Quantum Computing (QC) (Nielsen & Chuang, 2000; Yanofsky, 2007; Wolf, 2011) 

involves operations like coherence, de-coherence and superposition on the essential basis 

states which are characterized by quantum mechanical properties (Ventura & Martinez, 

1997). In quantum mechanical systems, the linear combination of each possible solution 

outputs another solution declared through the property of superposition. QC is capable of 

bringing parallelism that reduces the complications of the algorithms. This advantageous 

characteristic of parallel processing is used adeptly in finding favorable solutions for 

optimization problems. Quantum behaved nature inspired metaheuristic algorithms (Dey et 

al., 2017; Samanta et al., 2017) have also been found to be efficient in solving a 

considerable number of hard hitting optimizations problems including filter coefficient 

optimization in lesser execution time. 

1.6. Goals 

The research presented in this thesis is aimed towards the following objectives. 

 To identify parameters of a noisy signal and designing a soft computing based technique 

for filtration of noisy signal.  
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 To propose an algorithmic strategy for optimizing the parameters needed for 

implementation of digital FIR filters. 

 To propose an innovative algorithm capable of optimizing set of coefficients to design 

hardware efficient FIR filters.  

 To propose adaptive algorithm for obtaining optimized filter coefficients in lesser 

execution time. 

The motivation behind this work is to implement an optimized filter that is capable of 

generating signal with minimum loss of data.  

1.7. Contributions 

A technique of using Genetic Algorithm is proposed for obtaining least noisy signal from a 

set of filtered signals. Kaiser Window with varying passband and stopband ripples has been 

used in this thesis work for filtration of noisy heart sound signals. Hence a set of filtered 

signals have been obtained. Genetic Algorithm is then used to find out the least noisy 

signal by using the set of filtered signals as the initial population. Considering the initial 

population is the starting point of the Genetic Algorithm where the initial population 

comprises of a set of possible solutions to the specified problem. An adaptive parameter of 

signals is introduced for evaluation of fitness values of the solutions.  

A new strategy based on the weight lifting strategy of ants has been proposed for 

optimizing parameters to design digital filter using Kaiser Window function. A new 

innovative objective function has been introduced for optimization that performs based on 

the signal de-noising capability of the filters implemented by the optimized sets of 

parameters. A case study was carried out on heart sound signals with a filter designed using 

Kaiser Window with the optimized parameters.  

A comparative study was carried out on the efficacy of three conventional optimization 

algorithms to optimize FIR filter coefficients. The efficacy of the proposed method was 
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compared with the traditional approach of filter design with Parks McClellan algorithm as 

reference. Mean square error based cost function was used as the fitness function in the 

optimization algorithms. It is seen was observed that the BAT algorithm statistically 

outperforms Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) in terms of 

stopband attenuation characteristics and ripple performance of the designed filter. 

We have also proposed design of even order low pass FIR filters and odd order bandpass 

FIR filters using coefficients optimized by an adaptive Global Best steered Cuckoo Search 

Algorithm (gbest CSA). For optimization, we use a mean square error based cost function 

as the fitness function. We evaluated the efficacy of the proposed technique by comparing 

the filter responses with responses of the filters designed using standard Cuckoo Search 

Algorithm (CSA) and traditional technique of filter design with Parks McClellan 

algorithm.  Efficacy of the proposed algorithm compared to the conventional CSA is 

proved using seven standard benchmark functions. 

A novel algorithm namely Global Best Steered Quantum Inspired Cuckoo Search 

Algorithm (GQICSA) is proposed for obtaining optimized set of coefficients to implement 

FIR Filter. Adder cost of a filter is estimated after quantizing the filter coefficients 

followed by Common Sub-expression Elimination (CSE). We found from the simulation 

results that reduction in word length of coefficients does not make the filters fail to achieve 

the ideal frequency response. Moreover, filters developed using GQICSA outperform the 

benchmark filters designed by Parks McClellan Algorithm in terms of stopband 

attenuation. Analysis of the results reveal that GQICSA not only improves over various 

conventional algorithms including CSA, it also surpasses modified version of CSA, 

Quantum Inspired CSA (QICSA) updated using quantum principles, for optimizing filter 

coefficients to design lower hardware costing filter without compromising the filter 

responses and efficiency. GQICSA also provides significant improvements compared to 
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CSA and QICSA in terms of stopband attenuation and execution time for higher order filter 

design. Efficiency of GQICSA over QICSA and conventional CSA is also proved with 16 

benchmark functions. 

For the same purpose for implementing hardware efficient FIR filters, a new algorithm 

namely Fast converging Flower Pollination Algorithm has been proposed. It has been 

shown by simulation results that reduction neither in word length of coefficients nor in 

filter order causes the filter implemented using optimized set of coefficients obtained by 

the proposed algorithm to be incapable of achieving the ideal frequency response. 

Implemented filters have been demonstrated to be effective to filter noisy 

Phonocardiogram signals.  

1.8. Thesis Organization 

In chapter 1, introduction of the thesis is presented. In this section, motivation and 

background of the research is shown. In chapter 2, a brief literature review is presented to 

show the present state of the art research which is already done in this area. The objective 

of the work is decided accordingly. In chapter 3, an innovative approach has been proposed 

of using Genetic Algorithm (GA) is for obtaining least noisy signal from a set of filtered 

signals. Kaiser Window with varying passband and stopband ripples are used for filtration 

of noisy signal, henceforth a set of filtered signals are obtained. GA is then used to find out 

the least noisy signal by using the set of filtered signals as initial population. For evaluation 

of fitness values of the solutions an adaptive parameter of the signals are introduced. Based 

on that parameter a set of signals are then get selected using Roulette Wheel Selection 

procedure. Genetic operators- crossover and mutation are then applied on the selected 

signals hence the optimized signal with lowest amount of noise is finally obtained. In the 

same chapter a new strategy based on the weight lifting strategy of ants has also been 
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proposed for optimizing parameters to design a digital filter using Kaiser Window 

function. A new innovative objective function has been introduced for optimization that 

performs based on the signal de-noising capability of the filters implemented by the 

optimized sets of parameters. A case study was carried out on heart sound signals with a 

filter designed using Kaiser Window with optimized parameters.  

In chapter 4 a comparative study of few traditional optimization algorithms namely GA, 

(PSO) and BAT algorithm is stated while used to obtain optimized filter coefficients. A 

new algorithm Global Best Steered Cuckoo Search Algorithm is also proposed for the 

same purpose. The motivation behind this work is to implement an optimized filter that is 

capable of generating signal with minimum loss of data. These kinds of filters will be very 

much useful in bio-medical domain where little loss of data in signals may lead to incorrect 

diagnosis. Aiming to reduce the execution time to optimize filter coefficients Fast 

Converging Cuckoo Search Algorithm (FCSA) is also proposed in this chapter. Obtained 

results are compared with the conventional CSA hence efficacy of the proposed algorithm 

is proved. 

In chapter 5 innovative approaches for implementing hardware efficient FIR filter are 

proposed. These techniques involved use of fixed length coefficients and to obtain 

optimized coefficients two innovative algorithms are proposed. In fixed coefficient filter 

implementation, replacement of the multiplier with the shift and adder circuits is a 

widespread approach. The adders in this approach are dependent on the number of signed-

power-of-two (SPT) terms present in each filter coefficient. A new quantum algorithm 

namely Global Best Steered Quantum Inspired Cuckoo Search Algorithm (GQICSA) is 

proposed in this thesis for obtaining optimized filter coefficients capable of acquiring 

desired filter responses. This approach is also proved to be effective in reducing number of 

SPT terms. Common sub expression elimination technique reduces the number of adders 
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further. Another new algorithm namely Fast Converging Flower Pollination Algorithm is 

also used for the same purpose. These new algorithms have been proved to be much more 

effective compared to their traditional versions which have also been proved to be efficient 

in the domain of filter coefficient optimization. Another efficient nature inspired 

optimization technique namely Flower Pollination Algorithm (FPA) is modified and Fast 

Converging Flower Pollination Algorithm (FFPA) is used for obtaining optimized set of 

coefficients to implement a hardware efficient FIR filter in much lesser execution time. 

Efficacy of the proposed algorithm is proved by comparing the filter responses with few 

other filters designed using several conventional approaches. 

Figure 1.2 shows a pictorial view of the thesis organization. 
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Chapter 2 

Literature Survey 

2.1. Introduction 

The core aim of this chapter is to provide a survey and analysis of the existing approaches for 

implementation of digital filters. Digital filters (Antoniou, 1993; Sharma, 2009; Smith, 2011; 

Mitra, 2013) have been extensively used in the last few decades for noise elimination from 

signals (Jackson, 1996). Trifling hardware cost and extraordinary behavior of altering 

characteristics with changes in the discrete values stored in the registers have made the digital 

filters more efficacious than the analog ones. Digital filters are classified into two types - 

Finite Impulse Response (FIR) Filter (Sharma, 2009; Mitra, 2013; Proakis & Manolakis, 

2015), and Infinite Impulse Response Filter (Sharma, 2009; Mitra, 2013). Due to minimalisms 

in hardware and fluently attainable linear phase properties, FIR filters are used massively 

compared to the IIR filters. Section 2.2 gives a brief survey of conventional approaches used 

for Digital FIR Filter design.  

2.2. Conventional Approaches for Digital FIR Filter Design  

The foremost step that the design of FIR filters involves is computation of filter coefficients. 

Among a considerable number of techniques proposed for finding the filter coefficients, 

Window methods (Kaiser, 1966; Harris & Fredric, 1978; Sharma, 2009), frequency sampling 

methods (Gold & Jordan, 1969) and optimal methods (Herrmann, 1970; Parks & McClellan, 

1972; Reddy & Sahoo, 2015) are most efficiently used.  



17 
 

A traditional method for implementing FIR filters is based on the application of the Fourier 

series (Deshpande, 2002). Basically frequency of FIR filter is a periodic function of frequency 

with the period same as the sampling frequency, hence it can be expressed using Fourier 

series. Though Fourier series does not lead to adequate results but by amalgamation with a 

special class of functions called as window functions (Harris & Fredric, 1978), satisfactory 

results can be obtained. Approximation obtained using this method is suboptimal but the 

design overhead and computation costs are relatively insignificant. The most commonly used 

fixed window functions are Rectangular (stanford, 2018a; Sharma, 2009), Hanning (stanford, 

2018b; Sharma, 2009), Hamming (stanford, 2018c; Sharma, 2009), Blackman (stanford, 

2018d; Sharma, 2009) and Bartlett (stanford, 2018e). In these window functions, values of 

passband ripple    and stopband ripple    are specific as well as same. Henceforth, result will 

show either too small pass band ripple or too large stop band attenuation. In variable window 

such as Kaiser (Kaiser, 1966; Salivahanan et al., 2007;  Sharma, 2009), the values of    and 

   are chosen by using the ripple control parameter specified by the designer. Application of 

the window function also has two effects on the amplitude response of the filter. First, the 

amplitudes of Gibbs’ oscillations (Gibbs, 1898; Hewitt et al., 1979; Chakravarti & Mehra, 

2014) in the passbands and stopbands are directly related to the ripple ratio of the window. 

Second, transition bands are introduced between passbands and stopbands whose widths are 

directly related to the main-lobe width of the window.   

Frequency sampling technique was introduced by Gold and Jordan (Gold & Jordan, 1969) and 

further developed by Rabiner et al. (Rabiner et al., 1970). This approach involves computation 

of filter coefficients by sampling the ideal filter in the frequency domain. In this method a 

specific frequency can be approximated by fixing most of the Discrete Fourier Transform 
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coefficients and rejecting the unspecified coefficients that lie in the range of transition bands. 

These unspecified coefficients are generally obtained by optimization, henceforth minimizing 

a weighted approximation error over the desired frequency range. Instead of having very few 

independent variables, frequency sampling method lacked behind due to presence of a large 

number of constraints and fixed control over the band edge frequencies or the passband 

ripples.  

In case of optimal approaches (Herrmann, 1970; Parks & McClellan, 1972), filter coefficients 

are obtained by minimizing the maximum error between the desired and actual frequency 

response. An optimal approach for FIR filter design using Chebyshev sense (Darlington, 1970) 

was first developed by Herrmann (Herrmann, 1970). In this method frequency response of the 

optimal low pass filter was assumed to be equiripple in both the pass band and stop band. The 

number of ripples in each band was made fixed, a set of non-linear equations describing the 

filter were also developed using an iterative descent method. Only disadvantage of this 

technique is restriction in filter length of about 40. This limitation of Herrmann’s approach 

(Herrmann, 1970) was rectified by Hofstetter et al. (Hofstetter et al., 1971), by developing an 

algorithm, called as “Leminiscent of the Remez exchange algorithm”. But both of these 

methods result in extra ripple or maximum ripple filters, which are restricted subsets of 

optimal minimax filters. These methods also have the shortcoming of not accommodating the 

pass band and stop band cut-off frequencies of the filters. Another efficient optimal approach 

for designing non-recursive digital filter was designed in 1972 using Chebyshev 

approximation (Parks & McClellan, 1972). Further advancement was introduced the concept 

of Weighted Chebyshev approximation was used design FIR filter in 1975 (Rabiner et al. , 

1975). Necessary and sufficient conditions for the best Chebyshev approximation were 
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obtained from the classical alternation theorem. Remez exchange algorithm was established as 

an effective tool for the implementation of optimal filters. Subsequently, the method was 

extended to include all types (Odd order symmetric filter, even order symmetric filter, odd 

order asymmetric filter and even order asymmetric filter) of linear phase FIR filters. A 

computer program was developed by McClellan et al. for designing a large class of optimum 

FIR linear phase digital filters (McClellan & Parks, 1973). This technique comprised multi 

passband - stop band filters, differentiators and Hilbert transformers, in addition to the 

conventional low pass, high pass, band pass and band stop filters, but this algorithm does not 

permit independent selection of passband and stopband ripples whereas it selects a ratio of 

passband and stopband ripples. Linear programming is another optimal technique for 

designing FIR filters was introduced by Rabiener et al. (Rabiner et al., 1972)  It was used for 

implementing an equiripple FIR Nyquist filter and equiripple FIR transmit filter. This 

approach was proved to be capable of avoiding the numerical ill-conditioning problems which 

commonly occur due to the necessity of sampling the frequency response on a very dense grid 

of points for high-order filters. Though linear programming is very supple and approximates 

an extensive variety of preferred filter shapes, it is relatively slow and henceforth restricted to 

limited length (Rabiner, 1972). In most of the iterative approaches, convergence speed and 

convergence time intensely depend on the initial estimate of the solution. Another innovative 

optimal technique was introduced to design constraint based FIR filter (Steiglitz et al., 1992). 

In this approach the simplex algorithm was used for linear programming to find the best 

linear-phase FIR filter of minimum length, as well as to find the minimum feasible length 

itself. Constrained based FIR filter design proved its efficiency to find the shorter filter length 

that allows the constraints of upper and lower filter responses to be met. Integer programming 
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using branch and bounce algorithm is another effective approach that had been used to design 

the optimal filter (Kodek, 1980). A Mixed Integer Linear Programming (MILP) method was 

also used for the same purpose and was proved to be efficient in obtaining desired frequency 

response compared to simple rounding of coefficient values (Lim & Parker, 1983). Using 

Local Search Algorithm with powers-of-two coefficients (Zhao & Tadokoro, 1988) show 

improvement not only in filter response but also minimized the error as compared to MILP 

(Lim & Parker, 1983). Further improvement in Local Search Algorithm resulted in a Two-

stage Local Search Algorithm (Samueli, 1989) for the implementation of multiplier less FIR 

filters. In this technique coefficients were represented in Canonical Signed Digit (CSD) form. 

Li et al. proposed a technique involving variable number of SPT terms for each coefficient (Li 

& Lim, 1993). After two years an approach was proposed for reducing the number of SPT 

terms as well as required number of adders (Li, 1995). Use of Common Sub-expression 

Elimination (CSE) enhances the ability of reducing total number of adders required to design 

optimal filters (Hartley, 1996). Further, the number of adders was reduced by sub-expression 

sharing using Merge-Search Algorithm (Chen & Wilson, 1999). An innovative approach for 

SPT term allocation for the set of filter coefficients was proposed by Lim et al (Lim et al., 

1999). This technique involved determination of SPT term for each coefficient followed by 

optimization of coefficients using Integer Programming.  

Another two-stage algorithm was used for more reduction in SPT terms by Kaakinen and 

Saramaki (Kaakinen & Saramaki, 2001). Combination of Local Search and Global Search 

were used to implement a two-stage algorithm for substantial improvement in filters response 

(Feng & Teo, 2008).  In case of three-stage algorithm, implementation of a prototype FIR filter 

was performed following scaling of coefficients using a scaling factor (Yao & Chien, 2002). In 
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this approach filter coefficients were represented in CSD form, prototype filter was designed 

using the most conventional Remez exchange algorithm. Finally a partial MILP algorithm was 

applied aiming to reduce the total number of SPT terms. An optimal algorithm was introduced 

in 2007 for implementation of low power multiplier-less FIR filters using Chebyshev criterion 

(Karakonstantis & Roy, 2007). In the same year FIR filter design using reusable Common 

Sub-expressions where common SPT terms are scaled and rounded aiming to obtain the CSD 

coefficients set was proposed by Xu (Xu et al., 2007). In this approach Local Search 

Algorithm was used to optimize maximum peak ripple. Successively the algorithm also 

reduced the required number of adders by most frequently used sub-expressions. FIR filter 

with sub-expression in one stage using MILP algorithm was designed in 2007 (Yu & Lim, 

2007). Use of sub-expression in one stage using MILP was also proved to be efficient for 

implementation of FIR filters (Aktan et al., 2008). A modified branch and bounce algorithm 

known as FIRGAM was proposed to minimize the total number of SPT terms in a coefficient 

set. Yu et al. proposed an approach to reuse the CSE for FIR filter design (Yu et al., 2009). 

Another algorithm was introduced by Shi and Yu for implementing an FIR filter with minimal 

adder cost (Shi & Yu, 2011). Most of the methods discussed can be categorized into optimal 

and suboptimal approaches. Optimal approaches involved use of Mixed Integer Linear 

Programming, hence lead to higher computation time, whereas suboptimal approaches do not 

assure optimal results. 

Heuristic Algorithms (Pearl, 1984; Eiselt & Sandblom, 2000; Kenny et al., 2014; Kokash, 

2018;) have an exceptional characteristic of searching within its neighborhood to obtain 

optimal solution. Hence, using Heuristic optimization algorithms for obtaining filter 

coefficients is much worthy. A brief review of the designing strategies for the synthesis of 
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hardware efficient FIR filters including conventional approaches and heuristic approaches 

have been performed by Chandra and Chattopadhyay (Chandra & Chattopadhyay, 2016). But 

Heuristic Search algorithms do not guarantee sufficiently good quality results to the 

optimization problems with limited information. Based on this bottleneck of Heuristic Search, 

an advanced search technique known as Metaheuristic (Bianchi et al., 2009; Yang, 2010a; 

Yang, 2011) Search had been used to solve hard hitting optimization problems since last 

decade (Desale et al., 2015). Most of the metaheuristic optimizations techniques are inspired 

by the astonishing behaviour of nature, hence termed as Nature Inspired Metaheuristics (Yang, 

2010b). 

Section 2.3 states brief discussions of using Nature Inspire Metaheuristics for filter design.  

Section 2.4 includes brief description of the Quantum Behaved Nature Inspired Meta-

heuristics while used for obtaining optimized coefficients for digital Finite Impulse Response 

Filter design. 

2.3. Nature Inspired Metaheuristic Algorithms for filter coefficient 

optimization 

The term ‘Meta-heuristic’ comes from the term ‘meta’ which means ‘beyond’ or ‘higher level’ 

and the ‘heuristic’ that means ‘to find’ or ‘to discover by trial and error’ (Blum and Roli 2003; 

Gandomi et al., 2017). Heuristics algorithms (Pearl, 1984; Kokash, 2014) are able to provide 

quality solutions to a hard-hitting optimization problem, but they do not guarantee the optimal 

solution as an output. Further improvement in ‘Heuristic’ approach results in ‘Meta-heuristic’. 

All the Metaheuristic algorithms use strategy of randomization and local search. The foremost 

components of any metaheuristic algorithms are: intensification and diversification, or 

exploitation and exploration (Blum and Roli, 2003). There are a considerable number of 
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metaheuristic algorithms in the literature that is used for FIR filter design (Gentili et al., 1995; 

Williams et al., 2005; Najjarzadeh & Ayatollahi, 2008; Hassan & Abbood, 2013; Singh & 

Josan, 2014; Tsutsumi & Suyama, 2014; Chandra, 2016). However, the well-known 

algorithms in the field of FIR filter design are addressed in this thesis. Most of the 

metaheuristic algorithms are implemented based on some natural phenomena, hence called as 

Nature Inspired Metaheuristic (Yang, 2008; Yang, 2014). 

2.3.1. Genetic Algorithm 

Genetic Algorithm (GA) (Holland, 1975; De Jong, 1975; Holland J. H., 1992; Yang, 2014; 

Kumar A.) mimics the mechanism of natural evolutionary principles introduced by Charles 

Darwin. GA was developed by John Holland and his collaborators during 1960 and 1970s 

(Holland, 1975; De Jong, 1975; Holland J. H., 1992).  GA encodes all the data of a search 

space into a simple string called as a chromosome, which is usually of a fixed length (Melanie, 

1999). GA uses various encoding schemes, such as, binary encoding, integer encoding, Gray 

encoding, and decimal encoding (Ahmed, 2008).  GA is suitable for solving optimization 

problems. The basic advantage of this algorithm is that it has the capability to handle a number 

of chromosomes at the same time, where each chromosome presents a different solution to a 

given problem.  The GA evolutionary cycle starts with a randomly selected initial population.  

The changes to the population occur through the processes of selection based on fitness, and 

alteration using crossover and mutation (Yang, 2014). The application of selection and 

alteration leads to a population with a higher proportion of better solutions. The evolutionary 

cycle continues until an acceptable solution is found in the current generation of population, or 

some control parameter such as the number of generations is exceeded. Selection operation 
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can be carried out by several schemes such as Rank Selection, Roulette Wheel Selection 

(Obitko, 1998; Kumar R. & Joytishree, 2012) and so on. 

GA had been proved as an efficient approach to design 1D FIR filters (Gentili et al., 1995; 

Hassan & Abbood, 2013). GA is capable of generating a population of genomes using genetic 

operators that represent the filter coefficients and compared the amplitude response of each 

genome to that of the desired amplitude response. As GA directly generated digital 

coefficients, there is no need to truncate coefficients for digital hardware implementation of 

the filter. For representing filter coefficients, two types of encoding schemes: ternary encoding 

and mixed encoding are mostly appreciated (Lee, 2000). To compensate the canonical signed-

digit (CSD) constraints, a modified GA structure was proved to be more effective. These 

constraints were basically imposed by filter coefficients. An efficient Genetic Algorithm was 

used to design digital FIR filters with coefficients constrained to be the Sums of Power of Two 

Terms (Gentili et al., 1995). The implemented filter performed better with reduced 

computational costs. Symmetric properties of 2-D sequences and their applications for 

designing linear-phase 2-D FIR digital filters using GA were introduced in 2004 (Tzeng, 

2004). 16 types of cases were considered according to the symmetry/anti-symmetry of 2-D 

sequences in both directions. Definitions of quadrantal-plane, half-plane, and full-plane filters 

were also described along with several numerical design examples illustrated by the GA 

approach. An influential genetic algorithmic approach can determine the optimal coefficients 

of McClellan transformation (Tzeng, 2006). It was used to design any arbitrary shape 

transformation contours to map from one-dimensional prototypes to two-dimensional finite-

duration impulse response filters very effectively. Several numerical examples such as fan 

filters with arbitrary slope, elliptical filters, elliptical filters with arbitrary orientation, circular 
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filters, and diamond-shaped filters were also demonstrated for showing the usefulness and 

effectiveness of the proposed approach. High throughput 2D FIR filters were implemented 

using Singular Value Decomposition and GA in early days of the current century (Williams et 

al., 2005). 1D FIR filter design was performed using Canonical Signed Digit Coefficients that 

caused decreasing in computation time and increase in throughput. 2D filters were designed 

using cascaded 1D filter in a parallel structure. A Hybrid Genetic Algorithm (GST) 

amalgamation of Adaptive Genetic Algorithm (AGA), Simulated Annealing (SA) and Tabu 

Search was used to design filters with coefficients restricted to the sum of signed powers-of-

two (SPT) terms (Cen, 2007). AGA with varying population size and varying probabilities of 

genetic operations was used as the basis of the hybrid algorithm. SA was used to escape AGA 

from local optima and prevent premature convergence. The concept of tabu increased the 

convergence speed by reducing the search space according to the properties of filters 

coefficients. The authors illustrated that the normalized peak ripples of filters can be largely 

reduced using GST. A comparative evaluation of GA and PSO was reported while used for 

FIR filter implementation. Finally the performance analysis based on magnitude and gain plats 

clearly proved that results with PSO were better than GA (Ababneh & Bataineh, 2008). 

