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Abstract

Abstract

Real-Time Systems (RTS) interact with their environment using time constrained

input/output signals i.e. the systems process information and produce responses

within a specified time otherwise failure of the systems may occur. The complex-

ity of Real-Time Software Systems (RTSS) is continuously increasing which makes

their design very challenging. Therefore, ensuring the correctness of such systems

within the specified time constraints is a difficult and complex task. In this disser-

tation, we have presented some new ideas and developed some novel approaches for

modeling, analysis and verification of RTSS through the different phases of develop-

ment. We have considered some of the commonly used UML diagrams to develop

our methodology. The model-driven approach is adequate to address the complex

issues of RTSS. This enables the verification of design and potentially the automatic

synthesis of implementations. We have developed a framework, which focuses on the

modeling of real-time software development to capture different aspects of RTSS.

We have introduced new user defined data types with VSL and then addressed the

representation of different UML diagrams by extending the MARTE metamodel.

Software life cycle model consists of different interrelated stages, due to which, there

is a requirement to verify inconsistencies among these stages. By checking consis-

tency, we ensure that the properties of the different stages of a specification are

consistent with each other and they do not oppose. The same holds for RTSS as

well. In order to make our model more robust, we have developed a set of consistency

rules within the design models and introduced formal approach for the automated

verification of the consistency rules.

A prime concern of RTSS is that all the requirements related to time must be

traced in all the phases of software development life cycle consistently. We have



developed a comprehensive framework for ensuring traceability of timing constraints

from the requirements analysis phase into the design phase. This framework helps

in verification of requirements in design, automatically generates the trace metrics

based on UML diagrams, demonstrates the degree of coverage of timing requirements

and finally features any missing requirements.

In RTS, scheduling of tasks with hard deadlines has been an important area of

research. The trouble of giving a guarantee of meeting hard deadlines of tasks lies

in the issues of priority inversion and of deadlocks. To beat such difficulties, a

great resource access control protocol is required. To address this issue, we model,

analyze and verify four existing protocols (Priority Inheritance Protocol, Priority

Ceiling Protocol, Stack Based Priority Ceiling Protocol and Stack Based Preemption

Ceiling Protocol) using UML/SPT based Sequence and Timing diagrams to study

deadlock. We have focused on the occurrence of deadlock in the Priority Inheritance

Protocol and prevention of this using other mentioned protocols. The methods and

frameworks presented in this dissertation provide an integrated framework towards

modeling, analysis and verification of RTSS.

Abstract xx



Chapter 1

Introduction

1.1 Real-Time Systems

The behaviors of Real-Time Systems (RTS) do not depend only on the values of

input and output signals, but also on their time of occurrence. RTS interact with

their environment using time constrained input/output signals i.e. the systems

process information and produce responses within a specified time otherwise failure

of the systems may occur. RTS are now omnipresent in modern societies in various

domains such as patient monitoring systems, air traffic control systems, avionics,

control of nuclear power stations, multimedia communications, robotics, process

control, embedded and telecommunication systems. For such systems, a functional

misbehavior or a deviation from the specified time constraints may have catastrophic

consequences.

The functions performed by the real-time systems are uniformly, executed by a

fixed number of tasks. These systems can be categorized as hard and soft. A hard

RTS requires that a result must be produced within a bounded interval otherwise

a serious fault is said to occur. In a soft RTS occasional timing faults may be

permitted. Examples of soft RTS are video play back system, on line transaction

1
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system, telephone switches as well as electronic games. Hard Real-Time Systems

are used in a wide range of mission-critical applications such as avionics systems,

aerospace systems, robotics and defense systems.

RTS is often driven by hardware, software architecture, operating system character-

istics, application requirements, programming language as well as design issues.

1.2 Real-Time Software Systems

The design of real-time software encompasses all aspects of conventional software

design while at the same time introducing a new set of design criteria and concerns.

The design of real-time software systems is the most challenging and complex task

that can be undertaken by a software engineer. By its very nature, software for

real-time systems makes demands on analysis, design and verification techniques.

Real-time software programs can be found in various applications. Some of them

are anti-virus programs, which perform scheduled maintenance checks, as well as

database applications like airline database controls and 24-hour transaction facilities.

A real-time operating system (RTOS) is an operating system that is implemented

for real-time systems in order to simplify design, execution and maintenance of real-

time systems and applications. The RTOS provides the designer with a programming

interface to the underlying hardware [38].

Complexity of RTSS is continuously increasing which makes their design very chal-

lenging. Therefore, ensuring the correctness of such systems within the specified

time constraints is a difficult and complex task. In order to cope with the complex-

ity of RTSS, there is a high requirement to follow a model driven approach such as

the Model-Driven Architecture (MDA), which relies on using models of high level

abstraction for the development of such systems. In this dissertation, some new

ideas in the domain of modeling, consistency, verification and schedulabity analysis

for RTSS have been presented.
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Figure 1.1: Petri Net

1.3 Modeling techniques for Real-Time Software

Systems

Several modeling techniques are available for RTSS such as Petri net, Timed au-

tomata, Unified Modeling Language. A Petri net (shown in Figure 1.1 ), also known

as a place/transition (PT) net, is one of several mathematical modeling languages

for the description of RTS. Petri Net was developed originally by Carl Adam Petri

[97] and was the subject of his dissertation in 1962.

It is a class of discrete event dynamic system. A Petri net is a directed bipartite

graph, in which the nodes represent transitions (i.e. events that may occur, repre-

sented by bars) and places represent conditions (represented by circles). The directed

arcs describe which places are pre- and/or postconditions for which transitions (sig-

nified by arrows). Like industry standards such as UML activity diagrams and

Business Process Model, Petri nets offer a graphical notation for stepwise processes

that include choice, iteration, and concurrent execution. Unlike these standards,

Petri nets have an exact mathematical definition of their execution semantics, with

a well-developed mathematical theory for process analysis.

Timed automaton [4] is a technique for modeling and verification of RTS, which is

essentially a finite automaton (that is a graph containing a finite set of nodes and a

finite set of labeled edges) extended with real-valued variables. Such an automaton
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Figure 1.2: Timed Automata

may be considered as an abstract model of a timed system. The variables model

the logical clocks in the system, that are initialized with zero when the system is

started, and then increase synchronously with the same rate.

Formally, a timed automaton is a tuple

A = (Q,Σ,C,E,q0) that consists of the following components:

Q is a finite set. The elements of Q are called the states of A.

Σ is a finite set called the alphabet or actions of A.

C is a finite set called the clocks of A.

E ⊆ Q × Σ × B(C) × P(C) × Q is a set of edges, called transitions of A, where

B(C) is the set of boolean clock constraints involving clocks from C, and

P(C) is the powerset of C.

q0 is an element of Q, called the initial state.

An edge (q,a,g,r,q’) from E is a transition from state q to q’ with action a, guard g

and clock resets r.

The automaton in Figure(1.2) starts in state s0, and moves to state s1 reading the

input symbol a. The clock x gets set to 0 along with this transition. While in state

s1, the value of the clock x shows the time elapsed since the occurrence of the last a

symbol. The transition from state s1 to s0 is enabled only if this value is less than

2. The whole cycle repeats when the automaton moves back to state s0.

The Unified Modeling Language (UML) is the Object Management Group (OMG)

standard modeling language to support MDA. UML is appropriate for software
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systems because it allows for a multi view modeling approach through its multitude

of diagrams covering the structure, the behavior and the deployment architecture.

UML encourages the use of automated tools that facilitate the development pro-

cess from analysis through coding. This is particularly true for real-time embedded

systems also, whose behavioral aspects can often be described via UML. It is there-

fore interesting to consider how well UML is adapted to the real-time context. One

important feature of UML stems from its built-in extensibility mechanisms: stereo-

types, tag values and profiles. These allow adapting UML to fit the specifics of

particular domains or to support a specific analysis [77].

As a real-time modeling language, UML additionally has a few difficulties. It is

furnished with a variety of syntax but lacks adequate semantics. It is only a visual

language with diagrams and not a programming language. As software is quickly

developing in degree and intricacy, graphical representation using UML should be

formally confirmed, before the execution stage, on request to ensure the improvement

of more solid frameworks.

However, UML is not adequate to model domain-specific constructs. In order to

fill up this gap, different organizations have extended UML for modeling RTSS.

For example, IBM has developed UML-RT. OMG has introduced UML/SPT, UM-

L/QoS and UML/MARTE etc. UML-RT can model the structure and the behavior

of real-time systems, but it does not support time and timing constraints model-

ing. In comparison to this, UML/SPT offers concepts for modeling of time as well

as concurrency, but it is not sufficient to capture real-time qualitative features and

lacks expressive power and flexibility. In order to overcome those difficulties, UM-

L/MARTE is introduced. MARTE provides predefined stereotypes and tagged val-

ues to specify non-functional properties, time related constraints, general resources

(software and hardware). Those modeling artifacts are essential concepts to design

real-time software systems.



Chapter 1. Introduction 6

Modeling of a Real-Time Software System using UML/MARTE, tracing functional

requirements into design, ensuring consistency within the developed model, formal

verification and also schedulability analysis of RTS using UML/SPT are some con-

tributions presented in this work.

1.4 Issues in Real-Time Software Systems

Several issues are identified related to modeling, consistency, verification and schedu-

lability analysis of RTSS. The issues are summarized as follows.

1.4.1 Modeling

In software engineering practice, especially, for real-time critical systems, defining

requirements clearly and unambiguously is not an easy task. As requirements gather-

ing process involves inter-dependency, intercommunication between different groups

of people for accurate requirements makes it even more difficult. For example, medi-

cal practitioners, who are rarely software engineers, may define medical requirements

by using the terminologies which may be difficult to decode by the software engineers.

In order to reduce this gap among different groups of people, proper modeling of the

actual problem is to be developed first. A model may be developed from different

view points and angles by different teams.

Due to non deterministic nature of RTSS, proper modeling is required to implement

highly expected results to handle complex situations. Otherwise, it will be expensive

for the designers and may result in numerous programming challenges. Specifying

and designing of such systems is a complex matter because it requires logical cor-

rectness as well as timing correctness. Therefore special attention must be paid to

timing during modeling, analysis and verification.
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1.4.2 Consistency

Consistency is defined as the state in which any two related design artifacts (in this

case UML diagrams) represent the same set of common characteristics or properties

of the system. Each design artifact i.e. UML diagram is a set of elements repre-

sented by visual notations defined in the standard. UML also provides multi view

modeling approach. It consists of a set of diagrams, which gives complimentary

views of the same system. Using UML diagrams, structural, behavioral, deployment

architecture of the system can be represented. However, these different aspects may

be inconsistent.

The word “related” in this context refers to diagrams, which have one or more

common elements. This relation is the overlapping of the design views abstracting

the same portion of the system. Thus in simple words, a UML based design is

consistent in itself if and only if any two UML diagrams, which have some common

elements, must have the same value for those elements. In this thesis, RTSS has been

modeled using UML/MARTE profile which includes a set of domain models such

as timing constraints, general resource allocation. These aspects may contribute to

worsen the consistency issue.

1.4.3 Verification

The software development life cycle or in short SDLC incorporates a lot of phases and

starting from the traditional waterfall model till the more popular spiral model, every

model incorporates some basic phases like – Analysis, Design, Coding and Testing.

Boehm defines verification as a process that ensures compliance with requirements

specified by the user [14]. Thus verification of requirements in design is defined as

a process that ensures that the design is correctly done to implement the stated

requirements.
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It has been observed that sources of errors can be as early as during the analysis

phase and allowing an error to remain undetected gives rise a lot of problems later

on. Time and effort required to correct errors detected later is much more com-

pared to those, which are detected earlier. Each requirement must be traced in the

design; otherwise, it will be very difficult for developers to identify unimplemented

requirements on one hand and managing changes to requirements as well.

The main objective of verification of requirements is to help in the early detection

of errors and ensure that system is being built correctly as per user specifications.

It also helps in identification of missing requirements, i.e. requirements, which have

not been translated to the design phase. This would significantly contribute in

decreasing the overall testing effort and time.

1.4.4 Schedulabilty

The scheduler is the part of the operating system that responds to the requests

sent by the programs. It interrupts and gives control of the processor to those

processes. A scheduler implements an algorithm or policy that determines the order

in which processes get a processor for execution. Each task requires the processor to

execute; also besides, some tasks may simultaneously need exclusive accesses to one

or more of the resources during part or all of their executions. Exclusive accesses to

these shared resources are typically ensured only within critical sections. Without

proper synchronization, a critical section may be modified by other tasks so that

data integrity is violated. The result of this program execution is non deterministic.

A resource access-control protocol is a set of rules that govern (1) when and under

what conditions each request for a resource is granted and (2) how tasks requiring

resources are scheduled [70].

The trouble of giving a guarantee of meeting hard deadlines of tasks lies in the issues

of priority inversion and of deadlocks [62]. To beat such difficulties, a great resource
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access control protocol is required. In RTSS, the main intent of the various resource

access control protocols is to schedule and synchronize different tasks when many of

these share the same resources.

1.5 Motivation and objectives of work

Developing a real-time software system is a sophisticated and complex task. It is

crucial that for such systems, the software should be designed with a robust and

sound architecture, which is capable of capturing not only the functional aspects

but also the time constraints that are specific to a real-time software system. With

the rapid growth in size and complexity of RTSS and to guarantee the development

of more reliable systems, modeling plays an important role in the software develop-

ment life cycle. A minor fault in a model may lead to a major failure of real-time

life-saving systems. Development of UML/MARTE based modeling technique is

gaining popularity day by day. UML/MARTE model-driven approach can be used

to describe non RTSS as well as timing constraints for RTSS. The objective of this

research work is to model RTSS using UML/MARTE annotated use case, sequence,

timing and class diagrams.

The design modeled in UML/MARTE depicts different aspects, however as they all

together represent the same system and there remain some overlapping areas that

represent some common characteristics. Hence the diagrams are related with each

other and together they seamlessly integrate to represent the system as a whole. So,

there are chances of inconsistencies within the models as they depict overlapping

characteristics. The objective of this research work lies in proposing comprehensive

framework for automatic verification of inter diagram consistency based on UML/-

MARTE models.

Requirement traceability helps to verify if all software requirements have been evolved

to design, code and test cases. Moreover, verification ensures that each function can
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be traced to a requirement. With this activity, it is also ensured that all requirements

have associated design components and test cases. As real-time systems depend on

events under some timing constraints, it is important that the traceability of such

must be done completely. The objective of this research work is to facilitate software

designers, project managers and architects to automatically generate the traceability

metrics of real-time requirements at the early stage of design and to estimate the

extent to which requirements have been realized and implemented subsequently in

the analysis and design phases. Since changes are more affordable the prior in the

development life cycle they are made, this can spare the venture impressive time

and cash.

RTS are specially designed to relate to the concurrent behaviour of the real world.

Concurrency may lead to resource contention and blocking, which are also impor-

tant issues to be handled in an RTS. Proper scheduling of the tasks sharing common

physical and logical resources is essential to maintain perfect synchronization among

tasks. This research work puts stresses on the issues related to deadlock, deadline

and time complexity of resource access control protocols. The Priority Inheritance

Protocol is used for sharing critical resources but it does not prevent deadlock if

nested critical sections are present. This shortcoming is represented using one UML

model. Further the Priority Ceiling, Stack Based Priority Ceiling and Stack Based

Preemption Ceiling Protocols are used to overcome the difficulty using other im-

proved models.

1.6 Organization of the dissertation

It is evident that new techniques or modification and/or adaptation of existing

methodologies are required for RTSS.
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Chapter 2 presents review of several research works in the domain of RTSS. Broadly

the review presents work that encompasses four domains – Modeling of RTSS, Con-

sistency in RTSS, Verification of RTSS and Schedulability Analysis of RTSS. Several

works have been discussed in this area with special emphasis on modeling RTSS us-

ing UML. We have surveyed different UML profiles used to model RTSS developed

in academia as well as in industry. We have established an assessment of their

capabilities and limitations with respect to a variety of criteria such as formal foun-

dations and tool supports etc. Several works focus on tracing requirements into

deliverables and artifacts of subsequent phases like design models. The verification

of design again is a dominant area of research. Formalization of design specifications

and ensuring traceability and consistency within a design are other ways of design

verification. We have also focus on the schedulability analysis of RTSS. This chapter

discusses some major works in those domains.

Chapter 3 introduces the scope of work presented in this dissertation. We introduce

several new strategies, new modeling approaches and methodologies, new analy-

sis techniques and metrics to detect or predict possible errors, inconsistencies or

anomalies during analysis and design phases of RTSS.

UML is defined using the metamodeling approach and it has been designed with

built-in extensibility mechanisms. These are used to define different domain-specific

versions of UML, the UML profile. We have used this approach and leveraged UML

extensibility mechanisms to define an extension of UML/MARTE in Chapter 4. This

extension enables us to model RTSS using Use case, Sequence, Timing and Class

diagrams.

Chapter 5 defines a set of rules to ensure consistency between UML diagrams for

the RTSS modeled in Chapter 4. A formal specification of UML diagrams has been

introduced for the automated verification of consistency conditions.

Chapter 6 helps in tracing functional requirements into design models and detect

possible anomalies like missing requirements or incompatible design not conforming
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to requirements. This chapter also develops a comprehensive formal verification

framework which facilitates automated analysis for ensuring traceability of timing

requirements from the requirements analysis phase into the design phase of the

software development life cycle.

Chapter 7 compares various resource access control protocols. In this chapter, we

have developed a model based on UML/SPT profile to represent deadlock occurrence

as a drawback of the Priority Inheritance Protocol. Further, a novel methodology

is introduced to prevent deadlock using the Basic Priority Ceiling Protocol, Stack

Based Priority Ceiling Protocol and Stack Based Preemption Ceiling Protocol.

Chapter 8 concludes with the advantages of the different modeling, analysis and

verification approaches in connection to RTSS presented in the various chapters of

the dissertation.



Chapter 2

Review of Related Works

2.1 Introduction

This chapter presents a broad review of research works pertaining to the domain

of RTSS. The different methodologies and frameworks discussed here are applied in

the different phases of the development life cycle. There are works, which address

modeling based on requirement analysis, and several more which address the issues

of formalizing real-time modeling based software systems. Starting from analysis

and design there are several works that address verification based on functional

specifications.

The different research results have been discussed in the order of their applicabil-

ity in the SDLC. Special emphasis has been given to requirements traceability, the

extension of UML mechanism and their representation in RTSS, the use of formal

techniques for verification of traceability and consistency, analysis of different re-

source access control protocols for RTSS.

13
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2.2 Review of UML

UML [87] is a visual modeling language for visualizing, specifying, constructing and

documenting the artifacts of software systems. UML [83] is widely used standards

for modeling and designing industrial software systems, essentially because it is a

semi-formal notation, relatively easy to use and well supported by tools. Originally,

UML is the unification of OMT [108], Booch method [15] and Object-Oriented

Software Engineering (OOSE) method [57]. This brought the version 0.9 of the

UML language. It has been adopted as a standard by the OMG [2] in 1997.

UML consists of a set of diagrams, which gives complimentary views of the same

system. Some of the key UML diagrams mostly used are - Use case, Object, Class,

sequence, collaboration, state charts, activity, component and deployment diagrams.

Much of the research work is now focused on trying to verify the UML model of

the software and these works pertain to analysis and verification of one or more

UML diagrams. However, UML being a pictorial design of the system, it fails to

capture all the aspects of functional needs and hence it is quite difficult to verify

systems based on UML diagrams alone. This has given rise to the need for the

development of some formal or semi-formal language, which would augment UML

and would be able to describe the entire system in totality. Meta Object Facility

[86] is one kind of abstract language used for specification of metamodels. OCL

[92] on the other hand is a part of UML (1.1 onwards) and a specification language

used in conjunction with UML models. It is text based formal language, which

allows completely general constraints to be written for the elements appearing in

UML models [1]. However, there are several shortcomings of OCL too. Another

alternate language for object modeling named Alloy has been proposed in [132] and

comparisons between OCL and Alloy have been effectively elicited using examples

with emphasis on the shortcomings of OCL and how Alloy manages these issues.

UML provides a variety of instruments to describe the characteristics of a generic

system in corresponding models. However, it is not complete, in the sense that
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the basic elements of the language cannot cover all potential needs for describing

specific systems from any domain. Hence in some cases, the definition of domain-

specific variants of the UML may be required. The UML, however, has already

been conceived for extensibility, for which purpose it provides a built-in extensibil-

ity mechanism to extend the language with elements and constructs apt to describe

specialized features, though remaining compliant with its standard definition [119].