Adaptive Parameter Adjustment (APA) Genetic Algorithm was used to design FIR filters in 

the year of 2011 (An-xin et al., 2011). GA‘s parameters were improved based on evolutionary 

approach to improve the speed of convergence. As real number coding technique was used for 

chromosome encoding by the authors, chromosomes were represented as vectors. For selection 

of chromosomes two well-known selection strategies tournament selection and elitist selection 

were combined. GA based Artificial Neural Network was used for lowpass FIR filter design in 

2012 (Thapar et al., 2012). In this approach GA was used basically for optimizing the network. 
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The network was trained using Multilayer Perceptron in which Error Back Propagation 

Algorithm had been specifically used to design Low Pass FIR filter. In 2013 Genetic 

Algorithm was used for searching the optimal coefficients and also to find the minimum 

number of Taps, and hence minimized the number of multipliers and adders (Hassan & 

Abbood, 2013). Self-organizing Random Immigrants Genetic Algorithm (SORIGA) was 

designed aiming to design multiplier-less finite impulse response filter in 2013 (Chandra & 

Chattopadhyay, 2013). Coefficients of the filter were encoded by binary and Canonic Signed 

Digit (CSD) number systems and afterwards optimized using SORIGA (Chandra, 2016). In 

order to prove the efficacy of the algorithm, the performance of the proposed filter was 

compared with existing filters in terms of impulse response and hardware cost that was 

measured by means of a number of performance parameters. In 2015 an optimal FIR highpass 

(HP) filter was implemented using the L1-norm based real-coded genetic algorithm (RCGA) 

(Aggarwal et al., 2015). A novel fitness function based on L1 norm was used by the authors 

aiming to enhance the efficiency of the proposed algorithm. Optimized filter coefficients were 

obtained by defining the filter objective function in L1 sense using RCGA. Simulation analysis 

in the paper proved efficacy of RCGA by means of signal attenuation ability of the filter, 

flatter passband and the convergence rate. 

2.3.2. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart in 1995 

(Kennedy & Eberhart, 1995). Among all the swarm intelligence (Kennedy et al., 2001; 

Engelbrecht, 2005; Yang et al., 2013) based algorithms PSO is used extensively for its 

simplicity and flexibility. Real number randomness and global communication among the 

swarm particles, these are the key idea behind this algorithm. PSO quests the search space by 
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updating the paths of each individual, termed as particle, as the piecewise pathways formed by 

positional vectors following quasi-stochastic manner. The movement of a swarming particle 

comprises two foremost components: a stochastic component and a deterministic component. 

Each particle is attracted toward the position of the current global best and its own best 

location in history, while at the same time it has a tendency to move randomly. When a 

particle finds a location that is better than any previously found locations, updates that location 

as the new current best for particle i. There is a current best for all n particles at any time t 

during iterations. The aim is to find the global best among all the current best solutions until 

the objective no longer improves or after a certain number of iterations. Different variations of 

PSO are namely: Accelerated PSO, Binary PSO (Yang, 2014). 

PSO was used for digital FIR lowpass and bandpass filter design in 2008. Impacts of different 

error norms such as Least Mean Square (LMS) and Minimax were surveyed and Minimax 

strategy was proved to be more efficient in terms of the convergence speed and frequency 

responses of the implemented filters (Najjarzadeh & Ayatollahi, 2008). The effect of different 

population and iteration of PSO in filter implementation were also investigated. Filters 

designed using larger population were proved as more efficient. In the same year combination 

of PSO and Differential Evolution (DE) was used for FIR filter design and proved to be 

capable of obtaining optimized result in much lesser time rather than the conventional PSO 

(Luitel & Venayagamoorthy, 2008). An adaptive design technique of linear phase FIR 

highpass filters using Improved Particle Swarm Optimization (IPSO) was proposed in the 

earliest days of the present decade (Mandal et al., 2012). In IPSO a random parameters was 

used to control local and global searches. A new variation in the velocity was made by 

splitting the cognitive component into two different components. Digital high pass FIR filters 
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was designed using Particle Swarm Optimization with Constriction Factor and Inertia Weight 

Approach (PSO-CFIWA) in 2011 (Mandal et al., 2011). In this algorithm velocity of the 

particles were modified by using inertia weight and constriction factor. Novel Particle Swarm 

Optimization (NPSO) Algorithm was developed for optimal FIR filter design in 2012 (Mondal 

et al., 2012). Particle Swarm Optimization improved the solution quality by using modernized 

velocity vector.  Modified definition of the inertia weight had been used in NPSO to enhance 

the search capability that leads to a higher prospect of obtaining the global optimal solution 

Craziness based Particle Swarm Optimization was proposed by the same authors in 2012 for 

linear phase highpass FIR filter design (Kar et al., 2012). Hybrid technique designed in 

amalgamation of Random PSO with DE is another effective approach used for lowpass and 

highpass FIR filter design (Vasudhara et al., 2013). Hybrid algorithm was used in order to 

maintain the diversity and explore the search space more efficiently. Use of hybrid 

optimization techniques not only helped to reduce the execution time but also in improving the 

fitness significantly by saving the particles from being trapped in local minima, thus guiding 

them towards the global solution.  

2.3.3. Ant Colony Optimization 

Ant Colony Optimization (ACO) was developed by Marco Dorigo in earliest days of 90’s 

(Dorigo & Caro). It is a paradigm for designing meta-heuristic algorithms for optimization 

problems and is inspired by the foraging behaviour of ant colonies. ACO is an algorithm that 

finds optimal paths based on the behaviour of ants searching for food. Usually ants stroll 

randomly, but whenever ants search out a source of food, they walk back to the colony leaving 

pheromones as indicator all the way leads to the food source. Other ants coming nearer to 

those indicators follow that path with a convinced probability (Macura, 2018). They too 
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populate the path with their own pheromones. As more ants find and populate the path, it gets 

stronger until there are a couple streams of ants roving to several food sources near the colony. 

As the ants drop pheromones each time they travel through the path to food source to bring 

food, shorter paths are more prospective to be stronger, hence optimizing the "solution." Once 

a food source gets worn-out, the path is no longer populated with pheromones, hence slowly 

falloffs. ACO targets discrete optimization problems and can be extended to continuous 

optimization problems which is useful to find approximate solutions.   

ACO applied to design fourth order Low-Pass Butterworth analog Filter Design realized with 

components selected from different manufactured series (Benhala, 2014). ACO also proved to 

be an efficient approach for digital filter design using discrete coefficients aiming to reduce 

execution time (Tsutsumi & Suyama, 2014). Optimization was carried out with the objective 

of reducing the maximum error. In ACO pheromone update was performed in such away so 

that pheromones could be added only on the paths of the best individuals.  Properties of linear 

phase characteristics and assured stability allowed the FIR filters to be used with ACO and 

CSD coefficient (Sasahara & Suyama, 2015). CSD was used to remove non- zero digits and 

reduction in computation time.  

2.3.4. Firefly Algorithm 

In mathematical optimization, the firefly algorithm is a metaheuristic proposed by Xin-She 

Yang and inspired by the flashing behavior of fireflies (Yang, 2008; Yang, 2009; Yang, 

2010c). Fireflies produce luminescent flashes as a signal system to communicate with other 

fireflies, especially to prey attractions. FFA is inspired by the firefly’s biochemical and social 

aspects. The flashing light is produced by a process called Bioluminescence.  
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For improving the performance of linear phase FIR filters an adaptive designing technique was 

proposed using an optimization technique namely Firefly Algorithm (Saha et al., 2013). In this 

paper the design of lowpass, highpass, bandpass and stopband filters were shown.   

2.3.5. Differential Evolution  

Differential Evolution (DE) was developed by R. Storn and K. Price during 1996 and 1997 

(Storn, 1996; Storn & Price, 1997). DE is a vector-based metaheuristic algorithm, which has 

some similarity with pattern search and GA (Yang, 2014). DE can be considered as an 

advancement of GA with explicit updated equations. DE is population based stochastic search 

algorithm. It is capable of using real numbers as solution string, hence encoding and decoding 

are not required. DE comprises conserving a population of candidate solutions and also 

involves iterations of recombination, evaluation, and selection. In recombination, a new 

candidate solution is generated based on the weighted difference between two randomly 

selected population members added and then to a third population member (Brownlee , 2011). 

This agitates population members relative to the spread of the wider population. In combining 

with selection, the perturbation effect self-organizes the sampling of the problem space, by 

bounding it to already known spaces of interest. The Differential Algorithm is basically 

proposed for numeric optimization problems.  

DE algorithm was applied to the design of digital finite impulse response filters in 2006 

(Karaboga & Cetinkaya, 2006). The new DE algorithm based on reserved genes was used to 

implement digital finite impulse response filters in 2010 (Liu et al., 2010). New vectors were 

produced by combining the genes of the selected chromosomes. Newly generated vectors were 

then evolved with other individuals in the population. Besides increasing the diversity of 

population the algorithm was also proved to be effective in avoiding the local optimal solution. 
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Use of novel self-adaptive Differential Evolution algorithm for the same purpose was 

introduced by Chandra and Chattopadhyay in 2011(Chandra & Chattopadhyay, 2011). Critical 

analysis of different mutation strategy of DE while used for implementing FIR filters had been 

performed in 2012 by the same authors (Chandra & Chattopadhyay, 2012). Best mutation 

strategy was chosen based on the convergence speed as well as the frequency response of the 

designed filters. For higher order filters such as for 29
th

 order filter a mutation scheme could 

be chosen as best in terms of associated hardware cost. Next year a trigonometric mutation 

strategy was proposed by them for deigning a multiplier-less FIR filters using DE (Chandra & 

Chattopadhyay, 2013). In 2015 Differential Evolution Algorithm had been proved to be worth 

in designing a hardware efficient FIR filter (Reddy & Sahoo, 2015). In this approach using DE 

algorithm, first a set of filter coefficients with reduced number of signed-power-of-two (SPT) 

terms had been obtained without compromising on quality of the filter response. Then the 

Common Sub-expression Elimination Algorithm (CSE) was applied, and the hardware cost 

was determined in terms of required number of structural as well multiplier adders. The filters 

were designed using DE for various word lengths, and the same were implemented in 

transposed direct form (TDF) structure. The implemented filters were synthesized in Cadence 

RTL compiler using UMC 90 nm technology. Performances of the proposed filters were 

compared with recently best published works in terms of area, delay, power and power-delay-

product (PDP).  Use of DE was proved to be effective in highpass FIR filter design in terms of 

minimizing the magnitude approximation error and ripple magnitudes of pass-band and stop 

band (Kirandeep & Singh, 2015).  
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2.3.6. Cuckoo Search Algorithm 

Cuckoo Search (CS) is a modern nature inspired metaheuristic algorithm that is broadly used 

for solving hard-hitting optimization problems. Cuckoo Search Algorithm (CSA) was 

developed by Yang and Deb in 2009 (Yang & Deb, 2009; Yang & Deb, 2010; Yang & Deb, 

2013). CSA is based on the brood parasitism of the cuckoo species. It also uses a balanced 

composition of a local random walk and global explorative random walks, controlled by a 

switching parameter   . Global random walk is carried out by a superior kind of random walk 

namely Lévy Flights (Pavlyukevich, 2007). Predefined parameter bounds state the domain to 

choose the initial population. Lévy flights belong to a class of random walks formulated by 

Paul Lévy in 1937 (Yang, 2014) by generalizing Brownian motion (Brown & Liebovitch, 

2007) and comprising non-Gaussian randomly dispersed step sizes for the distance covered. 

Lévy Flights are capable of maximizing the probability of resource searches in uncertain 

surroundings. In Optical science, Lévy flight can be defined as a term used to designate the 

motion of light (Barthelemy et al., 2008). Sometimes, light follows a random series of shorter 

and longer steps rather than travelling in a predictable Brownian diffusion. The shorter and 

longer steps together form a Lévy flights walk. Most of the natural search processes use Lévy 

flights. Some bee species perform Lévy flights to find the flowers in a new area. Survey says, 

by performing Lévy flights vaster area can be covered than normal random search. Performing 

Lévy Flight is also additionally informative than the traditional search methods. Some shark 

species follow random Brownian motion while searching food; however, if they failed to get 

food items, they stat following Lévy flight behavior, mixing short random movements with 

long trajectories. 
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CSA proved its efficiency in determining the optimal coefficients of FIR filters over other 

nature inspired algorithms. It is also capable of optimizing coefficients of FIR-fractional order 

differentiator (FIR-FOD) (Kumar & Rawat, 2014). An adaptive weighted least square (WLS) 

fitness function was adopted by the authors to improve the response of the FOD. Use of CSA 

assuage from intrinsic drawbacks of premature convergence and stagnation unlike Genetic 

Algorithm. Use of Cuckoo Search with adaptive Lévy step size for implementation of 

computationally efficient lowpass FIR filters was introduced in 2016 (Sengupta & Basak, 

2016). An advanced version of CSA namely gbest-guided Cuckoo Search Algorithm (GCSA) 

was proposed in 2016 to design an IIR filter (Chakraborty et al., 2016). Just after one year 

GCSA proved its ability to implement higher order two channel filter banks (Dhabal & 

Venkateswaran, 2017). GCSA performed much better compared to other conventional 

algorithms in terms of filter responses. Unlike standard CSA, the proposed GCSA used 

replacement strategy based on global best solution for replacing old nests instead of random 

walks, and achieved faster convergence. For better exploration of the search space, instead of 

assuming a fixed value of       in Lévy's distribution in GCSA   was obtained using an 

equation within a range. Aiming for a faster convergence, the authors adjusted the parameter 

   which stands for probability of choosing worse quality nests to be replaced. To reduce the 

execution time, the authors modified practical implementation of the algorithm; instead of 

invoking the cost function separately by individual nest as in standard CSA, the authors make 

the whole population of nests to invoke the cost function at a time in case of GCSA that 

reduced functional overhead and hence execution time.  

Metaheuristic is actually advanced heuristic are capable of providing an adequately good 

solution to an optimization problem, especially with incomplete or imperfect information or 
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restricted computation capacity. Heuristic search problem can be defined as follows: Given the 

ability to execute a probabilistic ‘guessing’ algorithm  , and a checking function  , such 

that                                   , output                   . It can be 

solved by running the algorithm repeatedly and testing the output using the checking function 

(Montanaro, 2016). In case of classical algorithms this problem will result in an average case 

of        evaluations of  . However a quantum algorithm is capable of finding the output   

such that        only in    
  

   evaluations of  , hence attaining the speedup (Brassard 

et al., 2002). Failure probability in this case also tends to 0.  

2.4. Quantum Inspired Metaheuristic Algorithms in Filter 

Coefficient Optimization 

Quantum Computing (QC) (Benioff, 1980; Fynman, 1982; Deutsch, 1985; Nielsen & Chuang, 

2000; Yanofsky, 2007; Wolf, 2011) originates from the study of quantum mechanics and the 

functionalities of quantum mechanical devices. This involves operations such as coherence, 

de-coherence, superposition and entanglement on the essential basis states which are 

characterized by quantum mechanical properties (Ventura & Martinez, 1997). In quantum 

mechanical systems the linear combination of each possible solution outputs another solution 

is declared through the property of superposition. In the present decade QC is a developing 

field of computer science. QC is capable of bringing parallelism that reduces the complications 

of the algorithms. This outstanding ability of parallel processing can be used proficiently in 

finding promising solutions for optimization issues. Quantum behaved metaheuristic 

algorithms (Dey et al., 2017; Samanta et al., 2017) have proved their efficiency in solving a 

considerable number of hard hitting optimizations problems.  
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PSO had been already was proved to be effective for highpass FIR filter design (Mandal et al., 

2011; Mandal et al., 2012). In 2015 Quantum Behaved Particle Swarm Optimization (QPSO) 

proved to be able of performing much better than PSO while used for highpass FIR filter 

design (Dhabal & Sengupta, 2015). Further improvement in QPSO was accomplished and 

Weighted Mean Best Quantum behaved Particle Swarm Optimization (WQPSO) was used for 

the same purpose (Dhabal & Sengupta, 2015). WQPSO proved to be more efficient rather than 

PSO and also QPSO. Lowpass FIR filter designed using the coefficient optimized by Particle 

Swarm Optimization had also been proved to efficient in terms of different filter 

characteristics. Quantum behaved Particle Swarm Optimization proved to be efficient in 

implementation of highpass FIR filters. Quantum Inspired Multi-objective Cat Swarm 

Optimization (Q-MCSO) algorithm also proved to be effective for digital FIR filter design 

(Dwivedi & Patel, 2017). Efficacy of the algorithm was validated by comparing classical 

Multi-objective Cat Swarm Optimization (MCSO) algorithm and few other standard 

evolutionary algorithms. Q-MCSO outpaces all other algorithms not only to meet the 

specification for a filter of a specific order but also by achieving the desired filter responses 

with minimum power consumption.  

2.5. Conclusions 

There are a considerable number of techniques proposed by the researchers for digital FIR 

filters design since the earliest days of signal processing. Most of the earlier approaches can be 

categorized within three basic types such as window method, frequency sampling method and 

optimal method. Among these three tactics use of optimal approaches has been spread widely 

due to the ability of acquiring desired frequency response with minimized hardware 

complexity. Optimal approaches involve optimization of filter coefficients by minimizing the 
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maximum the error between the desired and actual frequency response. Among a significant 

number of optimal techniques, Remez exchange algorithm was effectively used as an effective 

tool for the implementation of optimal filters. Parks McClellan algorithm is another approach 

for implementation of optimum FIR linear phase digital filters, but this method does not 

permit independent selection of passband and stopband ripples where as it selects a ratio of 

passband and stopband ripples.  

Most of the previous methods available in the literature can be categorized into optimal and 

suboptimal approaches. But the limitations of optimal approaches involve use of Mixed 

Integer Linear Programming hence lead to higher computation time however suboptimal 

approaches do not assure optimal results. Hence, use of heuristic optimization algorithms for 

obtaining filter coefficients is much worthy due to the outstanding characteristic of searching 

in neighborhoods. But Heuristic Search algorithms do not guarantee sufficiently good quality 

results, to the optimization problems with incomplete information. This limitation of Heuristic 

Search inspired the researchers to use advanced search technique such as metaheuristic Search 

used to solve the optimization problems with inadequate information. Most of the 

metaheuristic algorithms are basically inspired by the natural phenomenon. Nature inspired 

Metaheuristics are being widely used for filter coefficient optimization since the last few 

decades. Amalgamation of quantum principle with the nature inspired Metaheuristics not only 

reduces the computation time of the algorithm, but also enhances the efficacy. In our work an 

innovative nature inspired metaheuristic algorithm has been used for obtaining optimized set 

of filter coefficients. Moreover, the algorithm is further improved by incorporating quantum 

principle, hence used to obtain hardware efficient filters with desired frequency response in 

lesser execution time. 
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Chapter 3 

Hybrid Algorithms for Signal Noise 

Removal 

 
3.1. Introduction 

Signal transmission habitually includes unwanted components termed as noise in the 

signal. Exclusion of noise from transmitted signals still remains a research hotspot for the 

researchers in the field of signal processing. Among different techniques used for noise 

removal, use of filters has been proved to be most effective. Digital filters (Antoniou, 

1993; Smith, 2011; Sharma, 2009; Mitra, 2013) have been used extensively compared to 

the analog filters. Trifling hardware cost and extraordinary behavior of altering 

characteristics with changes in the discrete values stored in the registers have made the 

digital filters more efficacious than the analog ones. Digital filters are classified into two 

types - Finite Impulse Response (FIR) Filter (Sharma, 2009; Mitra, 2013; Proakis & 

Manolakis, 2015), and Infinite Impulse Response Filter (Sharma, 2009; Mitra, 2013). Since 

the earliest days of discrete time systems, both the types of FIR and IIR systems have gone 

through several advancements in different eras. Design of digital FIR filters involves 

calculation of filter transfer function coefficients that provide target frequency response. 

Among a considerable number of techniques proposed for finding the filter coefficients, 

Window method (Sharma, 2009), frequency sampling and optimal algorithm are most 

efficiently used.  

The most commonly used fixed window functions are Rectangular (Stanford, 2018a), 

Hanning (stanford, 2018b; Sharma, 2009), Hamming (stanford, 2018c; Sharma, 2009), 
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Blackman (stanford, 2018d; Sharma, 2009) and Bartlett (stanford, 2018e; Salivahanan et 

al., 2007; Sharma, 2009). In these window functions, values of passband ripple and 

stopband ripple are specific as well as same. Henceforth, result will show either too small 

pass band ripple or too large stop band attenuation. In variable size window functions such 

as Kaiser Window (Kaiser, 1966; Sharma, 2009), the values of passband and stopband 

ripples are chosen by using the ripple control parameter specified by the Designer. 

In this chapter use of Kaiser Window function (Kaiser, 1966; Mitra, 2013) is used for 

removal of noise from signals in two different contexts. At the initial case, filtration of a 

noisy heart sound signal was performed using several filters implemented by Kaiser 

Window function (Sharma, 2009; Mitra, 2013) with varying ripple factors. Henceforth, 

from the obtained set of filtered signals the optimum signal with lowest amount of noise 

was achieved using the well-known iterative evolutionary search strategy Genetic 

Algorithm (GA) (Holland, 1975; De, 1975; Holland, 1992; Yang, 2014; Ye et al., 2013; 

Chauhan & Arya, 2011). Considering initial population is the starting point of the GA 

where the initial population comprises set of possible solutions to the specified problem. In 

this proposed technique for noise removal, obtained set of filtered signals using Kaiser 

Window is used as the initial population.  

At the former case another search technique Ant Weight Lifting (Samanta et al., 2013) 

algorithm was innovatively used to determine the optimized set of Kaiser Window 

parameters while used to de-noise the same heart sound signal. A new innovative objective 

function has been introduced for optimization that performs based on the signal de-noising 

capability of the filters implemented by the optimized sets of parameters.  

3.2. FIR Filter Design using Window Function 

The elementary notion behind the use of Window functions to design filters is represented 

as follows (Singh & Joshan, 2014; Mallick et al., 2014; Neha & Singh, 2014):  
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                                                                                                                         (3.1) 

This means in case of ideal filters, frequency response must be equals to 1 in the pass band, 

and equals to 0 in the stop band. 

The unit sample response       is related to the desired frequency response      by the 

Fourier transform relation as follows: 

                  
                                                                                                (3.2) 

      
 

  
            

 

  
                                                                                        (3.3) 

Aiming to implement a FIR filter of length M, unit sample response       must be 

restricted at the specific length of (M-1). It can be performed by multiplying       with 

the basic window function, termed as Rectangular Window function (Sharma, 2009).  

A rectangular window of length M can be expressed by the following Eqn (Sharma, 2009). 

                               

                                                                                                                               (3.4) 

Hence, the unit sample response      of the FIR filter can be represented by the Eqn. 

below (Sharma, 2009):  

                                                                                                                      (3.5) 

Substituting       from Eqn. 3.7,      is limited to the length M,  

                                                                                           

                                                                                                                         (3.6) 

Frequency response of FIR filter is obtained by performing Fourier transform of Eqn. 3.5 

(Sharma, 2009), 

                                                                                                                  (3.7) 
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Multiplication of the window function      with the unit sample response       is 

equivalent to the convolution of      with      which represents the Fourier transforms 

of the window function (Sharma, 2009).   

                  
                                                                                                  (3.8) 

This convolution has the smoothing effect on the frequency response       of the 

implemented filter. Increment in the length M causes reduction in the smoothing effect 

provided by the window function. Overshoots and ripples in frequency response arise due 

to the high oscillation or side lobes caused by abrupt truncation. Aiming to reduce these 

effects, few windows were introduced for the implementation of FIR digital filters that 

might not contain hasty discontinuity in time and frequency domain characteristics. In 

Table 3.1 different conventional window functions for implementation of FIR filters are 

shown. These window functions have specific values of passband ripple    and stopband 

ripple   . Hence, result will show either too small pass band ripple or too large stop band 

attenuation. Overcoming this limitation a variable size window known as Kaiser (Kaiser, 

1966) Window was proposed. Values of    and    are chosen by using the ripple control 

parameter specified by the Designer in case of Kaiser Window function.  
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Table 3.1: Comparative study of Window Functions 

Name of Window Time-domain sequences,               Transition width of Main Lobe  Peak 

 Side Lobes 

(dB) 

Rectangular (stanford, 2018a; 

Sharma, 2009) 

1 Narrowest main lobe about 
  

   
   -13 dB 

Barlett (Triangular) (Sharma, 

2009;  stanford, 2018e)    
    

   

 
 

   
 

Medium main lobe of 
  

 
 , Leakage factor 

is 0.28% 

-25 dB 

Blackman (Sharma, 2009;  

stanford, 2018d) 
           

   

   
       

   

   
 Large main lobe 

   

 
 , Leakage factor 0% -57 dB 

Hamming (Sharma, 2009;  

stanford, 2018c) 

            
   

   
   for  n=0,1,…,M-1 Medium main lobe 

  

 
 , Leakage factor 

0.03% 

-41 dB 

Hanning (Sharma, 2009;  

stanford, 2018b) 

 

 
      

   

   
    For n=0,1,….,M-1 Medium main lobe 

  

 
 , Leakage factor 

0.05% 

-31 dB 

Tukey (Blackman and Tukey, 

1959) 

 

 
       

     
 

 

     
 

 

       
  

 
     

 

 
 

              
  

 
 

Main lobe      , Leakage factor 3.57% -15.1dB 
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3.2.1. Kaiser Window Function 

Kaiser window function was first proposed by James Kaiser at Bell Laboratories (Kaiser, 

1966) to design non-recursive digital filters by using the modified zero
th

 order Bessel function 

(I0-sinh) (Kaiser et al., 1980). Later, Kaiser Window (Avci & Nacaroğlu, 2008; Roy & 

Morshed, 2013; Lin, 1998; Kaur, 2014) has gone through several modifications proposed by 

different researchers. Kaiser Window permits separate control on the width of the main lobe 

and attenuation of the side lobes.  Kaiser window is defined by the following Eqn. 

       
       

   

 
 
 
 

 
 
 

     
                 

                                                                                                                                  (3.9) 

M is the length of the window and    is the first kind 0
th

 order modified Bessel function 

(Sharma, 2009).  

Here, α 
   

 
                                                                                                                        (3.10)                                                                            

     
   

       
                                                                                                                  (3.11) 

                                                                                                                   (3.12) 

   is stopband edge frequency and    is passband edge frequency.   is the shape of the 

window which can be selected independently. By changing value of β and the length of the 

filter main lobe width and side lobes attenuation can be adjusted. There is ripple of    in the 

passband and   in the stopband. For the FIR filter design using Kaiser Window, minimum 

ripple of   and    is considered. Let the minimum ripple be represented by  . If attenuation is 

defined in dB,  

                                                                                                                              (3.13)                                                                                                
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Value of   can be found out by using the following Eqns.   

                                                                                                                   

                                                  

                                                                                                                               (3.14) 

3.3. Genetic Algorithm (GA) 

Genetic Algorithm (GA) (Holland, 1975; De Jong, 1975; Holland J. H., 1992; Yang, 2014) 

obeys the mechanism of natural evolutionary principles introduced by Charles Darwin. GA 

was developed by John Holland and his collaborators during 1960 and 1970s (Holland, 1975; 

De Jong, 1975; Holland J. H., 1992).  GA encodes all the data of a search space of a problem 

into a simple strings of fixed length termed as chromosomes (Melanie, 1999). GA uses 

different encoding schemes, such as, binary encoding, integer encoding, Gray encoding, and 

decimal encoding (Ahmed, 2008) and so on.  GA is suitable for solving hard-hitting 

optimization problems. The basic advantage of this algorithm is that it has the capability to 

handle a number of chromosomes at the same time, where each chromosome presents a 

different solution to a given problem.  The GA evolutionary cycle starts with a randomly 

selected initial population.  The changes to the population occur through the application of the 

genetic operators: selection, crossover and mutation (Yang, 2014). The application of these 

genetic operators leads to a population with a higher proportion of better solutions. The 

evolutionary cycle continues until an acceptable solution is found in the current generation of 

population, or some control parameter such as the number of generations is exceeded. 

Selection operation can be carried out by several schemes such as Rank Selection, Roulette 

Wheel Selection (Obitko, 1998; Kumar & Joytishree, 2012) and so on. Mixing of two 

solutions in the population is performed in crossover operation. It actually causes convergence 
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in a subspace. Crossover (Holland, 1975; Yang, 2014) is performed with a fixed probability 

termed as crossover probability    , typically a high valued probability in the range 

of          Value of crossover probability should not be too small as it leads to inefficient 

evolution. Mutation (Holland, 1975; Yang, 2014) is basically performed to increase the 

diversity of the population by changing a part of a solution randomly. It also helps to get away 

from local optimum. Mutation is performed with a mutation probability       Value of 

mutation probability is usually small, ranging between 0.001 and 0.05.Use of high valued 

mutation probability may cause diversify even when optimal solution is approaching. Another 

operator selection, termed as elitism, is basically an operator that passes on the best quality 

solutions to the next generations. A standard GA for a minimizing optimization can be 

described as in Algorithm 1 (Holland, 1975; Yang, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

Input: Population size (n), maximum number of iterations         , objective function ( ), lower and upper bound. 

Output: Global best solution     . 
Begin 

Initialize probability of crossover      and probability of mutation      

Generate initial population P within bounds and store them in matrices   and   

Evaluate the fitness of the solutions (P) stored in   using    

                  ;                       ;     

while            

Generate new solutions by crossover and mutation with probability   and     respectively 

    Replace the old solutions stored in   by the newly generated solutions 

    Evaluate the fitness of the solutions stored in   using  

    for       

         if (                             

               
      

    

        Else 

               
      

  

        End if 

     End for 

     Evaluate the fitness of the solutions using   

                               ;                                

               if (                                 

                                     ;                                 

              End if 

                     

End while 

End 
 

 Algorithm 3.1: Genetic Algorithm 
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3.3.1. Selection 

In selection parents are selected based on the fitness values aiming to generate off-springs for 

the next generation with better fitness values. Selection of parents is very vital to the 

convergence rate of the algorithm, as good parents steer individuals to a better and fitter 

solutions. Among a considerable number of selection procedure Roulette Wheel Selection is 

the most effectively used. 

3.3.1.1.Roulette wheel Selection  

Roulette Wheel Selection (Atanassov et al., 2009) was introduced by Holland. In this selection 

strategy parents are selected based on the fitness values, fitter individuals have more chances 

to be selected. At first a circular wheel divided into n pies must be considered, where n is the 

number of individuals in the population. Each individual must get a portion of the circle 

proportional to its fitness value. Next, a specific point must be chosen on the wheel 

circumference before rotating the wheel. The area of the wheel that comes in front of the fixed 

point is chosen as the parent. For choosing the second parent also, similar process is repeated. 

Fitter individual has greater pie within the wheel, hence has more chance to be selected when 

the wheel rotates.  

 

Figure 3.1: Roulette Wheel selection 

A 

B 

C 

D 

E 

F 

Fixed 

Point 
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Probability of each individual in this selection procedure can be described by the following 

Eqn.  

                          
  

   
        
   

                                                                             (3.15) 

    and    stand for fitness values of the i
th

 and j
th

  individuals respectively. Algorithm 3.2 

describes Roulette Wheel Selection procedure in detail. 

 

 

 

 

 

 

 

3.3.2. Crossover 

Genetic operator crossover generates new off-springs from the selected pair of parents for the 

next generation. Crossover is performed in a fixed probability   . Strategy of crossover can be 

classified based on the number points of splicing. In case of single point crossover two 

individuals of the current generation are spliced at a crossover point and swapping the spliced 

parts are performed. Aim is to combine good characteristics of one gene of an individual may 

with some good genes of another individual to create a better solution represented by the new 

off-spring. 

Step 1: The fitness function is calculated for each chromosome, providing fitness values which are 

then normalized. 

Step 2: The population is arranged in ascending order according to the fitness values. 

Step 3: Accumulated normalized fitness values are obtained (Accumulated fitness value of a 

chromosome = Fitness value of that chromosome + the fitness values of all the previous 

chromosomes). The accumulated fitness of the last individual must be 1.  

Step 4: A random value should preferably be chosen between 0 and 1. 

Step 5: The selected chromosome will be the first one whose accumulated normalized value is greater 

than the randomly chosen value. 

Step 6: Step 1 to step 5 are repeated until the initial population converges. 

 

Algorithm 3.2: Roulette Wheel Selection 

http://en.wikipedia.org/wiki/Fitness_function
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Figure 3.2: Single Point Crossover 

3.3.3. Mutation 

In mutation genetic composition is adjusted randomly aiming to introduce new characteristics 

in a population that has not been achieved through the crossover. Genetic operator mutation 

current value of a gene changes to a different one. For binary string individual values of a gene 

flipped from 0 bit to 1 or vice versa. Mutation is also performed with a fixed probability for a 

problem. 

 

 

Figure 3.3: Mutation 

3.4. Objective Function Selection 

In this chapter an innovative objective function is introduced aiming to obtain signal with 

much reduced amount of noise. This function is termed as the   factor of the signal. Finally 

the value of 10log10(   has been used as the fitness value, signal with higher value of 

10log10    states signal with lesser amount of noise. 

    
                                  

               
                                                                                    (3.16) 

3.5. Filtered Signal Optimization using GA 

In our proposed technique for obtaining optimized filtered signal using GA, following steps 

are followed: 

Crossover 

Point 

Mutation 

Point 
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Yes 

Repeat 

these steps 

N times 

Filtration of noisy signal using Kaiser Window function with varying ripple 

factors and sampling frequency 

New set of signals has been generated and from that set best filtered signal 

by means of fitness value has been obtained 

Filtered signal with highest fitness value has been obtained 

Obtaining fitness value of each offspring signals  

Fitness value of an offspring 

signal > Fitness value of a 

parent signal 

Selection a set of signals using Roulette wheel selection from the matrix of 

filtered signals based on fitness values 

Crossover between each signal with all other signals in the set 

Obtaining fitness value of each filtered signals  

Replace the parent signal by the offspring signal 

Mutation 

Step 1: Filters are implemented using Kaiser Window with varying passband and stopband ripples (passband ripple varies 

from 0.01 to 0.40 and stopband ripple varies from 0.09 to 0.49).  Corrupted signal is then filtered using the implemented 

filters. Set of filtered signals is considered as initial population. Each filtered signal is termed as a chromosome.  

Step 2: For determination of fitness values of chromosomes,   factor is used. Finally the value of 10log10(   has been 

used as the fitness value.  

Step 3: Based on fitness values a set of filtered signals has been selected from the initial population using Roulette Wheel 

Selection procedure. 

Step 4: Single point Crossover is performed with 100% probability in between the selected set of chromosomes and off 

springs are generated. (100% probability of crossover has shown the best results. 

Step 5 Mutation is performed on the offspring chromosomes with 25% probability. (25% probability of mutation has 

shown the best results). 

Step 6: Replacement of parent signals by off-spring signals with better fitness values than the parent signals.  

Step 7: Signal with highest fitness value has been obtained as best offspring signal. 

Step 8: Repeat Step 4 to Step 7 N (N=10) times. 

 

Algorithm 3.3: GA for Filtered Signal optimization 

Figure 3.4: Flowchart of filtered signal optimization using GA 
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Figure 3.4 presents flowchart of the proposed technique. 

Proposed approach is capable of identifying little amount of noise present in the signal and 

excluding it from the signal. Hence, it is very much useful for de-noising biomedical signals, 

where very little amount of noise may cause erroneous diagnosis. 

3.5.1. Case Study 

A heart Sound Signal without any noise has been collected from a diagnostic center. Random 

noise has been incorporated in the original heart sound signal. Original Heart Sound Signal 

and Noisy Heart Sound Signal have been shown in Figure 3.5 (a) & (b). SNR (Signal to Noise 

Ratio) of the corrupted signal is 2.9126 and correlation of the corrupted signal is 0.8015. 

 

Figure 3.5(a) 

 

Figure 3.5(b) 

Figure 3.5: (a) Original Heart Sound Signal, (b) Noisy Heart Sound Signal 
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Proposed Algorithm has been performed over the corrupted heart sound signal for a range of 

sampling frequency (5000-12000) Hz. Filtered heart sound signals obtained by the proposed 

algorithm for different sampling frequencies are then compared with the original signal. SNR 

and Correlation values of the filtered signals are shown in Table 3.2. From Table 3.2 it can be 

seen that the filtered signal obtained by the algorithm at sampling frequency of 7000 Hz has 

the highest SNR (Signal to Noise Ratio) value and the filtered signal obtained by the algorithm 

at sampling frequency of 8000 Hz has the highest Correlation value.  

Table 3.2: Variation of SNR and Correlation values of Filtered Heart Sound signals with 

Sampling Frequency 

Sampling 

frequency 

SNR Correlation 

5000 10.4374 0.9327 

6000 11.0880 0.9566 

7000 12.0018 0.9734 

8000 11.3383 0.9979 

9000 8.0536 0.9975 

10000 5.5888 0.9970 

11000 3.6374 0.9965 

12000 2.0305 0.9959 

 

Variations of SNR and Correlation value of the filtered signals for different sampling 

frequencies are shown in Fig. 3.6 (a) & (b). 
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Figure 3.6(a) 

 

Figure 3.6(b) 

Figure 3.6: (a) Plot of SNR-Sampling Frequency, (b) Plot of Correlation value-Sampling Frequency 

Filtered heart sound signals obtained by the proposed algorithm with sampling frequency 7000 

Hz and 8000 Hz have been shown in Fig. 3.7 (a) & (b). 

 

Fig 3.7(a) 
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Fig 3.7(b) 

Figure 3.7: (a) Filtered (Best offspring) Signal at Sampling Frequency 7000Hz, Filtered (Best 

offspring) Signal at Sampling Frequency 8000Hz 

3.6. Ant weight Lifting Algorithm (AWL) 

Colonies of ants (Family: Formicidae, Order: Hymenopetra (a-z-animals, 2018)) are gigantic 

with the largest size so far recording to 6000 km (scribol, 2018). Though an ant is very tiny in 

size (2mm to 25mm approximately), in recent times it has been observed that the neck joint of 

a common American field ant can withstand pressures up to 5,000 times of its own weight 

(entomologytoday, 2018). According to the bio-physicists smaller organisms have high 

strength to weight ratio a smuscle strength changes proportionally with the change in muscle 

cross-sectional area where as the mass of the organism changes proportionally with its volume 

(antweb, 2018.).According to Dr. Thomas Endlein ants are capable of changing the size and 

shape of the pads on their feet depending on the load they are carrying. At the time of carrying 

heavy loads they increase the contact area, and when they need to run they decrease it 

(ftexploring, 2018). In proposed approach an innovative algorithm namely Ant Weight Lifting 

(AWL) Algorithm has been introduced using the prospective of weight lifting capability of 

ants. 
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3.6.1. Idealized Rules 

I. The entire input data set        is considered as a food source where each column   

         of the data set represents a type of food or parameters and row (i=1 to 200) 

represents values of the corresponding type of parameters.  

II. The weight     of each ant is assumed to be one unit i. e.      . 

III. Weightage    of each cell of      is fixed at 1000. 

IV. An ant chooses only one food grain of each type  .  

V. An ant can pick up 5 different types of food grains at most. Finally it leaves the food 

space after collecting total food grains weighing 5,000 times of its own weight  i.e. 

total weight of picked up food grains     
 
   ) will be equals to 5,000   .As 

    , ,it is equal to 5000. 

3.7. Ant Weight Lifting Algorithm for Window Parameter Optimization 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step1: A data set     containing sets of filter parameters will be generated. Each columnof    contains set of a specific 

parameter whereas   represents no. of columns. Here,    5. 

Step 2: Consider a fixed number of ants, suppose t.  Each ant    (p ranges from 1 to t) is considered to be capable of 

carrying at most 5 food grains at a time.  

Step 3: Ants start collecting food grains (elements of data set) randomly from each column of the food space    . 

Step 4: Each time an ant    collects an element from a cell of    , total weight of the visited cells by the ant will be 

increased by the specified weight    of the cell  

Step 5: Each ant    will collect only one element from a column of    . An ant will leave the food space and will 

deposit the collected grains (data set elements) to the Central Food Repository (CFR) after collecting 5 types of 

different grains from the 5 different columns of the food space and will not enter into the food space further.   

Step 6: Digital Filter will be designed by the set of parameters collected by each ant. Filter will be used for filtration of 

a noisy signal     .   Factorof the Filtered signal      will then be computed.  

Step 7: Filters, which will yield the best value of   factor, is reported to be the best filter of the iteration. Values of 

those parameters will be noted down as the optimized values of the parameters. 

Step 8: Step 1 to Step 8 will be repeated until the considered number of iterations has been completed.  

Step 9: In each of the iterations a best filter and a set of optimized parameters is reported and finally among all these 

filters the best one will be selected based on the criterion mentioned in Step 7. 

 Algorithm 3.4: Filter parameter optimization using Ant Weight Lifting Algorithm  
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3.7.1. Case Study 

A Heart Sound Signal is collected from ISO 9001:2000 certified Jeevan Rekha Diagnostic 

Centre, India. The truncated signal has been mixed with random noise. Noisy signal is passed 

through Kaiser Window based proposed filter where optimization of the parameters are carried 

out using Ant-Weight Lifting Algorithm. Optimized set of parameters determines the order of 

the filter to be implemented by the Kaiser Window function. Result is compared with the Filter 

implemented using Chebyshev Window function (Dolph, 1946), Butterworth function 

(Butterworth, 1930) and Parks McClellan algorithm (McClellan & Parks, 1975) of the similar 

order for the same noisy heart sound signal. In Table 3.3, optimized set of parameters has been 

shown. 

Table 3.3: Optimized Parameters 

Name of Parameter Value 

Passband Ripple (    0.2800 

Stopband Ripple      0.4700 

Passband Cut-off Frequency (    100 Hz 

Stopband Cut-off Frequency     1000Hz 

Sampling Frequency      71000Hz 

 

In Figure 3.8 magnitude Response of the filter implemented using the optimized parameters 

has been shown. 
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Signal to Noise Ratio (SNR) of the noisy signal = -4.2150, SNR and Correlation values of the 

signals filtered using different filters have been shown in the Table 3.4 and Table 3.5 

respectively. 

Table 3.4: Signal to Noise Ratio of the filtered signals 

Filter SNR 

Filter implemented using Chebyshev Function (Dolph, 1946; Sharma, 2009) -5.3591 

Butterworth Filter (Butterworth, 1930) -5.0629 

Filter implemented using Parks McClellan Algorithm (Parks & McClellan, 

1972) 

-0.3291 

Proposed Filter (using Kaiser Window Function and AWL Algorithm)  3.7297 

Table 3.5: Correlation of the filtered signals 

Filter Correlation 

Filter implemented using Chebyshev Function (Dolph, 1946; Sharma, 

2009) 

0.2621 

Butterworth Filter (Butterworth, 1930) 0.3890 

Filter implemented using Parks McClellan Algorithm (Parks & McClellan, 0.8705 

Figure 3.8: Magnitude Response of the filter implemented with optimized parameters 
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1972) 

Proposed Filter (using Kaiser Window Function and AWL Algorithm) 0.9508 

 

Comparing the Signal to Noise Ratio and Correlation values of optimized filtered signals, it 

has been proved that the optimized signal designed using AWL algorithm and Kaiser Window 

is least noisy. Figure 3.9 (a) and (b) shows original heart sound signal and Figure 3.9 (c) and 

(d) show signals filtered using conventional filtration technique of Parks McClellan Algorithm 

and the proposed technique. 

 

Figure 3.9(a)  

 

Figure 3.9(b)  
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Figure 3.9(c)  

 

Figure 3.9(d)  

 

Figure 3.9(d) 

Figure 3.9: (a) Original Heart Sound Signal, (b) Truncated Heart Sound Signal (c) Noisy Heart Sound 

Signal (d) Signal filtered by the filter designed using Parks McClellan Algorithm, (e) Signal filtered by 

the proposed filter 
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Feature analysis of the original signal, noisy signal and the optimized filterd signal is 

performed and shown in Table 3.6.  

 
Table 3.6: Feature analysis of Original Signal, Noisy Signal and Filtered Signal 

 

Features Original 

Signal 

Noisy 

Signal 

Optimized 

Filtered Signal 

 

Variance 0.0315 0.0522 0.0348 

Skewness -0.2021 -0.0572 -0.1456 

Kurtosis 19.8973 8.9237 16.7892 

Standard Deviation 0.1775 0.2286 0.1865 

Maximum Peak Amplitude Value 1 1.4986 1.1998 

Maximum Peak Amplitude Position Value             51799 

Maximum Valley Amplitude Value -1 -0.9997 -0.9994 

Maximum  Valley Amplitude Position 

Value 

            65049 

 

3.8. Conclusions 

In the past few decades, rapid growth of digitization and globalization has prejudiced the 

medical field as well. For improvement of diagnostic results and mutual availability of 

therapeutic case studies most of the fabled hospitals and diagnostic centers all over the world 

have started sharing medical information via different transmission media. At the time of 

transmission via any media, signals get affected by unwanted components; which are hostile 

but inescapable.  In this chapter, two different techniques have been proposed for removal of 

noise from bio-medical signals (heart sound signal). In both the cases Kaiser Window function 

has been used for designing the digital FIR filters. At the first approach least noisy signal is 
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obtained using Genetic Algorithm from a set of signals filtered using Kaiser Window with 

varying passband and stopband ripples. In the former approach for optimization of the 

parameters required to implement filter using Kaiser Window function, an innovative nature 

inspired algorithm based on the weight lifting strategy of ants is used. For optimization a 

simple adaptive objective function has been introduced that performs based on the ability of 

the designed filter with the optimized parameters to de-noise signals.  
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Chapter 4 
 

 

Filter Coefficient Optimization 
 

 

4.1. Introduction  

Advancement in Digital Signal Processing enhanced the use of Digital Filters for removing 

noise from signals. Smaller physical dimension, higher reliability, and reduced sensitivity 

allow the digital filters to dominate over their analog counterparts. Based on impulse response 

characteristics digital filters are distinguished in following two types: (a) Finite Impulse 

Response (FIR) Filter (Salivahanan et al., 2007; Sharma, 2009; Mitra, 2013), (b) Infinite 

Impulse Response (IIR) Filter (Salivahanan et al., 2007; Sharma, 2009; Mitra, 2013; Singh & 

Arya, 2012; Karaboga & Cetinkaya, 2014).  Due to minimalisms in hardware and fluently 

attainable linear phase properties, FIR filters are used massively compared to the IIR filters. 

Design of digital FIR filters involves calculation of filter transfer function coefficients that 

provide target frequency response (Sharma, 2009). The process of determining appropriate set 

of filter coefficients can be perfectly characterized as an optimization problem with an 

objective of minimizing the error function. This error function is conceptualized as an 

approximation function signifying the deviancy between the designed filter responses from the 

ideal filter responses. Based on this approach Parks and McClellan (Parks & McClellan, 1972) 

proposed an algorithm aiming to receive exact linear phase response. The algorithm does not 

permit independent selection of passband and stopband ripples where as it selects a ratio of 

passband and stopband ripples. In order to obtain the linear response likely to the ideal one, in 

https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Finite_impulse_response
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this chapter different metaheuristic algorithms (Yang, 2014) have been used for obtaining 

optimized sets of filter coefficients.  

In the ground of optimization algorithms a considerable number of metaheuristic algorithms 

(Storn, 1996; Storn & Price, 1997; Baghel et al., 2012; Kennedy & Eberhart, 1995; Dorigo & 

Caro; Yang, 2008; Yang, 2009; Yang, 2010b; Yang & Deb, 2009) have attracted researchers 

since past two decades by solving different challenging optimization problems in different 

fields as well. Behavior of biological systems and/or physical systems in nature stood as the 

motivation behind majority of the heuristic (Kokash, 2005; Aickelin & Clark, 2011) and 

metaheuristic algorithms (Holland, 1975; De Jong, 1975; Yang, 2014). Metaheuristic 

algorithms perform much better compared to heuristic algorithms to reach the global optima 

even in presence limited information about the problem.  

In the initial part of this chapter BAT algorithm (Yang, 2010d) has been used to design both 

the lowpass and highpass filter. A comparative study of the performances of the filters 

designed by BAT Algorithm, GA and PSO are presented. 

In the trailing part, design of even order low pass FIR filter and odd order bandpass FIR filter 

using the coefficients optimized by an innovative algorithm namely Global Best steered 

Cuckoo Search Algorithm (gbest CSA) has been proposed.  

4.2. Problem Formulation 

FIR filter of order N i.e. length M (M=N+1) with input      and output      can be 

represented as follows (Sharma, 2009):  

                                                                                

                                 
   
    represents set of filter coefficients.                       (4.1)     

Alternatively,      can also be represented by Eqn. 4.2, 
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   is the convolution of the unit sample response      

with the input signal     .                                                                                                     (4.2) 

A FIR filter has linear phase if the unit sample response obeys the following Eqn. 4.3 (Sharma, 

2009): 

                                                                                                  (4.3) 

For symmetric     , number of filter coefficients    must be as follows (Sharma, 2009): 

  
   

 
  when M is odd   

 

 
  when M is even                                                               (4.4) 

Based on the filter order and symmetricity of filter coefficients filters are categorized in four 

types:  (a) Type I- Even order and symmetric coefficients, (b) Type II- odd and symmetric 

coefficients, (c) Type III- Even order and asymmetric coefficients, (d) Type IV- Odd order and 

asymmetric coefficients. 

In traditional equiripple method for obtaining optimized set of filter coefficients, a desired 

filter response is estimated with varying degree of success of an objective function which 

minimizes the error between the approximated filter response and the desired filter response. 

This method uses an approach for minimizing errors in both the passband and stopband (Pei & 

Wang, 2002). Following error function, which computes the weighted difference of the ideal 

and approximated frequency responses in passband as well as in stopband, is used in most of 

the cases (Singh & Josan, 2014):  

                                                                                          (4.5)                                                                      

Where         and         are the desired or ideal and approximated frequency response of 

the filter. Ideal frequency response of a lowpass filter is stated as following (Sharma, 2009; 

Mitra, 2013):  
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                                                                                                                            (4.6)  

Ideal frequency response of a highpass filter is defined as following (Sharma, 2009; Mitra, 

2013): 

                              

                                                                                                                           (4.7)                    

For bandpass filter ideal frequency response can be stated by the following equation (Sharma, 

2009; Mitra, 2013):  

                     
      

 

                                    
&        

                                                            (4.8)                               

   
,    

 stand for lower passband edge frequency and upper passband frequency respectively. 

   
,    

are lower stopband frequency and higher stopband edge frequencies respectively.  

The weighing factor      controls the minimization of error in both of the frequency bands. 

Using the key concept of the equiripple methodology Parks and McClellan proposed an 

efficient algorithm for optimal filter design. Best approximation of the Parks and McClellan 

algorithm is subjected to minimize the maximum bound of error     . Only limitation of this 

strategy is the fixed value of 
  

  
. Aiming to overcome this limitation in present work mean 

square error (Dhabal & Sengupta, 2015) based objective function has been adopted: 

                                                                                                              (4.9)                                     

For lowpass filter    and    are stated by the following two equations (Dhabal & Sengupta, 

2015):  

   
 

 
               

  

 
                                                                                        (4.10) 
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                                                                                         (4.11)                   

To implement highpass filter    and    can be defined by the following two equations 

(Dhabal & Sengupta, 2015):  

   
 

 
             

 
  

 

  
                                                                                     (4.12) 

   
 

 
            

   
  

 
                                                                                        (4.13) 

In case of designing bandpass filter    and    are stated as following (Dhabal & Sengupta, 

2015): 

   
 

 
               

   

   
                                                                (4.14)   

    
 

 
            

       
 

 

   

 
            

    
 

   
              (4.15)             

  is the magnitude response of the approximated filter. The objective function   is the 

weighted sum of mean square errors   and  . By minimizing   better performance can be 

obtained by the approximated filters. 