The extensibility mechanisms in UML are- Stereotypes, Tagged values and Con-

straints.

UML is not adequate to model domain-specific constructs. In order to fill up this

gap, OMG has introduced a mechanism called profiles which have the capabilities to

extend the UML metamodel for different purposes. New semantics have also been

provided by this extension.

2.2.1 UML profiles

A UML profile is a special version of UML tailored to the specifics of a particular

domain, like the real-time domain, or a particular activity, like system requirement

modeling. There are several UML profiles in the literature. In the following section,

we have considered some of the UML profiles.

2.2.1.1 UML Profile for Schedulability, Performance and Time

The UML profile for real-time modeling formally called the UML profile for Schedu-

lability, Performance and Time (UML/SPT), was adopted by the OMG in 2002 [85].

UML/SPT is a framework to enables the modeling of resources and quality of ser-

vice; time concept and time related mechanisms; and concurrency. This increased

the interest in the use of object-oriented technology and UML, in particular, to

model and build real-time systems [113]. It provides the user (modeler) with a set of

stereotypes and tagged values to annotate the UML models. In addition, UML/SPT
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supports Quantitative analysis (schedulability and performance analysis) which en-

ables the prediction of key properties in the early stages of a software development

process. The structure of the UML/SPT, as illustrated in Figure 2.1, is composed

of a number of sub-profiles:

• The General Resource Model (GRM) package is the core of UML/SPT. It is

further partitioned into three packages:

– RT resource Modeling for the basic concepts of quality of service and

resource

– RT Concurrency Modeling for concurrency modeling

– RT time Modeling for time and time-related mechanisms modeling

• The Analysis Modeling package defines the analysis sub-profiles, including:

– PA profile for performance analysis

– SA profile for schedulability analysis

2.2.1.2 UML Profile for Quality of Service

The UML profile for modeling Quality of Service and Fault Tolerance Characteris-

tics and Mechanisms (UML/QoS) was adopted by the OMG in 2004 [88]. It is an

emerging UML profile that aims at capturing the concept of quality of service at

large. It allows the definition of an open variety of quality of service requirements

and properties [28]. UML/QoS is relevant for real-time software modeling because it

is defined to complement the aforementioned UML/SPT. However, while UML/SPT

is tailored to fit performance and schedulability analysis, UML/QoS allows the de-

signer to define any set of quality of service requirements and carry out any specific

analysis that could be relevant for the safety-critical aspect of real-time software.

This was demonstrated in [11], where a quality model has been defined to drive a
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Figure 2.1: Structure of UML/SPT

dependability and performability analysis of an embedded automation system. In a

nutshell, UML/QoS could also be used to annotate UML diagrams. In contrast to

UML/SPT, UML/QoS proposes a procedure that consists of three steps:

• Definition of QoS characteristics: The new user-defined QoS characteristics

could leverage, through specialization, the general QoS characteristics catalog

defined in this profile. This catalog comprises the following categories: Perfor-

mance, Dependability, Security, Integrity, Coherence, Throughput, Latency,

Efficiency, Demand, Reliability and Availability. In particular, the Latency



Chapter 2. Review of Related Works 18

QoS characteristics can be used in the real-time context. The QoS characteris-

tics are templates classes having parameters. The latter has to be instantiated

in the next step.

• Definition of the quality model: The QoS characteristics parameters should be

assigned actual values. This is done through the definition of quality charac-

teristics bound class and template bindings. The UML model containing the

binding information and the bound classes is called the Quality Model.

• The last step is the UML models annotation using quality of service require-

ments.

2.2.1.3 UML-RT Profile

Rational Software has developed a real-time profile named as UML-RT [116]. Us-

ing the UML built-in extensibility mechanisms, UML-RT captures the concepts of

ROOM [118]. UML-RT allows the designer to produce models of complex, event-

driven and possibly distributed real-time systems. However, it does not support

time and timing constraints modeling. UML-RT is supported by a CASE tool called

RationalRT that allows for automatic code generation by compiling the models and

linking them with a run-time system. UML-RT includes constructs to model the

structure and the behavior of real-time systems:

• Structure Modeling: UML-RT provides the designer with entities called cap-

sules, which are communicating active objects. The capsules interact by send-

ing and receiving messages through interfaces called ports. Furthermore, a cap-

sule may have an internal structure composed of other communicating capsules

and so on. This hierarchical decomposition allows the modeling of complex

systems.

• Behavior Modeling: The behavior is modeled by an extended finite state ma-

chine, and it is visualized using UML state diagrams. These state machines are



Chapter 2. Review of Related Works 19

hierarchical since a state could be decomposed into other finite state machines.

A message reception triggers a transition in the state machine. Actions may be

associated with transitions or the entry and/or the exit of a state. Similar to

the two previous UML profiles, UML-RT lacks formal foundations. UML-RT

is, however, a basis for a very active research work on schedulability analy-

sis applied to real-time software design models. Indeed, while the CASE tool

RationalRT allows an automatic code generation, it does not take into ac-

count timing constraints. Therefore, the research reported in [114] was a first

attempt to integrate the real-time schedulability theory with object-oriented

design targeting real-time systems.

2.2.1.4 UML/MARTE Profile

The UML profile for MARTE [94] was defined to provide several some many con-

cepts that modelers can use to express relevant properties of Real-Time Embedded

Systems, for example, related to performance and schedulability. Shortcomings of

UML/SPT [85] profile come in terms of its expressive power and flexibility. For ex-

ample, it was necessary to support the design of both hardware and software aspects

of embedded systems and a more extensive support for schedulability and perfor-

mance analysis, encompassing additional techniques such as hierarchical scheduling.

The objective was to address the above issues as well as to provide alignment with

the UML profile for Quality of Service and Fault Tolerance [88], which enables spec-

ification of not only real-time constraints but also other embedded systems char-

acteristics, such as memory capacity and power consumption. MARTE was also

required to support modeling and analysis of component-based architectures, as

well as a variety of different computational paradigms (asynchronous, synchronous,

and timed). MARTE profile is used for strengthening the expressive power of UML.

It supports modeling and analysis in RTES. At present, MARTE 1.1 [90] is released

formally. MARTE provides predefined stereotypes and tagged values to specify
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Figure 2.2: Structure of UML/MARTE

non-functional properties, time related constraints, general resources (software and

hardware). Those modeling artifacts are essential concepts to design real-time soft-

ware systems.

MARTE is organized into four main packages to represent different concepts of a

RTES at different levels of abstraction of the real system. Structure of UML/-

MARTE is shown in Figure 2.2.

Four packages are MARTE foundations, MARTE design model, MARTE analysis

model and MARTE annexes.

MARTE foundations define concepts for real-time and embedded systems. It in-

cludes the following packages

• Non-Functional Property (NFP) package provides a general framework for

annotating UML profile for MARTE. This provides modeling constructs for
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declaring, qualifying and applying semantically well-formed non-functional as-

pects of UML models. It is complemented by the Value Specification Language

(VSL), which is a textual language for specifying algebraic expressions. The

NFP sub-profile supports the declaration of non-functional properties as UML

data types, whereas VSL is used to specify the values of those types and their

potential functional relationships.

• The Time packages provides a general framework for representing time and

time related concepts and mechanisms that are relevant for modeling real-time

and embedded systems.

• The Generic Resource Modeling (GRM) package represents the set of resources

underlying an application and also how the system uses them. It consists of

an ontology of resources enabling modeling of common computing platforms

(i.e., a set of resources on top of which an application may be allocated to be

computed), and high level concepts for specifying resource usage. The level of

abstraction used here is at a general system level.

• Allocation modeling (Alloc) package provides some general concepts pertaining

to the allocation of functionality to entities responsible for its realization. It

may be either time-related allocation (i.e., scheduling) or space allocation.

MARTE design model provides concepts required from specification to detailed

design of real-time embedded systems such as generic component model (GCM),

high-level application modeling (HLAM), software resource modeling (SRM) and

hardware resource modeling (HRM).

• The Generic Component Model (GCM) package defines the concepts necessary

to address the modeling of artifacts in the context of real-time and embedded

systems based component approaches. It enables execution platform modeling
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and provides the foundations needed for more refined modeling of both hard-

ware and software resources. GCM supports both message and data based

communication schemes between components.

• Model-based design of RTE systems with MARTE proceeds mostly in a declar-

ative way. Hence, MARTE users may annotate their models with real-time

concerns using the extensions defined within the HLAM (High-Level Applica-

tion Modeling) package.

• SRM is used to create a platform independent design which enables to create a

general model to accommodate all the different types of a real-time operating

system in use.

• HRM is used to express hardware entities by providing several stereotypes

through three different views:

– a high-level architectural view

– a specialized view

– a detailed physical view

Model-based analysis using MARTE is done using mainly the extensions defined

either in the Generic Quantitative Analysis Modeling profile (GQAM) or using one

of its two refinements, dedicated respectively to schedulability analysis (SAM) and

performance analysis (PAM). The annotation mechanism used in MARTE to support

model-based analyses uses UML stereotypes. These typically map the UML model

elements of the application into corresponding analysis domain concepts and also

allow specification of values for properties which are needed to carry out the analyses.

MARTE annexes provide a predefined MARTE model library and value specification

languages such as the Value Specification Language (VSL), the Clocked Valued

Specification Language (CVSL), and the Clock Constraint Specification Language

(CCSL).
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2.2.1.5 TURTLE Profile

TURTLE stands for Timed UML and RT-LOTOS Environment. It is a UML pro-

file aiming at the formal validation of complex real-time systems [6]. TURTLE uses

UML’s extensibility mechanisms to enhance UML structuring and behavioral ex-

pressive power. It has a strong formal foundation. TURTLE extensions semantics

is expressed by mapping to RT-LOTOS. This enables a formal validation as well as

a simulation of the UML models. TURTLE essentially allows the description of the

structure/architecture as well as the behavior of the system using an extension of

the UML class, object and activity diagrams.

The main extensions brought by TURTLE are the following:

• Structural Extensions: TURTLE introduces the concept of TClass, which has

special attributes called Gates. These are used by TClass instances, TIn-

stances, to communicate and are specialized in InGate and OutGate. In ad-

dition, TURTLE introduces stereotypes called composition operators. These

are used to explicitly express parallelism, synchronization, and sequence rela-

tionships between TClasses.

• Behavioral Extensions: The behavior of a TClass is expressed using activity

diagrams extended with logical and temporal operators. These operators allow

expressing synchronization on gates with data exchange. Moreover, TURTLE

enables the expression of temporal non-determinism and different sorts of de-

lays (deterministic, non deterministic).

TURTLE is supported by a toolkit composed of RTL [107] and TTool [130]. These

are used by the designer to build a design, to run the simulation and to perform

a reachability analysis for the validation of the system. Finally, TURTLE was ex-

tended to fit the requirements of distributed and critical systems. The objective

is to enable the definition of components and their deployment, and to study their
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properties at early stages of the software development process. This is done using a

formal definition of the deployment diagrams, which are the most suitable for dis-

tributed architecture description. Therefore, TURTLE has been extended to take

into account deployment diagrams. The obtained profile is called TURTLE-P [7],

which addresses the concrete description of communication architectures. TURTLE-

P allows the formal validation of the components and deployment diagrams through

its foundations in RT-LOTOS.

2.2.1.6 SDL combined with UML

This is the title of the ITU-T recommendation Z.109 [56, 78]. It is a UML profile for

SDL since it defines a specialization of a subset of UML and a one-to-one mapping to

a subset of SDL. Thus, Z.109 has SDL as a formal semantics. This profile provides

the designer with a combination of UML and SDL. Essentially, Z.109 defines a UML

model for the main concepts of SDL, the domain model and offers a corresponding

set of stereotype. In the following, we highlight the main concepts defined in Z.109.

• Agent: An SDL system is composed of agents connected through channels. An

agent has a state machine and an internal structure composed hierarchically

of other agents. Moreover, an agent can be a process, a bloc or a system. In

particular, an agent type is mapped into a class of active objects and its kind

is stereotyped <<system>>, <<block>> or <<process>>.

• Gates and Interface: The agents communicate through gates by sending signals

or requesting a procedure, which together, the signals and procedures, compose

its interface. The latter is mapped into a UML interface and the former are

stereotyped <<signal>> and <<procedure>>.

• State Machine: An SDL agent state machine is mapped to a UML state ma-

chine.

• Package: UML packages are used to represent SDL packages.
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Finally, this profile has been implemented in the Telelogic CASE tool Telelogic TAU

3.5 [129].

2.2.1.7 OMEGA UML Profile

This profile [48] compliant is part of the OMEGA project [125]. It is a framework for

UML-based real-time modeling allowing for the analysis and verification of time and

scheduling aspects. It provides a set of timed-events primitives and the semantics

of these primitives is expressed formally in terms of timed automata with urgency.

2.2.1.8 OCL Profile

This profile is based on an extension of OCL 2.0 metamodel [41]. It allows for the

specification of real-time constraints using OCL. The formal semantics of this profile

is given by a mapping to time-annotated temporal logic formulae expressed in CTL.

This enables formal verification of different system properties.

2.2.1.9 UML Profile for System Engineering

The Systems Modeling Language (SysML) is a general-purpose modeling language

for systems engineering applications. It supports the specification, analysis, design,

verification and validation of a broad range of complex systems. SysML was origi-

nally developed by an open source specification project and includes an open source

license for distribution and use. SysML is defined as an extension of a subset of

UML using UML’s profile mechanism.

The SysML initiative originated in a January 2001 decision by the International

Council on Systems Engineering (INCOSE) [54] Model-Driven Systems Design work-

group to customize the UML for systems engineering applications. Taxonomy of

SysML diagrams is shown in Figure 2.3.
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Figure 2.3: Taxonomy of SysML diagrams

Figure 2.4: SysML Relationship
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SysML reuses a subset of UML 2.1 and extends it by additional diagrams and new

concepts as it is shown in Figure 2.4. SysML offers systems engineers several note-

worthy improvements over UML, which tends to be software-centric. These improve-

ments include the following:

• SysML’s semantics are more flexible and expressive. SysML reduces UML’s

software-centric restrictions and adds two new diagram types- requirement and

parametric diagrams. The former can be used for requirements engineering;

the latter can be used for performance analysis and quantitative analysis. Con-

sequent to these enhancements, SysML can model a wide range of systems,

which may include hardware, software, information, processes, personnel, and

facilities [93].

• UML does not allow to represent the trace of the informal requirements spec-

ification to the system design elements. Generally, UML Use Cases are used

to understand the expected system functionalities but the requirements are

traced to the use cases and not to the design. With this regard, SysML brings

a major enhancement through the requirement diagrams. These allow repre-

senting the requirements and many relationships among them as well as their

relationship with the system architecture and design elements.

• SysML allocation tables support common kinds of allocations. Whereas UML

provides only limited support for tabular notations, SysML furnishes flexible

allocation tables that support requirements allocation, functional allocation,

and structural allocation. This capability facilitates automated verification

and validation (V&V) and gap analysis.

• Another important feature of SysML is the introduction of additional models

of computation. It extends the behavior of UML activity diagrams so that the

control of execution of a running action can be disabled. It is also extended

to enable the modeling of continuous and probabilistic systems.
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• SysML model management constructs support models, views, and viewpoints.

These constructs extend UML’s capabilities and are architecturally aligned

with IEEE-Std-1471-2000 (IEEE Recommended Practice for Architectural De-

scription of Software-Intensive Systems).

2.2.1.10 UML Profile for Systems-On-Chip

System-On-Chip refers to the integration of computing and communications compo-

nents into a single chip. SoCs are incorporating more processors and software. The

success of UML in the software community has led to a surge of interest in using

UML in the SoC design flow [76]. In this context, the focus is put on how to cus-

tomize UML so that it can be used as System Level modeling language in the SoC

design flow. Therefore, many of these customizations are UML profile for SystemC

[128] which is a C++ based system level language used in the SoC design flow [80].

The OMG standardized profile for SoC [89] is defined to support the modeling and

specification of SoC designs. In particular, it introduces SoC structure diagrams. In

addition, the profile defines a set of stereotypes to represent modules, connectors,

ports, channels, clocks, processors, protocols, data types and connectors.

We have studied different UML Profiles for real-time and drawn a comparison be-

tween the aforementioned profiles according to some criteria, including formal foun-

dation, expressiveness and tool support [45]. This comparison is summarized in

Table 2.1.

2.3 Modeling of RTSS

UML is comparatively easy to use and it has enough tool support to describe the

artifacts of software systems. UML has ”real-time capabilities” [32, 85] and it has

been used in many resource-critical and time-critical systems. But UML also has
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Table 2.1: UML Profiles for Real-Time Systems
Issuer Tool Support System Analysis Expressiveness Formal Semantics

UML/SPT Industry Rhapsody (iLogix) Generic and Performance Time, No
(OMG) RT Studio (Artisan) real-time systems Schedulability Resource Concurrency

UML/QoS Industry None Generic and User defined QoS No
(OMG) Real-Time Systems

UML-RT Industry Rational RT Event driven Schedulability Capsules, port No
IBM/Rational Real-Time Systems Async mesages

TURTLE Academia TTool RTL Distributed No Synch, Parallel RT-LOTOS
Critical Systems delays operators

Z.109 Industry Telelogic Telecommunication No SDL concepts SDL
ITU-T Tau 3.5 Critical Systems

OMEGA-RT Academia OMEGA Real-Time Systems Timing Timed events Timed automata
tool set scheduling with urgency

OCL Academia None Generic and Verification Real-time CTL
Real-Time Systems constraints

few limitations. It cannot describe a system from all possible domains through

its basic elements and thus it cannot be considered as a complete language for

system modeling and it does not support some important characteristics of RTS

such as modeling of timing constraints, signals and independent components [12]

etc. Lavazza et.al. [64] have proposed an approach for automatic translation of

UML models into a formal representation that support the verification of properties,

for example, safety, utility, liveness etc.

The RTSS pose a unique set of challenges with different kinds of timing constraints

such as duration, delay and deadline associated with events and schedulability con-

cerns. In [116], the authors describe a set of constructs that facilitate the design of

software architectures in the domain of real-time software systems using the UML

and utilizing the power of its extensibility mechanisms.

UML is suited for the analysis of RTS and this forms the basis of the review of

some of the important UML profiles relevant for RTS in [45]. Formal semantics of

UML-RT have been introduced in [100]. As real-time scheduling analysis can not

be performed by using UML-RT, the authors in [49] provide a solution for real-time
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schedulability analysis using the RoseRt case tool. [9] offered a sub-profile of SPT

for schedulability modeling.

In [23] Z.Chen et al. have introduced the semantic description of Refinement of

Component and Object Systems (rCOS). Using the concept of this model, they

proved how it could integrate the model-driven approach. In [121] a general approach

is proposed which detects concurrency problems using a genetic algorithm. This is

achieved by using UML/MARTE profile. In [55] Iqbal et al. have introduced a

framework for practitioners to reduce the gap between the modeling notations and

real-world industrial applications using UML/MARTE.

In [104, 109] formal semantics for automated translation of Timed Rebeca has been

proposed. The authors in [127] propose a language called Stateful Timed CSP and

an automated approach for checking the model. However, we have developed a

framework on UML/MARTE, which is a more popular modeling tool for software

systems and hence would be more useful for analysis of RTSS. In [139] Gregory et

al. introduced a UML profile called SafeUML in the context of RTCA DO-178B

to improve the communication between safety and software engineers through an

automated generation of certification-related information.

Researchers found fruitful ways of combining Formal Verification Tools (FVT) with

CASE tools. This approach made sensible progress on the interpretation of graphical

descriptions to model checkers’ input symbols. However, these mechanisms were

unable to return the results of verification into the CASE tool’s process. Mota et

al. [79] proposed a protocol interface that merges both technologies and tries to

overcome the drawback of the above mentioned mechanisms. The Primary focus of

[72] is the conversion of HMSC (High-level MSC) semantics to timed automata.

In [31], Douglass has used the patient ventilation system as a case study to demon-

strate how well UML can be used to represent a real-time system development

problem. But, the work lacks several important system specifications, parameters,
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and time-based constraints for modeling RTS. Further, the absence of formal ap-

proach made it difficult for the automated analysis. We have extended the MARTE

metamodel to introduce new user defined data types required to model a real-time

software system.

2.4 Consistency in RTSS

Consistency is a state in which two or more overlapping elements of different software

models make assertions about the aspects of the system they describe, which are

jointly satisfiable [123]. It is one of the attributes used in measuring the quality

of the Unified Modeling Language (UML) model [82]. According to [52, 123] there

are three main activities in model consistency management. They are consistency

specification, inconsistency detection and inconsistency handling. Consistency rules,

which must be represented by different diagrams for them to be consistent, are

specified first. If the consistency rules are not fulfilled, inconsistencies were aroused

and they should be detected and handled. Even though there is increasing research

in consistency between diagrams as reviewed by [71], there is still lack of researches

of consistency driven by Use Case. In famous system development methodologies

such as ICONIX [106] and Rational Unified Process (RUP) [53], Use Cases provide

the foundation for defining functional requirements and design throughout system

development. The importance of Use Case can be seen in [30] as it is second ranked

diagram used by UML practitioners.

A novel approach is introduced in [65] to deal with consistency verification between

a unique software system and its advancement at both design and implementation

phases. An algorithmic approach to a consistency check between UML Sequence and

State diagrams is described in [69], while [61] proposes a declarative approach using

process algebra CSP for consistency checking between sequence and statecharts.

SPIN model checker has been used in [138] to verify the consistency between the
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sequence and statechart diagrams. A tool is developed to verify the consistency

issue automatically. In [34] an approach for automated consistency checking named

VIEWINTEGRA has been developed. It provides support for active (preventive)

and passive (detective) consistency checking. A consistency concept is presented in

[60] that focuses on the establishment of timing constraints. Similarly, the authors in

[46] present a consistency framework for UML/SPT models. Research work in [112]

focuses on the different types of inconsistencies and the consistency rules present in

the design phase of the software development life cycle. Shinkawa [120], Sapna et

al. [115] and Chanda et al. [20] propose consistency between use case and activity

diagrams. Shinkawa [120] specifies consistency between use case, activity, sequence

and state chart diagram using Colored Petri Net (CPN). He proposes that a use

case may have at least an activity diagram. He also defines the use case, action and

execution occurrences as transitions.

While Sapna et al. in [115] defined elements of use case, activity and sequence

diagrams using schema table. But the definitions are just limited to elements of use

case, actor, activity, message and object. A use case may have an activity diagram,

each actor in use case diagram is matched to a class in the activity diagram. They

define that each object and its messages in the sequence diagram correspond to a

class and its methods in the class diagram. They proposed two (2) consistency rules

between use case and sequence diagrams.

Our framework in comparison is formal and hence facilitates automated analysis for

identification of inconsistencies arising between UML diagrams for RTSS. Chanda

et al. [20] express elements of use case, activity and sequence diagram as context-

free grammar. They have defined relationships among diagrams. The formal syntax

of each diagram is then used to reason the rules using CFG. However, they have

worked on non-RTS and do not consider any real-time requirements such as timing

constraints. Elements defined in consistency rules by [20, 115] do not follow abstract

syntax standardized by OMG [84].
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Li et al. [67] have proposed formal semantics of the UML sequence diagram to catch

the consistency between the sequence diagram with the class diagram and state dia-

gram. This methodology might be helpful to build up the model consistent checking

functions in UML CASE tools and furthermore to reason about the accuracy of a

design model regarding a requirement model. With respect to timing constraints in

the sequence diagram, Li et al. [68] described an algorithm based on linear program-

ming that analyzes whether several timing constraints within a sequence diagram

are consistent with each other. They extend their approach to compositions of se-

quence diagrams. Fryz et al. [43] consider a use case diagram as user requirements

and they have described the diagram as a graph. They have defined consistency

between use case and class diagram using conjugated graphs.

In [21], Chechik et al. describe methods and tools for automatically analyzing the

consistency of software requirements and detailed designs. A tool is implemented

which checks this notion of consistency is satisfied. Their related research works

are present in [33, 110, 111]. In [36], Egyed has introduced an automated approach

for consistency detection. If model changes, the proposed approach can detect and

track inconsistencies in real-time automatically. In [24], Jinho et al. have proposed

a systematic approach for checking timing consistency rules among three UML di-

agrams - state machine, sequence and timing diagrams using two case studies with

MARTE annotations. However, their approach lacks formal verification.

Authors in [31] model real-time patient ventilation system, but this work does not

provide any consistency checking mechanisms among various UML diagrams. In

comparison to that, we have defined the consistency rules among various UML di-

agrams and formally verify these. Contribution of Chapter 5 lies in defining a set

of consistency conditions between related UML/MARTE models. Further, a formal

approach has been developed for the automated verification of the consistency rules

and details of this new approach have been presented in that chapter.
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Figure 2.5: Different types of Traceability Link

2.5 Verification of RTSS

Requirements traceability can be defined as ”the ability to describe and follow the life

of a requirement, in both a forward and backward direction” [47]. The general con-

sensus is that traceability between different artifacts helps reduce development and

maintenance time and cost thereby improving the quality of the system [3]. Software

traceability refers to the process of discovering and maintaining links between the

different artifacts. Different types of traceability links are pre requirements spec-

ification (pre-RS), pre-requirements specification (post-RS), forwards, backwards,

horizontal, and vertical traceability. These are shown in Figure 2.5 [134].

Authors in [73] proposed that traceability not only reduces downstream cost but can

also improve software maintenance quality. Utilizing the metamodeling approach,

authors in[81] propose requirements modeling which permits the reconciliation of
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the expressiveness of a portion of the more pertinent Requirements Engineering sys-

tems. This research work concentrates on versatility concerning expressiveness and

flexibility to the application area to set up some essential rules and expansion com-

ponents that advance knowledge and semantic exactness. In [102], reference models

including the most imperative sorts of traceability links for different improvement

tasks have been orchestrated using an empirical approach.

Alexander Egyed in [35] introduces a new, strongly iterative approach to trace anal-

ysis, which will automatically generate new trace dependencies and validate existing

ones between model elements, scenarios and code. The proposed approach is fully

automated and has been supported by case studies. A tool is introduced in [10] to

permit the mix of this semi-formal development method with a formal strategy to

empower framework confirmation without any knowledge of either formal languages

or temporal logic.

In [37] authors develop a system based on existing Requirement traceability research.

With the help of software attributes, the proposed system can find out requirements

conflicts. Using a trace analysis technique, automatically discards false conflicts

and cooperation. Using heuristic traceability rules, the proposed system in [122]

automatically generates traceability relation between textual requirement artifacts

and object models.

Automatic traceability rules between requirements and analysis documents have

been proposed in [124] using a rule-based technique. The work in [134] aims to bring

software developers, requirements engineers and model-driven developers together

by providing an overview of the current state of traceability research and practice

in both areas. The concept of event-based traceability is discussed in [25] which is a

new method of traceability based upon event-notification and is applicable even in

a heterogeneous and globally distributed development environment.

In order to support the software maintenance process, authors in [137] have proposed

a novel approach to set up the traceability links between the existing source code
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and document by formally creating ontological representations for both the artifacts.

Authors in [50] concentrate on enhancing the recall and precision to decrease the

quantity of missed traceability links and in addition to lessen the quantity of unim-

portant potential links that an expert needs to inspect when performing requirement

tracing. Due to software advancement, or to the absence of a taught improvement

and support process, traceability links regularly have a tendency to be obsolete or

missing. To help the prerequisites investigator in the choice about when to quit as-

sessing candidate traceability links, authors in [39] propose a novel approach called

Estimating the Number of Remaining Links (ENRL) which goes for evaluating the

quantity of remaining positive links in a ranked list of candidate traceability links

created by a Natural Language Processing methods.

Traceability metrics are usually constructed manually in many software development

industries. Hence, it is costly to maintain them. To address this issue authors in [26],

[5] have proposed an approach to investigate the use of dynamic retrieval methods to

automatically generate the traceability links. Candidate link generation is one of the

important part of the requirement tracing process. Research work in [51] provides

the various new measures to improve the quality of the candidate link generation.

In [66], authors proposed a formal software verification technique using equality

loop invariants. In order to verify the traceability of non-functional requirements,

authors propose a design based methodology using EAST-ADL2 and MARTE lan-

guages [96] for safety or mission-critical systems. Authors in [75] exhibit a model-

driven approach for requirement engineering by integrating UML, MARTE, and

SysML models to enhance and encourage requirements specification. To automate

the proposed approach, authors build up a tool which consequently creates trace-

ability metrics and permits recognize possible inconsistencies when changes in the

requirements are made.

Authors in [105] combine the application of SysML with MARTE stereotypes to

specify the important elements of individual software requirements for RTS and
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furthermore represent traceability between requirements. In any case, the work

does not verify the traceability between requirement and design phase of the software

development life cycle and furthermore does not provide any formal specification to

check the non-functional requirements in the outline. In contrast with that, this

research work formally verifies the requirements traceability of timing constraints

between the requirements analysis and design phase of a software development life

cycle. The fundamental commitment of [58] is to develop a set of metrics based on

use case, sequence and class diagrams. However, authors have worked on non-RTS

and does not consider any real-time requirements such as timing constraints. In

comparison to that, our work further enhances the concept of RTSS and shows how

requirements related to timing constraints are traced automatically from the use

case diagram through the sequence diagram to the timing diagram and finally to

the class diagram.

In order to verify and validate an automated system, a model checking approach

can be utilized. Research work in [40] proposes a framework for the translation

of use case, activity and state diagrams to symbolic model checker. ATL model

checker is implemented with the help of an algebraic approach in [126]. ANTLR has

been used to implement the algebraic compiler included within ATL model checker.

Related research works are also provided in [18]. A similar approach is also used

to implement CTL model checker [17]. The existing model checking tools (Spin,

CADP, Alloy, FDR2 etc.) [42] require input specifications to be provided in some

specific manner, like Promela for Spin, first order logic for Alloy, LOTOS-NT for

CADP and CSPm for FDR2 etc. In contrast with that, our framework minimizes

this extra overhead. Given a UML model, the framework automatically verifies the

requirements traces and generates the traceability metrics.

In this dissertation, we present a metric based verification on a formal framework

which focuses on tracing requirements into design artifacts. With the help of se-

mantic actions, the formal specification automatically derives trace metrics to quan-

titatively assess the extent of real-time requirement coverage in the system. Our
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approach discussed in detail in Chapter 6 focuses on the identification of those as-

pects.

2.6 Schedulability Analysis of RTSS

L. Sha et al. [119] have proposed uniprocessor resource sharing schemes, the ba-

sic Priority Inheritance Protocol (PIP) and the Priority Ceiling Protocol (PCP) to

overcome the difficulties of the uncontrolled priority inversion problem. These pro-

tocols provide a well-known method for fixed priority scheduling systems. The PCP

is a refinement of the PIP. The PCP prevents deadlocks and reduces blocking time

compared to the PIP. T. P. Baker [8] has developed a uniprocessor resource sharing

algorithm i.e. the Stack-Based Resource Sharing Protocol (SRP) for the Earliest

Deadline First (EDF) scheduling and the Rate Monotonic Scheduling. The SRP

manages the execution of the tasks according to their preemption levels which are

assigned statically based on their priorities and release times. This protocol is the

refinement of the concept of priority ceiling [101, 119]. A concurrency control pro-

tocol to specify the dynamic priority ceiling of the tasks for the EDF scheduling has

been proposed, which overcomes the drawbacks of the occurrences of the deadlocks

and chained blocking [22].

In RTS uncontrolled priority inversion may cause the missing of the deadlines which

is undesirable in hard RTS. An alternative protocol, the Immediate Priority Ceil-

ing of the priority inheritance is proposed and implemented in [19] for real-time

drivers. Lam et al. [63] have proposed a Priority Ceiling Protocol with Dynamic

Adjustment of Serialization Order for real-time database systems. If data conflicts

occur, a higher priority transaction preempts a lower priority transaction with the

help of the dynamic adjustment of the serialization order. This protocol prevents

the occurrences of deadlocks as well as the unnecessary blocking. Maroua Gasmi

et al. [44] have proposed Reconfigurable Priority Ceiling Protocol (RPCP). In a
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random scenario of reconfiguration, the problems of deadlock and missing of dead-

lines can occur. This protocol finds solutions to the optimization of blocking and

response times. Authors have developed a simulation tool at LISI Lab (University

of Carthage) which was applied to a case study to show the contributions of their

research.

Kiss [59] has proposed the Intelligent Priority Ceiling Protocol (IPCP) where the

optimal priorities have been approximated by applying adaptive techniques. This

protocol has two major parts. The first part optimizes the priorities of the actual

task and the resource set, while the second part tunes the priorities in the system

according to the system wide parameters. Xibo Wang et al. [133] have carried out a

research based on the layered scheduling algorithm which is a refinement of PIP and

PCP. The Layered Priority Inheritance Protocol (LPIP) and the Layered Priority

Ceiling Protocol (LPCP) are proposed in a layered scheduling environment where

priority inversion and occurrence of deadlock are prevented.

Exact schedulability analysis for EDF scheduling is provided by considering both

the resource sharing and release jitter [135]. An extension of the Shared Resource

Protocol has been proposed to minimize the blocking time [13]. Authors in [136]

present a formalized and mechanically checked verification for the rightness of only

priority inheritance protocol. Maria Cruz Valiente et al. [131] have scheduled a set

of identified tasks using the capabilities of UML. The PIP is used to share critical

resources. But one of the major drawbacks is that it does not prevent deadlock when

nested critical sections are used. In this research work, we have developed a new

resource access protocol which overcomes this difficulty using an improved model.

Deadline Floor inheritance Protocol [16] is proposed as an alternative of SRP. In

this protocol, the relative deadline is relegated to all the shared resources. Deadline

of a resource will be same as the minimum (floor) of all the tasks which utilize that

resource. Whenever a resource is allocated to a task, the absolute deadline for that

task will be minimized to mirror the resource’s deadline floor. But, this work posses
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extra overhead to calculate the relative deadline of all resources as well as to modify

the task’s deadline whenever a resource is allocated and released.

Taking the cue from the above works, Chapter 7 compares various resource access

control protocols. The main objective of this chapter is to model, analyze and verify

four existing protocols using UML/SPT based Sequence and Timing diagrams to

study deadlock in RTSS.

2.7 Conclusion

This chapter presents a comprehensive review of research works pertaining to the

domain of RTSS. We have discussed the works by categorizing them as per their

applicability in the RTSS namely – modeling, consistency, verification and schedu-

lability analysis. In the context of the existing review of research works presented

here, we develop an integrated approach in this dissertation, which forward towards

modeling, consistency, verification and schedulability analysis of RTSS. The next

chapter gives an overview of the scope of work.



Chapter 3

Scope of Work

3.1 Introduction

3.2 Problem definition

3.2.1 Modeling

Development of RTSS using UML/MARTE is gaining popularity day by day. MARTE

model-driven approach can be used to describe timing constraints of RTSS. In many
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Developing a real-time software system is a sophisticated and complex task. It is

crucial that for such systems, the software should be designed with a robust and

sound architecture, which is capable of capturing not only the functional aspects

but also the time constraints that are specific to a real-time software system. This

chapter provides a brief overview of the scope of work of this dissertation. We present

an integrated approach which focuses on the development of various methods for

modeling, analysis and verification of RTSS.
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situation, concrete syntactical forms are necessary to represent complex data struc-

ture. It is not possible to model these types of complex data using standard UML.

In this section, we model RTSS using tuple relational calculus and in Chapter 4

this is implemented by extending the MARTE metamodel using Value Specification

Language (VSL).

Model Representation

We present a model for RTSS which is represented as a set

Model = {UCD, SEQD, TIMED, CLASSD}, where

UCD = {UCDi|1 ≤ i ≤ n} is finite set of Use Case diagrams

SEQD = {SeqDi | 1 ≤ i ≤ n} is finite set of Sequence diagrams for Use Case

TIMED = {TimeDi | 1 ≤ i ≤ n} is finite set of Timing diagrams for SEQD

CLASSD={ClassDi| 1 ≤ i ≤ n } is finite set of Class diagrams for TIMED

Representation of UCD

Use Case Diagram (UCD) is defined as a set

UCD = {A, UC, R, CO}, where

• A is a finite set of actors where A = {Ai | 1 ≤ i ≤ n},

• UC is a finite set of Use Cases where UC = {uCi | 1 ≤ i ≤ n},

• R is a finite set of relationships where R = {Assoc, Include, Extend, GenUC,

GenAc},

• CO is a finite set of timing constraints for UCD where CO = {COi | 1 ≤ i ≤

n},

• COi is a finite set of timing constraints for a Use Case uCi where COi = {COij

| 1 ≤ i ≤ n and 1 ≤ j ≤ n}
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Representation of SEQD

SeqDuCi is defined as a finite set of Sequence diagrams corresponding to Use Case

uCi.

SeqDuCi = {SeqDuCi1, SeqDuCi2,.........., SeqDuCin | uC ∈UC} where SeqDuCi ∈

SEQD

SeqDuCin is defined as a tuple

SeqDuCin = Ps, E, V, l, O, C, S where

• Ps is a set of lifelines denoting participants involved in an interaction where

Ps = {PSi | 1 ≤ i ≤ n}

• E is a set of events where each event corresponds to sending or receiving a

message where E = {Ei | 1 ≤ i ≤ n}

• V is a finite set of edges. V is defined as a link between two Ps. So V can be

represented as {(e,e’) | e,e’ ∈ E and e’6= e}. V = {Vi | 1 ≤ i ≤ n}

• l is a labeling function which assigns each v ∈ V a message name m with m =

l (v)

• O is a function which maps each e ∈ E to the participant it belongs to

• C is a set of boolean of form t(e) – t(e’) ≤ ≤ d which represents the timing

constraints enforced on SeqDuCin

• S is a finite set of states to which participant goes where S = {Si | 1 ≤ i ≤ n}

There is an ordering relation over E in a participant. All events related to one par-

ticipant are timely ordered. For any two distinct events ei and ej, let ei < ej denotes

that ej occurs after ei if and only if (e,e’) ∈ V.

We define NSeqD to be the set of all message names occurring in the Sequence

diagram and denote NSeqD,p set of all message names sent or received by the par-

ticipant p ∈ Ps of the Sequence diagram. We define NSeqDstate,p set of all states



Chapter 3. Scope of Work 44

associated with the participant p ∈ Ps of the Sequence diagram. We denote the event

of receiving message mi as r(mi) and the event of sending message mi as s(mi).

Representation of TIMED

TimeDin describes a Timing diagram corresponding to Sequence diagram SeqDuCin.

TimeDin is defined as a tuple,

TimeDin = {Pt, M, D, S}, where

• Pt is a set of lifelines denoting participants involved in an interaction where

Pt = {PTi | 1 ≤ i ≤ n}

• M is a set of messages and methods transferred between two pti where M =

{Mi | 1 ≤ i ≤ n}

• D is the finite set of timing constraints where D = {Di | 1 ≤ i ≤ n}

• S is a finite set of states in the lifeline of Pt where S = {Si | 1 ≤ i ≤ n}

We defineNtimeD to be the set of all message names occurring in the Timing diagram

and denote NT imeD,p set of all message names sent or received by the participant p

∈ Pt of the Timing diagram. We define NT imeDstate,p as a set of all states associated

with the participant p ∈ Pt of the Timing diagram.

Representation of CLASSD

ClassDin describes a Class diagram corresponding to Timing diagram TimeDin.

ClassDin is defined as a tuple,

ClassDin = {C, V, MD, T}, where

• C is the finite set of classes where C = {Ci | 1 ≤ i ≤ n}

• V is the finite set of variables where V = {Vi | 1 ≤ i ≤ n}

• MD is a set of methods where MD = {MDi | 1 ≤ i ≤ n}

• T is the finite set of timing constraints where T = {Ti | 1 ≤ i ≤ n}
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3.2.2 Consistency

Real-time software development life cycle consists of different stages, which are cor-

related to each other and represent common aspects. The design model of RTSS

consists of a set of diagrams which represent different aspects of the same software

system and there are chances of inconsistencies within the models as they depict

overlapping characteristics. A set of consistency criteria is introduced to ensure

consistency within the design models. In this dissertation, we develop a framework

to ensure inter diagram consistency such that the following rules are valid.

We are introducing inter diagram consistency rules based on the following tuple

relations defined in section 3.2.1.