4.3. Filter Coefficient Optimization using New Metaheuristic 

Algorithms 

4.3.1. Filter Coefficient Optimization using BAT Algorithm  

For optimizing filter coefficients of a lowpass filter using Bat Algorithm following inputs are 

taken into account: (a) Order of the filter (N) =20, (b) Passband edge frequency (  ) = 0.55, 

(c) Stopband edge frequency (  ) = 0.65, (d) Passband ripple     = 0.1, (e) Stopband 

ripple     = 0.01, (f) No. of Iteration (I) = 3000. 
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4.3.1.1. BAT Algorithm 

Echolocation behavior of bat was inspiration of intending bat algorithm, it was first proposed 

by Yang in 2010 (Yang, 2010d). Term echolocation refers to the use of sound waves and 

produced echoes to trace the location of the objects. Expertise in finding victims and 

classifying different types of beetles even in complete darkness makes the echolocation ability 

of bats most enthralling. Bats are mainly categorized in two types: (a) Mega-bats and (b) 

Microbats based on their size. Among different types of bats of different size, microbats (size: 

2.2 to 11cm) use echolocation most widely (Richardson, 2008; Richardson). They use a 

variety of sonar to elude obstacles, sense victim and trace their nestling chinks in the dark. 

These bats produce a flamboyant sound pulsation and snoop to the echo that bounces back 

from the surrounding stuffs. Depending on the species and the tactics they use for hunting, 

type of produced audio signal and resultant bandwidth also vary. Majority of microbats use 

petite, frequency-modulated signals, however others use constant-frequency signals for 

echolocation. Though bulk amount microbats emit frequencies ranges 25 kHz to 100 kHz, 

some species is capable of producing frequencies up to 150 kHz. Usually a microbat emits 

about 10 to 20 sound bursts per second each lasting for 5 to 20 ms, however at the time of 

hunting for prey the pulse emission rate may increase to 200 per second. Pulse emission rate 

typically increases based on the distance of the species from the victim. The travelling ranges 

of such short pulses are usually a few meters, subjected to the actual frequencies (Richardson, 

2008). Loudness of an emitted pulse can be 110 dB. While searching for prey volume 

decreases between loudest to quietest based on the distance of the species from the prey. 

Microbats have a mystical capability to sense the distance, positioning, moving speed and 

even the category of the victim. Overall three dimensional scenario of the surrounding can be 
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easily sensed by a microbat based on the time difference between emission and detection of 

the echo, the time difference between their two ears and variations of loudness. Basically the 

microbats use all its senses eyesight (usually very low), smell sense to detect prey efficiently. 

But only the echolocation behavior could be utilized to formulate in such a way so that it could 

be used to solve an optimization problem. For implementation of Bat algorithm based on the 

echolocation behavior of bats, following idealized rules are formulated based on the rules 

proposed by Yang (Yang, 2010d):  

(a) All bats have advanced ability of echolocation to perceive distance from the preys. 

(b)  Bats are having some magical power to distinguish between their victim and neighbouring 

obstructions. 

(c)  For flying bats use random velocity Vi at position Pi with a fixed frequency f where 

maximum value for f will be denoted by fmax and minimum value for f will be denoted by 

fmin. 

(d) Bats fly with varying wavelength λ. They spontaneously modify the wavelength λ of their 

emitted pulses and tune the pulse emission rate r depending on the propinquity of their 

target. r is any variable in the range 0 to 1.  

(e) A frequency range [fmin, fmax] corresponds to a fixed range of wavelength [λmin, λmax]. For 

the affluence of algorithm design it has been approximated that any wavelength can be 

used.  

(f) Bats use varying parameter loudness, whereas the loudness can vary in different customs, 

maximum value of the loudness will be a large positive Lmax and minimum value will be a 

constant value Lmin. 
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Frequency (fi) of a solution is computed using the following equation (Yang, 2010; Yang, 

2014):  

                                                                                                                    (4.16)    

  is a random number and         

Velocity of a solution computed by the following equation:  

  
      

     
                                                                                                          (4.17)                                   

Generating a new solution is performed using the following equation: 

  
      

    
                                                                                                                     (4.18)                         

A random value         is generated and checked if it is greater than the pulse rate r then 

newly generated solution will be adjusted using the following equation: 

                                                                                                                      (4.19)                                             

  is a randomly generated array of length d,           j=1,2,….,d. 
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A typical BAT Algorithm can be described as follows (Yang, 2014): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Algorithm 4.1: BAT Algorithm 
 

4.3.1.2. Simulation Results 

Passband ripple and stopband attenuation of the filters implemented using the optimized filter 

coefficients are shown in Table 4.1. 

Table 4.1: Comparison of filter responses 

 

Algorithms Passband Ripple Stopband 

Attenuation 

BAT 0.10 31.4 

    

Input: Total No. of Iteration (       ), size of the population (n), objective function   ), 

lower bound, upper bound  

Output: Global Best Solution. 

Begin                                                                                              

Define objective function                      

Initialize the bat population               , frequency (  ), pulse rate (  ), loudness      

Evaluate the fitness of the solutions using    and store in an array         

Find the best quality solution and store in     ; Store fitness value of      in      

while            

      for       
            Generate new solution by adjusting frequency 

Update velocities and solutions using Equations 4.16 to 4.18 

 Generate a random number    

             if(        

                 Select a solution among the best solutions 

      Generate a local solution around the selected best solutions using Eqn. 4.19 

            end if 

             Evaluate the fitness of the new solutions using    and store in      

 if(                  

                  Update old solution with new one;                  

 end if 

      end for 

      Evaluate the fitness of the solutions using    

   Find the current best nest       and store its fitness value in      

   if (           

    Update      and      

   End if 

             

End while 

End 
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GA 1.0486 22.2 

PSO 0.06 25.2 

PM 0.1098 24.9 

Tables 4.1 summarized the performances of BAT Algorithm, GA, PSO, and Parks McClellan 

for implementing the low pass FIR filter. It can be observed that the stop-band attenuation for 

20th order low pass filter using BAT Algorithm is 31.4 dB while the same using GA, PSO and 

Parks-McClellan, are 22.2 dB, 25.2 dB and 24.9 dB. The normalized stop-band ripple obtained 

using BAT Algorithm is 0.03. This proves superiority in performance of the BAT Algorithm at 

the cost of little increase in pass-band ripple compared to PSO (0.10 vs. 0.06). The ripple 

performances are improved by 3.00%, 14.27% and 3.14% compared to PSO, GA and PM 

respectively in stopband. 

Table 4.2 shows optimized sets of filter coefficients obtained using different algorithms. 

Table 4.2: Optimized Filter Coefficients 

Algorithm BAT GA PSO PM 

h(1) = h(21) -0.0099625 -0.0102313 -0.0139 

 

-0.0389 

h(2) = h(20) 0.0022065 0.0016687 -0.0012 

 

0.0026 

h(3) = h(19) 0.012395 0.0241687 0.0254 

 

0.0302 

h(4) =h(18) -0.0079118 0.04558075 -0.0078 

 

-0.0181 

h(5) = h(17) -0.031176 -0.0351313 -0.0344 

 

-0.0356 

h(6) = h(16) 0.036761 -0.0538313 0.0343 

 

0.0393 

h(7) = h(15) 0.056262 -0.0378313 0.048 

 

0.0451 

h(8) = h(14) -0.08271 0.0371687 -0.0839 

 

-0.0924 

h(9) = h(13) -0.062742 0.1549687 -0.05 

 

-0.0471 

h(10)= h(12) 0.30795 0.2514687 

 

0.3139 

 

0.3119 

h(11)  0.55297 0.2925687 0.532 0.5512 
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Figure 4.1 shows the magnitude response in dB vs. normalized frequency and phase response 

vs. normalized frequency plot of the filter. 

 

Figure 4.1: Magnitude Response in dB and Phase Response 

 

Figure 4.2: Magnitude Response 

4.3.2. FIR Filter Design using Global Best Steered Cuckoo Search Algorithm 

The present work includes design of odd order symmetric lowpass and bandpass FIR filters 

using a new algorithm namely Global Best Steered Cuckoo Search Algorithm (gbest CSA). 

We compared the results of the proposed system with the results of the standard Cuckoo 

Search Algorithm and also with the results of conventional algorithmic strategy of Parks 
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McClellan Algorithm. To design 21
st
 order lowpass filter, total numbers of iterations are fixed 

at 1000. Passband edge frequency (    is taken as 0.4  and Stopband edge frequency      is 

taken as 0.5 . For implementation of 25
th

 order bandpass filter, total number of iterations is 

fixed at 4000. Passband edge frequency (    is taken as 0.3  and Stopband edge frequency is 

taken as      0.6 . For both types of lowpass and bandpass filters, Passband ripple (    is 

fixed at 0.05 and Stopband ripple is fixed at      0.03. 

4.3.2.1. Cuckoo Search 

Cuckoo Search Algorithm (Yang & Deb, 2009) is a modern nature inspired metaheuristic 

algorithm that has been broadly used for solving hard-hitting optimization problems. CS is 

based on the brood parasitism of the cuckoo species. It also uses a balanced composition of a 

local random walk and global explorative random walks, controlled by a switching 

parameter    (Yang & Deb, 2009; Yang, 2014). The local random walk can be defined by 

following Eqn. 

  
      

                
    

                                                                             (4.20)                                                     

where,   
 and  

  are two different candidate solutions selected by random permutation,      

stands for Heaviside function,   is step size scaling factor,   denotes a random number drawn 

from a uniform distribution,    is probability of abandoning worst nests and s is the step size. 

Here,   stands for the entry-wise product of two vectors. Global random walk is carried out 

by a superior kind of random walk namely Lévy Flights. Predefined parameter bounds state 

the domain to choose the initial population. 
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4.3.2.1.1. Cuckoo Breeding Behaviour 

Some cuckoo species like Ani and Guria cuckoos lay eggs in communal nests (Yarizadeh-Beneh 

et al., 2016). Sometimes they destroy host birds’ eggs to enhance the probability of hatching 

their eggs. Thus they involve the host birds into rearing their progenies and dedicate more time 

in the process to lay more eggs instead of devoting time and energy in parental care. Host birds 

are either other individuals of same species or some other species. If a cuckoo chooses nest of 

another individual of same species to lay eggs then it is called “Intra specific Brood 

Parasitism” (Payene et al., 2005). If host birds become successful in identifying any egg as not 

their own, they either simply abandon the egg or moves away from the nest to build a new nest 

elsewhere. 

4.3.2.1.2. Lévy Flights 

Lévy flights belong to a class of random walks formulated by Paul Lévy in 1937 by 

generalizing Brownian motion and comprising non-Gaussian randomly dispersed step sizes for 

the distance covered (Yang & Deb, 2009; Yang & Deb, 2010). Lévy Flights are capable of 

maximizing the probability of resource searches in uncertain surroundings. In Optical science, 

Lévy flight can be defined as a term used to designate the motion of light. Survey says, by 

performing Levy flights vaster area can be covered than normal random search. Some shark 

species follow random Brownian motion while searching food; however, if they failed to get 

food items, they start following Lévy flight behavior, mixing short random movements with 

long trajectories. Lévy flight is defined by the following Eqn.  

   
      

                                                                                                                           (4.21) 

       
           

   

 

 

                    is the step size scaling factor.             (4.22) 
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4.3.2.1.3. Cuckoo Search via Lévy Flights 

Three idealized rules have been implicated by Yang.et.al to simplify the Cuckoo Search 

Algorithm (Yang & Deb, 2009; Yang & Deb, 2010): 

i. Each cuckoo lays a single egg at a time and dumps it in a communal nest which is chosen by 

them randomly.  

ii. The best nests containing high quality eggs will be carried over to the succeeding 

generation. 

iii. The number of available host nests is always fixed. Probability of an egg (laid by a cuckoo) 

to be discovered by the host bird is         . In that case, the host bird can either abandon 

the egg or simply destroy the nest and build a new nest.  

For a minimization problem, the quality or fitness of a solution can be reversely proportional 

to the objective function value. In another practice, fitness functions can be defined following 

the same way used in genetic algorithms where the tactic “fittest chromosome (solution) 

survives” is used. In Cuckoo Search Algorithm each possible solution to the problem is 

assumed as an egg in a nest. A new solution is assumed as a newly hatched cuckoo egg. The 

aim is to replace worse solutions in the nests by new and potentially better solutions (cuckoo 

eggs). A new solution   
    is generated by selecting   a cuckoo   using Lévy flights. 

Following equation described generation of new solution.  

  
      

                                                                                                              (4.23)                                                             

Where       is the step size, value of   is problem specific. In most of the cases, α = 1 is 

used.  The Lévy flight basically provides a random walk where the random step length is 

drawn from Lévy distribution defined by the following equation: Lévy               

having an infinite variance along with an infinite mean.  
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Cuckoo Search Algorithm is detailed in Algorithm 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4.2: Cuckoo Search Algorithm 

4.3.2.2.Global Best Steered Cuckoo Search Algorithm (gbest CSA) 

In Global Best Steered Cuckoo Search Algorithm (gbest CSA) a modification was performed 

in replacement strategy (Dhabal & Venkateswaran, 2017); another modification was in choice 

of a parameter     in Lévy Distribution; one more modification was in choosing the 

probability of abandoning nests    . 

In reality higher similarity of a cuckoo egg with the host’s eggs decreases the probability of 

the cuckoo egg to be distinguished by the host from its own eggs. As the fitness of a candidate 

Input: Total No. of Iterations (Max_Iteration), size of population (n), objective function ( ), lower bound, 

upper bound 

Output: Global Best Solution 

begin 

Initialize a population of n nests randomly within bound 

Quality of each solution is evaluated using the objective function   & store best quality solution in       

Initialize a probability         for discovering worse quality nests & initialize  =1.5 

Initialize t = 1 

while                    

       for       
      Generate new nest using Lévy Flights defined in Eqn. 4.22 & evaluate the quality of the new nest  

      if    
       

    

          Replace the old nest by the new one 

          (  
   represents fitness value of nest   at iteration     &   

  represents the same at iteration  ) 

 End if 

  End for 

  Find the current best nest        

  if (            

         Update      

        End if 

  Discover worse quality nests with probability    & generate new nests using the Eqn. 4.19 

  Compute the fitness of the new nests & replace the worse nests by the new nests with better quality 

  Find the current best nest        

  if (            

          Update      

  End if 

               

End while 

End 
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solution termed as cuckoo egg is related to its difference with the solutions of the latest 

iteration, therefore, it will be better to perform a random walk in a biased way with random 

step sizes. Similar like Cuckoo search, Global best steered cuckoo search also uses random 

step sizes but with different function set for computing the step size. In Cuckoo Search 

Algorithm, step size is computed using 4.18. For gbest CSA step size is computed using the 

following Eqn.  

                                                                                         (4.24) 

Where   is a random number lying within the range [0, 1].nest denotes a matrix containing 

candidate solutions along with their variables, permute represents row permutation functions 

applied on nest matrix (Tuba et al., 2012). In case of gbest CSA instead of using another 

permute function, best nest till the latest iteration is used. This specialty of gbest CSA keeps 

the selection pressure towards the better solutions, hence assures better result. Moreover, this 

advancement of the Cuckoo Search Algorithm does not flood the population by the high 

fitness solutions. In gbest CSA instead of using        ,   is determined by the following 

Eqn (Dhabal & Venkateswaran, 2017):  

              
                

         
                     and                       (4.25) 

In case abandoning worst quality nests standard CSA uses fixed probability of 0.25 (Yang & 

Deb, 2009; Yang, 2014).                                                   

In gbest CSA, following equation is used for obtaining the probability of abandoning worst 

nests:  

             ; Initially   is considered as 0.25.                                                      (4.26) 

These modifications exhibits better filter responses compared to the standard CSA.   
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Algorithm 4.3: Global Best Steered Cuckoo Search Algorithm (gbest CSA) 

 

4.3.2.3.Simulation Results 

Figure 4.3 and 4.4 show the responses of lowpass Type II FIR Filters implemented using gbest 

CSA, CSA and PMA.  

Input: Total No. of Iteration (Max_Iteration), size of population (n), objective function ( ), 

lower bound, upper bound  

Output: Global Best Solution 

begin 

Initialize a population of n nests randomly within bound 

Level the nests in terms of quality evaluated using the objective function   

Find the best quality nest and store in       

Initialize a probability    for discovering worse quality nests 

Initialize t = 1 

while                    

       for       

      Compute   computed by Eqn. 4.25 

      Generate new nest using Lévy Flights defined in Eqn. 4.23 

      Evaluate the quality of the new nest by the objective function  

      if    
       

    

          Replace the old nest by the new one 

          (  
   represents fitness value of new nest   at iteration     &   

  represents fitness  

          value of old nest   at iteration   

 End if 

  End for 

           Find the current best nest        

           if (            

               Update      

         End if 

           Discover worse quality nests with probability    

          Abandon worse nests and generate new nests using the Eqn. 4.24 

          Compute the fitness of the new nests using the objective function  

          Replace the worse nests by the new nests with better quality 

           Update    using Eqn. 4.26 

           Find the current best nest        

           if (            

   Update      

          End if 

                       

End while 

End 
 



77 

 

 

Figure 4.3: Normalized Frequency vs. Magnitude in dB of Lowpass Type II FIR Filter 

 

Figure 4.4: Frequency vs. Normalized Magnitude of Lowpass Type II FIR Filter 

Similarly Figure 4.5 and Figure 4.6 show the responses of bandpass Type II FIR Filter 

implemented using gbest CSA, CSA and PMA.  

 

Figure 4.5: Normalized Frequency vs. Magnitude in dB of Bandpass Type II FIR Filter 
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Figure 4.6: Frequency vs. Normalized Magnitude of Bandpass Type II FIR Filter 

 Table 4.3 and Table 4.4 show the comparative results of the Type II lowpass filters and Type 

II bandpass filters, respectively, in terms of passband ripple and also stopband attenuation.  

Table 4.3: Comparison of Type II Lowpass filter responses 
 

Algorithms Passband Ripple Stopband Attenuation 

PM 0.11 25.6738 

CS 0.14 33.4493 

gbest CS 0.14 35.4566 

 
Table 4.4: Comparison of Type II Bandpass filter responses 

 

Algorithms Passband Ripple Stopband Attenuation 

PM 1.04 26.5911 

CS 1.04 26.1504 

gbest CS 1.05 33.2805 

Table 4.5 and Table 4.6 show the optimized coefficients of the Type II lowpass filters and 

Type II bandpass filters, respectively. 

Table 4.5: Optimized Coefficients for Type II Lowpass Filter 

Coefficients PMA CSA gbest CSA 

h(1) = h(22) 0.0168746929652027 0.00450653302996857 0.00475128080146216 

h(2) = h(21) 0.0356224310492992 0.0120498836574256 0.00797044714101550 
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h(3) = h(20) -0.022156462421912 -0.0085544060336254 -0.0073030927757500 

h(4) = h(19) -0.027740395668699 -0.0237797886423163 -0.0216310263118251 

h(5) = h(18) 0.00836919266504365 0.00845929736049457 0.00515781230658275 

h(6) = h(17) 0.0514379005698228 0.0433690256212844 0.0427007916209370 

h(7) = h(16) 0.00476715377763214 0.00945993358253513 0.00742551715593949 

h(8) = h(15) -0.0840368108939566 -0.0798672291567218 -0.0779638435113317 

h(9) = h(14) -0.0474310194466021 -0.0492676037318842 -0.0489386676900673 

h(10) = h(13) 0.179330187119499 0.176445843218714 0.175486596403889 

h(11) = h(12) 0.412951663757719 0.414121107386855 0.415050096328490 

Table 4.6: Optimized Coefficients for Type II Bandpass Filter 

Coefficients PMA CSA gbest CSA 

h(1) = h(26) 0.0120473066682598 0.0244983137005205 0.00213779222996536 

h(2) = h(25) -0.024641695172901 -0.0177667680011737 -0.0150746230332790 

h(3) =  h(24) -0.00706697543646 -0.0432125105296717 -0.0207567965513314 

h(4) = h(23) -0.017244142843961 0.0136902047811129 0.0279765100823963 

h(5) = h(22) -0.0435225995555 0.0110915911276413 0.0398014194638810 

h(6) = h(21) 0.0283656122926086 -0.00345537332826511 -0.0129296523374115 

h(7) = h(20) 0.0684688094178119 0.0975801731046881 -0.0050789025396310 

h(8) = h(19) -0.004395099347699 0.0477530362920501 -0.0033011712771962 

h(9) = h(18) 0.0371415618982372 -0.215581707983335 -0.103467507414961 

h(10) = h(17) 0.0344294788509787 -0.155035354335177 -0.0405896706941112 
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h(11) = h(16) -0.228061298530215 0.240439572317793 0.216558804718472 

h(12) = h(15) -0.179254394516737 0.240439572317793 0.148925047855674 

h(13) = h(14) 0.299278656698308 -0.155035354335177 -0.236423535445386 

 

Results prove the efficacy of the adaptive technique of using gbest CSA and the mean square 

error based objective function for optimizing filter coefficients. Proposed method outperforms 

conventional technique of using Parks McClellan Algorithm for obtaining optimized 

coefficients set of Type II lowpass and bandpass FIR filters. Efficiency of the proposed 

algorithm compared to the conventional CSA in terms of optimized results (Best), mean, and 

standard deviation (Std.) is proved using seven standard benchmark functions (Jamil & Yang, 

2013; Naik et al., 2015) and shown in Table 4.7. 

Table 4.7: Performance Evaluation of gbest CSA and CSA using Benchmark Functions 
  

Functions  Best Mean Std. 

Sphere model 

(Jamil & Yang, 

2013; Naik et al., 

2015) 

gbest CSA 6.0760e-15 4.6707e-13 4.9057e-13 

CSA 5.1925e-11 3.6508e-10 3.6669e-10 

Schwefel’s problem 

2.22 (Jamil & 

Yang, 2013; Naik 

et al., 2015) 

gbest CSA 6.4948e-08 3.7832e-07 2.2497e-07 

CSA 2.4363e-05 6.0125e-05 2.6264e-05 

Schwefel’s problem 

1.2 (Electric Power 

Systems Analysis 

and Nature Inspired 

Optimization 

Algorithms, 2015a; 

gbest CSA 0.0506 0.4197 0.3163 

CSA 2.5935 14.0311 10.6556 
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Naik et al., 2015) 

Schwefel’s problem 

2.21 (Jamil & 

Yang, 2013; Naik 

et al., 2015) 

gbest CSA 0.0425 0.1199 0.0549 

CSA 3.7385 6.5092 1.6751 

Generalized 

Rosenbrock’s 

function (Naik et 

al., 2015) 

gbest CSA 0.3037 24.7142 18.1265 

CSA 16.1695 33.8772 24.8391 

Generalized 

Rastrigin’s 

function 

(Surjanovik & 

Bingham, 2013; 

Naik et al., 2015) 

gbest CSA 16.6182 33.4733 9.6165 

CSA 29.5893 53.3390 11.2181 

Ackley’s function 

(Surjanovik & 

Bingham, 2013; 

Naik et al., 2015) 

gbest CSA 9.6237e-08 4.3725e-06 7.5285e-06 

CSA 3.2896e-04 0.4842 0.6344 

 

4.3.3. FIR Filter Design using Fast Converging Cuckoo Search Algorithm 

Present study involves design of odd length and even length symmetric lowpass, highpass and 

bandpass FIR filters using Fast Converging Cuckoo Search Algorithm (FCCSA). Responses of 

the implemented filters are compared with the responses of the filters designed by the Parks 

McClellan Algorithm and the conventional Cuckoo Search Algorithm.  

In FCCSA step size is computed using the Eqn. 4.23. This modification keeps the selection 

pressure towards the better solutions, hence assures better results in lesser execution time. 

FCCSA is detailed in Algorithm 4.4. 
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4.3.3.1.Fast Converging Cuckoo Search Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4.4: Fast Converging Cuckoo Search Algorithm (FCCSA) 

4.3.3.2.Simulation Results 

Required filter parameters and input parameters to the algorithm used to implement Type I and 

Type II lowpass, highpass and bandpass filter are stated in Table 4.8, Table 4.9 and Table 4.10 

respectively. In the following case studies responses of the implemented filters are shown.   