UCD = {A, UC, R, CO},

SeqDuCin = Ps, E, V, l, O, C, S

TimeDin = {Pt, M, D, S},

ClassDin = {C, V, MD, T},

Rule 1: UCD-SeqDuCin : Ps ⊆ A && C ⊆ CO

Rule 2: SeqDuCin- TimeDin : Pt ⊆ Ps && D ⊆ C

Rule 3: TimeDin-ClassDin : C ⊆ Pt && MD ⊆ M && T ⊆ D

3.2.3 Verification

In the domain of requirements engineering, the term traceability is usually defined

as the ability to follow the traces or, in short, to trace to and from requirements

[98]. Formally, it can be defined as follows.

RT1 : RequiredTrace[origin → UCD;

destination → SeqDuCin, TimeDin, ClassDin] where

RT1 is an element of the class RequiredTrace (required traceability), which requires
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Figure 3.1: Relationship among UML models

traceability between UCD(Use case diagram) and SeqDuCin, TimeDin, ClassDin

(Sequence, Timing and Class diagrams).

UML diagrams are used to model different aspects, however as they all together

represent the same system, there may exist some overlapping areas that represent

some common characteristics. Hence, the diagrams are related to each other and

together they seamlessly integrate to represent the system as a whole. The UML

diagrams are considered as entities and their relationships are modeled as an E-R

diagram in Figure 3.1. Attributes of the entities are shown in Table 3.1.

This E-R diagram reveals the dependencies between the UML diagrams considered
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Table 3.1: Entities and their attributes
Entities Attributes
Use Case Actor, Constraint
Sequence Participant, State, Method/Message,Constraint
Timing Participant, State, Method/Message, Constraint
Class Attribute, Method, Constraint

here. The verification of requirement traceability is formulated based on the rela-

tionship discussed in this section.

In this section, requirement traceability is defined in formal way. We have developed

a framework for verifying requirements with respect to design specifications. UM-

L/MARTE is considered as the model for designing RTSS. The present framework

enables developers to keep track of every requirement. Each requirement is traced

in the design, which will help developers to identify unimplemented requirements on

one hand and trace the path for implemented requirements. This will help in manag-

ing changes to requirements as well. We have developed metrics based requirements

traceability for verification of RTSS to show how requirements related to timing

constraints have been traced automatically from the use case diagram through the

sequence diagram to the timing diagram and finally to the class diagram by in-

troducing semantic actions in the grammar. Chapter 6 presents the details of this

framework.

3.2.4 Schedulability analysis

A RTSS is schedulable if all tasks finish their execution before their respective dead-

lines. Analyzing the utilization of the processor for a given set of tasks can give an

indication of schedulability. The utilization test of a system is performed by using

the formula [70]:∑n
i=1=

Ci
T i
≤ U(N) where

Ci is the worst-case execution time of task i
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Ti is the period of task i

and U(N) = N(21/n-1) is the utilization bound for N tasks

This dissertation discusses the ability of UML and its profile to determine the schedu-

lability of RTS. This work puts stresses on the issues related to the deadlock of

resource access control protocols. The Priority Inheritance Protocol is used for

sharing critical resources but it does not prevent deadlock if nested critical sections

are present. This shortcoming is represented using one UML model. Further, the

Priority Ceiling, Stack Based Priority Ceiling and Stack Based Preemption Ceiling

Protocols are used to overcome the difficulty using other improved models. Chapter

7 presents the details of this framework.

3.3 Conclusion

This chapter presents a broad overview of the scope of work presented in this disser-

tation. Several different new modeling, analysis and verification techniques presented

in the subsequent chapters have been discussed briefly. The functional requirements

of the system have been described. Schedulability analysis of various resource access

control protocols are also highlighted.



Chapter 4

Modeling of Real-Time Software

Systems

4.1 Introduction

Real-Time Systems interact with their environments using time constrained in-

put/output signals. Functional misbehavior or a deviation from the specified time

constraints may have catastrophic consequences. Developing a real-time embedded

system is a sophisticated and complex task. It is crucial that for such systems, the

software should be designed with a robust and sound architecture, which is capable

of capturing not only the functional aspects but also the time constraints that are

specific to a real-time software system. The increasing complexities of ubiquitous

real-time systems require an adequate modeling language.

UML, a widely used visual object-oriented modeling language, has proven to be

effective and suitable for real-time systems. It is now become one of the most widely

used modeling languages for industrial software systems, essentially because it is a

semiformal notation, relatively easy to use and well supported by tools.

49
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It is seen that the constructs provided by the standard UML and the existing UML

extension mechanisms are not enough in several applications such as medical domain,

communication domain etc. i.e. this language is not adequate to model domain-

specific constructs. In order to fill up this gap, OMG has introduced a mechanism

called profiles which have the capabilities to extend the UML metamodel for dif-

ferent purposes. A profile is a generic extension of the base modeling language, it

does not contradict the original language’s semantics. Concretely, a UML profile

is implemented as a set of stereotypes, tag values and constraints applied to the

elements inside UML, e.g. classes, operations, activities, interactions.

New semantics have also been provided by this extension. UML/MARTE profile

has been introduced by OMG to extend the UML standard by providing new con-

cepts that are commonly encountered in real-time and embedded systems (RTES).

The MARTE UML profile extends UML to add support for modeling elements and

concepts that are specific to RTES.

This chapter focuses on the modeling of software development for real-time system

using Use case, Sequence, Timing and Class diagrams by extending the UML/-

MARTE metamodel.

4.2 Extension of UML/MARTE

UML is a multi-purpose semi-formal language with many notational constructs.

UML provides extension mechanisms to allow the user to model real-time software

systems if the current UML technique is not semantically sufficient to express the sys-

tems. These extension mechanisms are stereotypes, tagged values, and constraints.
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4.2.1 Stereotype

Stereotypes allow the definition of extensions to the UML vocabulary, denoted by

<<stereotype-name>>. The base class of a stereotype can be different model ele-

ments, such as class, attribute, and operation. A stereotype groups tagged values

and constraints under a meaningful name. When a stereotype is branded to a model

element, the semantic meaning of the tagged values and the constraints associated

with the stereotype are attached to that model element implicitly. A number of

possible uses of stereotypes have been classified in several research works.

4.2.2 Tagged value

Tagged values extend model elements with new kinds of properties. Tagged values

may be attached to a stereotype, and this association will navigate to the model

element to which the stereotype is branded. The format of a tagged value is a

pair of tag name and an associated value, i.e. {name: value}. The tagged values

attached to a stereotype must be compatible with the constraints of the stereotype’s

base class.

4.2.3 Constraint

Constraints add new semantic restrictions to a model element. Typically constraints

are written in the Object Constraint Language (OCL). Constraints attached to a

stereotype imply that all model elements branded by that stereotype must obey the

semantic restrictions which constraints state. Note that the constraints attached to a

stereotyped model element must be compatible with the constraints of the stereotype

and the base class of the model element. A profile is a stereotyped package that

contains model elements that have been customized for a specific domain or purpose

by extending the metamodel using stereotypes, tagged values, and constraints. A
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profile may specify model libraries on which it depends and the metamodel subset

that it extends.

4.2.4 VSL

VSL is coupled with the Non-Functional Properties (NFP) sub-profile of MARTE,

which can be used to specify the complex types behind non functional properties

of a system [90]. VSL covers all the expressibility needs implied by a typical real-

time design flow. The usage of VSL is quite straightforward for the specification of

values. In the case of constraint specifications, using VSL may appear less intuitive,

especially if the constraint concerns timing aspects. VSL is used most often in the

following situations:

• Assigning a value to a class or stereotype attribute

• Writing constraints, typically ones that involve values of object and class at-

tributes

• Defining complex data types

4.3 Case Study

Patient Ventilation System (PVS) is considered as a running example of RTSS. This

section gives an overview of the PVS and the functional specifications of the system

are shown. PVS helps an anesthetized and paralyzed patient to breathe properly by

controlling the delivery of fresh mixed gases to the patient and the removal of waste

gases, as illustrated in Figure 4.1 [31].

Breathing circuit on the inspiratory side accepts the fresh mixed gas (containing

between 21% and 100% O2) which mixes with the “scrubbed” gas returning within
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Figure 4.1: Block diagram of PVS

the circuit to the patient. This gas enters the expiratory limb of the breathing circuit

so that the patient can ultimately exhale this gas. The movement of gas is powered

by the bellows assembly (of the patient ventilator) which pushes the bellows down

to force inhalation and reduces the pressure in the drive gas. This process allows a

passive exhalation and a refilling of the bellows.

The common parameters monitored are:

• O2 concentration in the inspired limb of the breathing circuit (fiO2)

• CO2 concentration in the expired limb of the breathing circuit (etCO2)

Specifying the bound between two ventilation cycles, this timing constraint has a

soft constraint and a hard constraint. The soft constraint is fourteen ventilations

per minute, and the hard constraint is twelve ventilations per minute. In this closed

breathing circuit, the expired gases are pushed through a soda lime canister that re-

moves CO  from the mixture. This scrubbed gas is then mixed with some amount of

new, fresh gas replacing the removed oxygen. In addition to the movement of gases,

ventilators usually perform some machine monitoring to enhance patient safety.

2
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• Volume flow through the patient

• Breathing circuit pressure sensor

The ventilator operates in three modes:

• Ventilation mode (normal operating mode for the machine)

• Configuration mode (user can configure the machine, set alarm limits, and so on)

• Service mode (service personnel can update software, calibrate or replace the

sensors, and so forth)

Considering the following basic functions, the requirements have been identified

(Table 4.1), which will be considered further in the design phase.

• Delivering ventilation to the patient with value 12/min

• Checking alarm on the critical event occurred on patient

• Monitoring breathing circuit

• Displaying informational alarms for a period no more than two minutes

• Displaying warning alarms until acknowledged by the user within 30 sec

• Re-announcing critical alarms after being dismissed out if the originating condition

still exists

• Delivering a specified volume per breath (known as Tidal Volume)

• Setting a specified Inspiration-to-expiration time ratio (known as I:E Ratio)

• Setting a specified time for inspiration (Inspiration Time)

• Setting a pause between breaths (Inspiratory Pause)

• Setting a rate of respiration (Respiration Rate)

• Setting max pressure limit

• Setting inspiratory flow

The requirements document is formed based on the above functional requirements

with each requirement being assigned a unique identifier for enabling traceability

into design. The requirements document is shown in Table 4.1.
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Table 4.1: Requirements document
RID Description
R01 Physician can deliver ventilation to patient with value 12/min
R02 Physician can check alarm on critical event

occurred on patient
R03 Informational alarm is displayed for a

period no more than two minutes
R04 Caution alarm is displayed until

acknowledged by the user within 30 sec.
R05 Critical alarm is re-announced after

being dismissed out if the originating
condition still exists.

R06 Physician can set various ventilation parameters
R07 Physician can monitor breathing circuit
R08 Physician can set inspiratory flow
R09 Physician can deliver a specified volume per breath
R10 Physician can set a specified inspiration-to-expiration time ratio
R11 Physician can set a specified time for inspiration
R12 Physician can set a pause between breaths
R13 Physician can set a rate of respiration
R14 Physician can set max pressure limit

4.4 Modeling with extended UML/MARTE

This chapter presents modeling of a real-time software system using the UML/-

MARTE based Use case, Sequence, Timing and Class diagrams; discusses the rep-

resentations, and shows how they can be enhanced by adding new elements to the

underlying design notation. First, the modeling of new user defined data types with

VSL is discussed and then representation of different UML diagrams by using those

new data types by extending the MARTE metamodel are also discussed. We have

used ”Altova” modeling tool to draw the timing diagram and rest of the diagrams

are drawn using ”MagicDraw” modeling tool.
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Figure 4.2: Defining new user defined structured data types by extending
MARTE

4.4.1 Structured data types with VSL

Sometimes, concrete syntactical forms are required to represent complex data struc-

ture. Using standard UML, we cannot model these types of complex data. VSL

expression is very useful to resolve this difficulty. VSL can be used to extend the

UML primitive data types.

In our model, we have defined seven new structured data types; I:ERatio, Inspi-

ratoryTime, RespiratoryRate, TidalVolume, InspiratoryFlow, InspiratoryPause and

MaxPressureLimit as subclasses of the MARTE Real primitive type.

InspiratoryTime data type has three attributes, initialValue, finalValue and default-

Value (Figure 4.2). As all of these attributes are expressed using real numbers, we

make InspiratoryTime a subclass of the MARTE Real primitive type. Likewise,

other data types are also defined and self-explanatory.

4.4.2 Adding new physical data types

The standard MARTE library does not contain some of the desired physical data

types required for the patient ventilation system. For this purpose, it is required to
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Figure 4.3: PressureUnitKind dimension definition

define new custom types [90].

This involves the following number of steps-

1. Defining the appropriate physical units and their concrete representation (e.g.,

seconds, grams, etc.)

2. Defining the unit type (dimension) of physical units required (e.g., energy, length,

volume etc.)

3. Defining the desired physical type, that is, the combination of value and unit

that represents the desired physical quantity

Step 1: Defining the physical units and their concrete representation

It is required to define the units we are interested in including in our models. Let

us assume that this example considers only two types of units which are designated

by the literals “ccmH2O” and ”bpm”.

Step 2: Defining the unit type (Dimension) of the physical type

Specifying the unit type, or dimension will consist of a UML enumerated list an-

notated with the stereotype <<dimension>> and its literal will be annotated with

the stereotype <<unit>> In our example, we have defined a new PressureUnitKind

(Figure 4.3) and BpmUnitKind (Figure 4.4) enumerations, which are stereotyped

with the predefined MARTE Dimension to differentiate it from other types of enu-

merations.

Step 3: Defining the new physical type
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Figure 4.4: BpmUnitKind dimension definition

The following steps are used to define a new physical data type:

(i) Selecting the appropriate physical value type, based on the kind of value to be

specified

(ii) Creating a new subclass of that type and adding the corresponding unit attribute

The stereotype<<nfpType>> is used for declaring types of non-functional property.

This is an extension of the concept of UML <<dataType>>.

The MARTE Nfp Type stereotype defines the general format of NFP types. It helps

to differentiate between existing data types in MARTE library and other kinds of

custom data types.

This stereotype supports three kinds of attributes:

- valueAttrib — This attribute contains the value of data type. This is usually a

numerical quantity (integer or real), although, in some cases, it can be a string.

- unitAttrib — This attribute contains the physical measurement unit corresponding

to the values. This is always an enumeration literal tagged with the Unit stereotype.

- exprAttrib — This optional attribute points to the attribute that contains a VSL

expression to be used for various purposes.

This work considers only valueAttrib and unitAttrib.

In this chapter, we have chosen the existing MARTE NFP Integer physical value

type as our base class, because we want to be able to express integer pressure values

(following step (i)). Further, we have derived a new class Pressure from the existing

MARTE NFP Integer physical value type (following step (ii)) as shown in Figure
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Figure 4.5: Defining the new Pressure physical type

Figure 4.6: Defining the new BreathsPerMinutes physical type

4.5. Here, we have defined the new physical type, Pressure and unit will be ccmH2O.

Similarly, we have also defined another new physical type, BreathsPerMinutes, unit

of which is bpm as shown in Figure 4.6.
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Figure 4.7: Use case diagram for Patient Ventilation System

4.5 Modeling of PVS with MARTE annotations

This section models the real-time patient ventilation system using Use case, Se-

quence, Timing and Class diagrams by extending MARTE metamodel to introduce

new user defined data types.

These diagrams depict different views of the system. The requirements are captured

in the Use case diagram which forms the beginning of the analysis phase. The

Class diagram represents the structural aspects while Sequence and Timing diagrams
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correspond to the dynamic aspects of the system under consideration. Together they

capture both the structural and behavioral characteristics of the system.

4.5.1 Use Case diagram for PVS

• Patient and Physician are considered as the main users who are modeled as actors

in UML notation.

• The Use Case diagram (Figure 4.7) models the fourteen requirements (Table 4.1)

as use cases. Fourteen use cases are (Deliver Ventilation, Alarm on Critical event,

Informational Alarm, Warning Alarm, Critical Alarm, Monitor Breathing Circuits,

Set Ventilation Parameter, Set Inspiratory Time, Set Tidal Volume, Set I:E ratio, Set

Respiration rate, Set maximum pressure limit, Set Inspiratory pause, Set Inspiratory

Flow) present in the Use case diagram.

• Two types of relationships are present among the use cases. They are Association

and Generalization.

• Annotations are represented by using the existing physical data types present

in the MARTE library as well as new user defined data types such as Pressure and

BreathsPerMinutes by extending the MARTE metamodel. Those custom data types

are used to represent the type attributes of various elements in our model, which

have either pressure or BreathsPerMinutes characteristic.

• Following seven stereotypes exist in the Use case diagram

i) <<inspiratoryPause>>

ii) <<inspiratoryFlow>>

iii) <<inspiratoryTime>>

iv) <<tidalVolume>>

v) <<maxPressureLimit>>

vi) <<I:ERatio>>

vii) <<respirationRate>>
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• The use case ”Set Inspiratory Flow” is annotated by specifying the stereotype

<<inspiratoryFlow>>, Tags are initialValue=1 L/min, finalValue=180 L/min and

defaultValue=100 L/min.

• Following different types of timing constraints are present in the Use case diagram.

i) 12 ventilations per minutes (deadline constraint)...............(I)

ii) Informational Alarm is displayed for a period no more than 2 minutes (duration

constraint).

iii) Warning Alarm is acknowledged by the user within 30 secs (deadline constraint).

iv) Critical Alarm is reproduced after every 2 minutes if the originating condition

still exists (delay constraint).

4.5.2 Sequence diagram for use case Set Ventilation Param-

eter

• The sequence diagram shows the dynamic behavioral view of the system where

the messages are passed to and from the external world. The messages are ordered

as per the sequence in which they occur.

• Similar to the use case diagram in Figure 4.7, the sequence diagram (Figure 4.8) is

represented by using the existing physical data types present in the MARTE library

and as well as new user defined data types such as Pressure and BreathsPerMinutes.

• Eight participants are (Timer, Inspiratory Valve, Compressor, Gas Mixer, Pa-

tient, Exhalation Valve, Parameter Controller, Physician) present in the Sequence

diagram.

• Some messages and methods are Set Timer(), Set Tidal Volume(), Set Inspiratory Time(),

Set Max Pressure Limit(), Set I:E ratio(), Set Respiration Rate(), Set Inspiratory Pause(),

open valve(), close valve() and Set Inspiratory Flow() etc.
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Figure 4.8: Sequence diagram for use case Set Ventilation Parameter
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• Seven stereotypes exist in the Sequence diagram such as <<inspiratoryPause>>,

<<inspiratoryFlow>>, <<inspiratoryTime>>, <<tidalVolume>> etc.

• The method ”Set Inspiratory Flow” is annotated by the stereotype<<inspiratoryFlow>>,

Tags are {initialValue = 1 L/min}, {finalValue =180 L/min} and {defaultValue =

100 L/min}.

Using the sequence diagram, we can represent timing constraints in a more infor-

mative way. PVS consists of timing constraints 12 ventilations per minutes, which

is further sub divided into two timing constraints as follows.

o Duration between open and closed Inspiratory valve must be d1 units (duration

constraint).

o Duration between open and closed Exhalation valve must be d2 units (duration

constraint).

Hence, one ventilation must be completed within (d1+d2) units (where (d1+d2) ≤

5s).(deadline constraint).

The timing constraints are represented by using the UML/MARTE [90] DurationOb-

servation concept. In this case, the duration observation &d has an associated Dura-

tion element named d. A stereotyped constraint ”TimedConstraint” is then applied

to the duration element d.

In addition to deadline and duration constraints, the sequence diagram also consists

of the following timing constraint.

o Delay between two breaths must be d units (delay constraint).

4.5.3 Timing diagram for use case Set Ventilation Parame-

ter

The timing diagram is a simple representation with time along with the horizontal

axis and object state or attribute value along the vertical axis. The absolute timing
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Figure 4.9: Timing diagram for use case Set Ventilation Parameter
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of events, state changes and the relative timing among the lifelines are clearer and

readable in timing diagrams. The relative timing between two messages can be

specified appropriately.

• The timing diagram (corresponding to sequence diagram (Figure 4.8)) can be

represented by using MARTE annotations (Figure 4.9).

• The time scale for this Timing diagram is represented from 0 to 35.

• Eight participants (Physician, Parameter Controller, Timer, Gas Mixer, Com-

pressor, Patient, Inspiratory Valve, Exhalation Valve) are present in the Timing

diagram.

• Some methods are Set Timer(), Set Tidal Volume(), Set Inspiratory Time(), Set

Max Pressure Limit(), Set I:E ratio(), Set Respiration Rate(), Set Inspiratory Pause(),

open valve(), close valve() and Set Inspiratory Flow() etc.

• The method ”Set Tidal Volume ()” is annotated by the stereotype<<tidalVolume>>

with tag values {initialValue = 20 ml}, {finalValue = 1000 ml}, {defaultValue =

100 ml} and {incerement = 1 ml}.

• The following different timing constraints are present in the Timing diagram.

1. Duration between open and closed Inspiratory valve must be d1 units (duration

constraint).

2. Duration between open and closed Exhalation valve must be d2 units (duration

constraint).

3. One ventilation must be completed within (d1+d2) units (deadline constraint).

4. Delay between two breaths must be d units (delay constraint).
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Figure 4.10: Class diagram for use case Set Ventilation Parameter

4.5.4 Class diagram for use case Set Ventilation Parameter

Class diagram models static structural aspects of the system.

• Figure 4.10 represents the class diagram (corresponding to the timing diagram

(Figure 4.9)) by extending the MARTE metamodel to incorporate newly user defined

data types such as Pressure and BreathsPerMinutes.

• The classes are Physician, Parameter Controller, Timer, Gas Mixer, Compressor,

Patient, Inspiratory Valve, Exhalation Valve.

• Some methods are Open Valve(), Close Valve(), Set Pressure Limit() etc.
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• Some variables are Phy id, Phy name, Pat id, Pat name etc.

• The method ”Set Tidal Volume()” is annotated by the stereotype<<tidalVolume>>

with tag values {initialValue = 20 ml}, {finalValue = 1000 ml}, {defaultValue =

100 ml} and {incerement = 1 ml}.

• The following different timing constraints are present in the Class diagram.

1. Duration between open and closed Inspiratory valve must be d1 units (duration

constraint).

2. Duration between open and closed Exhalation valve must be d2 units (duration

constraint).

3. One ventilation must be completed within (d1+d2) units (deadline constraint).

4. Delay between two breaths must be d units (delay constraint).

4.6 Comparison with related work

In [31], Douglass has used the patient ventilation system as a case study to demon-

strate how well UML can be used to represent a real-time system development prob-

lem. But, the work is limited to several important system specifications, parameters,

and time-based constraints for modeling RTSS. In [116], the authors introduce a set

of constructs for the designing of software architectures in the domain of real-time

software systems by extending UML. In comparison to that, our work suggests ad-

ditional constructs for timing constraints and develops a formal specification for

automated analysis and verification. We have extended the MARTE metamodel to

introduce new user defined data types required to model a real-time software system.
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4.7 Threats to validity of the proposed approach

We have developed a comprehensive framework to introduce new user defined data

types to model domain-specific constructs such as patient ventilation system. VSL is

used to model new user defined data types by extending UML/MARTE. At present,

only UML/MARTE and SysML profile support VSL. Also, the extension has been

done for a specific domain. This framework may need to be modified for modeling

different domain-specific constructs.

4.8 Conclusion

With the rapid growth in the size and complexity of real-time software systems and

to guarantee the development of more reliable systems, modeling plays an important

role in the software development life cycle. A minor fault in a model may lead to a

major failure of real-time lifesaving systems. UML/MARTE which is a very effective

and suitable profile for modeling design specifications of RTSS is gaining popularity

day by day. In this chapter, we have modeled real-time patient ventilation system

using UML/MARTE annotated Use case, Sequence, Timing and Class diagrams.

This framework mainly focuses on the requirements analysis and design phase of a

software development life cycle.



 



Chapter 5

Consistency in Real-Time

Software Systems

5.1 Introduction

Software life cycle model consists of different interrelated stages, which contain some

common attributes. Due to this, there is a requirement to verify inconsistencies

among these stages. For a large and complex software system, where a specification

consists of different parts and each part focuses on a specific view of the system,

consistency checking is a prerequisite for the correct execution of the system as a

whole. By checking consistency, we ensure that the properties of the different stages

of a specification are consistent with each other and they do not oppose. The same

holds for RTSS as well. In order to make our model more robust, we introduce a set

of consistency rules within the design models.

UML is a visual modeling language where the different diagrams represent different

but partly overlapping views of the system. Hence it is necessary to ensure that the

overlapping diagrams represent the same common characteristics. Otherwise, the

design becomes inconsistent. We have defined a set of consistency rules for some

70
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of the commonly used diagrams to achieve this objective. Violation of any rule

renders the design to be inconsistent. This has been achieved by proposing formal

approach to capture the consistency among different UML diagrams of the model

developed in the previous section. Formal specification of a model enhance the use

of automated tools that ease the development process from analysis through coding.

This is additionally valid for RTSS, whose behavioral viewpoints can frequently be

portrayed through UML.

In order to make our model (developed in Chapter 4) more robust, we propose a set of

consistency rules within the design model handling common attributes. Further, we

present formal approach for the automated verification of the consistency rules and

also develop simulator tool to provide the decision of consistency or inconsistency.

This chapter presents the details of the automated tools. The main functional block,

code snippets and snapshots of some of the screens have been presented here.

5.2 Consistency among UML Diagrams

UML diagrams are composed of a finite set of elements and related through the

existence of common elements. Therefore, there also exist a finite number of re-

lationships, based on which, consistency rules are formulated. Since the order of

relationship is irrelevant, both the relationships SQ-CL and CL-SQ represent the

same relation between class and sequence diagrams. The total three relations are

considered in this dissertation. However, for each relationship there are a number of

common elements. The set of 3 relationships and common elements are tabulated

in Table 5.1.

Thus from that table, it becomes evident that a total of 3 unique binary relationships

exist between the four diagrams based on the existence of one or more common

element(s) representing some common aspect of the system. For each of these, there

exists a relation for each common element, which forms the basis of definition of the
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Table 5.1: Consistency among UML diagrams

Sl. No. Related Common Description
Diagrams Elements

1 UC – SQ u, a, st, tc Use case diagram and Sequence diagram
are related to each other based on use
case, actor, stereotype and timing constraint

2 SQ -TM c, m, st, tc Sequence diagram and Timing diagram
are related to each other based on class,
method, stereotype and timing constraint

3 TM -CL c, m, st, tc Timing diagram and Class diagram
are related to each other based on class,
method, stereotype and timing constraint

consistency rules among the diagrams. Here we develop the rules for every individual

common element and getting total 14 rules.

5.2.1 Consistency Rules among UML diagrams

The following consistency rules between different UML diagrams have been devel-

oped to ensure consistency in the design.

5.2.1.1 Use case diagram and Sequence diagram consistency

The following rules have been developed for ensuring consistency between Use case

diagram and Sequence diagram.

Rule 1: Each Sequence diagram realizes a use case which should be present in the

Use case diagram.

∀u|u∈SQ⇒u∈U

Rule 2: Actors associated with a use case should occur in the corresponding Se-

quence diagram.
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∀a|a∈AU⇒a∈AS

Rule 3: All stereotypes associated with a Use Case must be present in the corre-

sponding Sequence diagram.

∀st|st∈SU⇒st∈SS

Rule 4: Different types of timing constraints (such as deadline, duration etc.)

associated with a Use Case must be present in the corresponding Sequence diagram.

∀tc|tc∈CU⇒tc∈CS

5.2.1.2 Sequence diagram and Timing diagram consistency

The following rules have been developed for ensuring consistency between Sequence

diagram and Timing diagram.

Rule 5: Any Timing diagram can be realized from only one Sequence diagram.

∀sq|sq∈TM⇒sq∈SQ

Rule 6: All lifelines in Sequence diagram must be present as participants in the

corresponding Timing diagram.

∀p|p∈PS⇒p∈PT

Rule 7: All messages associated with Sequence diagram should occur in the corre-

sponding Timing diagram.

∀m|m∈MSS⇒m∈MST

Rule 8: All methods associated with Sequence diagram must be present in the

corresponding Timing diagram.

∀m1|m1∈MS⇒m1∈MT
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Rule 9: All stereotypes associated with a Sequence diagram must be present in the

corresponding Timing diagram.

∀st|st∈SS⇒st∈ST

Rule 10: Different types of timing constraints associated with a Sequence diagram

must be present in the corresponding Timing diagram.

∀tc|tc∈CS⇒tc∈CT

5.2.1.3 Timing diagram and Class diagram consistency

The following rules have been developed for ensuring consistency between Timing

diagram and Class diagram.

Rule 11:

All participants associated with Timing diagram must be defined as classes in the

corresponding Class diagram.

∀p|p∈PT⇒p∈C

Rule 12:

All methods associated with Timing diagram should occur in the corresponding

Class diagram.

∀m|m∈MT⇒m∈MC

Rule 13:

All stereotypes appearing in Timing diagram must be present in the corresponding

Class diagram.

∀st|st∈ST⇒st∈SC
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Rule 14: Different types of timing constraints associated with the Timing diagram

must be present in the corresponding Class diagram.

∀tc|tc∈CT⇒tc∈CC

5.3 Formal specification for the automated check-

ing of inter-diagram consistency

In this dissertation, we are considering formal grammar (using CFG representation)

of four of the most commonly used UML diagrams - Use case, Sequence, Timing and

Class diagrams for the automation of consistency checking. Semantic actions in the

formal approach automatically find out inconsistencies among those UML diagrams

at the early stage of the design. This formal specification is verified by ANTLR of

version 3.1.3. For this purpose antlr.jar version 3.4 has been used which supports

ANTLRWorks version 1.2.1 editor. This jar includes all the required files to verify if

a grammar written in ANTLR specific language compiles successfully. To verify the

grammar, first it has been edited in the ANTLRWorks editor. Then it is debugged

using the debug button to compile it.

There are obvious reasons for using formal portrayal. Formal strategies are expected

to systematize and bring thoroughness at every phase of software development. This

helps us to abstain from disregarding basic issues, gives a standard intends to record

different suppositions and choices, and structures a reason for consistency among

many related exercises. By giving exact and unambiguous portrayal systems, formal

strategies encourage the understanding required to blend the different periods of

programming improvement into an effective attempt. Formal verification avoids

the blemishes that crawled into their informal reasoning. We accomplished this

objective.
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Further, formal notations of a model enhance the use of automated tools that ease

the development process from analysis through coding. This is additionally valid

for RTSS, whose behavioral viewpoints can frequently be portrayed through UML.

Consequently, it is fascinating to consider how well UML is adjusted to the real-time

context.

5.3.1 Introduction to ANTLR

ANTLR [95] is a parser generator in computer-based language recognition. Alike

LEX/YACC duo, ANTLR is a ”translator generator tool”. Language grammars for

ANTLR are defined either in ANTLR syntax or in a special Abstract Syntax Tree

(AST) syntax. The ANTLR syntax is more like YACC and Extended Backus-Naur

Form (EBNF).

From a formal language description or grammar, ANTLR generates a parser for

that language. It builds parse trees which are data structures speaking to how a

grammar matches the input. The grammar file for ANTLR contains the lexer and

parser rules. After processing the grammar file it generates two classes: lexer and

parser. Lexer runs first and splits input into pieces called tokens. Every token

speaks to pretty much important bit of information. The stream of tokens is passed

to parser which does all necessary works. It is the parser which builds abstract

syntax tree, interprets the code or translates it into some other form. Each lexer

rule describes one token:

TokenName: regular expression;

Parser rules are more complicated. The most basic version is similar as in lexer rule:

ParserRuleName: regular expression;

An approach for formal specification using ANTLR is provided in [29]. A screenshot

of ANTLRWorks is included in Figure 5.1.
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Figure 5.1: Screen shot of ANTLRWorks

Advantages of ANTLR over other lexer/parser generator

• ANTLR generates code in various programming languages such as Ada95,

Action Script, C, C#, Java, JavaScript, Objective-C, Perl, Python, Ruby, and

Standard ML. But at present Java and C# are the main targets of the current

released versions.

• ANTLR (a recursive descent parser) implements a predictive LL(k) parsing

strategy to make arbitrary look-ahead to remove conflicts in case of ambiguous

grammars.

• One of the advantages of ANTLR is that a “single consistent notation” is used

to specify lexers, parsers and tree parsers in ANTLR. This makes ANTLR

easier to use.
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• The greatest advantage of using ANTLR is that it provides a way to design

tools as per user requirements by encoding against each parse rules separately.

• After successful compilation of the formal specification, ANTLR generates a

method (for each parse rule) that can be reused during coding for tool design.

Developers can also insert their code inside the generated methods.

• There is a provision in ANTLR that one can import a grammar inside another

grammar. This can be very helpful for the design of simulator to provide the

tool support.

5.3.2 Formal representation: constructs and significance

5.3.2.1 Formal representation of Use case diagram

The parser and the lexer part of the grammar are given in Appendix A (Table A.1)

and are also explained here.

Explanation of the grammar

Formal representation starts with the following production rule:

usecase diagram:(use case dia id { //Unique id for each Use case diagram

global scope.usecase=new ArrayList(); //List for storing use cases

}) use case+ actor* uc relation* actor relation*;

This denotes that the Use case diagram consists of a unique alphanumeric id (use case dia id),

at least one use cases, zero or more actors. These actors and use cases may be related

to each others by different UML relations like association, generalization etc.

Use cases are formally represented by the following production rule:

usecase :UC id {

global scope.str=$UC id.text; //storing use case ids

global scope.uactor=new ArrayList(); //List for storing actors of each use case
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global scope.ustereo=new ArrayList(); //List for storing stereotypes of each

use case

global scope.timing constraint=new ArrayList();

//List for storing timing constraints of each use case

global scope.hm = new HashMap();

//Storing all the actors, stereotypes and timing constraints for all use cases

if(!global scope.usecase.contains($UC id.text)) //Checking uniqueness of

use cases

global scope.usecase.add($UC id.text); //Adding use cases in the list

})uc name uannotation;

Each use case must have a unique alphanumeric use case id (UC id) associated with

its name (uc name). Different lists are maintained for actors, stereotypes with tag

values and timing constraints corresponding to each UC id for consistency mapping.

UML extensibility mechanisms such as stereotypes with tag values and timing con-

straints of a Use case diagram can be represented by the following production rule:

uannotation: ustereotype* utiming cons*;

An annotation represents the following elements:

(i) zero or more stereotypes

(ii) zero or more timing constraints

Semantic actions for consistency checking of actors, stereotypes and timing con-

straints are incorporated by the following production rules.

ucactor : (uactor id {

if(!global scope.uactor.contains($actor id.text)) //Checking uniqueness of

actors

global scope.uactor.add($actor id.text); //Adding actors in list

global scope.hm.put(global scope.str+” AT”,global scope.uactor);

//Associates a use case id with its actors

})uactor name;
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utiming cons: (ucons id {

if(!global scope.timing constraint.contains($ucons id.text))

//Checking uniqueness of timing constraints

global scope.timing constraint.add($ucons id.text);

//Adding timing constraints in list

global scope.hm.put($uc id.text, global scope.timing constraint);

//Associates a use case id with its timing constraints

})ucon type ucons desc;

ucons type : ’delay’|’duration’|’deadline’;

ustereotype : (ustreo id {

if(!global scope.ustereo.contains($ustereo id.text))

//Checking uniqueness of stereotypes

global scope.ustereo.add($ustereo id.text); //Adding stereotypes in list

global scope.hm.put($uc id.text, global scope.ustereo);

//Associates a use case id with its stereotypes

}) stereotype name ’{’utag+’}’;

Semantic actions help to identify the uniqueness of each actor, timing constraint

and stereotype with tag values. Each time the non terminals uactor id, ucons id

and ustreo id are executed, values of the tokens get stored in the respective globally

defined Lists namely ”uactor”, ”timing constraint” and ”ustereo”. This information

will be used further for checking consistency in the next section.

5.3.2.2 Formal specification of Sequence diagram

This section represents consistency checking between Use case and Sequence dia-

grams with the help of information collected from the previous section. The parser

and the lexer part of the grammar are given in Appendix A (Table A.2) and are

explained here.
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It starts with the following production rule:

sequence diagram: (seq id{

global scope.seq diagram=$seq id.text; //Storing sequence diagram id

global scope.seq usecase=new ArrayList(); //Lists for storing usecase id

global scope.seq actor=new ArrayList(); //Lists for storing actors

global scope.seq stereo=new ArrayList(); //Lists for storing stereotypes

global scope.seq timing constraint= new ArrayList();}

//Lists for storing timing constraints

global scope.seq lifeline= new ArrayList(); //Lists for storing lifelines

global scope.seq par= new ArrayList(); //Lists for storing participants

global scope.seq method= new ArrayList(); //Lists for storing methods

global scope.seq message= new ArrayList(); //Lists for storing messages

(uc id {

if(global scope.usecase.contains($uc id.text))

//Try to find out if the current token exists in use case

global scope.seq usecase.add($uc id.text); //Adding use case id in list

}) life line+ seq annotation;

This denotes that the Sequence diagram consists of a unique sequence id (seq id),

unique use case id (uc id), one or more life lines and annotations. Sequence id

is a unique alpha-numeric which points to this Sequence diagram. Eight lists get

created for storing use case id, actors, stereotypes with tag values, timing constraints,

lifelines, participants, methods and messages respectively. Use case id refers to the

Use Case from which the Sequence diagram is realized. The non terminal uc id

captures use case id of a use case from which the sequence diagram is realized.

Each time this rule gets executed, an automated semantic action is performed to

check if the use case id in the Sequence diagram is already present in the respective

Use case diagram. If it is a success, the use case id is added to the array list

”seq usecase”.

Explanation of the grammar
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Finally, Rule 1 satisfies if the array list ”seq usecase” contains at least one value

which is also present in the array list ”usecase” in the Use case diagram.

A lifeline in the Sequence diagram represents either an actor or a participant. Actors

are represented by the following production rule:

actor : (actor id {

if(global scope.uactor.contains($actor id.text))

//Try to find out if the current token exists in use case

if(!global scope.seq actor.contains($actor id.text))

//Checking uniqueness of actors

global scope.seq actor.add($actor id.text); //Adding actors in list

}) actor name edge+;

The non terminal actor id captures those actors of a use case which are also present

in the corresponding Sequence diagram. Each time this rule gets executed, an auto-

mated semantic action is performed to check if the actors in the Sequence diagram

are associated with the corresponding use case. If it is a success, the actor id is

added to the array list ”seq actor”.

Finally, Rule 2 satisfies if the contents of both the array lists ”uactor” in the Use

case diagram and ”seq actor” in the Sequence diagram remain same.

Participants are represented by the following production rule:

participant : (par id {

if(!global scope.seq par.contains($par id.text))

//Checking uniqueness of participants

global scope.seq par.add($par id.text);//Adding participants in list

})par name edge+;

seq lifeline.addAll(seq actor);

seq lifeline.addAll(seq par);

Each time the non terminal lifeline is executed, globally defined Lists namely seq lifeline

stores all the actors and participants present in the sequence diagram.
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Messages are represented by the following production rule:

msg func: (msg id{

if(!global scope.seq message.contains($msg id.text))

//Checking uniqueness of messages

global scope. seq message.add($msg id.text);// Adding messages in list

})msg name;

Each time the non terminal msg id is executed, values of the tokens get stored in

the globally defined Lists namely seq message.

UML extensibility mechanisms of a Sequence diagram can be represented by the

following production rule:

seq annotation: seq stereotype* seq timing cons*;

The production rule corresponding to the seq stereotype is as following:

seq stereotype:(seq streo id {

if(global scope.ustereo.contains($seq stereo id.text))

//Try to find out if the current token exists in use case

if(!global scope.seq stereo.contains($seq stereo id.text))

//Checking uniqueness of stereotypes

global scope.seq stereo.add($seq stereo id.text);

//Adding stereotypes in list

}) stereotype name ’{’seq tag+’}’;

Each time this rule gets executed, an automated semantic action is performed to

check if the stereotype id in the Sequence diagram are associated with the corre-

sponding use case. If it is a success, the stereotype id is added to the array list

”seq stereo”.

Finally, Rule 3 satisfies if the contents of both the array lists ”seq stereo” in the

Sequence diagram and ”ustereo” in the Use case diagram remain same.

The production rule corresponding to the seq timing cons is as following:

seq timing cons: (seq cons id {
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if(global scope.timing constraint.contains($seq con id.text))

//Try to find out if the current token exists in use case

if(!global scope.seq timing constraint.contains($seq cons id.text))

//Checking uniqueness of timing constraints

global scope.seq timing constraint.add($seq cons id.text);

//Adding timing constraints in list

}) seq type seq desc;

seq type : ’delay’|’duration’|’deadline’;

Each time this rule gets executed, an automated semantic action is performed to

check if the timing constraint id in the Sequence diagram associated with the corre-

sponding use case. If it is a success, the timing constraint id is added to the array

list ”seq timing constraint”.