 

 

Input: Total No. of Iteration (Max_Iteration), size of population (n), objective function ( ), 

lower bound, upper bound  

Output: Optimized set of filter coefficients. 

begin 

Initialize a population of n nests randomly within bound 

Evaluate the quality of the nests using the objective function   and store the fitness values in     

Find the best quality nest and store in       

Initialize a probability    for discovering worse quality nests;  

Initialize t = 1 

while                    

       for       
      Generate new nest using Lévy Flights defined in Eqn. 4.23 

      Evaluate the quality of the new nest by the objective function  

      if      
         

    

          Replace the old nest by the new one 

 End if 

  End for 

           Find the current best nest        

           if (            

               Update      

         End if 

           Discover worse quality nests with probability    

          Abandon worse nests and generate new nests using the Eqn. 4.24 

          Compute the fitness of the new nests using the objective function  

          Replace the worse nests by the new nests with better quality 

           Find the current best nest        

           if (            

   Update      

          End if 

                       

End while 

End 
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Table 4.8: Input Parameters to design Type I and Type II Lowpass Filter 

Type of filter  I II 

Total number of nests (n) 30 30 

Filter order (N) 20 19 

Size of each nest (candidate 

solution) 

11 10 

Total no. of iteration 

(MaxIteration) 

1000 1000 

Upper bound      -1 -1 

Lower bound     1 1 

Passband frequency (    0.25 0.25 

Stopband frequency      0.4 0.4 

Passband ripple (    0.0575 0.0575 

Stopband ripple      0.0316 0.0316 

 

Table 4.9: Input Parameters to design Type I and Type II Highpass Filter 

Parameter Name Parameter Value Parameter Value 

Type of filter  I II 

Total number of nests (n) 30 30 

Filter order (N) 20 19 

Size of each nest (candidate 

solution) 

11 10 

Total no. of iteration 

(MaxIteration) 

1000 1000 

Upper bound      -1 -1 

Lower bound     1 1 

Passband frequency (    0.35 0.35 

Stopband frequency      0.20 0.20 

Passband ripple (    0.1 0.1 

Stopband ripple      0.05 0.05 
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Table 4.10: Input Parameters to design Type I and Type II Bandpass Filter 

Parameter Name Parameter Value Parameter Value 

Type of filter  I II 

Total number of nests (n) 30 30 

Filter order (N) 20 19 

Size of each nest (candidate 

solution) 

11 10 

Total no. of iteration 

(MaxIteration) 

1000 1000 

Upper bound      -1 -1 

Lower bound     1 1 

Passband frequency (    0.3 ; 0.5 0.3 ; 0.5 

Stopband frequency      0.25 ; 0.55 0.25 ; 0.55 

Passband ripple (    0.1 0.1 

Stopband ripple      0.01 0.01 

 

Figure 4.7 (a) shows plot of normalized Frequency vs. magnitude in dB and Figure 4.7 (b) 

shows plot of frequency vs. normalized magnitude of lowpass Type I FIR Filters implemented 

using FCCSA, CSA and PMA. Table IV contains comparative results of the filters in terms of 

passband ripple, stopband ripple and stopband attenuation. Table 4.8 contains optimized 

coefficients of the filters.  

 

Figure 4.7(a) 
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Figure 4.7(b) 

 

Figure 4.7: (a) Normalized Frequency vs. Magnitude in dB of Lowpass Type I FIR Filter, (b) 

Frequency vs. Normalized Magnitude of Lowpass Type I FIR Filter 

 

Table 4.11: Passband Ripple and Stopband Attenuation of Lowpass Type I FIR Filter 
 

Algorithm Passband 

Ripple 

Stopband 

Ripple 

Stopband 

Attenuation 

PMA 0.0719 0.038 -28.87 

CSA 

FCCSA 

0.0628 

0.0535 

0.0232 

0.0128 

-32.8578 

-37.85 

 

Table 4.12: Optimized Coefficients of Lowpass Type I FIR Filter 

Coefficients Parks McClellan CSA FCCSA 

h(1) = h(21) -0.0138732222373371 0.00339674726820915 0.00375547208188730 

h(2) = h(20) 0.0159878573458010 0.0130678311138362 0.0122307398677153 

h(3) = h(19)  0.0282770406935350 0.0190220208204059 0.0168130043548852 

h(4) = h(18) 0.0225889779640064 0.00672641652179830 0.00495801361885702 

h(5) = h(17) -0.0107974229093833 -0.0245172923945074 -0.0241664826671393 



86 

 

 

Figure 4.8(a) shows plot of normalized Frequency vs. magnitude and Figure 4.8(b) shows plot 

of frequency vs. normalized magnitude of lowpass Type II FIR Filters implemented using 

FCCSA, CSA and PMA. Table 4.13 contains comparative results of the filters in terms of 

passband ripple, stopband ripple and stopband attenuation. Table 4.14 contains optimized 

coefficients of the filters.  

 

Figure 4.8(a) 

h(6) = h(16) -0.0508639686377598 -0.0517848590918863 -0.0495093765178696 

h(7) = h(15) -0.0535763648648696 -0.0396666696661371 -0.0372314416561971 

h(8) = h(14) 0.0143400172180110 0.0327142756484805 0.0333347347450519 

h(9) = h(13) 0.140903161291734 0.148094705278335 0.146754169973728 

h(10) = h(12) 0.265901718602978 0.254461223430382 0.252951053281185 

h(11) 0.318133616052643 0.297663846691431 0.296341702935941 
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Figure 4.8(b) 

 

Figure 4.8: (a) Normalized Frequency vs. Magnitude in dB of Lowpass Type II FIR Filter, (b) 

Frequency vs. Normalized Magnitude of Lowpass Type II FIR Filter 

Table 4.13: Passband Ripple and Stopband Attenuation of Lowpass Type II FIR Filter 

 

Algorithm Passband Ripple Stopband Ripple Stopband Attenuation 

PMA 0.072 0.05 -27.5795 

CSA 

FCCSA 

0.061 

0.05 

0.019 

0.015 

-31.5 

-36.08 

 

Table 4.14: Optimized Coefficients of Lowpass Type II FIR Filter 

Coefficients PMA CSA FCCSA 

h(1) = h(20) -0.00837047290389881 0.00687139505578740 0.00597070222241318 

h(2) = h(29) 0.0281336733236659 0.0174423137821560 0.0150826049318690 

h(3) = h(18)  0.0285731449708783 0.0164209103714373 0.0143565509043312 

h(4) = h(17) 0.00799066379637620 -0.00689170411939148 -0.00645038318579679 

h(5) = h(16) -0.0328713342200233 -0.0410816601622469 -0.0382539281101766 

h(6) = h(15) -0.0595899744082957 -0.0531555008435412 -0.0506179746679018 

h(7) = h(14) -0.0287496288147971 -0.0114653443951876 -0.0111865240708885 



88 

 

 

 

Figure 4.9(a) shows plot of normalized Frequency vs. magnitude and Figure 4.9(b) shows plot 

of frequency vs. normalized magnitude of highpass Type I FIR Filters implemented using 

FCCSA, CSA and PMA. Table 4.15 contains comparative results of the filters in terms of 

passband ripple, stopband ripple and stopband attenuation. Table 4.16 contains optimized 

coefficients the filters.  

 

Figure 4.9(a) 

 

Figure 4.9(b) 

Figure 4.9: (a) Normalized Frequency vs. Magnitude in dB of Highpass Type I FIR Filter, (b) 

Frequency vs. Normalized Magnitude of Highpass Type I FIR Filter 

h(8) = h(13) 0.0732588077730955 0.0870279193390558 0.0856874381096096 

h(9) = h(12) 0.208267409694031 0.205913120961259 0.204852594690420 

h(10) = h(11) 0.304204477078734 0.287073221032930 0.287096880235132 
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Table 4.15: Passband Ripple and Stopband Attenuation of Highpass Type I FIR Filter 

Algorithm Passband Ripple Stopband Ripple Stopband Attenuation 

PMA 0.06 0.034 - 25.907 

CSA 

FCCSA 

0.0014 

0.0010 

0.032 

0.03 

-29.3349 

-32.38 

 

 

Table 4.16: Optimized Coefficients of Highpass Type I FIR Filter 

 

Coefficients PMA CSA FCCSA 

h(1) = h(21) -0.000137726459964331 0.00748623582299282 -0.00558576985965225 

h(2) = h(20) -0.0176699545194173 0.0178027101280496 -0.0169493946104454 

h(3) = h(19)  -0.0157693103654503 0.0179660074472004 -0.0218993002674030 

h(4) = h(18) -0.000873411544119435 -0.00155813005259396 -0.00667383452407309 

h(5) = h(17) 0.0277785986917579 -0.0337294146442447 0.0269681742099115 

h(6) = h(16) 0.0482280179796081 -0.0533244004058117 0.0542909006449092 

h(7) = h(15) 0.0305241752696865 -0.0312704642826736 0.0402215568173479 

h(8) = h(14) -0.0407854938629945 0.0438755984369263 -0.0335158906933499 

h(9) = h(13) -0.148761211833621 0.152002790037944 -0.148729534819408 

h(10) = h(12) -0.247353255131035 0.247398385882968 -0.254767813362851 

h(11) 0.712730949395183 -0.714547010307068 0.702234115682767 

 

Figure 4.10(a) shows plot of normalized Frequency vs. magnitude and Figure 4.10(b) shows 

plot of frequency vs. normalized magnitude of highpass Type II FIR Filters implemented using 
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FCCSA, CSA and PMA. Table 4.17 contains comparative results of the filters in terms of 

passband ripple, stopband ripple and stopband attenuation. Table 4.18 contains optimized 

coefficients the filters.  

 

Figure 4.10(a) 

 

Figure 4.10(b) 

Figure 4.10: (a) Normalized Frequency vs. Magnitude in dB of Highpass Type II FIR Filter,  

 (b) Frequency vs. Normalized Magnitude of Highpass Type II FIR Filter 

Table 4.17: Passband Ripple and Stopband Attenuation of Highpass Type II FIR Filter 

Algorithm Passband 

Ripple 

Stopband 

Ripple 

Stopband 

Attenuation 

PMA 0.089 0.042 -28.6 

CSA 

FCCSA 

      0.0408 

      0.0316 

0.03 

0.028 

-28.665 

-32.385 

 

 



91 

 

Table 4.18: Optimized Coefficients of Highpass Type II FIR Filter 

Coefficients PMA CSA  FCCSA 

h(1) = h(20) 0.0141216880680729 -0.0117393678914356 0.0118262307392677 

h(2) = h(29) -0.0217911062176947 -0.0203840519806205 0.0204249674053444 

h(3) = h(18)  -0.0305505111468436 -0.00863290411005589 0.00858560157465317 

h(4) = h(17) -0.0205184606557532 0.0241924970731447 -0.0242855458833939 

h(5) = h(16) 0.0150824802749166 0.0529777501522605 -0.0530189768149152 

h(6) = h(15) 0.0530512697697476 0.0410011916503982 -0.0409576044392026 

h(7) = h(14) 0.0511481151956367 -0.0318457187749407 0.0319667786146751 

h(8) = h(13) -0.0191936287477738 -0.147697576195291 0.147803814344124 

h(9) = h(12) -0.143319978325906 -0.255195274474480 0.255103909379504 

h(10) = h(11) -0.263316454182693 0.701146228086199 -0.701323247021478 

 

Figure 4.11(a) shows plot of normalized Frequency vs. magnitude and Figure 4.11(b) shows 

plot of frequency vs. normalized magnitude of bandpass Type I FIR Filters implemented using 

FCCSA, CSA and PMA. Table 4.19 contains comparative results of the filters in terms of 

passband ripple, stopband ripple and stopband attenuation. Table 4.20 contains optimized 

coefficients the filters.  

 

Figure 4.11(a) 
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Figure 4.11(b) 

 

Figure 4.11: (a) Normalized Frequency vs. Magnitude in dB of Bandpass Type I FIR Filter, (b) 

Frequency vs. Normalized Magnitude of Bandpass Type I FIR Filter 

 

Table 4.19: Passband Ripple and Stopband Attenuation of Bandpass Type I FIR Filter 

 

Algorithm Passband 

Ripple 

Stopband 

Ripple 

Stopband 

Attenuation 

PMA 0.31 0.18 - 18 

CSA 

FCCSA 

0.0014 

0.0011 

0.015 

0.012 

- 23. 7236 

-25.78 

 

Table 4.20: Optimized Coefficients of Bandpass Type I FIR Filter 

Coefficients PMA CSA FCCSA 

h(1) = h(31) 0.0225649236810043 0.0170748379280340 -0.0171182588203891 

h(2) = h(30) -0.0327527368769161 0.0100473207003458 -0.0100800756054404 

h(3) = h(29)  0.0191196025661108 -0.0197092061247583 0.0196846104850894 

h(4) = h(28) -0.0118614163673383 -0.0209122078111174 0.0208556074098390 

h(5) = h(27) -0.0685961131249631 0.00450117963550519 -0.0045137269539507 

h(6) = h(26) -0.0548250284969489 0.00467044992938622 -0.0044814386209027 

h(7) = h(25) 0.0236265390156190 -0.00534638469469250 0.00547177112844060 
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h(8) = h(24) 0.0481289716354942 0.0279758972855318 -0.0281481453655971 

h(9) = h(23) 0.00461899095644996 0.0523972218776362 -0.0525501244375481 

h(10) = h(22) 0.0192837900135152 -0.0246383472064071 0.0247317917166476 

h(11) = h(21) 0.0797591204518425 -0.119121517080092 0.119156014177336 

h(12)  = h(20) 0.000748978916006141 -0.0485874002306499 0.0484933299022815 

h(13) = h(19) -0.191343945434930 0.134611759973402 -0.134509118622160 

h(14) = h(18) -0.181706024639650 0.151894367388243 -0.151644775033331 

h(15) = h(17) 0.110250881888867 -0.0597700804054681 0.0596924629328150 

h(16)  0.300178237382188 -0.200904398738736 0.200606151617971 

 

Figure 4.12(a) shows plot of normalized Frequency vs. magnitude and Figure 4.12(b) shows 

plot of frequency vs. normalized magnitude of bandpass Type II FIR Filters implemented 

using FCCSA, CSA and PMA. Table 4.21 contains comparative results of the filters in terms 

of passband ripple, stopband ripple and stopband attenuation. Table 4.22 contains optimized 

coefficients the filters.  

 

Figure 4.12(a) 
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Figure 4.12(b) 

 

Figure 4.12: (a) Normalized Frequency vs. Magnitude in dB of Bandpass Type II FIR Filter, (b) 

Frequency vs. Normalized Magnitude of Bandpass Type II FIR Filter 

Table 4.21: Passband Ripple and Stopband Attenuation of Bandpass Type II FIR Filter 

Algorithm Passband 

Ripple 

Stopband 

Ripple 

Stopband Attenuation 

PMA 0.31 0.18 - 18 

CSA 

FCCSA 

0.0015 

0.0012 

0.016 

0.014 

- 23.72375 

-25.96 

 

Table 4.22: Optimized Coefficients of Bandpass Type II FIR Filter 

Coefficients PMA CSA FCCSA 

h(1) = h(30) 0.0225649236810043 0.0150907875477844 -0.014806418259073 

h(2) = h(29) -0.0327527368769161 0.000367212966049854 -0.000304532592591 

h(3) = h(28)  0.0191196025661108 -0.0211835862366085 0.0207795937981213 

h(4) = h(27) -0.0118614163673383 -0.00853565514888823 0.00835755808540606 

h(5) = h(26) -0.0685961131249631 0.00777110981867764 -0.0074445267265577 

h(6) = h(25) -0.0548250284969489 -0.00419399734853405 0.00442874495494476 

h(7) = h(24) 0.0236265390156190 0.00326937520040729 -0.0034143509220554 

h(8) = h(23) 0.0481289716354942 0.0474662694866716 -0.0475627931284042 

h(9) = h(22) 0.00461899095644996 0.0302721677204632 -0.0300986953182150 
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h(10) = h(21) 0.0192837900135152 -0.0786238434760165 0.0786466882788071 

h(11) = h(20) 0.0797591204518425 -0.110914227140650 0.110650753237896 

h(12)  = h(19) 0.000748978916006141 0.0414172519237242 -0.0414924784132797 

h(13) = h(18) -0.191343945434930 0.177217303827776 -0.176986933958765 

h(14) = h(17) -0.181706024639650 0.0629555995504433 -0.0627636078912966 

h(15) = h(16)   0.110250881888867 -0.160995161493941 0.160783271805496 

 

Above mentioned case studies proved efficacy of the Fast Converging Cuckoo Search 

Algorithm and the proposed fitness function for optimizing filter coefficients. Proposed 

method outpaces conventional technique of using PMA for obtaining optimized coefficients 

set of Type I and Type II lowpass, highpass as well as bandpass FIR filters.  

Table 4.23, 4.24 and 4.25 show comparative studies of the execution time of GA, PSO, BAT 

Algorithm, CSA and FCCSA while used for lowpass, highpass and bandpass FIR filters 

coefficients optimization respectively. 

Table 4.23: Comparison of execution time (in seconds) of different algorithms to design 19
th
 and 20

th
 

order Lowpass FIR Filter 

Algorithm Filter Type 

Type I (order 20) Type II (order 19) 

GA 48.3400 48.2000 

PSO 46.2060 46.0002 

BAT Algorithm 44.6422 44.1020 

CSA 43.4682 43.2667 

FCCSA 43.2362 43.0042 

 



96 

 

Table 4.24: Comparison of execution time (in seconds) of different algorithms to design 19
th
 and 20

th
 

order Highpass FIR Filter 

Algorithm Filter Type 

Type I (order 20) Type II (order 19) 

GA 49.1420 49.5500 

PSO 48.1244 48.0008 

BAT Algorithm 47.0022 47.1146 

CSA 45.2280 45.1740 

FCCSA 43.2362 43.0042 

 

Table 4.25: Comparison of execution time (in seconds) of different algorithms to design 29
th
 and 30

th
 

order Bandpass FIR Filter 

Algorithm Filter Type 

Type I (order 30) Type II (order 29) 

GA 80.1315 80.0142 

PSO 78.1232 78.1008 

BAT Algorithm 75.1200 75.5532 

CSA 72.2520 72.1765 

FCCSA 69.4450 69.0004 

 

4.4. Conclusions 

Simulation results and discussions have proved that use of BAT algorithm for designing 

excellent performing lowpass FIR filters is worthwhile compared to GA and PSO. It can be 

observed that the stop-band attenuation for 20th order low pass filter using BAT Algorithm is -
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31.4 dB while the same using GA, PSO and Parks-McClellan, are -22.2 dB, -25.2 dB and -

24.9 dB. The normalized stop-band ripple obtained using BAT Algorithm is 0.03. This 

specifies superior performance of the BAT Algorithm at the cost of little increase in pass-band 

ripple with respect to PSO (0.10 vs. 0.06). Ripple performances in stopband are improved by 

3.00%, 14.27% and 3.14% compared to PSO, GA and PM respectively. BAT algorithm can be 

further applied to digital highpass FIR filter design. Further modification in BAT algorithm 

can also be adapted for obtaining optimized filter coefficients to design better performing FIR 

filters. Another innovative approach of using a new algorithm Global Best Steered Cuckoo 

Search Algorithm (gbest CSA) to design linear phase symmetric FIR filters is also presented in 

this chapter. Proposed algorithm is used to implement 21
st
 order lowpass filter and 25

th
 order 

bandpass filters. For optimization, an adaptive fitness function based on weighted mean square 

error is used. The result shows that use of gbest CSA along with the mean square error based 

fitness function for designing Type II lowpass and bandpass FIR filter is worthwhile for 

improving filter characteristics. Lowpass filter of order 21 implemented by the optimized sets 

of filter coefficients obtained using gbest CSA offers gain in stopband attenuation of 38% and 

6% compared to PMA and CSA respectively, whereas to design 25
th

 bandpass filter gain in 

stopband attenuation is 25% and 27% in comparison with PMA and CSA respectively. In this 

chapter an adaptive algorithm namely Fast Converging Cuckoo Search Algorithm (FCCSA) is 

also proposed and efficacy of the algorithm is proved while implementing linear phase 

symmetric FIR filters. Lowpass, highpass and bandpass filters of even and odd order have 

been realized using FCCSA. For optimization weighted mean square error is used. The result 

shows that use of FCCSA along with the proposed fitness function for designing Type I and 

Type II lowpass, highpass as well as bandpass FIR filters is sensible not only for improving 
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filter characteristics but also minimizing execution time. Filters implemented by the optimized 

sets of filter coefficients obtained using FCCSA offers flat passband and higher stopband 

attenuation. All the above mentioned algorithms can be used to design efficient digital filters. 

To remove noise from the corrupted bio-medical signals for error free diagnosis these filters 

are most useful. In the astrophysical signals received by the satellite bit of noise can make 

huge difference to the data, use of these filters for de-noising astrophysical signals are much 

worthy.   
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Chapter 5 

 

Hardware Efficient Filter Design 

 
5.1. Introduction 

 
Digital filters have been extensively used in the last few decades for biomedical signal 

processing, noise elimination, astrophysical signal processing, etc. Trifling hardware cost 

and extraordinary behaviour of altering characteristics with changes in the discrete values 

stored in the registers have made the digital filters more efficacious than the analog ones. 

Digital filters are classified into two types - (i) Finite Impulse Response (FIR) Filter 

(Salivahanan et al., 2007; Sharma, 2009; Mitra, 2013), and (ii) Infinite Impulse Response 

(IIR) Filter (Salivahanan et al., 2007; Sharma, 2009; Mitra, 2013; Singh & Arya, 2012; 

Karaboga & Cetinkaya, 2014). Minimalisms in hardware and fluently attainable linear 

phase properties have made FIR filters more worthwhile. FIR filters produce inherent 

stable response due to absence of poles in the transfer functions. The key steps involved in 

FIR filter design are multiplication and accumulation of filter coefficients with the input 

discrete time signal. Due to the consumption of higher amount of power and, it has become 

necessary to replace the multipliers with shift and adder circuits. For realizing multiplier 

less filter circuits, coefficients can be represented as sums or differences of signed-power-

two (SPT) terms (Solank, 2012). Requirement of adders including Structural Adders (SA) 

and Multiplier Adders (MA) depend on total the number of SPT terms used to represent a 

set of filter coefficients (Reddy & Sahoo, 2015; Reddy, 2015). If the number and attributes 

of filter coefficients vary with the filter specifications, the total number of adders also 

varies. 
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The design strategies of FIR filters are classified as window method (Kaiser, 1966; Harris 

& Fredric, 1978; Sharma, 2009), frequency sampling technique (Gold & Jordan, 1969) and 

use of optimal filter coefficients (Herrmann, 1970; Parks & McClellan, 1972; Reddy & 

Sahoo, 2015). Optimization of filter coefficients is characterized as a problem with an 

objective of minimizing the errors in both passband and stopband. Error in the frequency 

bands is mathematically conceptualized as an approximation function representing the 

deviancy between the designed filter responses and the ideal filter responses. In order to 

obtain appropriate set of filter coefficients, Parks and McClellan (1972) proposed an 

algorithm namely Parks McClellan Algorithm (PMA) (Parks & McClellan, 1972) aiming 

to receive exact linear phase response. The algorithm is inefficient in independent selection 

of passband and stopband ripples as it uses their ratio. In optimization based methods, the 

design problem of FIR filters is formulated as either single or multi-objective optimization 

problem which can be solved by either the heuristic approach or the meta-heuristic 

approach.  

Heuristic algorithmic approach has weakness in determining local optimal solutions in 

terms of convergence speed although it has a unique nature of searching in neighbourhoods 

aiming to get the optimal solution. Heuristic algorithms (Kokash, 2005; Aickelin & Clark, 

2011) determine high quality solutions to tough optimization problems; however, they do 

not assure the optimum solution. Overcoming these limitations, further research led to the 

development of the metaheuristic algorithms (Baghel et al., 2012; Yang, 2010a; Yang, 

2011). Besides better performance than simple heuristic algorithms, meta-heuristic 

algorithms have another advanced feature of using certain trade-offs of randomization and 

local search. Meta-heuristic algorithms perform better to reach the global optima even in 

presence of limited information about the problem. Behaviour of biological systems and/or 
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physical systems in nature stood as the motivation behind majority of the meta-heuristic 

algorithms. 

Among a considerable number of nature inspired meta-heuristic algorithms, Particle 

Swarm Optimization (PSO) (Kennedy & Eberhart, 1995; Yang et al., 2013) exhibits fast 

convergence in many practical applications, however, it suffers from the problem of 

premature convergence. Specifically, in case of solving multimodal and nonlinear 

problems with a huge number of local minima, PSO gets trapped into local optima. 

Performance of PSO is improved by integrating the principles of quantum superposition 

and quantum probability, hence accelerating the search for an optimal solution. Some other 

algorithms are also available in literature that performs better in solving unimodal as well 

as multimodal problems. Among them, a few newly developed algorithms are Cuckoo 

Search Algorithm (CSA) (Yang & Deb, 2009; Yang & Deb. 2010), Flower Pollination 

Algorithm (FPA) (Yang, 2014; Yang, 2013), BAT Algorithm (Yang, 2014; Yang, 2010d; 

Fister et al., 2015), etc. Amid these algorithms CSA and FPA are efficient not only in terms 

of performance but also in computational time. Moreover they require less number of 

parameters to be tuned rather than GA (Oner, 1998; Aggarwal et al., 2015) and PSO 

(Najjarzadeh & Ayatollahi, 2008). In the proposed work, improvement on standard CSA 

(Yang & Deb, 2009; Yang, 2014) is achieved by incorporating quantum principles 

(Ventura & Martinez, 1997) and modifying the replacement strategy of the worse quality 

nests, resultant a new algorithm which we refer to as Global Best Steered Quantum 

Inspired Cuckoo Search Algorithm (GQICSA). This algorithm outpaces basic algorithms 

Quantum Inspired Cuckoo Search Algorithm (QICSA) (Layeb & Boussalia, 2012; Laha, 

2015; Djelloul et al., 2015), CSA and FPA in terms of convergence time.   In the work, 

reported in this chapter, we used both QICSA and GQICSA to obtain optimized sets of 

filter coefficients for the design of FIR filters with responses likely to the ideal filters with 
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minimum adder cost.  Reduction in the number of required adders refers to the reduction of 

SPT terms. The key concept behind the approach used to reduce the SPT terms relies on 

the notion that the set of filter coefficients are not exclusive for particular filter 

specifications such as stopband attenuation, passband ripple and order of filter. QICSA 

performs better for this specific problem compared to GA (Oner, 1998; Aggarwal et al., 

2015), PSO (Najjarzadeh & Ayatollahi, 2008), CSA (Yang & Deb, 2009; Yang, 2014), 

FPA (Yang, 2014; Yang, 2013) and Quantum behaved Particle Swarm Optimization 

(QPSO) (Sun et al., 2004; Long et al., 2010; Dhabal & Sengupta,2015). The proposed 

algorithm, GQICSA, shows even better performance compared to all the above mentioned 

algorithms as well as QICSA (Layeb & Boussalia, 2012; Laha, 2015; Djelloul et al., 2015). 