Finally, Rule 4 satisfies if the contents of both the array lists ”seq timing constraint”

in the Sequence diagram and ”timing constraint” in the Use case diagram remain

same.

5.3.2.3 Formal specification of Timing diagram

The parser and the lexer part of the grammar are given in Appendix A (Table (A.3))

and are explained here.

Explanation of the Grammar

Formal representation of Timing diagram starts with the following production rule:

timing diagram: (time id {

static String timing diagram=$time id.text; //Storing timing diagram id

static String t seq dia; //storing sequence diagram id

global scope.par=new ArrayList(); //List for storing participants

global scope.par method=new ArrayList(); //List for storing methods

global scope.par message=new ArrayList(); //List for storing messages
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global scope.stereo=new ArrayList(); //List for storing stereotypes

global scope.timing constraint=new ArrayList();}

//List for storing timing constraints

(seq id { if(global scope.seq diagram.equals($seq id.text))

//Checking if the current token exists in sequence diagram

global scope.t seq dia=$seq id.text;//Adding sequence diagram id in the list

})participant+ time annotation;

This denotes that the Timing diagram consists of a unique id, at least one par-

ticipant, timing parameter and annotations. Timing id is a unique alpha-numeric

which points to this Timing diagram. Two String objects and four lists get created

corresponding to each Timing diagram for storing Timing diagram id, participants,

methods corresponding to each participants, stereotypes with tag values and tim-

ing constraints respectively. Sequence diagram id refers to the sequence diagram

from which the timing diagram is realized.

Each time this rule gets executed, an automated semantic action is performed to

check if the sequence diagram id in the Timing diagram is already present in the

respective Sequence diagram. If it is a success, the sequence diagram id is added to

the list ”t seq dia”.

Finally, Rule 5 satisfies if both the lists ”t seq dia” and ”seq diagram” contain

same value.

Participants are represented by the following production rule:

participant: (par id{

if(global scope.seq lifeline.contains($par id.text))

//Checking if the current token exists in sequence diagram

if(!global scope.par.contains($par id.text))

//Checking uniqueness of participants

global scope.par.add($par id.text); //Adding participants in the list

}par name state+ event+;

The non terminal par id captures those lifelines of a sequence diagram which are also
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present as participants in the corresponding timing diagram. Each time this rule gets

executed, an automated semantic action is performed to check if the participants in

the timing diagram are associated with the respective sequence diagram. If it is a

success, the participant’s id is added to the array list ”par”.

Finally, Rule 6 satisfies if the contents of both the array lists ”seq lifeline” in the

Sequence diagram and ”par” in the Timing diagram remain same.

Messages are represented by the following production rule:

msg : (msg id {

if(global scope.seq message.contains($msg id.text))

//Checking if the current token exists in sequence diagram

if(!global scope.par message.contains($msg id.text))

//Checking uniqueness of messages

global scope.par message.add($msg id.text); //Adding messages in the list

}) mgs name;

Each time this rule gets executed, an automated semantic action is performed to

check if the messages in the timing diagram are associated with the respective

sequence diagram. If it is a success, the message id is added to the array list

”par message”.

Finally, Rule 7 satisfies if the contents of both the array lists ”seq message” in

the Sequence diagram and ”par message” in the Timing diagram remain same.

Methods are represented by the following production rule:

mthd : (mthd id {

if(global scope.seq method.contains($mthd id.text))

//Checking if the current token exists in sequence diagram

if(!global scope.par method.contains($mthd id.text))

//Checking uniqueness of methods

global scope.par method.add($mthd id.text); //Adding methods in the list
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}) mthd name;

Each time this rule gets executed, an automated semantic action is performed to

check if the methods in the timing diagram are associated with the respective

sequence diagram. If it is a success, the method id is added to the array list

”par method”.

Finally, Rule 8 satisfies if the contents of both the array lists ”seq method” in

the Sequence diagram and ”par method” in the Timing diagram remain same.

UML extensibility mechanisms of a Timing diagram can be represented in similar

way as described in the previous section.

The production rule corresponding to the stereotype is as following:

stereotype : (streo id {

if(global scope.seq stereo.contains($stereo id.text))

//Checking if the current token exists in sequence diagram

if(!global scope.stereo.contains($stereo id.text))

//Checking uniqueness of stereotypes

global scope.stereo.add($stereo id.text); //Adding stereotypes in the list

}) stereotype name ’{’tag+’}’;

Each time this rule gets executed, an automated semantic action is performed to

check if the stereotype id in the Timing diagram are associated with the correspond-

ing Sequence diagram. If it is a success, the stereotype id is added to the array list

”stereo”.

Finally, Rule 9 satisfies if the contents of both the array lists ”seq stereo” in the

Sequence diagram and ”stereo” in the Timing diagram remain same.

Timing constraints are represented by the following production rule:

timing cons: (cons id {

if(global scope.seq timing constraint.contains($cons id.text))

//Checking if the current token exists in sequence diagram

if(!global scope.timing constraint.contains($cons id.text))
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//Checking uniqueness of timing constraints

global scope.timing constraint.add($cons id.text);

//Adding timing constraints in the list

}) cons type cons desc;

Each time this rule gets executed, an automated semantic action is performed to

check if the timing constraint id in the Timing diagram associated with the corre-

sponding Sequence diagram. If it is a success, the timing constraint id is added to

the array list ”timing constraint”.

Finally, Rule 10 satisfies if the contents of both the array lists ”seq timing constraint”

in the Sequence diagram and ”timing constraint” in the Timing diagram remain

same.

A good design is such that all the lifelines, methods, messages, stereotypes with

tag values and timing constraints related to a sequence diagram are also present in

the corresponding timing diagram without losing any important information. Each

time the rules corresponding to the non terminals par id, mthd id, msg id, streo id

and cons id get executed, automated checking is performed whether the respective

lifelines, methods, messages, stereotypes with tag values and timing constraints are

already present in the sequence diagram.

5.3.2.4 Formal specification of Class diagram

This section represents consistency checking between Timing and Class diagrams

with the help of information collected from the previous section. The parser and

the lexer part of the grammar are given in Appendix section (Table A.4) and are

explained here.

Explanation of the Grammar

Formal representation of Class diagram starts with the following production rule:

class diagram: (class dia id { //Unique id for Class diagram
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global scope.class=new ArrayList(); //List for storing classes

global scope.c method=new ArrayList(); //List for storing methods

global scope.c stereo=new ArrayList(); //List for storing stereotypes

global scope.c tim con=new ArrayList(); //List for storing timing constraints

})

(td id{

if(global scope.timing diagram.equals($td id.text))

//Try to find out if the current token exists in Timing diagram

global scope.c timing diagram=$td id.text; //Adding Timing diagram id

})classes+ relation*;

This denotes that each Class diagram consists of a unique alpha-numeric Class di-

agram id, Timing diagram id, one or more classes and zero or more relations. Four

lists get created corresponding to each Class diagram for storing classes, methods,

stereotypes with tag values and timing constraints respectively. Classes are related

to each other by different UML relations like association, generalization etc. Timing

diagram id refers to the Timing diagram from which the Class diagram is realized.

Classes are represented by the following production rule:

classes: (class id {

if(global scope.par.contains($class id.text))

//Try to find out if the current token exists in Timing diagram

if(!global scope.class.contains($class id.text)) //Checking uniqueness of classes

global scope.class.add($class id.text);//Adding classes in list

})cname method class* attribute* c annotation;

Each time this rule gets executed, an automated semantic action is performed to

check if the class id in the Class diagram exists as a participant in the respective

Timing diagram. If it is a success, the class id is added to the array list ”class”.

Finally, Rule 11 satisfies if the contents of both the array lists ”par” in the

Timing diagram and ”class” in the Class diagram remain same.
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Methods are represented by the following production rule:

method class:(method id{

if(global scope.par method.contains($method id.text))

//Try to find out if the current token exists in Timing diagram

if(!global scope.c method.contains($method id.text))

//Checking uniqueness of methods

global scope.c method.add($method id.text); Adding methods in list

})Access specifier Data type method name ’(’parameter list’)’ c annotation;

Each time this rule gets executed, an automated semantic action is performed to

check if the method id in the Class diagram exists in the respective Timing diagram.

If it is a success, the method id is added to the array list ”c method”.

Finally, Rule 12 satisfies if the contents of both the array lists ”par method” in

the Timing diagram and ”c method” in the Class diagram remain same.

Annotation can be represented by the following production rule:

c annotation: c stereotype* c timing cons*;

An annotation represents the following elements:

i) zero or more stereotypes

ii) zero or more timing constraints

The production rule corresponding to the stereotype is as following:

c stereotype : (c streo id{

if(global scope.stereo.contains($c stereo id.text))

//Try to find out if the current token exists in Timing diagram

if(!global scope.c stereo.contains($c stereo id.text))

//Checking uniqueness of stereotypes

global scope.c stereo.add($c stereo id.text); Adding stereotypes in list

}) stereotype name ’{’c tag+’}’;

Each time this rule gets executed, an automated semantic action is performed to
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check if the stereotype id in the Class diagram exists in the respective Timing dia-

gram. If it is a success, the stereotype id is added to the array list ”c stereo”.

Finally, Rule 13 satisfies if the contents of both the array lists ”stereo” in the

Timing diagram and ”c stereo” in the Class diagram remain same.

The production rule corresponding to the timing constraint is as following:

c timing cons: (c cons id{

if(global scope.timing constraint.contains($c cons id.text))

//Try to find out if the current token exists in Timing diagram

if(!global scope.c tim con.contains($c cons id.text))

//Checking uniqueness of timing constraints

global scope.c tim con.add($c cons id.text); //Adding timing constraints in

list

}) c type c desc;

Each time this rule gets executed, an automated semantic action is performed to

check if the timing constraint id in the Class diagram exists in the respective Tim-

ing diagram. If it is a success, the timing constraint id is added to the array list

”c tim con”.

Finally, Rule 14 satisfies if the contents of both the array lists ”timing constraint”

in the Timing diagram and ”c tim con” in the Class diagram remain same.

A good design is such that all the classes, methods, stereotypes with tag values and

timing constraints related to a timing diagram are also present in the corresponding

Class diagram without losing any important information.

5.4 Case Study

The case study described in Chapter 4 has been adopted for applying our methodolo-

gies and substantiation of our approaches. Ventilation support is routinely needed
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for critically ill adults in intensive care units. This process can decrease the patient’s

work of breathing by unloading respiratory muscles in a synchronous manner. Physi-

cians must be knowledgeable about the function and limitations of ventilator modes,

causes of respiratory distress and dyssynchrony with the ventilator, and appropriate

management to provide high-quality patient-centered care.

The following section represents the automated consistency checking among the

mentioned UML diagrams (Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10) based

on the rules in section 5.2.1. Table 5.2, 5.3 and 5.4 represent information about the

use cases, stereotypes and timing constraints respectively.

5.5 Automated checking of inter diagram consis-

tency

Figure 5.2 represents the block diagram of the working methodology.

Most of the modeling tools (Rational Rose, Magic draw, Altova etc.) provide the

facilities to generate XMI files from UML diagrams. We have developed a simulator

tool which performs the following tasks:

(a) Parses the XMI files (developed from UML diagrams) and accordingly generates

the set of intermediate tables (such as Table 5.2, 5.3 and 5.4)

(b) Builds input strings respectively from these tables for the grammar in sections

5.3.2.1, 5.3.2.2, 5.3.2.3 and 5.3.2.4

(c) Executes the formal grammars and also the code embedded within the methods

of the formal grammars

(d) Generates various consistency verification Table (such as Table 5.5, Table 5.6)

(e) Provides decision of inter diagram consistency or inconsistency
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Table 5.2: Use case information
Use Case UID
Deliver Ventilation u01
Alarm on Critical Events u02
Informational Alarm u03
Caution Alarm u04
Critical Alarm u05
Set Ventilation Parameter u06
Monitor Breathing Circuit u07
Set Inspiratory Flow u08
Set Tidal Volume u09
Set Inspiratory Pause u10
Set I:E Ratio u11
Set Inspiratory Time u12
Set Respiration rate u13
Set maximum pressure limit u14

Table 5.3: Stereotype infor-
mation

Stereo Name STID
<<inspiratoryFlow>> st01
<<tidalVolume>> st02

<<inspiratoryPause>> st03
<<I:ERatio>> st04

<<inspiratoryTime>> st05
<<respirationRate>> st06
<<maxPressureLimit>> st07

Table 5.4: Timing constraint
information

TCID Timing cons Type
c01 Deadline
c02 Duration
c03 Delay

5.6 Results and discussion

Based on the Use case diagram in Figure 4.7 it is observed that the use case u06

includes u08, u09, u10, u11, u12, u13 and u14; hence, the annotations belong to

those use cases may be considered as part of u06.

Our application automatically develops the following valid input string for the gram-

mar presented in section 5.3.2.1.

In order to make it simple, the following input string is formed by considering only

three use cases (u01, u02 and u03).
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Figure 5.2: Block diagram of the automated verification of inter diagram con-
sistency

Figure 5.3: Code snippet for verification
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ud01 u01 Deliver Ventilation u06 Set Ventilation Parameter c01 deadline

12 ventilations per minutes u08 Set Inspiratory Flow st01 <<inspiratoryFlow>>

{initialValue (1, L/min) finalValue (180, L/min) defaultValue (100, L/min)}

a01 patient a02 physician u06 <<include>> u08.

In this dissertation, only the Sequence diagram corresponding to the use case u06

has been considered.

Similarly, a set of intermediate tables can be generated from the Sequence diagram

(Figure 4.8) with id s01 corresponding to the use case u06. The following valid input

string is developed by our application for the grammar presented in section 5.3.2.2.

u06 s01 a01 patient a02 physician E01 event1 send 1 MS01 Set Inspiratory Flow

E02 event2 recv 2 st01 <<inspiratoryFlow>> {initialValue (1, L/min) fi-

nalValue (180, L/min) defaultValue (100, L/min)} tc01 deadline (d1 +

d2 ≤ 5).

Similarly, a set of intermediate tables can be generated from the Timing diagram

(Figure 4.9). The simulator tool automatically develops the following valid input

string for the grammar presented in section 5.3.2.3. In order to make it simple, the

following input string is formed by considering only two participants pc01 and pc02.

s01 t01 pc01 Physician s01 idle e01 event1 mt01 Set Inspiratory Flow

pc01 s01 idle s02 waiting pc02 Parameter Controller s01 idle e02 event2

mt02 Open Valve pc02 s01 idle s04 Valve Opened e03 even3 mt03 Close Valve

pc02 s01 idle s05 Valve Closed 1 st01 <<inspiratoryFlow>> {initialValue

(1, L/min) finalValue (180, L/min) defaultValue (100, L/min)} tc01 dead-

line desc.

Similarly, a set of intermediate tables can be generated from the Class diagram (Fig-

ure 4.10) and the following valid input string is developed by our application for the
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Figure 5.4: Verification of consistency between Use case and Sequence diagrams

grammar presented in section 5.3.2.4.

c01 t01 pc01 Physician mt01 + void Set Inspiratory Flow () st01 <<inspiratoryFlow>>

{initialValue (1, L/min) finalValue (180, L/min) defaultValue (100, L/min)}

pc02 Parameter Controller mt02 + void Open Valve() mt03 + void Close Valve()

tc01 deadline Duration between opened and closed valve must be less than

d units Physician 1..2 Parameter Controller c01 descr association.

5.6.1 Consistency of Use case and Sequence diagrams

After the input string is given to the ANTLR, the system will automatically store

the data values in different lists as shown in Figure 5.4.

Verification of Rule 1:

According to Rule 1, each Sequence diagram realizes a use case, which should be

present in the Use case diagram.
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From Figure 5.4, we observe that the value of the arraylist ”seq usecase” already

present in the arraylist ”usecase”.

Hence, we can conclude that Rule 1 is satisfied.

Verification of Rule 2:

According to Rule 2, actors associated with a use case should occur in the corre-

sponding Sequence diagram.

From Figure 5.4, we observe that the value of both the arraylists ”uactor” and

”seq actor” remain same.

After verifying the grammar successfully, ANTLR generates method for each parse

rule. In order to verify the inter diagram consistency rules, simulator is used to

embed the code within the method actor (generated from parse rule actor of the

grammar introduced in section 5.3.2.2). Figure 5.3 shows the code snippet of the

method actor for the verification of inter diagram consistency rules.

Verification of Rule 3:

According to Rule 3, each stereotype associated with a use case must be present in

the corresponding Sequence diagram.

From Figure 5.4, we observe that the value of both the arraylists ”ustereo” and

”seq stereo” remain same.

Verification of Rule 4:

According to Rule 4, different timing constraints associated with a use case must be

present in the corresponding Sequence diagram.
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Figure 5.5: Panel for showing consistency between Use case and Sequence dia-
grams

From Figure 5.4, we observe that the value of both the arraylists ”timing constraint”

and ”seq timing constraint” remain same.

Some sample screen snapshots have been provided in Fig 5.5.

5.6.2 Consistency of Sequence and Timing diagrams

After the input string is given to the ANTLR, the system will automatically store

the data values in different lists as shown in Table 5.5.

Verification of Rule 5:

According to Rule 5, any Timing diagram can be realized from only one Sequence

diagram.
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Table 5.5: Verification of consistency between Sequence and Timing diagrams
Property Sequence Diagram Timing Diagram Verification

Array List Name Array List Value Array List Name Array List Value
Sequence diagram id Sequence diagram s01 t seq dia s01 Rule 5 verified
Participant seq lifeline pc01, pc02 par pc01, pc02 Rule 6 verified
Message seq message ms01, ms02, ms03 par message ms01, ms02, ms03 Rule 7 verified
Method seq method mt01, mt02, mt03 par method mt01, mt02, mt03 Rule 8 verified
Stereotype seq stereo st01 stereo st01 Rule 9 verified
Timing constraint seq timing constraint tc01 timing constraint tc01 Rule 10 verified

From Table 5.5, we observe that the value of the arraylist ”t seq dia” already present

in the arraylist ”sequence diagram”.

Hence, we can conclude that Rule 5 is satisfied.

Verification of Rule 6:

According to Rule 6, each lifeline in the Sequence diagram should be mapped to one

participant in the corresponding Timing diagram.

Now, from Table 5.5, we observe that the value of both the array lists ”par” and

”seq lifeline” remain same.

Hence, we can infer that the lifelines in the Sequence diagram are consistent with

the participants in the corresponding Timing diagram.

Verification of Rule 7:

According to Rule 7, each message in the Sequence diagram must be present in the

corresponding Timing diagram.

Now, from Table 5.5, we observe that the value of both the array lists ”par message”

and ”seq message” remain same.

Hence, we can infer that the messages in the Sequence diagram are consistent with

the messages in the corresponding Timing diagram.
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According to Rule 8, each method in the Sequence diagram must be present in the

corresponding Timing diagram.

Now, from Table 5.5, we observe that the value of both the array lists ”par method”

and ”seq method” remain same.

Hence, we can infer that the methods in the Sequence diagram are consistent with

the methods in the corresponding Timing diagram.

Verification of Rule 9:

According to Rule 9, each stereotype in the Sequence diagram must be present in

the corresponding Timing diagram.

From Table 5.5, we observe the following:

• number of elements in the array lists ”seq stereo” and ”stereo” are equal which

is 1

• both the array lists contain the same set of strings

We conclude that the stereotypes in the Sequence diagram are consistent with the

stereotypes in the corresponding Timing diagram.

Verification of Rule 10:

According to Rule 10, each timing constraint in the Sequence diagram must be

present in the corresponding Timing diagram.

From Table 5.5, we observe the following:

• number of elements in the array lists ”timing constraint” and ”seq timing constraint”

are equal which is 1

• both the array lists contain the same set of strings

Verification of Rule 8:
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Table 5.6: Verification of consistency between Timing and Class diagrams
Property Timing Diagram Class Diagram Verification

Array List Name Array List Value Array List Name Array List Value
Participant par pc01, pc02 class pc01, pc02 Rule 11 verified
Method par method mt01, mt02, mt03 c method mt01, mt02, mt03 Rule 12 verified
Stereotype stereo st01 c stereo st01 Rule 13 verified
Timing constraint timing constraint tc01 c tim con tc01 Rule 14 verified

We conclude that the timing constraints in the Sequence diagram are consistent

with the timing constraints in the corresponding Timing diagram.