5.2. Design Problem Formulations 

Finite Impulse Response (FIR) filters can be described by the system transfer function in 

Equation 5.1, 

                                                                                              (5.1) 

Where   signifies the order of the filter,    represents the set of filter coefficients 

containing      elements in the set (Sharma, 2009). For symmetric FIR filters,     can 

be defined by Equation 5.2. 

                                                                                               (5.2) 

For optimizing coefficients of symmetric filters, only           coefficients must be 

taken into consideration whereas in case asymmetric filters all the     coefficients need 

to be optimized. Based on the filter order and symmetricity of filter coefficients, filters are 

categorized into following four types. 

i. Type I- Even order and symmetric coefficients,  

ii. Type II- odd and symmetric coefficients,  

iii. Type III- Even order and asymmetric coefficients, 
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iv. Type IV- Odd order and asymmetric coefficients. 

In this work, we address design of Type I & Type II lowpass filters. 

FIR filter design involves three basic steps:  

i. Specifying the filter desires 

ii. Obtaining appropriate set of filter coefficients 

iii. Design filter architecture 

5.2.1. Specification of desired filter characteristics 

Filter design initiates with the specification of filter characteristics such as passband 

frequency     , stopband frequency    , passband ripple    , stopband ripple    . The 

magnitude response has a peak deviation of    in passband and maximum deviation of    

in stopband. Minimum stopband attenuation (  ), maximum and minimum passband 

attenuation    
and    

 respectively can be expressed in dB using the following Equations: 

                                                                                                                         (5.3) 

   
                                                                                                                 (5.4) 

   
                                                                                                                 (5.5) 

5.2.2. Filter coefficients computation 

In the traditional equiripple method for obtaining optimized set of filter coefficients, a 

desired filter response is approximated with varying degree of success of an objective 

function that minimizes the error between the approximated filter response and the desired 

filter response. This method uses an approach for minimizing errors in both the passband 

and stopband (Aggarwal et al., 2013). The error function (cf. Equation 5.3), in terms of the 

weighted difference of the ideal and approximated frequency responses in both pass-band 

and stop-band, is used in most of the cases (Singh & Josan, 2014), 

              
        

                                                                         (5.6)                                                        
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where     
    and     

    are the desired and approximated frequency response of the 

filter. Ideal frequency response of a lowpass filter is stated as in Equation 5.7 (Aggarwal et 

al., 2013; Singh & Josan, 2014). 

      
                           

                                                                                      (5.7) 

The weighing factor     offers control over error minimization in both the frequency 

bands. Using the key concept of the equiripple methodology, Parks and McClellan (Parks 

& McClellan, 1972) proposed an efficient algorithm for optimal filter design. Limitation of 

this strategy is the fixed value of 
  

  
. In a bid to overcome this limitation, we adopted a 

mean square error (Dhabal & Sengupta, 2015) based objective function as in Equation 5.8.  

                                                                                                           (5.8) 

For lowpass filter, and    are stated by Equation 5.9 and 5.10 respectively. 

   
 

 
            

   
  

 
                                                                        (5.9)                                      

   
 

 
            

   
 

  
                                                                                     (5.10) 

Here,   is the magnitude response of the approximated filter. The objective function   is 

the weighted sum of mean square errors   and   . By minimizing  , better performance 

can be obtained by the approximated filters in terms of passband ripples and stop band 

attenuation. 

5.2.3. Design filter architecture 

The basic operations involved in implementing FIR filter architecture are multiplication 

and accumulation of filter coefficients with the input discrete time signal. High amount of 

power and area consumption by the multipliers causes them to be replaced with shift and 

adder circuits. For implementing multiplier less filter circuits, coefficients are represented 
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as sums or differences of signed-power-two (SPT) terms (Solank, 2012). The transposed 

direct form of FIR filter can be defined by Equation 5.11, 

                 
                                                                                                 (5.11)                                                                                                                        

where,      represents input to the filter of order N,              represent the filter 

coefficients, length of the filter is denoted by M (M=N+1) and      represents the filter 

output. Transpose direct form of filter implementation consists of structural and multiplier 

adders along with the delay elements. Structural adders are used to add the input 

signal     , multiplied by the filter coefficient product value, along with the stored value 

in delay element. The number of structural adders equals to the total number of addition 

required to obtain filter coefficients after Common Sub Expression elimination. Multiplier 

adders are used for coefficient multiplication and the number of multiplier adders equals 

the total number of SPT terms or the nonzero bits required to represent filter coefficients 

neglecting the repeating terms or bit positions. If the number and attributes of filter 

coefficients vary with the filter specifications, the total number of adders also varies. 

Reduction in number of required adders refers to the reduction of SPT terms. The key 

concept behind the approach used to reduce the SPT terms relies on the notion that the set 

of filter coefficients are not exclusive for particular filter specifications such as stopband 

attenuation, passband ripple and order of filter. Suppression in the word length of the filter 

coefficients and representing them in Canonical Signed Digit (CSD) form lead to reduction 

in SPT terms and hence in total number of adders. Hardware cost of a filter is very much 

dependent on the total number of adders required to design a filter.  

The hardware requirement for implementing the Eqn. 5.11 can be stated as follows: 

Multipliers: Multiplication between      and filter coefficients     . 

Adders: For accumulating purpose. 

Delay Elements: For storing the previous inputs or accumulated values. 
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Eqn. 5.8 requires (M-1) numbers of adders, (M-1) numbers of delay elements and M 

numbers of multipliers. Among several techniques for FIR filter design direct form and 

transposed direct form structures are shown below (Reddy, 2015):   

 

 

 

 

 

Figure 5.1: Direct Form Structure 

 

 

 

 

 

 

Figure 5.2: Transposed Direct Form Structure 

In this chapter, at first conventional Cuckoo Search is updated by quantum principles and 

the quantum inspired Cuckoo Search algorithm is used to obtain optimized coefficients set 

of Finite Impulse Response Filter. After that an adaptive replacement strategy is 

incorporated with the QICSA and resultant algorithm namely Global Best Steered QICSA 

(GQICSA) is used for the same purpose. Word length of each optimized coefficient of a 

filter is then fixed at 10. Hardware efficiency of the filter implemented using the 

coefficients having fixed word length of 10 is then measured by estimating the required 

number of adders including structural adder and multiplier adder. In simulation results, it 
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has been shown that reduction in word length of the coefficients does not make the filters 

incapable of achieving the desired frequency response.  

5.3. Overview of Quantum Computing  

Quantum computing (Kaye et al., 2007) is a latest theory which has appeared as a result of 

amalgamating computer science and quantum mechanics. The term “quantum computer” 

can be defined as a computer system, designed on the basis of quantum theory, was first 

proposed by Nobel prize-winning physicist Richard Feynman in 1982 (Fynman, 1982). In 

quantum computers, computations are performed on the basis of the laws of quantum 

mechanics (Benioff, 1980). Initially the concept of a quantum computer was of theoretical 

concern only, but topical developments like invention of Shor’s algorithm (Bone and 

Castro) to factor large numbers on a quantum computer, by Peter Shor (Bell Laboratories), 

geared up the researchers to win the race for implementing a practical quantum computer 

(Beckman et al., 1996). Shor’s algorithm, makes the quantum computer capable to crack 

codes quicker than any classical computer could. 

Recently quantum computing has drawn attention of the researchers of various modern 

areas since it appears more powerful than its classical counterpart. Indeed, the 

characteristic of parallelism that the quantum computing provides decreases the 

algorithmic complexity. This makes the Quantum-inspired algorithms more acceptable 

compared to the classical algorithms for some hard hitting problem solving. The theories of 

quantum computation have some interesting implications in the world of artificial 

intelligence also.  

The basic component of quantum computing is “qubit” (Samanta et al., 2017; Konar et al, 

2017; Dey et al., 2017). It is a unit vector defined over two-dimensional Hilbert space, 

where a particular basic state can be indicated by      and      (Han & Kim 2002; Li & lu, 

2015).  
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Based on the fundamental concept of the superposition principle, if a quantum system can 

be represented by any one of the two basic states, then it can also be represented as a linear 

combination of these two states, such as   
       

    , where the coefficients    and    

are the “amplitudes” of the states      and      respectively (Konar et al., 2017). These 

coefficients give the probabilistic measure of the occurrence of state      and state       

respectively (Samanta et al., 2017; Dey et al., 2017). The superposition   
       

     is 

the basic, or the smallest, unit of encoded information in quantum computers or quantum 

systems. The qubit representation is given by Equation 5.12 (Samanta et al., 2017; Konar et 

al, 2017; Dey et al., 2017). 

       
       

                                                                                                (5.12) 

According to the superposition principle,    and   are arbitrary complex numbers and the 

squares of their norms add up to 1, as indicated in Equation 5.13 (Samanta et al., 2017; 

Konar et al, 2017; Dey et al., 2017). 

    
      

                                                                                                              (5.13) 

  and  are the probabilistic amplitude of the qubit that may exist in one of the two states 

(state “0” or state “1”) and ensure that the normalization condition is met.  

5.3.1. Qubit Representation 

The equation for the superposition state of a qubit can be stated by the sum of the two basic 

states corresponding to their probabilistic amplitude coefficients    and    respectively. 

Here,    and    are complex but are generally considered real without any loss. A qubit 

lies in a coherent superposition of states      and      (Samanta et al., 2017; Konar et al, 

2017; Dey et al., 2017). After measurement it must be either at state 0 or state 1. If we are 

having two qubits, these can be in one of the four computational fundamental states i.e. 00, 

01, 10 or 11. Pair of qubits should be in a superposition of four states stated in the 

following Equation (Samanta et al., 2017; Konar et al, 2017; Dey et al., 2017):  
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                                                                (5.14)                                                                           

Normalization condition of these four states can be stated by the following Equation 

(Samanta et al., 2017; Konar et al, 2017; Dey et al., 2017):  

     
       

       
       

                                                                             (5.15) 

In this way a qubit string i.e. set of some individual qubits can be represented as following 

(Samanta et al., 2017; Konar et al, 2017; Dey et al., 2017): 

    
         

         
                                                                                                     (5.16) 

Here, an individual qubit can be stated as   
 
   , l refers to the length of the quantum string 

q.  

Ability of parallel processing of the quantum algorithms can be used to solve combinatorial 

optimization problems requiring the exploration of large solutions spaces. For obtaining 

better optimal solutions in quantum inspired optimization algorithms, qubits are updated 

using quantum gates. Updated qubits may also increase the convergence rate of the 

algorithm. Usually quantum gates operate on one or two qubits similar like the classical 

logic gates. Hence, the gates can be symbolized using     or     unitary matrices.Key 

concept of a unitary matrix can be stated by the following Equation (Samanta et al., 2017; 

Konar et al, 2017; Dey et al., 2017): 

       , where     and     are unitary and                                                (5.17) 

This ensures the logically reversible property of the quantum gate.  

5.3.2. Quantum Operators 

Basic quantum operator is quantum rotational gate which is generally used to update the 

qubits. The coefficients         of the ith qubit can be updated using the following 

Equation (Han & Kim, 2002; Lu & Li, 2015; Samanta et al., 2017; Konar et al, 2017; Dey 

et al., 2017):   
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 ,where        stands for quantum rotation gate.                        (5.18)  

Quantum rotation gate can be stated as following (Samanta et al., 2017; Konar et al, 2017; 

Dey et al., 2017): 

        
                 

                
                                                                                 (5.19) 

Rotation angle    is invoked to update the qubit to    
    

  . There are a considerable 

number of gates in quantum computing such as NOT gate, controlled NOT gate, controlled 

phase-shift gate, Toffoli gate, Fredkin gate, Hadamard gate (Dey et al., 2017). 

5.4. Quantum Inspired Optimization Algorithms 

For solving optimization-related problems and issues, use of population based algorithms 

inspired by nature have been proved to be efficient in literature. Aiming to reduce the 

algorithmic complexity researchers has incorporated the quantum principles into traditional 

nature inspired algorithms. Resultant quantum behaved nature inspired algorithms have 

proved their efficiency for solving complex optimization problems. Quantum algorithms 

involve applications of a series of quantum operations successively on a quantum system. 

Quantum operations can be performed using quantum gates and quantum circuits. As there 

is not a powerful quantum machine able to execute the developed quantum algorithms, 

researchers have tried to adapt some properties of quantum computing in the classical 

algorithms since last two decades. The key notion of quantum inspired optimization 

algorithms is to represent the possible solutions of a problem as the superposition of all 

those solutions. This specific type of representing potential solutions is termed as quantum 

representation. For updating the solutions in a population through generations, quantum 

operators are used.  
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5.4.1. Quantum Inspired Cuckoo Search Algorithm 

Modification in conventional CSA is performed by collaborating with quantum principles 

for solving complex, multimodal problems, like higher dimensional filter design. At the 

beginning of solving an optimization based problem using Quantum Inspired Cuckoo 

Search Algorithm (QICSA) (Layeb & Boussalia, 2012; Djelloul et al., 2015) a set of 

solutions, termed as initial population, is generated but within a specific range demarcated 

by lower and upper bounds. In the next step, quantum representation of all the solutions in 

the initial population is performed. In QICSA, a balanced composition of local random 

walks and global explorative random walks is also used for generating new solutions with 

the aim of replacing the old bad solutions. Local random walk is performed following the 

same way as performed in CSA using following Equation (Yang & Deb, 2009; Yang & 

Deb, 2010):  

  
      

                
    

                                                                        (5.20) 

In QICSA, for obtaining new solutions by updating the old ones, Monte Carlo method 

defined in Equations 5.21-5.24 are obeyed (Lu & Li, 2015). 

  
      

  
 

 
  

        
                                                                                               (5.21)                                                                                                                   

Where   
          

                                                                                                  (5.22)                                                                                                                                                                                                                                                        

    
 

 
     

  
    

 

 
     

     
 

 
     

  
   

 
                                                                   (5.23)                                                                                                

  
    

             
                                                                                               (5.24)                                                                                                                       

Here,      stands for Lévy flights,    represents the global best solution,   denotes the 

scaling factor used to control the step size and   refers to the step length which can be 

drawn from a Lévy distribution,   corresponds to the contraction expansion coefficient 

which can be tuned to control the convergence speed of the algorithms, and   
 is a random 
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number uniformly distributed over (0, 1).  Value of   can computed using Equation 5.25 

(Lu & Li, 2015).  

                                                                                                               (5.25) 

Finally, in order to perform global random walk using Lévy flights, Equations 5.26 and 

5.27 are used based on a specific condition as outlined in Algorithm 5.1. 

  
      

             
          

         
                                                     (5.26) 

  
      

             
          

         
                                                     (5.27)     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: Total No. of Iteration (       ), size of the population (n), objective function 

  ), lower bound, upper bound,   in Lévy distribution, probability    for discovering 

bad quality nests 

Output: Global Best Solution. 

Begin                                                                                              

Define objective function                      

Initialize a population of n nests 

Evaluate the fitness of the solutions using    

Find the best quality nest and store in      

Store fitness value of      in      

Define a switch probability pa [0, 1] and scaling factor  ;     

while            
   Define    by Equation 5.23 

   for       

            Generate a random number   and generate   by Equation 5.25 

            Draw a (d-dimensional) step vector L which obeys a Lévy distribution  

            if         
              Generate new solution using Equation 5.26 

           else 

             Generate new solution using Equation 5.27 

           end if 

          Discover bad nests with probability    

          Replace bad nests by the new nests generated using the Equation 5.20 

      end for 

      Evaluate the fitness of the solutions using    

   Find the current best nest       and store its fitness value in      

   if (           

    Update      and      

   End if 

             

End while 

End 

 

Algorithm 5.1: Quantum Inspired Cuckoo Search Algorithm 
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5.4.2. Global Best Steered Quantum Inspired Cuckoo Search Algorithm 

In our proposed technique named as Global Best Steered Quantum Inspired Cuckoo Search 

Algorithm (GQICSA) a modification was performed in replacement strategy of standard 

QICSA; another modification was in choice of a parameter     in Lévy Distribution. In 

reality higher similarity of a cuckoo egg with the host’s eggs decreases the probability of 

the cuckoo egg to be distinguished by the host from its own eggs. As the fitness of a 

candidate solution termed as cuckoo egg is related to its difference with the solutions of the 

latest iteration, therefore, it will be better to perform a random walk in a biased way with 

random step sizes. Similar like Cuckoo search, Global best steered cuckoo search also uses 

random step sizes but with different function set for computing the step size. In CSA and 

QICSA, step size is computed using the following expression:  

                                                                                                (5.28)                        

Where   is a random number lying within the range [0, 1].nest denotes a matrix containing 

candidate solutions along with their variables, permute1 and permute2 are different rows 

permutation functions applied on nest matrix (Yang & Deb, 2010). For Global Best Steered 

Cuckoo Search Algorithm (gbest CSA) step size is computed using the following equation:  

                                                                                  (5.29) 

In case of GQICSA instead of using permute1 function, best nest till the latest iteration is 

used. This specialty of GQICSA keeps the selection pressure towards the better solutions, 

hence assures better result. Moreover, this advancement of the Quantum Inspired Cuckoo 

Search Algorithm does not flood the population by the high fitness solutions. In our 

proposed algorithm instead of using        ,   is determined by the following equation 

(Dhabal & Venkateswaran, 2017):  

              
                

         
                                                                      (5.30) 

Where          and       . 
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Algorithm 5.2: Global Best Steered Quantum Inspired Cuckoo Search Algorithm 

To evaluate the performance of the proposed method, we compared the performance of 

GQICSA, QICSA and conventional CSA with 16 efficient benchmark functions (Naik et 

al., 2015). These benchmark functions can be categorized into three types: unimodal, 

multimodal with variable dimension and multimodal with fixed dimension. Among the 16 

benchmark functions, the unimodal test functions are Sphere model (F1) (Jamil & Yang, 

2013; Naik et al., 2015), Schwefel’s problem 2.22 (F2) (Jamil & Yang, 2013; Naik et al., 

2015), Schwefel’s problem 1.2 (F3) (Electric Power Systems Analysis and Nature Inspired 

    

Input: Total No. of Iteration (       ), size of the population (n), objective function 

  ), lower bound, upper bound, bounds for   in Lévy distribution, probability    for 

discovering bad quality nests 

Output: Global Best Solution. 

Begin                                                                                              

Define objective function                      

Initialize a population of n nests 

Evaluate the fitness of the solutions using    

Find the best quality nest and store in      

Store fitness value of      in      

Define a switch probability pa [0, 1] and scaling factor   

Compute   using Equation 5.27 

while            
   Define    by Equation 5.23 

   for       

            Generate a random number   and generate   by Equation 5.25 

            Draw a (d-dimensional) step vector L which obeys a Lévy distribution  

            if         
               Generate new solution using Equation 5.26 

           else 

                 Generate new solution using Equation 5.27 

           end if 

          Discover bad nests with probability    

      Replace bad nests by the new nests generated using the Equation 5.30 

      end for 

      Evaluate the fitness of the solutions using    

   Find the current best nest       and store its fitness value in      

   if (           

    Update      and      

   End if 

             

End while 

End 
 



115 

 

Optimization Algorithms, 2015a; Naik et al., 2015), Schwefel’s problem 2.21 (F4) (Jamil 

& Yang, 2013; Naik et al., 2015), generalized Rosenbrock’s function (F5) (Naik et al., 

2015; ), Step function (F6) (Electric Power Systems Analysis and Nature Inspired 

Optimization Algorithms, 2015b; Naik et al., 2015) and quartic function, i.e. noise (F7) 

(Jamil & Yang, 2013; Naik et al., 2015). The multimodal test functions with variable 

dimension are generalized Schwefel’s problem 2.26 (F8) (Electric Power Systems Analysis 

and Nature Inspired Optimization Algorithms, 2015c; Naik et al., 2015), generalized 

Rastrigin’s function (F9) (Surjanovik & Bingham, 2013; Naik et al., 2015), Ackley’s 

function (F10) (Surjanovik & Bingham, 2013; Naik et al., 2015) and generalized Griewank 

function (F11) (Surjanovik & Bingham, 2013; Naik et al., 2015). The multimodal test 

functions with fixed dimension are Shekel’s foxholes function (F12) (Electric Power 

Systems Analysis and Nature Inspired Optimization Algorithms, 2015d; Naik et al., 2015), 

Kowalik’s function (F13) (Naik et al., 2015), Six-hump Camelback function (F14) 

(Surjanovik & Bingham, 2013; Naik et al., 2015), Branin function (F15) (Surjanovik & 

Bingham, 2013; Naik et al., 2015), Goldstein-Price function (F16) (Surjanovik & Bingham, 

2013; Naik et al., 2015). The unimodal (F1 - F7), multimodal test functions with variable 

dimension (F8 – F11) and multimodal test functions with fixed dimension (F12 – F16) are 

considered to have for performance evaluation. Parameters for CSA and GQICSA were 

considered as follows:  

Size of initial population (n) = 25 

Probability for discovering bad quality nests      = 0.25  

Total no. of iterations       =2000  
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Table 5.1: Details of Unimodal Benchmark Functions 

Name Benchmark Function Search 

Range 

Sphere model (  ) (Surjanovik & 

Bingham, 2013; Naik et al., 2015) 
         

 

 

   

 

[-100,100]
D 

Schwefel’s problem 2.22 (  ) 

(Jamil & Yang, 2013; Naik et al., 

2015) 

                 

 

   

 

   

 

[-10,10]
D 

Schwefel’s problem 1.2 (  ) (Naik 

et al., 2015; )            

 

   

 

 
 

   

 

[-100,100]
D
 

Schwefel’s problem 2.21 (  ) 

(Jamil & Yang, 2013; Naik et al., 

2015) 

              ;           [-100,100]
D
 

Generalized Rosenbrock’s 

function (  ) (Surjanovik & 

Bingham, 2013; Naik et al., 2015) 

                    
          

   

   

 

[-30,30]
D 

Step function (  ) (Naik et al., 

2015; ) 
              

 

   

 

[-100,100]
D
 

Quartic function (  ) (Jamil & 

Yang, 2013; Naik et al., 2015) 
          

             

 

   

 

[1.28,1.28]
D 

 

Table 5.2: Details of Multimodal Benchmark Functions with variable dimension 

Name Benchmark Function Search 

Range 

Schwefel’s problem 2.26 

(  ) (Naik et al., 2015) 
                 

 

   

 

[-500,500]
D 

Generalized Rastrigin’s 

function (  ) (Surjanovik & 

Bingham, 2013; Naik et al., 

2015) 

          
                 

   

   

 

[5.12,5.12]
D 
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Ackley’s function (   ) 

(Surjanovik & Bingham, 

2013; Naik et al., 2015) 

             

 

      
 

 
   

 

 

   
 

 

     
 

 
          

 

   

 

      

[-32,32]
D 

Generalized Griewank 

function (   ) (Surjanovik 

& Bingham, 2013; Naik et 

al., 2015) 

        
  

 

    
      

  

 
   

 

   

 

   

 

[-600,600]
D 

 

Table 5.3: Details of Multimodal Benchmark Functions with fixed dimension 

Name Benchmark Function Search 

Range 

Shekel’s foxholes function (   ) 

(Naik et al., 2015; )        
 

   
 

 

            
  

   

  

   

  

 

[-65.536 

, 65.536]
2
 

Kowalik’s function (   ) (Naik et 

al., 2015) 
            

     
       

  
         

 

   

   

 

[-5,5]
4 

Six-hump Camelback 

function (   ) (Surjanovik & 

Bingham, 2013; Naik et al., 2015) 

          
       

  
 

 
  

          
 

    
  

[-5,5]
2
 

Branin function (   ) (Surjanovik 

& Bingham, 2013; Naik et al., 

2015) 

              
  

   

   
     

 

 
     

      
 

  
        

    

[[-

5,0],[10,15]]
2
 

Goldstein-Price function (   ) 

(Surjanovik & Bingham, 2013; 

Naik et al., 2015) 

                            

    
            

    
      

          
         

     
             

     
   

[-2,2]
2 
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Table 5.4: Performance Evaluation using Benchmark Functions 

Function Algorithm Best Mean Std. Avg. 