5.6.3 Consistency of Timing and Class diagrams

After the input string is given to the ANTLR, the system will automatically store

the data values in different lists as shown in Table 5.6.

Verification of Rule 11:

According to Rule 11, each participant in the Timing diagram should be mapped to

one class in the Class diagram.

Now, from Table 5.6, we observe the following:

• number of elements in the array lists ”par” and ”class” are equal which is 2

• both the array lists contain the same set of strings

Hence, we can infer that the participants in the Timing diagram are consistent with

the classes in the corresponding Class diagram.

Verification of Rule 12:

According to Rule 12, each method in the Timing diagram must be present in the

Class diagram.
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Now, from Table 5.6, we observe the following:

• number of elements in the array lists ”par method” and ”c method” are equal

which is 3

• both the array lists contain same set of strings

Verification of Rule 13:

According to Rule 13, each stereotype in the Timing diagram must be present in

the Class diagram.

From Table 5.6, we observe the following:

• number of elements in the array lists ”stereo” and ”c stereo” are equal which

is 1

• both the array lists contain the same set of strings

We conclude that the stereotypes in the Timing diagram are consistent with the

stereotypes in the corresponding Class diagram.

Verification of Rule 14:

According to Rule 14, each timing constraint in the Timing diagram must be present

in the Class diagram.

From Table 5.6, we observe the following:

• number of elements in the array lists ”timing constraint” and ”c tim con” are

equal which is 1

• both the array lists contain the same set of strings

We conclude that the timing constraints in the Timing diagram are consistent with

the timing constraints in the corresponding Class diagram.
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5.7 Comparison with related work

The existing model checking tools (Spin, CADP, Alloy, FDR2 etc.) [42] require

input specifications to be provided in some specific manner, like Promela for Spin,

first order logic for Alloy, LOTOS-NT for CADP and CSPm for FDR2 etc. In

comparison to that, our framework minimizes this extra overhead. Given a UML

model, the framework automatically verifies the consistency rules. In [24], Jinho

et al. proposed a systematic approach for checking timing consistency rules among

three UML diagrams - state machine, sequence, and timing diagrams using two case

studies with MARTE annotations. However, their approach lacks formal verifica-

tion. In contrast with that, our work presented in this Chapter formally verifies the

consistency between use case, sequence, timing and class diagrams.

5.8 Threats to validity of the proposed approach

We have introduced consistency between Use case, Sequence, Timing and Class

diagram. Further, a simulator has been developed based on the formal specification

to automatically detect inconsistencies at the early stage of design. Most of the

modeling tools (Rational Rose, Magic draw, Altova etc.) provide the facilities to

generate XMI files from UML diagrams. Different modeling tools generate different

formats of XMI files. In this research work, we have used XMI file generate from

Magic draw UML. Our simulator tool parses this specific XMI file and builds input

strings respectively for the proposed grammars. This simulator tool may need to be

modified to handle the XMI file developed from other modeling tools.
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5.9 Conclusion

This Chapter develops a framework for consistency checking of the model for real-

time patient ventilation system. A software development life cycle consists of several

phases such as feasibility study, requirements analysis, design etc. This framework

mainly focuses on the requirements analysis and design phase of a software devel-

opment life cycle. In this chapter, we have defined a set of consistency rules that

should be maintained to ensure that the different UML models capturing different

yet related aspects of the system are consistent within themselves. UML/MARTE

annotated Use case, Sequence, Timing and Class diagrams have been considered and

we have first established the relationships among them along with the common ele-

ment of relationship. Based on this we have defined a Weighted design graph which

visually depicts the consistency conditions. Further, formal representation with se-

mantic actions is also developed for the automated checking of consistency rules

among these diagrams. A simulator is developed based on the formal specification

to automatically detect inconsistencies at the early stage of design.



 



Chapter 6

Verification of Real-Time Software

Systems

6.1 Introduction

Requirements engineering is an approach by which requirements for a software are

inspired, reported, dissected and overseen all through the software development

life cycle, including operations of tracing requirements [99]. Traceability helps to

measure and assess each requirements of a system to make it functional as per the

client’s needs. This is one of the most important processes which must be executed

very carefully. With the help of traceability, we can prove that all requirements

have been implemented correctly. Requirements can be validated into design phase

if they have been traced to design elements.

As Real-Time Systems depend on events under some timing constraints, the trace-

ability of RTSS must be done completely. In this dissertation, we mainly concentrate

on the traceability of real-time requirements with an emphasis on timing constraints.

Requirements tracing helps to verify if all software requirements have been evolved to

105
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design, code and test cases. This chapter aims at proposing a metric based require-

ment traceability framework for RTSS. Metrics, as indicators, provide a quantitative

measurement of RTSS and focus on problem areas in the systems. The more the

degree of the traceability completeness, the less will be the reduced defect rate and

required efforts and also enhances the quality for a developed software [74, 103].

In this chapter, we have developed a new metrics suite named Requirement Cov-

erage Metrics for Real-Time (RCM-RT) which traces the timing constraints from

requirements into use cases, use cases into sequence diagrams, sequence diagrams

into timing diagrams and timing diagrams into class diagrams. RCM-RT measures

the extent to which requirements have been realized and implemented subsequently

in the analysis and design phases. The quantitative assessment also helps in judging

the quality of the system with respect to its realization of requirements. Further, we

have presented formal specification language to capture the requirements traceability

of timing constraints among different UML diagrams. A simulator tool is developed

that automatically generates the traceability metrics for timing constraints from a

given set of requirements and UML design models.

Formal methods are intended to systematize and bring thoroughness at every phase

of software development. This helps us to avoid overlooking critical issues, gives

a standard intends to record different suppositions and choices and forms a basis

for consistency among many related activities. Our approach will facilitate software

designers, project managers and architects to automatically generate the traceability

metrics of real-time requirements at the early stage of design.

6.2 Requirements Traceability

RCM-RT will be useful in requirement management as well as project management

of real-time software projects. It helps to detect missing timing requirements.

The developed metrics suite (RCM-RT) comprises of the following sets of metrics :



Chapter 6. Verification of Real-Time Software Systems 107

• RUC-RT (Requirements - Use Case coverage for Real-Time),

• USC-RT (Use Case diagram - Sequence diagram coverage for Real-Time),

• STC-RT (Sequence diagram - Timing diagram coverage for Real-Time),

• TCC-RT (Timing diagram - Class diagram coverage for Real-Time) and

• RCF-RT (Requirement Coverage Factor for Real-Time) that measures the av-

erage value of all the traceability metrics for a specific requirement.

The details of RCM-RT are explained in the following section.

RCM-RT

UR: Set of unique use cases in use case diagram with respect to a specific requirement.

UR={ui|ui∈U, U∈UC }

TCU : Set of unique timing constraints associated with a use case.

TCU={tci|tci∈TC}....................(1)

SU : Sequence diagram corresponding to a particular use case ui, ui in UR (We

consider one to one between use case and sequence diagram).

SU={sqi|sqi∈SQ}

TCS: Set of timing constraints associated with the sequence diagram.

TCS = {tci|tci∈TC }..............(2)

An empty set TCS signifies that no timing constraints present in the sequence dia-

gram.

TCU−S : Set of timing constraints traced from the use case to the sequence diagram.

TCU−S = {tci|tci∈TCS and tci∈TCU}...........(3)
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TS: Timing diagram corresponding to the sequence diagram sqi, sqi ∈ SU .

TCT : Set of timing constraints defined in the timing diagram TS.

TCT : = {tcj|tcj∈TC}............(4)

An empty set TCT signifies that no timing constraints have been defined in the

timing diagram TS.

TCS−T : Set of timing constraints traced from the sequence diagram sqi, sqi ∈ SU

to the timing diagram TS.

TCS−T = {tci|tci∈TCS and tci∈TCT}............(5)

CT : The class diagram corresponding to the timing diagram TS.

TCC : Set of timing constraints defined in the class diagram CT .

TCC ={tcj|tcj∈TC}

An empty set TCC signifies that no timing constraints have been defined in the class

diagram CT .

TCT−C : Set of timing constraints traced from the timing diagram TS to the class

diagram CT .

TCT−C = {tci|tci∈TCC and tci∈TCT}...........(6)

1. RUC-RT: This signifies whether there exists at least one use case for each

requirement. In that case, the value of RUC-RT will be 1 otherwise 0.

This calculates trace of requirements into use cases.

2. USC-RT: It is the ratio of the number of timing constraints traced from a

use case to its corresponding sequence diagram, to the total number of timing

constraints present in that use case.

USC-RT = N(TCU−S)/N(TCU) ..................(7)
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This calculates the trace of timing constraints from use cases to sequence

diagrams.

3. STC-RT: It is the ratio of the number of timing constraints traced from a

sequence diagram to the respective timing diagram, to the total number of

timing constraints present in that sequence diagram.

STC-RT = N(TCS−T )/N(TCS).................(8)

This calculates the trace of timing constraints of sequence diagrams into timing

diagrams.

4. TCC-RT: It is the ratio of the number of timing constraints traced from a

timing diagram to its corresponding class diagram, to the total number of

timing constraints present in that timing diagram.

TCC-RT = N(TCT−C)/N(TCT ))................(9)

This calculates the trace of timing constraints of timing diagrams into class

diagrams.

5. RCF-RT: It is defined as the average value of RUC-RT, USC-RT, STC-RT and

TCC-RT.

RCF-RT = RUC-RT + USC-RT + STC-RT + TCC-RT.............(10)

4

The value of RCF-RT depends upon the requirement coverage in each of the

phases of its implementation in use case, sequence, timing and class diagram.

Thus 0 ≤ RCF-RT ≤ 1.

RCM-RT can be defined as follows.

RCM-RT=Sum of RCF-RT for all requirements

Total number of requirements
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=
∑n

Rid=1RCF −RT

N(R)

where Rid = Requirement id.

Thus RCM-RT gives a quantitative measurement of extent of requirement coverage

in design.

6.3 Formal specification for the automatic gener-

ation of traceability metrics

In this research work, we consider formal grammar of four UML diagrams - Use

case, Sequence, Timing and Class diagrams for the automatic generation of trace-

ability metrics. Semantic actions in the formal approach automatically generates

traceability metrics at the early stage of the design. For the implementation of the

traceability metrics from these UML diagrams, we choose ANTLR [95] which is a

translator generator tool whose detailed specification is already defined in Chapter

5.

6.3.1 Formal specification to calculate N(TCU) from Use

case diagram

Partial snapshot of the grammar for the automated generation of N(TCU) is shown

in Table 6.1.



Chapter 6. Verification of Real-Time Software Systems 111

Table 6.1: Formal grammar for the automated generation of N(TCU ) from Use
case diagram

grammar use dia parser;
options{language = Java; output = AST; backtrack=true;}
scope global{
static ArrayList timing constraint; //TCU in rule(1)
static HashMap hm; //Storing timing constraints for all use cases
static HashMap hm ruc =new HashMap();
/*Storing requirement corresponding to each use case*/
static int timing cons cnt; //N(TCU)
usecase diagram: use case+ actor* uc relation* actor relation*;........................(a)
use case: (Req id uc id {
global scope.timing constraint= new ArrayList();
//Storing timing constraints of each use case

global scope.hm = new HashMap();
global scope.hm ruc.put($Req id.text,$uc id.text);
}) uc name utiming cons*;..............................(b)
utiming cons:(ucons id{//Semantic actions.......(c)
if(!global scope.timing constraint.contains
($ucons id.text)) {//Checking uniqueness of TCU

global scope.timing constraint.add ($ucons id.text);
//Adding timing constraints in TCU

global scope.timing cons cnt++; //N(TCU)=N(TCU)+1
global scope.hm.put($uc id.text,
global scope.timing constraint);
................

Formal grammar starts with the production rule usecase diagram (a) which consists

of one or more use cases, zero or more actors, zero or more relations between use

cases and zero or more relations between actors.

Each use case (rule use case (b)) must contain unique alphanumeric requirement

id (Req id), use case id (uc id) associated with a name (uc name) and timing con-

straints (utiming cons). Each timing constraint (rule (c)) is represented by the

unique id (ucons id) which is checked semantically. Each time the non-terminal

ucons id is executed, the value of the token gets stored in the globally defined

Explanation of the grammar
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ArrayList timing constraint and subsequently the count of timing constraint tim-

ing cons cnt gets incremented by one.

Hashmap hm ruc and hm record every <requirement, use case> and <use case,

timing constraint> pair respectively. On successful execution, the value of N(TCU)

will show the actual number of timing constraints present in the diagram.

6.3.2 Automated calculation of N(TCS) and N(TCU−S) from

Sequence diagram

Partial snapshot of the grammar is shown in Table 6.2.

Explanation of the grammar

The grammar starts with the production rule sequence diagram (d) which consists

of a unique use case id (uc id), unique sequence id (seq id), one or more lifelines and

zero or more timing constraints(seq timing cons as in rule (e)). Use case id refers to

the use case from which the Sequence diagram is realized. Sequence id is a unique

alpha-numeric which refers to this Sequence diagram.

The non-terminal seq cons id is responsible for tracing the flow of timing constraints

from a use case to the respective Sequence diagram. Each time this rule gets exe-

cuted, an automated checking is performed against the timing constraints already

present in the use case. Subsequently, the count of timing constraint use timing constraint cnt

gets incremented by one. This counter keeps track of the number of timing con-

straints present in both the use case and the corresponding Sequence diagram.

If the final value of N(TCU) is equal to the value of N(TCU−S) we can infer that

all the timing constraints in the use case have been traced in the corresponding

Sequence diagram.
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Table 6.2: Formal grammar for the automated generation of N(TCS) and
N(TCU−S) from Sequence diagram

grammar seq dia;
options{ language = Java; output=AST; backtrack=true;
tokenVocab = use dia parser;}
scope global{
static ArrayList seq timing constraint; //TCS in rule (2)
static int use timing constraint cnt; //N(TCU−S)
static int seq timing constraint cnt; } //N(TCS)
sequence diagram:uc id (seq id{ //semantic action
global scope.seq timing constraint=new ArrayList();
//Storing timing constraints of sequence diagram
})life line+ seq timing cons* .....................(d);
.....................
seq timing cons: (seq cons id{ //Semantic actions
if(global scope.timing constraint.contains ($seq cons id.text))
//Try to find out if the current token exists in TCU

global scope.use timing constraint cnt++; //N(TCU−S)= N(TCU−S)+1
if(!global scope.seq timing constraint.contains ($seq con id.text)){
//Checking uniqueness in TCS

global scope.seq timing constraint.add ($seq con id.text);
//Adding timing constraints in TCS

global scope.seq timing constraint cnt++; //N(TCS)=N(TCS)+1; ......................(e)
....................

6.3.3 Automated calculation of N(TCT) and N(TCS−T) from

Timing diagram

Partial snapshot of the grammar is shown in Table 6.3.

Explanation of the Grammar

The grammar starts with the production rule timing diagram (f) which consists of

a unique sequence id (seq id), unique timing id (time id), one or more participants,

timing parameter (time) and zero or more timing constraints(t cons as in rule (g)).
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Table 6.3: Formal grammar for the automated generation of N(TCT ) and
N(TCS−T ) from Timing diagram

grammar timing;
options{ language = Java; output=AST; backtrack=true; tokenVocab = seq dia;}
scope global{
static ArrayList t timing constraint; //TCT in rule (2)
static int s timing constraint cnt; //N(TCS−T )
static int t timing constraint cnt;} //N(TCT )
import seq dia;
timing diagram: seq id(time id{
global scope.t timing constraint= new ArrayList();
}) participant+ time t cons*;............(f)
...........
t cons:(t cons id { //Semantic actions
if(global scope.seq timing constraint.contains ($t cons id.text))
//Checking existence of current token in TCS

global scope.s timing constraint cnt++; //N(TCS−T )=N(TCS−T )+1
if(!global scope.t timing constraint.contains
($t cons id.text)){ //Checking uniqueness in TCT

global scope.t timing constraint.add($t cons id.text);
//Adding timing constraints in TCT

global scope.t timing constraint cnt++; //N(TCT )=N(TCT ) +1
}) cons type cons desc;............(g)
.............

Sequence id refers to the Sequence diagram from which the Timing diagram is real-

ized. Timing id is a unique alpha-numeric which refers to this Timing diagram.

The non-terminal t cons id is responsible for tracing the flow of timing constraints

from a Sequence diagram to the respective Timing diagram. Each time this rule gets

executed, an automated checking is performed against the timing constraints already

present in the Sequence diagram. Subsequently, the count of timing constraint

s timing constraint cnt gets incremented by one. This counter keeps track of the

number of timing constraints present in both the Sequence diagram and in the

corresponding Timing diagram.

If the final value of N(TCS) is equal to the value of N(TCS−T ) we can infer that all the
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timing constraints in the Sequence diagram have been traced in the corresponding

Timing diagram.

6.3.4 Automated calculation of N(TCT−C) from Class dia-

gram

Partial snapshot of the grammar is shown in Table 6.4.

Table 6.4: Formal grammar for the automated generation of N(TCT−C) from
Class diagram

grammar class dia;
scope global{
options{ language = Java; output=AST; backtrack=true; tokenVocab = timing;}
static int time timing constraint cnt; } //N(TCT−C)
import timing;
class diagram : classes+ relation*;
classes : t par id cname method class* attribute* c timing cons *............(h);
.............
c timing cons: (c con id
{ //Semantic actions
if(global scope.t timing constraint.contains($c con id.text))
/*Checking for existence of current token in (TCT−C)*/
global scope.time timing constraint cnt++;
//N(TCT−C)=N(TCT−C)+1............(i)
.............

The grammar automatically calculates the traces of timing constraints from the

Timing diagram to the corresponding Class diagram using the global counter

time timing constraint cnt following the same process described in the previous sec-

tion.
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6.4 Case Study

We have considered the same case study (Patient Ventilation System) as mentioned

in Chapter 4. The ventilator alarms if something untoward occurs during the surgical

session. Alarming for most hazards is an appropriate safety measure for a ventilator.

For safety hazards with short fault tolerance times, automatic intervention of the

machine must be performed. For example, over-inflation of the lungs is a serious

hazard with a fault tolerance time of about 250 ms. In this case, the ventilator will

not rely on the user to correct a fault but instead will provide a secondary pressure

relief valve (done mechanically) to protect the patient’s lungs.

A specific form of temporal control is time determinism. Time determinism defines

that an external observer can predict the points in time, at which an application

produces output (can also be called time/-value determinism). This means that the

observer can treat the system as a black box and predict correct values without

knowing the application’s internals. The points in time specifying the output times

can be given by a time range or by exactly one point in time. The smaller the

range, the more precise the temporal control must be. For example, in the patient

ventilation system, it is easier to predict the time range of the ventilation impulse

to be [0, 5) than to predict a single number such as the impulse will occur exactly

every 4.7s ± 0ns.

Alarms are classified into three groups which are represented in Table 6.5:

• Informational alarms present no risk to the patient

• Caution/ warning alarms show risk (severe injury or death) within several minutes

if no action is taken

• Critical alarms indicate immediate risk if no corrective action is taken
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Table 6.5: Different types of alarms
Name Priority Displayed Color Description
Informational alarm lowest green displayed for a period no

more than two minutes
Caution alarm medium yellow displayed until acknowledged

by the user within 30 sec
Critical alarm highest Red re-announced after being

dismissed out if the originating
condition still exists

6.4.1 Sequence diagram for use case Alarm on Critical Events

• Figure 6.1 represents the sequence diagram corresponding to the use case Alarm

on Critical Events of Use case diagram shown in Figure 4.7.

• The following timing constraints are represented using MARTE annotation.

o In Informational Alarm, duration between messages ”Display message Green”

and ”Remove message” must be d1 units (duration constraint).

o In Caution Alarm, the message ”Ack” must be sent within d2 units (deadline

constraint).

o Re-announcing Critical alarms after being dismissed out if the originating con-

dition still exists (delay constraint).

6.4.2 Timing diagram for use case Alarm on Critical Events

• The timing diagram (corresponding to the sequence diagram (Figure 6.1)) can be

represented by using MARTE annotations (Figure 6.2).

The following different timing constraints are present in the Timing diagram.

o Duration between messages ”Display Message” and ”Remove Message” must be

d1 units (duration constraint).
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Figure 6.1: Sequence diagram for use case Alarm on Critical Events
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Figure 6.2: Timing diagram for use case Alarm on Critical Events

o Message ”Ack” must be sent within d2 units (deadline constraint).

o Critical alarm reannounces after d3 time units if the critical condition exists

(delay constraint).