Time 

F1 GQICSA 1.7194e-40 3.3645e-37 1.4765e-36 1.7448 

QICSA 4.9152e-16 6.2337e-15 6.0275e-15 3.0932 

CSA 5.1925e-11 3.6508e-10 3.6669e-10 3.3126 

F2 GQICSA 1.2881e-23 1.6149e-21 3.3248e-21 1.8510 

QICSA 4.4884e-09 1.2879e-08 8.2027e-09 3.2634 

CSA 2.4363e-05 6.0125e-05 2.6264e-05 3.4660 

F3 GQICSA 1.7145e-05 7.1186e-04 7.9723e-04 5.1074 

QICSA 2.1979e-04 0.0018 0.0021 9.8202 

CSA 2.5935 14.0311 10.6556 9.9447 

F4 GQICSA 3.0422e-04 0.0058 0.0049 1.8940 

QICSA 1.0956 5.2957 2.5149 1.9046 

CSA 3.7385 6.5092 1.6751 2.0811 

F5 GQICSA 0.0015 17.8455 19.4371 1.9516 

QICSA 0 0 0 3.2160 

CSA 16.1695 33.8772 24.8391 2.5685 

F6 GQICSA 0 0 0 1.7691 

QICSA 0 0 0 3.2160 

CSA 0 0 0 3.4286 

F7 GQICSA 0.0034 0.0103 0.0036 2.5483 

QICSA 0.0172 0.0250 0.0076 3.8422 

CSA 0.0098 0.0308 0.0145 4.0255 

F8 GQICSA -1.2198e+04 -1.1169e+04 475.7058 2.0582 

QICSA -9.4685e+03 -9.0397e+03 358.4852 3.5953 

CSA -9.6111e+03 -9.2550e+03 241.0039 3.7570 

F9 GQICSA 7.0931 18.0660 6.5278 1.9099 

QICSA 20.0508 29.8919 7.8986 3.4785 

CSA 29.5893 53.3390 11.2181 3.6830 

F10 GQICSA 7.9936e-15 1.8420e-09 1.8419e-08 1.9330 

QICSA 5.5159e-08 1.3441 0.6901 3.3927 

CSA 3.2896e-04 0.4842 0.6344 3.6742 

F11 GQICSA 0 0.0060 0.0099 2.0691 

QICSA 1.7764e-15 0.0049 0.0070 1.2696 

CSA 5.1778e-09 4.9655e-05 1.5445e-04 3.8954 
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     F12 GQICSA 0.9980 0.9980 2.5664e-15 6.0168  

 QICSA 0.9980 0.9980 2.5664e-15 6.3875 

 CSA 0.9980 0.9980 2.5664e-15 6.6974  

    F13 GQICSA 3.0749e-04 3.6243e-04 2.1856e-04 0.9694 

 QICSA 3.0749e-04 3.0749e-04 9.5079e-19 1.0312 

 CSA 3.0749e-04 4.3568e-04 3.1933e-04 1.2120  

   F14 GQICSA -1.0316 -1.0316 1.5434e-15 1.3136 

 QICSA -1.0316 -1.0316 1.5434e-15 1.5524 

 CSA -1.0316 -1.0316 2.0919e-15 0.8608 

  F15 GQICSA 0.3979 0.3979 1.0600e-15 0.8142  

 QICSA 0.3979 0.3979 1.0600e-15 1.1250 

 CSA 0.3979 0.3979 4.3543e-10 1.1461 

 F16 GQICSA 3.0000 3.0000 9.4470e-16 0.8120  

 QICSA 3.0000 3.0000 9.4470e-16 1.1414 

 CSA 3.0000 3.0000 7.3745e-16 1.1418 

 

For a single test function each algorithm was executed for 100 times. For comparing the 

performance of CSA, QICSA and GQICSA, best minima/maxima (‘Best’), mean (‘Mean’), 

standard deviation (‘Std’), and average time (‘Avg. Time’) to get the best result in an 

evaluation of 100 independent runs are shown in TABLE 5.4. The convergence curves of 

some benchmark functions are shown in Fig. 5.3(a)-(f). The experimental results suggest 

that GQICSA outperforms CSA and QICSA in terms of ‘Best’, ‘Mean’, and ‘Std.’ for all 

the benchmark functions.  

 
Figure 5.3(a) 
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Figure 5.3(b) 

 

 
 

Figure 5.3(c) 

 

 
Figure 5.3(d) 
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Figure 5.3(e) 

 

 
 

Figure 5.3(f) 

 

 
 

Figure 5.3(g) 
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Figure 5.3(h) 

 
 

Figure 5.3(i) 

 
 

Figure 5.3(j) 

 
Figure 5.3: Fitness Plots for Benchmark Functions (a) Sphere model, (b) Schwefel’s problem 2.22, 

(c) Schwefel’s problem 1.2, (d) Schwefel’s problem 2.21 (e) Generalized Rosenbrock’s function, 

(f) Step Function, and (g) Quartic function, (h) Schwefel’s problem 2.26,  (i) Ackley’s function, (j) 

Kowalik’s function 
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5.5. Hardware Efficient FIR Filter Design using Global Best 

Steered Quantum Inspired Cuckoo Search Algorithm  

To design FIR filters using GQICSA or QICSA firstly the filter order (N), word length of 

filter coefficients (B), passband frequency     , stopband frequency    ,  passband ripple 

    , stopband ripple    , total no. of iterations (       ), size of the population (n), lower 

bound     , upper bound     , switch probability (   , and scaling factor ( ) must be 

specified. Size of each candidate solution will be            . The primary step of 

the algorithm is to generate an initial population randomly, but within a specific range 

demarcated by the lower and upper bounds. In our proposed technique, each host nest 

specifies the coefficient set of a symmetric FIR filter. Value of each coefficient is bounded 

in the range of (-1, 1). Fitness value of each solution is computed in terms of the quality of 

the implemented filter using Equation 5. Finally after obtaining an optimized set of filter 

coefficients, each coefficient in the set is abbreviated to the specified word length (B). 

Abbreviated coefficients set are then used to design the FIR filter. Quality of the filter is 

evaluated in terms of filter responses, i.e., stopband attenuation and passband ripple. Total 

number of SPT terms present in the coefficients set and the required number of adders to 

implement the filter are also computed to evaluate the designed filter. Performances of 

even order and odd order symmetric lowpass FIR filters designed using QICSA and 

GQICSA are evaluated. We compared the results of the proposed system with the results 

obtained with the standard Cuckoo Search Algorithm and few other optimization 

algorithms like GA, PSO, QPSO and FPA. Responses of the filters designed using QICSA 

and GQICSA were also compared with the results of conventional algorithmic strategy of 

filter design with Parks McClellan Algorithm. A comparative study of the designed filters 

in terms of Stopband attenuation (Asb) and Passband ripple      is presented in TABLE V 
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and VI, for even and odd order symmetric lowpass FIR filters, respectively. To design each 

of the 16
th

, 17
th

, 20
th

 and 21
st
 order lowpass filters using each of the above mentioned 

optimization algorithms, total numbers of iterations were fixed at 1000. Similarly, for 

implementation of 24
th

 and 25
th

 order lowpass filters, total numbers of iterations were fixed 

at 1500. In both cases, size of the initial population is considered as 30. For all the lowpass 

filters, Passband edge frequency (    is taken as 0.4 , Stopband edge frequency      is 

taken as 0.6 , Passband ripple (    is fixed at 0.05 and Stopband ripple is fixed at      

0.03. 

5.5.1. Simulation Results 

Table 5.5: Performance Comparison of different algorithms used to design even order filters 

Algorithm Filter Order(N) 

16 20 24 

Asb(dB)    Asb(dB)    Asb(dB)    

PM 32.6684 0.41 38.9590 0.20 45.1764 0.10 

GA 4.1150 1.35 5.8206 0.79 2.1524 2.35 

PSO 11.1904 3.01 12.6466 0.90 5.1398 2.22 

QPSO 18.7527 0.54 12.9994 0.94 11.2887 3.53 

FPA 28.9095 0.30 30.9035 0.28 41.5362 0.12 

CSA 34.8293 1.80 33.7077 1.48 22.0503 0.49 

QICSA 36.0029 0.38 40.0104 0.30 45.2146 0.17 

GQICSA 36.0035 0.38 40.7590 0.29 45.2160 0.17 

Table 5.6: Performance Comparison of different algorithms used to design odd order filters 

Algorithm Filter Order(N) 

17 21 25 

Asb(dB)    Asb(dB)    Asb(dB)    

PM 35.1755 0.31 41.4227 0.14 47.6300 0.07 

GA 3.5660 3.43 4.0228 3.58 3.5722 1.91 
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PSO 6.6600 2.89 9.6912 5.64 5.2304 2.97 

QPSO 7.1994 4.09 9.7021 6.29 11.5722 3.23 

FPA 29.2285 0.24 39.5807 0.17 34.0203 0.19 

CSA 32.7543 0.22 24.6848 0.34 13.8709 0.56 

QICSA 38.5122 0.37 42.6822 0.22 47.9356 0.12 

GQICSA 38.6310 0.37 43.0010 0.22 48.0280 0.12 

From the comparative study presented in TABLE 5.5 & 5.6, it is evident that the most 

conventional algorithms, GA and PSO, could not achieve good results with such less 

number of iterations like 1000 and 1500, and even a modified version of traditional PSO, 

Quantum Behaved Particle Swarm Optimization (QPSO) could not accomplish good 

results in such a fewer number of iterations. Hence, in Figure 5.4(a)-(f), responses of the 

lowpass Type I & Type II FIR filters implemented using only GQICSA, QICSA, CSA, 

FPA and PMA are shown. 

 

Figure 5.4(a) 

 

Figure 5.4(b) 
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Figure 5.4(c) 

 

 

 

Figure 5.4(d) 

 

 

 

Figure 5.4(e) 
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Figure 5.4(f) 

 

Figure 5.4: Magnitude Responses of the filters with (a) order 16, (b) order 17, (c) order 20, (d) 

order 21, (e) order 24, and (f) order 25 

Next, the responses of the filters implemented using the optimized set of coefficients, but 

with fixed word length is presented. Stopband attenuation and adder costs for 

implementing different order filters using the coefficients obtained by different algorithms 

but with suppressed word length are presented in Table 5.7-5.12. 
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Table 5.7: Performance comparison of 16
th
 order filters in terms of Stopband Attenuation, Passband Ripple and Hardware Cost 

 

Filters Filter 

Order 

(N) 

WL Asb 

(dB) 

Asb 

Gain 

(%) 

Pass 

Ripple 

SPT SPT 

Gain 

(%) 

MA SA TA TA Gain 

(%) 

PM 16 10 30.2660  0.37 24  9 10 19  

FPA 16 10 28.7172 -5.40 0.34 25 -4 9 10 19 0 

CSA 16 10 33.1002 8.56 1.95 28 -14.28 9 15 24 -20.83 

QICSA1 16 10 35.9531 15.81 0.54 24 0 9 12 21 -9.52 

QICSA2 16 9 35.9502 15.81 0.53 18 33.33 8 9 17 11.76 

GQICSA1 16 10 36.1056 16.17 0.57 24 0 10 9 19 0 

GQICSA2 16 9 36.2336 16.46 0.63 18 33.33 9 8 17 11.76 
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Table 5.8: Performance comparison of 17
th
 order filter in terms of Stopband Attenuation, Passband Ripple and Hardware Cost 

 

Filters Filter 

Order 

(N) 

WL Asb 

(dB) 

Asb 

Gain 

(%) 

Pass 

Ripple 

SPT SPT 

Gain 

(%) 

MA SA TA TA 

Gain 

(%) 

PM 17 10 35.0032  0.33 29  9 15 24  

FPA 17 10 29.6679 -17.98 0.20 25 16.00 9 14 23 4.34 

CSA 17 10 21.9020 -59.81 0.21 28 3.57 9 14 23 4.34 

QICSA1 17 10 38.1414 8.23 0.47 27 7.40 9 13 22 9.09 

QICSA2 17 9 41.0075 14.64 0.49 23 26.08 8 10 18 33.33 

GQICSA1 17 10 39.7882 13.67 0.51 27 7.40 9 12 21 14.28 

GQICSA2 17 9 39.7882 13.67 0.52 20 45 8 9 17 41.17 
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Table 5.9: Performance comparison of 20
th
 order filters in terms of Stopband Attenuation, Passband Ripple and Hardware Cost 

 

Filters Filter 

Order 

(N) 

WL Asb (dB) Asb 

Gain 

(%) 

Pass 

Ripple 

SPT SPT 

Gain 

(%) 

MA SA TA TA 

Gain 

(%) 

PM 20 10 36.6763  0.16 23  9 11 20  

FPA 20 10 31.6205 -16.00 0.24 26 -11.54 9 13 22 -9.09 

CSA 20 10 33.6580 -8.97 1.51 36 -36.11 9 16 25 -20 

QICSA1 20 10 41.7492 12.15 0.36 21 9.52 9 9 18 11.11 

QICSA2 20 9 42.0520 12.78 0.40 17 35.30 8 7 15 33.33 

GQICSA1 20 10 42.6568 14.02 0.29 21 9.52 9 9 18 11.11 

GQICSA2 20 9 42.2371 13.16 0.33 19 21.05 8 7 15 33.33 
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Table 5.10: Performance comparison of 21
st
 order filters in terms of Stopband Attenuation, Passband Ripple and Hardware Cost 

 

Filters Filter 

Order 

(N) 

WL Asb (dB) Asb 

Gain 

(%) 

Pass 

Ripple 

SPT SPT 

Gain 

(%) 

MA SA TA TA 

Gain 

(%) 

PM 21 10 40.1740  0.16 30  9 14 23  

FPA 21 10 36.2762 -10.74 0.27 28 7.14 9 12 21 9.52 

CSA 21 10 25.7162 -56.22 0.31 30 0 9 17 26 -11.54 

QICSA1 21 10 40.8480 1.65 0.33 27 11.11 9 13 22 4.54 

QICSA2 21 9 36.5475 -9.91 0.30 22 36.36 8 11 19 21.05 

GQICSA1 21 10 40.9766 1.95 0.26 29 3.44 9 13 22 4.54 

GQICSA2 21 9 40.1875 0.03 0.25 24 25 8 11 19 21.05 
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Table 5.11: Performance comparison of 24
th
 order filters in terms of Stopband Attenuation, Passband Ripple and Hardware Cost 

 

Filters Filter 

Order 

(N) 

WL Asb (dB) Asb 

Gain 

(%) 

Pass 

Ripple 

SPT SPT 

Gain 

(%) 

MA SA TA TA 

Gain 

(%) 

PM 24 10 42.5662  0.18 24  8 10 18  

FPA 24 10 38.5329 -10.46 0.15 23 4.34 7 7 14 28.57 

CSA 24 10 21.5943 -97.11 0.53 37 -35.13 9 20 29 -37.93 

QICSA1 24 10 43.4314 2.00 0.35 31 -22.50 9 13 22 -18.18 

QICSA2 24 9 42.8260 0.60 0.23 20 20.00 8 8 16 12.50 

GQICSA1 24 10 43.8460 0.22 2..91 31 -22.50 9 9 18 0 

GQICSA2 24 9 42.9380 0.35 0.86 20 20.00 8 8 16 12.50 
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Table 5.12: Performance comparison of 25
th
 order filters in terms of Stopband Attenuation, Passband Ripple and Hardware Cost 

 

Filters Filter 

Order 

(N) 

WL Asb (dB) Asb 

Gain 

(%) 

Pass 

Ripple 

SPT SPT 

Gain 

(%) 

MA SA TA TA Gain 

(%) 

PM 25 10 42.6105  0.08 35  9 16 25  

FPA 25 10 33.9195 -25.62 0.18 41 -14.63 9 14 23 8.69 

CSA 25 10 14.1199 -201.77 0.62 37 -5.40 9 12 21 19.04 

QICSA1 25 10 46.6903 8.74 0.15 31 12.90 9 13 22 13.63 

QICSA2 25 9 42.8985 0.67 0.21 25 40 8 11 19 31.57 

GQICSA1 25 10 46.8931 9.13 0.16 31 12.90 9 13 22 13.63 

GQICSA2 25 9 43.1619 1.27 0.19 25 40 8 11 19 31.57 
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Efficiency of QICSA is distinctly proved by our comparative study since QICSA1 means 

optimized coefficients with word length 10 obtains the least stop band attenuation for all 

the Type I and Type II lowpass filters among all the filters designed by the coefficients 

having similar word length. In terms of adder costs and SPT terms, QICSA1 also 

outperforms the benchmark filters for different orders. QICSA2 with reduced word length 

of 9 also satisfy the required filter characteristics. Efficacy of GQICSA is proved over 

QICSA by the comparative study since GQICSA1 means optimized coefficients with word 

length 10 obtains lesser stop band attenuation for Type I and Type II lowpass filters 

designed by the coefficients having similar word length. In terms of adder costs and SPT 

terms, GQICSA1 also outperforms the benchmark filters for different orders. GQICSA2 

with reduced word length of 9 also satisfy the required filter characteristics.  

Magnitude responses of these filters along with the benchmark filters are shown in Figure 

5.5(a) – 5.5(f). 

 

Figure 5.5(a) 
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Figure 5.5(b) 

 

Figure 5.5(c) 

 

Figure 5.5(d) 
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Figure 5.5(e) 

 

Figure 5.5(f) 

Figure 5.5: Magnitude Responses of the filters implemented by the optimized coefficients with 

reduced word length of (a) order 16, (b) order 17, (c) order 20, (d) order 21, (e) order 24, and (f) 

order 25 

Figure 5.6 shows the column chart representation of the stopband attenuation of different 

order filters.  

 

Figure 5.6: Column chart representation of the stopband attenuation of different order filters 

0 

10 

20 

30 

40 

50 Order 16 

Order 17  

Order 20 

Order 21 

Order24 

Order25 



137 

 

Figure 5.7 & 5.8 present the column chart representations of required no. of SPT terms and 

adders (TA), respectively, for implementing different filters with different orders. 

 

Figure 5.7: Column chart representation of required number of SPT terms to design different filters 

with different orders 

 

Figure 5.8: Column chart representation of required number of adders (TA) to design different 

filters with different orders 

Figure 5.9(a)–5.9(f) plot the Best Fitness Value vs. Iterations used to obtain coefficients of 

the filters for different orders using GQICSA, QICSA and CSA.  

 

Figure 5.9(a) 
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Figure 5.9(b) 

 

 

Figure 5.9(c) 

 

Figure 5.9(d) 
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Figure 5.9(e) 

 

Figure 5.9(f) 

Figure 5.9: Plot of Best Fitness Value vs. number of iterations for GQICSA, QICSA and CSA 

while used to obtain coefficients of the filters of (a) order 16, (b) order 17, (c) order 20, (d) order 

21, (e) order 24, (f) order 25 

 

From Figures of 5.9 it is apparent that GQICSA is capable of achieving the best solution in 

minimum number of iterations rather than QICSA and simple CSA. TABLE XIII reports 

the time required for execution of the algorithms to obtain optimized coefficients for 

different order filters and Figure 5.8 shows the column chart representation of the same. It 

is relevant to mention here that the process is executed by Matlab R2017b in a computer 

with Intel Core i3 processor and 4GB RAM. 
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Table 5.13: Execution time of FPA, CSA, QICSA and GQICSA to obtain optimized coefficients 

for different order filters 

Filter  

Order 

Execution Time  

FPA CSA QICSA GQICSA 

16 45.4880 43.1593 43.1565 42.1040 

17 44.8302 44.4738 42.7976 41.5025 

20 45.1742 42.9535 42.7680 41.2205 

21 44.7336 44.2608 42.6916 41.1250 

24 68.0248 64.4953 64.4931 62.2242 

25 67.5020 66.1814 64.0716 62.0028 

 

 

Figure 5.10: Column chart representation of the execution time of FPA, CSA, QICSA and GQICSA to 

obtain optimized coefficients for different order filters 

 

In the following two tables Table 5.14 and 5.15, a comparative study with few recently 

proposed optimization algorithms is presented for different orders Type I and II lowpass 

filters.  
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Table 5.14: Performance Comparison of different recently proposed algorithms used to design 

even order filters 

Algorithm Filter Order(N) 

16 20 24 

Asb(dB)    Asb(dB)    Asb(dB)    

CSA (Yang & Deb, 2010) 34.8293 1.80 33.7077 1.48 22.0503 0.49 

GCS (Dhabal & 

Venkateswaran, 2017) 

35.0015 0.40 36.2120 0.45 40.5500 0.20 

ACSA (Sengupta & Basak, 

2016) 

35.0208 0.37 37.0500 0.32 42.0150 0.16 

QICSA (Layeb & Boussalia, 

2012) 

36.0029 0.38 40.0104 0.30 45.2146 0.17 

GQICSA 36.0035 0.38 40.7590 0.29 45.2160 0.17 

 

Table 5.15: Performance Comparison of different recently proposed algorithms used to design odd 

order filters 

Algorithm Filter Order(N) 

17 21 25 

Asb(dB)    Asb(dB)    Asb(dB)    

CSA (Yang & Deb, 2010) 32.7543 0.22 24.6848 0.34 13.8709 0.56 

GCS (Dhabal & 

Venkateswaran, 2017) 

35.7800 0.25 36.3512 0.25 40.2500 0.30 

ACSA (Sengupta & Basak, 

2016) 

36.5250 0.36 38.2006 0.19 44.1400 0.20 

QICSA (Layeb & Boussalia, 

2012) 

38.5122 0.37 42.6822 0.22 47.9356 0.12 

GQICSA 38.6310 0.37 43.0010 0.22 48.0280 0.12 
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We also analysed performance of the GQICS algorithm for implementing higher order 

lowpass Type I and Type II filters. Table 5.16 shows a comparative study of the 

performances of GQICSA, QICSA and CSA to obtain higher order filters. For obtaining 

filters of order 32 and 40, initial population of size 30 is used and total no. of iterations is 

set to 3000 whereas for implementing filters of order 48, number of iterations is increased 

to 4000 and population size is increased by 10. For filter of order 55, population size of 

100 and number of iterations of 5000 are used. 

Table 5.16: Performance Comparison of GQICSA, QICSA and CSA for higher order filter design 

Algorithm Filter Order(N) 

 32 40 48 55 

CSA 37.2850 40.1502 42.4412 44.2104 

QICSA 46.1050 49.0020 50.5125 52.1500 

GQICSA 50.2032 53.2520 55.2200 58.4160 

From Table 5.16 it can be seen that the two most efficient optimization techniques of the 

date QICSA and CSA perform well enough to optimize coefficients for higher order filters 

whereas GQICSA performed excellent in fewer iterations compared to QICSA & CSA to 

obtain coefficients for higher order filters which can attain high stopband attenuation with 

negligible passband ripple.  

 

Figure 5.11(a) 
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Figure 5.11(b) 

 

Figure 5.11(c) 

 

Figure 5.11(d) 

Figure 5.11: Magnitude Responses of the filters of (a) order 32, (b) order 40, (c) order 48, and (d) 

order 55 designed using GQICSA 

The Magnitude Responses of the higher order filters designed using GQICSA are shown in 

Figure 5.11(a)-(d). Table 5.17 shows the execution time required to obtain optimized 

coefficients to design different higher order filters using CSA, QICSA and GQICSA. 

Figure 5.12 shows the column chart representation of the same. 
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Table 5.17: Comparison of Execution Time to design higher order filters using GQICSA, QICSA 

and CSA 

Filter  

Order 

Execution Time (Seconds)  

CSA QICSA GQICSA 

32 69.34 60.2 55.4 

40 71.26 65.44 60.5 

48 76.22 70.25 65.5 

55 78.4 74.23 68.42 

 

Figure 5.12: Column chart representation of the execution time of CSA, QICSA and GQICSA to 

obtain optimized coefficients for different higher order filters 

Statistical significance test (t-test) (WEB CENTER FOR Social Research Methods, 2006) 

was performed for the best fitness values for different iterations obtained at the time of 

implementing 24
th

 and 25
th

 order lowpass filters and the corresponding p values are shown 

in Table 5.18. 

Table 5.18: Statistical test (t-test) 

Algorithm p values for GQICSA with respect to other 

algorithms 

Filter Order(N) 

 24 25 

GA 0.000006  0.00004 

PSO 0.00007 0.00006 

QPSO 0.0008 0.0007 

FPA 0.0005 0.0002 

CSA 0.008 0.006 

QICSA 0.04 0.04 
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5.6. Hardware Efficient FIR Filter Design using Fast 

Converging Flower Pollination Algorithm 

 

5.6.1. Flower Pollination Algorithm 

Flower Pollination Algorithm was proposed by Xin She Yang and Suhash Deb in 2012 

(Yang & Deb, 2012). Attractive procedure of flow pollination of flowering plants stands as 

the key motivation for this algorithm. Four basic rules are needed to be followed to 

implement the algorithm: 

(i) Biotic and cross pollination are considered as global pollination, Pollen-carrying 

pollinator moves obeying Lévy flights. 

(ii) Abiotic pollination and self-pollination are used for local pollination. 

(iii) Pollinators are mainly insects and they are responsible for development of flower 

constancy, which is equivalent to a reproduction probability that is proportional to 

the similarity of two flowers involved. 

(iv) Switching between global and local pollination can be controlled by a switch 

parameter        , slightly biased toward local pollination.  

Flower constancy can be described by the following equation. 

  
      

                
                                                                                        (5.31)                                                                               

   
  denotes the solution vector    at iteration t,       represents the current best solution of 

the latest generation. Scaling factor   is used control the step size.     is Lévy flights 

based step size. As the pollinators used to travel over a long distance Lévy flights can be 

used to mimic the characteristic proficiently.   is computed using Lévy distribution. Local 

pollination is carried out by the following equation:  
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                                                                                                (5.32)                                                                           

  
  and   

  are pollen from different flowers of a single plant species. If   
  and   

  come 

from same spices that means are selected from the same population, it is equivalent to a 

local random walk if   is drawn from a uniform distribution in        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 5.3: Flower Pollination Algorithm 

5.6.2.  Fast Converging Flower Pollination Algorithm 

 

In FPA local random walk is performed using Eqn. 5.32, whereas in Fast converging 

Flower Pollination Algorithm local random walk is performed using the following Eqn. 

  
      

            
                                                                                           (5.33) 

    

Input: Population size (n), Total number of iterations         , lower bound, upper bound, 

objective function ( ), probability     

Output: Global best solution      

Begin 

Initialize a population of n flowers within bounds and evaluate the fitness of the solutions using 

   

Find the best solution and store in      and store fitness of the solution      in      

while             
     for       

           Compute fitness of solution   and store in   
  and generate a random number r 

           if(   ) 

      Draw a step vector   from a Lévy Distribution                    

              Perform global pollination and update solution using Equation5.31           

  Else 

      Draw   from a uniform distribution in       
              Perform local pollination and update solution using Equation 5.32   

           End if 

      Evaluate new solution and store its fitness in   
     

      if (  
      

   

               
      

    

      else 

                
      

  

      End if 

        End for 

     Find the current best solution       among the solutions stored in   and its fitness      

     if (                         
                            ;            

    End if 

              

End while 

End 
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In case of FFPA instead of using permute1 function,        i.e. best nest till the latest 

iteration is used. This specialty of FFPA keeps the selection pressure towards the better 

solutions, hence assures better result in fewer iterations. Moreover, this advancement of the 

Algorithm does not flood the population by the high fitness solutions. 

The flowchart in Figure 5.13 briefs the implementation of a FIR filter using Fast 

converging Flower Pollination Algorithm. 

Following filter parameters order of the filter (N), word length of filter coefficients (B), 

passband edge frequency    , stopband edge frequency     , passband ripple     , 

stopband ripple      and algorithm parameters objective function, Total number of flowers 

(n), Size of each flower (candidate solution), Total no. of iteration (MaxIteration), Upper 

bound     and Lower bound     are used as the input to the algorithm. In the flowchart t 

refers to the current generation. The algorithm starts with the step of generating the initial 

population where each candidate solution represents a set of filter coefficients. As we are 

concerned about the symmetric filters, size of each candidate solution of the population 

is    
   

 
 . Initial population is generated randomly but within a specific range 

demarcated by lower and upper bounds, UL and UB respectively. It can be defined by the 

following equation: 

                                                                                                       (5.34) 

            returns a uniformly distributed random number within range       i.e. 

              . Generated number is multiplied with           and then added to 

    to obtain a number between     &    . The subscript j signifies that a new random 

value is generated for each element of a single candidate solution.  
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Quality of each solution in the initial population is evaluated using a mean square error 

based objective function defined in (5.8). For determining error in passband and stopband 

(5.9) and (5.10) have been used respectively. 

For each solution scaling factor (sf) is computed. Scaling factor is the ratio of    to the 

maximum valued coefficient. Quantization of the coefficients is performed by multiplying 

them by    and sf. Adder cost is estimated to implement filter using each solution in the 

population after performing Common Sub Expression (CSE) elimination (Reddy & Sahoo, 

2015). Implementation of filters requires two types of adders: (a) Structural adder and (b) 

Multiplier adder (Reddy & Sahoo, 2015). Number of structural adder is estimated by 

computing the total number of addition required to obtain filter coefficients but after CSE 

elimination. Required number of multiplier adders is estimated by calculating the total 

number of SPT terms or the nonzero bits required to represent filter coefficients but 

avoiding the repeating terms or bit positions.  

Solution with the least value of   is then stored in BEST. In the next step a switching 

parameter         is chosen. For values of t less than MaxIteration new solutions are 

generated by local distribution or global distribution and solutions of the last population are 

replaced by the new better solutions. For each new solution required number of adders is 

estimated to implement a filter. Solution with minimum   value is stored in 

CURRENT_BEST. BEST is updated after each of the iterations if local best solution 

obtains better filter than the global best solution in other words it can be said that 

CURRENT_BEST is less than BEST. Algorithm terminates after maximum number of 

iterations occurred. Finally an optimized set of filter coefficients is received from the 

algorithm. Optimized filter coefficients are capable of implementing a symmetric FIR filter 

with minimum adder cost. 
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Figure 5.13: Filter Design using Fast Converging Flower Pollination Algorithm 

Yes 

CURRENT_BEST = 

BEST 

Evaluate fitness value of solution j in terms of quality of 

implemented filter 

Input (filter parameters N, B,             , total no. of Iteration 

(MaxIteration), size of population (n), objective function, Lower 

bound, Upper bound) 

Generate initial population of size n (total no. of flowers) 

randomly (within bounds) 
Level the flowers (candidate solutions) from j =1 to n & 

implement filter using each of the candidate solution 

Quantization of Coefficients Conversion of coefficients to CSD 
Common Sub Expression (CSE) 

Elimination 

No j=j+1  j <=n Store the solution with least fitness value in BEST 

Estimate Signed Power Two (SPT) terms  Estimate adder cost including multiplier adder and structural adder  

Define a switch probability         Initialize i=1 and t = 0 

 

Generate a random number r 

 

Yes No 

No Yes  t < MaxIteration 
Report BEST as 

optimized set of 

filter coefficients 

 

 

 

T as the optimized 

solution  

 

t=t+1 

CURRENT_BEST <= BEST BEST = BEST 

r < p 

 

Yes Draw a step vector L from 

Lévy Distribution 

Perform Global Pollination to generate 

new solution 

 
Draw   from uniform distribution Perform Local Pollination to generate new solution 

 

 

Evaluate fitness value of new solution in terms of quality of 

implemented filter and store in   
    

No 

  
   <=   

  (fitness value 

of i
th

 solution in last 

generation) 

 

Update i
th

 solution of last generation by the new solution and 

estimate the SPT terms, adder cost after performing 

quantization, conversion to CSD and CSE elimination 

Yes 

Keep i
th
 solution 

of last generation 

No 

Store the solution with least fitness value in CURRENT_BEST i <=n 

 

No 
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5.6.3. Simulation Results 

Present section covers up analysis of the simulation results of Fast Converging Flower 

Pollination Algorithm (FFPA) used to design symmetric FIR filters in transposed direct 

form. 

In our research work       and       are used as the normalized pass band and stop band 

edge frequencies respectively. Stop band attenuation is taken as 30. Pass band and stop 

band both are having ripple of 0.4. To obtain a benchmark filter again Parks McClellan 

Algorithm (PMA) (Parks & McClellan, 1972) is used.  As we are concerned about the 

symmetric filters and the filter order is specified at 20, size of each candidate solution of 

the initial population of FFPA must be 11. After receiving an optimized solution as the 

output of the algorithm, using symmetricity property of the coefficients a complete set of 

filter coefficients can be obtained.  

Figure 5.14(a) contains magnitude response of different filters implemented using the 

coefficients optimized by Flower Pollination Algorithm but with different population size 

and specific number of total iterations of 500. Response of these filters do not match with 

the ideal filter characteristics which clearly indicates that number of iteration chosen in this 

case is not suitable for the implementation of filter. Similar process is replicated for 

different values of total iterations ranges from 1000 to 4000 with a gap of 500 and plots 

obtained in each case for different population sizes are shown in Figure 5.14(b) to 5.14(h). 

Studying the responses of the filters shown in Figure 5.14 it is observed that for iteration 

3000 and population size 20, filter is obtaining least stopband attenuation. Hence, for 

further study iterations of 3000 and population size 20 are chosen.  
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Figure 5.14 (a)  

 

Figure 5.14 (b)  

 

Figure 5.14 (c)  
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Figure 5.14 (d)  

 

Figure 5.14 (e)  

 

Figure 5.14 (f)  
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Figure 5.14 (g)  

 

Figure 5.14 (h)  

Figure 5.14: magnitude response of different filters implemented using the coefficients 

optimized by Flower Pollination Algorithm but with different population size and total 

number of iterations (a) 500, (b) 1000, (c) 1500, (d) 2000, (e) 2500, (f) 3000, (g) 3500, (h) 4000 

Hardware cost of a filter is very much dependent on the total numbers of adders required to 

design a filter. Adder cost of a filter can either be reduced by decreasing order of filter or 

by reducing number of nonzero bits present in the filter coefficients. Magnitude response 

of four different filters FFPA1, FFPA2, FFPA3 and FFPA4 are shown in Figure 5.15 

respectively. FFPA1, FFPA2 and FFPA3 filters are implemented using the optimized 

coefficients obtained by Fast Converging Flower Pollination Algorithm with iterations 

3000, population 20 but with different word length of coefficients. From Table 5.19 it can 
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be observed that FFPA1 uses coefficients of word length 10 and obtains stop band 

attenuation of 37.61 but requires 16 adders and 23 SPT terms to be designed. Hence the 

filter achieved a gain of 37.8378% in SPT terms and 23.8095% in adder cost compared to 

the benchmark filter implemented using PMA. Whereas by reducing the word length of the 

coefficients to 9 FFPA2 obtains stop band attenuation of 34.23 with only 12 adders and 18 

SPT terms. FFPA2 achieved a gain of 51.3513% in ST terms and 42.8571% in adder cost. 

Further reduction in word length leads to decrement in SPT terms to 14 but there is no 

reduction in adder cost is observed. Stop band attenuation obtained by this filter FFPA3 is 

30.10, gain in SPT terms is 62.1621 and gain in adder cost is 42.8571%.  FFPA4 is another 

filter shown in this study where to reduce adder cost order of the filter is decreased from 20 

to 18. FPA4 gives stop band attenuation of 30.15 and requires 16 adders to be implemented 

using the coefficients of word length 10. Hence the filter achieved a gain of 24.3243% in 

SPT terms and 28.5714% in adder cost. 

A comparative study of attenuation in stopband and adder costs of the filters implemented 

using optimized coefficients obtained by Fast Converging Flower Pollination Algorithm as 

well as the filters designed using the optimized coefficients obtained by different 

traditional optimization algorithms like GA, PSO, Differential Evolution (DE) and CSA is 

performed in Table 5.19. Efficiency of Fast Converging Flower Pollination Algorithm is 

clearly proved by the comparative study as FFPA1 obtains least stop band attenuation of 

37.61 among all the filters designed by the coefficients having similar word length. In 

terms of adder cost also FFPA1 achieves gain of 23.8095% compared to the benchmark 

filter which is pity high than the gain achieved by the filters designed using the coefficients 

obtained by other conventional algorithms. FFPA2 and FFPA3 with reduced word length 

of 9 and 8 respectively also satisfy the required filter characteristics. FFPA4 with reduced 

filter order of 18 is also capable of achieving filter response as required. Magnitude 
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Response and Frequency Response of these filters are shown in Figure 5.17(a) and 4(b) 

respectively. 

 

Figure 5.15: Magnitude Response of filters implemented by the optimized coefficients obtained 

using FFPA1, FFPA2, FFPA3 and FFPA4 

 

Figure 5.16: Comparison of Magnitude Response of filters implemented by the optimized 

coefficients obtained using FFPA1, FFPA2, FFPA3, FFPA4, GA, PSO, ACO, CSA and Parks 

McClellan Algorithm 
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Table 5.19: Comparative study of different properties of the designed filters 

Filters N WL Asb 

(dB) 

SPT SPT gain 

(%) 

MA S

A 

TA TA gain 

(%) 

PM 20 10 28.58 37  8 13 21  

GA 20 10 32.34 30 21.875 9 12 21 0 

DE 20 10 32.86 32 15.625 7 10 17 19.0476 

PSO 20 10 35.03 28 28.125 7 10 17 19.0476 

CSA 20 10 35.70 28 28.125 7 10 17 19.0476 

FPA1 20 10 37.61 23 37.8378 6 10 16 23.8095 

FPA2 20 9 34.23 18 51.3513 6 6 12 42.8571 

FPA3 20 8 30.10 14 62.1621 6 6 12 42.8571 

FPA4 18 10 30.15 28 24.3243 7 10 15 28.5714 

 

Table 5.20: Execution time of GA, PSO, ACO, CSA, FPA, and FFPA to obtain optimized coefficients for 20
th
 order lowpass filters 

Algorithm Execution Time(Seconds) 

GA 50.0044 

PSO 49.2032 

ACO 47.2204 

CSA 42.9535 

FPA 45.1742 

FFPA 41.8801 
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Present case study of our research work includes filtration of a noisy Phonocardiogram  

(PCG) Signal. For proper diagnosis of diseases, any biomedical signal is needed to be noise 

free. In Phonocardiography high-fidelity recording of the sounds and murmurs made by the 

heart during a cardiac cycle caused by flow of blood through the heart are plotted using 

machine named phonocardiograph (Ganguly & Sharma, 2017). Usually heart produces the 

sound Lub & Dub, where Lub is the first sound S1 and S2 is the second sound Dub. The 

time between S1 and S2 is systole (Lub-------Dub), caused by the flow of blood from the 

heart to the lungs and body, flow of blood across the Pulmonic and Aortic valves (ausmed, 

2018). This sound primarily occurs due to closing of the bicuspid and tricupsid valves. 

They close because of the contraction of the ventricle. The time between S2 and S1 is 

diastole (Dub--------Lub), caused by closing by the flow of blood from the atria to the 

ventricles, flow of blood across the bicuspid and tricuspid valves. 

Anatomy of heart sounds can be obtained by the following (ausmed, 2018):  

LUB-- DUB-------------LUB--DUB  

S1       S2     S3     S4   S1       S2  

S1 occurs at the onset of the ventricular contraction. It contains a series of low-frequency 

vibrations, and is usually the longest and loudest heart sound.  

S2 occurs at the end of the ventricular contraction. Its frequency is higher than S1, and its 

duration is shorter.  

S3 (ventricular gallop) is a low frequency sound, may be heard at the beginning of the 

diastole during the rapid filling of the ventricles.  

S4 (atrial gallop) may be heard in late diastole during atrial contraction. 

S3 & S4 are of very low intensity, and are only audible externally when amplified. 

Other - opening snap, ejection sound may be heard at the time of valve diseases. 
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Murmurs are high frequency noise like sounds which may be heard between the two major 

heart sounds systole and diastole (ausmed, 2018). 

For analysis a noise free PCG signal of a 40 years old human being negatively diagnosed 

with any heart disease is collected from Jeevan Rekha Diagnostic Pvt. Ltd., India is 

collected and then mixed with Gaussian white noise. Noisy PCG signal is then filtered 

using the implemented filters FFPA1, FFPA2, FFPA3 and FFPA4.  

In Table 5.21 comparative study of the Signal to Noise Ratio (SNR) and correlation value 

of different filtered signals, filtered by the filters designed using the optimized coefficients 

obtained by FFPA1, FFPA2, FFPA3, FFPA4 and traditional algorithm for PMA are shown.   

Table 5.21: Comparative study of SNR and Correlation value of filtered heart sound signal filtered 

using   different designed filters 

 

Filters SNR Correlation 

value 

PM 11.0577 0.9663 

FFPA1 11.3342 0.9763 

FFPA2 11.4646 0.9764 

FFPA3 11.6489 0.9767 

FFPA4 12.0718 0.9894 

 

Table 5.22 shows comparative study of average error (    ) of filtered phonocardiogram 

signal filtered using   different designed filters. 
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Table 5.22: Comparative study of average error (    ) of filtered phonocardiogram signal filtered 

using   different designed filters 

 

 

 

 

 

In the Figure 5.17(a) – 5.17(g) frequency spectrums of the original PCG signal, noisy PCG 

signal and the filtered PCG signals are shown. Analysis of Figure 5.17(a) proves the 

presence of S1 and S2 in lower frequency range. Figure 5.17(b) shows the presence of 

noise in higher frequency range also. Figure 5.17(c) – 5.17(g) prove the efficiencies of 

different filters in filtering noise from higher frequency range. Figure 5.18(a) – 5.18(e) 

show the near view of the frequency spectrums shown in Figure 5.17(c) – 5.17(g) 

correspondingly. From Figure 5.18(a) – 5.18(e) it can be observed that filter implemented 

by PMA have reduced lesser amount of noise in the frequency ranges 7000-7500 Hz and 

8000-9000 Hz compared to the filters designed using the coefficients optimized by FPA. In 

Figure 5.19(a) and 5.19(b) column chart representation of SNR and correlation values of 

the filtered signals are shown respectively. In Table 4 comparative study of average error 

calculated by the following Eqn. 5.35 (Cherif et al., 2014) for different filters used to filter 

noisy PCG signal is shown. Figure 5.20 shows the same comparison in column chart 

representation.  

     
          

 
   

 
                                    (5.35) 

  is the original PCG signal,     is     sample of   .   is the synthesis PCG signal and     

is     sample of   . 

Filters      

PM 0.0324 

FFPA1 0.0313 

FFPA2 0.0308 

FFPA3 0.0301 

FFPA4 0.0297 
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It is proved that filters implemented using the coefficients optimized by FPA outpace the 

filter designed using PMA and also the IIR filters used in (Cherif et al., 2014) for filtering 

noisy PCG signal in terms of average error, whereas comparison with the higher order FIR 

filters has been ignored as because key motivation of the present research work is to design 

an hardware efficient FIR filter.  

 

Figure 5.17(a) 

 

Figure 5.17(b) 
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Figure 5.17(c) 

 

Figure 5.17(d) 

 

Figure 5.17(e) 



162 

 

 

Figure 5.17(f) 

 

Figure 5.17(g) 

Figure 5.17: Frequency spectrum of (a) Original PCG Signal (b) Noisy PCG Signal (c) PCG Signal 

Filtered by PMA (d) PCG Signal Filtered by FPA1, (e) PCG Signal Filtered by FPA2 (f) PCG 

Signal Filtered by FPA3 (g) PCG Signal Filtered by FPA4 

 

Figure 5.18(a) 
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Figure 5.18(b) 

 

Figure 5.18(c) 

 

Figure 5.18(d) 
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Figure 5.18(e) 

Figure 5.18: Near view of frequency spectrum of (a) PCG Signal filtered by PMA, (b) PCG Signal 

filtered by FPA1, (c) PCG Signal filtered by FPA2, (d) PCG Signal filtered by FPA3, (e) PCG 

Signal filtered by FPA4 

 

Figure 5.19(a)  

 

Figure 5.19(b)  

Figure 5.19: Column chart representation of (a) Comparison of SNR, (b) Correlation value of 

filtered PCG signals  
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Figure 20: Column chart representation of average error of the filtered PCG signals 

 

5.7. Conclusions 

This chapter first proposes an adaptive algorithm namely Global Best Steered Quantum 

Inspired Cuckoo Search Algorithm (GQICSA) for designing efficient FIR filter with lower 

hardware cost. GQICSA is used for obtaining optimized set of filter coefficients. Adder 

cost of a filter is estimated after quantizing the filter coefficients followed by CSE 

elimination. Among the two kinds of adders, number of structural adders is assessed by 

computing the total number of additions required to obtain filter coefficients and the 

required number of multiplier adders is assessed by calculating the total number of SPT 

terms or the nonzero bits required to represent the filter coefficients. It can be observed 

from the simulation results and discussions that reduction in word length of coefficients 

allows the optimized set of filter coefficients to achieve the ideal frequency response and 

also to outperform the benchmark filter. It has also been shown in the analysis that QICSA 

performs better than other conventional algorithms for optimizing filter coefficients to 

design low (hardware) cost filters without compromising the filter responses and efficacy, 

whereas proposed GQICSA performs even better than QICSA. GQICSA also shows better 

performance in implementation of higher order filters. Efficiency of GQICSA over QICSA 

and conventional CSA has been proved with 16 well known benchmark functions. 

Statistical significance t-test also proves GQICSA as significantly better than other 

0.028 

0.03 

0.032 

0.034 

PM FPA1 FPA2 FPA3 FPA4 

Average error 

Average error 
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conventional algorithmic approaches. GQICSA can be used to obtain hardware efficient 

highpass, bandpass as well as bandstop filters. As future work, we would like to use more 

efficient optimization algorithms for implementing hardware efficient filters. Another 

direction would be to use the designed filters to filter some real life signals like biomedical 

signals, astrophysical signals etc. 

In the trailing part of this chapter proposes an approach to design an efficient FIR filter 

with lower hardware cost using an adaptive nature inspired optimization algorithm. Fast 

Converging Flower Pollination Algorithm is used for obtaining optimized set of filter 

coefficients. Adder cost of a filter is estimated after quantizing the filter coefficients 

followed by CSE elimination. It is also proved in analysis that the Fast Converging Flower 

Pollination Algorithm performs better in fewer iterations compared to other conventional 

algorithms for optimizing filter coefficients that can be used to design a lower hardware 

costing filter without compromising the filter responses and efficacy. Performance analysis 

of the designed hardware efficient filters has been shown by filtering a noisy 

phonocardiogram signal. In future studies by modifying cut-off frequencies and filter order 

more efficient filter for de-noising phonocardiogram signal can be implemented with the 

use of Fast Converging Flower Pollination Algorithm.  
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Chapter 6 

Conclusions and Future Research 

The scientific contributions of the research reported in this thesis along with a brief road 

map of the possible future avenues of this work are reported in this Chapter. One of the 

foremost goals of the present research is to improve the quality of the digital filters used for 

removing noise from signals even in lower hardware cost. In recent times, the research 

activities in the field of digital signal processing are gaining ground under the umbrella of 

soft computing. Limitations of the conventional approaches for filter design motivated the 

researchers to use soft computing techniques to resolve the purpose. Several soft 

computing approaches have been proved to be effective for implementation of Finite 

Impulse Response (FIR) filters.  

In chapter 3 of the thesis, we presented an approach of using Genetic Algorithm (GA) for 

obtaining least noisy signal from a set of filtered signals. Kaiser Window function with 

passband ripple varying from 0.01 to 0.40 and stopband ripple varying from 0.09 to 0.49 

have been used for filtering noisy heart sound signal.  For evaluation of fitness values of 

the solutions, an adaptive parameter of signals is used. Genetic selection is performed 

using the Roulette Wheel Selection approach. Genetic operators, crossover and mutation, 

are used for updating the candidate solutions with the probabilities of 100% and 25% 

respectively. The proposed Algorithm has been applied over the corrupted heart sound 

signal for a range of sampling frequency (5000-12000 Hz). Filtered heart sound signals 

obtained by the proposed algorithm for different sampling frequencies are then compared 

with the original signal for the evaluation purpose. 



 

168 
 

The proposed approach is capable of identifying subtle noise present in the signal and 

excluding it from the signal. Hence, it is very much useful for de-noising biomedical 

signals, where very little amount of noise may cause erroneous diagnosis. In future 

research instead of using GA, more advanced optimization techniques like Cuckoo Search 

Algorithm, Flower Pollination Algorithm (FPA) and many more can be used for the same 

purpose. Fitness function used to determine fitness values of the candidate solutions can be 

modified to improve the quality of the optimized filtered signal. 

Another new strategy based on the Ant Weight Lifting (AWL) algorithm has been 

proposed in chapter 3 for filter parameter optimization. AWL is used to optimize the 

parameters required to design digital FIR filters using Kaiser Window function. A new 

innovative objective function has been introduced for optimization that performs based on 

the signal de-noising capability of the implemented filters. A case study has been carried 

out on de-noising heart sound signal using the filter implemented by the Kaiser Window 

with optimized parameters. In future research instead of using AWL, more advanced 

optimization techniques such as CSA inspired by quantum principles can be used for the 

same purpose. Even AWL can also be modified to improve its performance. 

A comparative study of three conventional optimization algorithms, GA, Particle Swarm 

Optimization (PSO) and BAT Algorithm, for optimizing FIR filter coefficients has been 

presented in chapter 4.  Responses of the implemented filters are compared with the 

traditional approach of filter design using Parks McClellan Algorithm (PMA) as reference. 

In optimization algorithms, mean square error based function is used as the objective 

function. It was observed that the BAT algorithm statistically outperforms GA and PSO in 

terms of stopband attenuation characteristics and ripple performance of the designed filter. 

In chapter 4, we have also proposed design of even order low pass FIR filter and odd order 

bandpass FIR filter using coefficients optimized by an adaptive Global Best steered 
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Cuckoo Search Algorithm (gbest CSA). For optimization, we also use here a mean square 

error based objective function. We evaluated the efficacy of the proposed technique by 

comparing the filter responses with responses of the filters designed using standard Cuckoo 

Search Algorithm (CSA) and traditional technique of filter design with PMA.  Superiority 

of the proposed algorithm compared to the conventional CSA has been proved using seven 

standard benchmark functions. Another adaptive algorithm, Fast Converging Cuckoo 

Search Algorithm (FCSA), is used for optimizing the coefficients of lowpass, highpass and 

bandpass FIR filters. Efficiency of the proposed algorithm has been demonstrated in all the 

cases compared to the traditional CSA and PMA. 

In chapter 5, a new algorithm, namely Global Best Steered Quantum Inspired Cuckoo 

Search Algorithm (GQICSA), has been proposed for obtaining optimized set of coefficients 

to implement FIR Filter. Adder cost of a filter is estimated after quantizing the filter 

coefficients followed by Common Sub-expression Elimination (CSE). We found from the 

simulation results that reduction in word length of coefficients does not negatively affect 

the filters to achieve the ideal frequency response. Moreover, filters developed using 

GQICSA outperform the benchmark filters designed by PMA in terms of stopband 

attenuation. Analysis of the results revealed that GQICSA not only improves over various 

conventional algorithms including CSA, it also surpasses Quantum Inspired CSA 

(QICSA), a modified version of CSA  updated using quantum principles, for optimizing 

filter coefficients to design lower hardware costing filters without compromising the filter 

responses and efficiency. GQICSA also provides significant improvements compared to 

CSA and QICSA in terms of stopband attenuation and execution time for higher order filter 

design. Efficiency of GQICSA over QICSA and conventional CSA has also been exhibited 

with 16 benchmark functions. 
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For the same purpose for implementing hardware efficient FIR filters, a new algorithm 

namely Fast Converging Flower Pollination Algorithm has also been used in chapter 5. It 

has been shown by the simulation results that reduction neither in word length of 

coefficients nor in filter order causes the filter implemented using optimized set of 

coefficients obtained by the proposed algorithm to be incapable of achieving the ideal 

frequency response. Implemented Filters have been proved to be effective to filter noisy 

Phonocardiogram signal.  

In most of the above mentioned cases for filter coefficient optimization, mean square error 

function is used as the objective function. In future research studies, instead of using the 

same objective function, an innovative one can be used aiming to enhance the filter quality. 

Moreover, the proposed algorithms can be modified to use as multi-objective optimization 

algorithms for high quality filter design with other conflicting objectives. Amazing 

physiognomies of nature can be used to design innovative optimization algorithms which 

can be used to implement much efficient filters. In further research work proposed 

algorithms such as gbest CSA & GQICSA both can be used to design filter banks, Infinite 

Impulse Response (IIR) filters. Moreover, a set of filtered signals can also be obtained 

using these algorithms by means of single or multiple objectives, and then from the set of 

filtered signals an optimized signal can be found again using these optimization algorithms.  
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