6.4.3 Class diagram for use case Alarm on Critical Events

• Figure 6.3 represents the class diagram (corresponding to the timing diagram

(Figure 6.2))

• The following different timing constraints are present in the Class diagram.

o Display message for d1 units (duration constraint).

o Message ”Ack” must be sent within d2 units (deadline constraint).
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Figure 6.3: Class diagram for use case Alarm on Critical Events

o Critical alarm reannounces after d3 time units if the critical condition exists

(delay constraint).

6.5 Automated generation of traceability metrics

Figure 6.4 represents the block diagram of the working methodology.

Most of the modeling tools (Rational Rose, Magic draw, Altova etc.) provide the

facilities to generate XMI files from UML diagrams. The developed application per-

forms the following tasks:

i) Parses the XMI file and builds input strings respectively for the grammars devel-

oped in sections 6.3.1, 6.3.2, 6.3.3, 6.3.4

ii) Executes the formal grammars and also the code embedded within the methods
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Figure 6.4: Block diagram of the automated generation of traceability metrics

of the formal grammars

iii) Produces traceability metrics

6.5.1 Results and discussion

This section represents the automated traceability measurement between the men-

tioned UML diagrams (Figure 4.7, Figure 6.1, Figure 6.2 and Figure 6.3) based on

the developed metrics.

6.5.2 Calculation of RUC-RT

Our application automatically develops the following valid input string for the gram-

mar presented in section 6.3.1. As use case u02 includes u03, u04 and u05; the timing

constraints of these three use cases may be considered as part of u02.

R01 u01 Deliver Ventilation R02 u02 Alarm on Critical Events c02 dura-

tion descr c01 deadline descr c03 delay desc R03 u03 Informational Alarm
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Figure 6.5: Code snippet for RUC Calculation

Figure 6.6: Output of simulator for RUC-RT Calculation
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R04 u04 Caution Alarm R05 u05 Critical Alarm R06 u06 Set Ventilation Parameter

u07 Monitor Breathing Circuit R08 u08 Set Inspiratory Flow R09 u09

Set Tidal Volume R10 u10 Set Inspiratory Pause R11 u11 Set I:E Ratio

R12 u12 Set Inspiratory Time R13 u13 Set Respiration Rate R14 u14

Set maximum pressure limit a01 Patient a02 Physician.

After the input string is given to the ANTLR, the system will automatically store

the data values in different data structures.

ArrayList timing constraint (TCU) contains c01, c02 and c03 corresponding to use

case u02 and static variable timing cons cnt (N(TCU)) contains value 3.

Hashmap hm ruc stores the following key value pairs:

<R01,u01>, <R02,u02>, <R03,u03>, <R04,u04>, <R05,u05>, <R06,u06>, <R07,u07>,

<R08,u08>, <R09,u09>, <R10,u10>, <R11,u11>, <R12,u12>, <R13,u13> and

<R14,None>. Requirement R14 is not implemented in the use case diagram.

Figure 6.5 shows the code snippet of the method use case (generated from rule

b of the grammar in section 6.3.1) for the calculation of RUC-RT. Based on the

study, the requirements document listed in Table 4.1, which is generated manually.

ArrayList req maintains all the requirement ids from that table. Each element of req

is compared with hashmap hm ruc for the calculation of RUC-RT. This methodology

automatically generates the output as shown in Figure 6.6, which shows the mapping

of requirement id to use case id, timing constraints and calculation of RUC-RT.

6.5.3 Calculation of USC-RT

We consider the use case u02 for the discussion of our work. The application creates

the following input string for the grammar in section 6.3.2.

u02 s01 p01 Physician e01 event send 1 ms01 Set Timer e01 event recv

2 c02 duration (3 - 2 ≤ 3) c01 deadline (2 - 1 ≤ 0) c03 delay (2 - 1 ≤ 0).
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s01 is the sequence id corresponding to u02.

After the input string is given to ANTLR,

ArrayList seq timing constraint (TCS) contains c01, c02 and c03. Variables use timing constraint cnt

(N(TCU−S)) and seq timing constraint cnt (N(TCS)) both contain the value 3.

Applying rule (7), we get USC-RT=3/3=1.

This methodology automatically generates Table 6.6 which represents the traceabil-

ity measurement of use case into sequence diagram.

6.5.4 Calculation of STC-RT

The application automatically creates the following input string for the grammar in

section 6.3.3.

s01 t01 p01 physician st01 Acknowledging e01 event ms01 Ack p01 st01

Acknowledging st02 removing 1 c02 duration desc1 c01 deadline desc2.

After the input string is given to the ANTLR,

ArrayList t timing constraint (TCT ) contains c01 and c02. Variables t timing constraint cnt

(N(TCT )) and s timing constraint cnt (N(TCS−T )) contain the value 3 and 2 (i.e.,

missing one timing constraint) respectively.

Applying rule (8), we get STC-RT= 2/3=0.67.

Table 6.7 is developed automatically from the framework which helps to detect

missing requirements (R05) easily.

6.5.5 Calculation of TCC-RT

Application automatically creates the following input string for the grammar in

section 6.3.4.
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Table 6.6: Calculation of USC-RT
RID UID N(TCU) N(TCU−S) USC-RT
R02 u02 3 3 1
R03 u03 1 1 1
R04 u04 1 1 1
R05 u05 1 1 1

Table 6.7: Calculation of STC-RT
RID N(TCS) N(TCS−T ) STC-RT
R02 3 2 0.67
R03 1 1 1
R04 1 1 1
R05 0 0 0

Table 6.8: Calculation of TCC-RT
RID N(TCT ) N(TCT−C) TCC-RT
R02 2 2 1
R03 1 1 1
R04 1 1 1

p01 Physician M01 + void Check Patient () M02 + void Send Ack () - int

Phy id - String Phy name - String Phy address c01 duration desc1 p02

Monitor M03 + void Display messager( ) c02 deadline desc2 c03 delay

des3 Monitor 1..2 physician id descr3 association.

After the input string is given to the ANTLR, the system will automatically store

the data values like static variable time timing constraint cnt (N(TCT−C)) which

contains value 2. N((TCT )) value is available from the grammar of timing grammar.

Applying rule (9), TCC-RT= 2/2 =1

Similarly, our framework ensures the automated generation of TCC-RT (Table 6.8).

Finally, from Figure 6.6, Table 6.6, Table 6.7 and Table 6.8 we measure the RCF-RT

value for requirements R02, R03, R04 and R05 as shown in Table 6.9.

RCM-RT = (0.25+0.92+1+1+0.5+0.25+0.25+0.25+0.25+0.25+0.25+0.25+0.25)/14

= 0.40
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Table 6.9: Calculation of RCF-RT
RID RUC-RT USC-RT STC-RT TCC-RT RCF-RT
R01 1 0 0 0 0.25
R02 1 1 0.67 1 0.92
R03 1 1 1 1 1
R04 1 1 1 1 1
R05 1 1 0 0 0.5
R06 1 0 0 0 0.25
R07 1 0 0 0 0.25
R08 1 0 0 0 0.25
R09 1 0 0 0 0.25
R10 1 0 0 0 0.25
R11 1 0 0 0 0.25
R12 1 0 0 0 0.25
R13 1 0 0 0 0.25
R14 0 0 0 0 0

This means that 40% of the requirements have been implemented in the design

phase. Our framework ensures automated generation of traceability metrics as well

as detection of missing requirements at the early stage of design.

6.6 Comparison with related work

Authors in [105] combine the application of SysML with MARTE stereotypes to

specify the important elements of individual software requirements for RTSS. In any

case, the work does not verify the traceability between requirement and design phase

of the software development life cycle and furthermore does not provide any formal

specification to check the non-functional requirements in the outline. The funda-

mental commitment of [58] is to develop a set of metrics based on use case, sequence

and class diagrams. However, authors have worked on non-real-time systems, and

hence scope excludes any real-time requirements such as timing constraints. In com-

parison to those research works, this Chapter further enhances the concept of RTSS

and shows how requirements related to timing constraints are traced automatically
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from the use case diagram through the sequence diagram to the timing diagram and

finally to the class diagram.

6.7 Threats to validity of the proposed approach

We have developed a simulator tool that automatically generates the traceability

metrics for timing constraints from a given set of requirements and UML design

models. Most of the modeling tools (Rational Rose, Magic draw, Altova etc.) pro-

vide the facilities to generate XMI files from UML diagrams. Different modeling

tools generate different formats of XMI files. In this research work, we have used

XMI file generate from Magic draw UML. Our simulator tool parses this specific

XMI file and builds input strings respectively for the proposed grammars. This sim-

ulator tool may need to be modified to handle the XMI file developed from other

modelling tools.

6.8 Conclusion

UML is frequently applied to contribute to deal with the multifaceted nature of

RTSS advancement. The ever-increasing design complexity of that system is always

squeezing the interest for more abstract design levels and conceivable techniques

for formal verification which has become important to ensure the development of

more reliable systems. This chapter presents a comprehensive framework for en-

suring traceability of timing constraints from the requirements analysis phase into

the design phase. This framework automatically generates the trace metrics based

on UML diagrams, demonstrates the degree of coverage of timing requirements and

finally detects any missing requirements.



 



Chapter 7

Schedulability Analysis of

Real-Time Software Systems

7.1 Introduction

The real-world is inherently concurrent, and a real-time system which is linked to

the behavior of the real world must behave in a concurrent manner. Because of this

concurrency, there may be contention for resources, requiring scheduling (i.e. how

tasks are granted access to a given resource). In real-time systems, the scheduling

of tasks with hard deadlines has been an important area of research.

The main contribution of this chapter is to model, analyze and verify the existing

resource access control protocols (Priority Inheritance, Priority Ceiling, Stack Based

Priority Ceiling and Stack Based Preemption Ceiling Protocols) using sequence and

timing diagrams. Table 7.1 shows a comparison of the above mentioned protocols.

From the comparison, it is observed that the Stack Based Preemption Ceiling Pro-

tocol (SBPCP) can be more appropriate to schedule the dynamic tasks in a shared

resource environment.

128
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7.2 Real-Time Scheduling

A real-time system is one in which failure can occur in the time domain as well as

in the more familiar value domain. The correctness of the system depends on the

completion time of the tasks. Producing a response later than the completion time,

which is also known as deadline missing in real-time systems, will be erroneous and

may have a significant impact to the system.

A scheduler is one which provides an algorithm or policy for ordering the execution

of the tasks on the processor according to some predefined criteria. Schedulers may

be preemptive or non-preemptive. The former can arbitrarily suspend a process’s

execution and restart it later without affecting the behavior of that process (except

by increasing its elapsed time). Preemption typically occurs when a higher prior-

ity process becomes runnable. The effect of preemption is that a process may be

suspended involuntarily. A non-preemptive scheduler does not suspend a process

in this way. When a task holds any resource, it executes at a priority higher than

the priorities of all other tasks. The preemptive scheduler can arbitrarily suspend a

process’s execution and restart it later without affecting the behavior of that process

(except by increasing its elapsed time). Preemption typically occurs when a higher

priority process becomes runnable. The effect of preemption is that a process may

be suspended involuntarily.

Real-Time Systems need to share resources among tasks. Serially reusable resources

are typically allocated to tasks on a non-preemptive basis and used in a mutually

exclusive manner. In other words, when a unit of a resource Ri is granted to a job,

this unit is no longer available to other jobs until the job frees the unit.
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Figure 7.1: Structure of two tasks that share an exclusive resource

7.2.1 Priority Inversion

Priority inversion occurs when the execution of some jobs or portions of jobs is

non-preemptable. Resource contentions among jobs can also cause priority inver-

sion. Because resources are allocated to jobs on a non-preemptive basis, the highest

priority active task cannot execute because some of the resources needed for its exe-

cution are held by some other tasks. At that point in time, the higher priority task

is blocked while the lower-priority tasks execute.

Considering two tasks J1 (higher priority) and J2 (lower priority) that share an

exclusive resource Rk, on which two operations (such as insert and remove) are

defined. To guarantee mutual exclusion, both operations must be defined as critical

sections. If a binary semaphore Sk is used for this purpose, then each critical section

must begin with a wait(Sk) primitive and must end with a signal(Sk) primitive

(Figure 7.1). When J2 is using Rk, at that time J1 requires Rk. So, J1 has to wait

until J2 completes its execution with Rk. As a result, priority inversion occurs in

this situation.

In order to overcome the problems of priority inversion, the Priority Inheritance

Protocol can be used.
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7.2.2 Priority Inheritance Protocol

Assigned Priority: When a task releases, this priority is assigned to the task. It

is a unique priority.

Current Priority: It is the priority at which a ready task is scheduled and executed.

It may vary with time.

Rules of the PIP

1. Scheduling rule: A ready task is scheduled preemptively in a priority-driven

manner according to the current priority.

2. Allocation rule: When a task T requests a resource R,

(a) If R is free it is allocated to T and is held by T until T releases R.

(b) If R is not free then the task is blocked.

3. Priority Inheritance rule: When the requesting task T becomes blocked, the

task Tl which blocks T inherits the current priority π(t) of T. When Tl releases

R its priority reverts to π(t’), where t’ is the time it acquired the resource R.

Again from the above rules, we conclude that the Priority Inheritance Protocol has

some advantages as well as disadvantages. They are as follows:

Advantages:

a) The protocol prevents non-preemptivity between two jobs in a task.

b) It also prevents priority inversion.

Disadvantages:

a) The protocol does not prevent deadlock.

b) It also creates indefinite blocking.
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The Priority Ceiling Protocol removes these drawbacks.

7.2.3 Basic Priority Ceiling Protocol

This protocol makes two key assumptions:

i) The assigned priority of all tasks is fixed.

ii) The resources required by all tasks are known a priori before the execution of any

task begins.

The priority ceiling of a critical resource R is the highest priority of all the tasks

that use the resource R. Current priority ceiling of a system π’(t) at any time t is

equal to the highest priority ceiling of all the resources used at that time. If all the

resources are free, then π’(t)=Ω where Ω is a non-existing priority level that is lower

than the lowest priority of all tasks.

Rules of the Basic PCP

1. Scheduling rule:- At the release time t, the current priority π(t) of every task

is equal to the assigned priority. The task remains at that priority level except

by rule 3.

2. Allocation rule:- When a task T requests R, one of the following conditions

occur:

(a) If R is not free then T becomes blocked.

(b) If R is free then one of the following conditions occur:

i. T’s priority is higher than the current priority ceiling π’(t), R is

allocated to T.

ii. If T’s priority is not higher than the priority ceiling π’(t), R is allo-

cated to T only if T is the task holding the resource whose priority

ceiling is π’(t). Otherwise, T’s request is denied.
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3. Priority Inheritance rule:- When T becomes blocked, the task Tl which blocks

T inherits the current priority π(t) of T. Tl executes at its inherited priority

until the time it releases every resource whose priority ceiling is equal to higher

than π(t). At that time priority of Tl returns to its priority π’(t’) at the time

t’ when it was granted the resource.

7.2.4 Stack Based Priority Ceiling Protocol

A resource in the system is the run-time stack. Thus far, it has been assumed that

each job has its run-time stack. Sometimes, especially in systems where the number

of jobs is large, it may be necessary for the jobs to share a common run-time stack,

to reduce overall memory demand. When a job J executes, its stack space is on the

top of the stack.

Space is freed when the job completes. To ensure deadlock-free sharing of the run-

time stack among jobs, we must ensure that no job is ever blocked because it is denied

some resource once its execution begins. This observation leads to the following mod-

ified version of the priority ceiling protocol, called the stack-based priority ceiling

protocol. Like Baker’s protocol, this protocol allows jobs to share the runtime stack

if they never self-suspend. In the statement of the rules of the stack-based priority

ceiling protocol, again the term (current) ceiling π(t) of the system has been used,

which is the highest priority ceiling of all the resources that are in use at time t. If

all the resources are free, then π’(t)=Ω where Ω is a non-existing priority level that

is lower than the lowest priority of all tasks.

This protocol makes two key assumptions:

1. The assigned priorities of all tasks are fixed.

2. The resources required by all tasks are known a priori before the execution of any

task begins.
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Rules of the SPCP

1. Scheduling rule: After a task is released, it is blocked from starting execution

until its assigned priority is higher than the current ceiling π’(t) of the system.

At all times, the tasks that are not blocked are scheduled on the processor in

a priority-driven, preemptive manner according to their assigned priorities.

2. Allocation rule: Whenever a task requests a resource, it is allocated to the

task.

More importantly, no job is ever blocked once its execution begins. Likewise, when

a job J is preempted, all the resources the preempting job will require are free, en-

suring that the preempting job can always complete so J can resume. Consequently,

deadlock can never occur.

7.2.5 Stack Based Preemption Ceiling Protocol

The advantages of using the Stack Based Preemption Ceiling Protocol over the

Dynamic Priority Ceiling Protocol are as follows:

1. It avoids paying the time or storage overhead.

2. Ceilings are defined in terms of preemption levels, instead of priorities, so

that this protocol applies directly to Earliest Deadline First (EDF) scheduling

(without dynamic recomputation of ceilings).

3. Potential of resource contentions in dynamic priority systems does not change

with time.

4. Stack sharing is supported.

5. Resource requests never block, hence do not require extra context switches.
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6. Because there is no blocking after a job starts executing, a stronger EDF

schedulability result can be obtained than with dynamic priority ceilings.

This protocol can be used to prevent deadlock.

The Preemption level of a task (π(T)) will be inversely proportional to the relative

deadline of the task. The reason for introducing the Preemption level is to enable

us to do static analysis of potential resource conflicts, even for dynamic priority

schemes such as EDF scheduling. The essential property of this protocol is that a

task Ti’ isn’t allowed to preempt another task Ti unless π(Ti’)>π(Ti.).

The preemption ceiling of a critical resource R is the highest preemption level of

all the tasks that use the resource R. The (preemption) ceiling of a system π’(t)

at any time ‘t’ is equal to the highest preemption ceiling of all the resources used

at that time. If all the resources are free, then π’(t)=Ω where Ω is a non-existing

preemption level that is lower than the lowest preemption level of all tasks.

Rules of the SBPCP

1. Scheduling rule: After a task is released, it is blocked from starting the ex-

ecution until its preemption level is higher than the current ceiling π’(t) of

the system and the preemption level of the executing task. At any time t,

tasks that are not blocked are scheduled on the processor in a priority-driven,

preemptive manner according to their assigned priorities.

2. Allocation rule: Whenever a task requests a resource R, it is allocated to the

task.

3. Priority Inheritance Rule: When some task is blocked from starting, the block-

ing task inherits the highest priority of all the blocked tasks.
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7.3 Comparative analysis of various resource ac-

cess control protocols

Table 7.1: Comparison among various resource access control protocols
Comparison Criteria PIP PCP SPCP SBPCP

Nature of priority Static Static Static Static and dynamic
Blocking More More Less Less
Context switching More More Less Less
Deadlock prevention No Yes Yes Yes

In RTSS, the main intent of various resource access control protocols is to schedule

and synchronize different tasks when many of these use the same shared resources.

Hard real-time tasks have stringent timing constraints. Resource access control pro-

tocols employ blocking to resolve data conflicts among tasks when tasks concurrently

access the shared data. The concurrency control protocols adapted in priority-driven

scheduling pose the priority inversion problems. Unfortunately, tasks blocking due

to priority inversion can be indefinitely long. This unpredictability of task execu-

tion is unacceptable in most mission-critical applications. We have compared above

mentioned resource access control protocols in Table 7.1.

7.4 Modeling of resource access control protocols

In RTSS, the scheduling of tasks with hard deadlines has been an important area of

research. The main objective of this research work is to compare various protocols

using UML models. The shortcomings of the existing Priority Inheritance proto-

col are represented using one UML/SPT model. Further, various resource access

control protocols are used to overcome this difficulty using other improved models.

Using UML/SPT Sequence and Timing Diagrams, we model the above mentioned

protocols. Further, we analyze these to highlight deadlock occurrence and deadlock

avoidance.
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7.4.1 Sequence diagram and Timing diagram

In this work, both sequence and timing diagrams are used because the sequence

diagram or timing diagram alone does not depict the scenario completely. The

essential difference between the sequence and timing diagrams is that the latter

emphasizes the change in value or state over time while the former emphasizes

sequences of message exchange. They are, approximately at least, isomorphic and

able to represent the same information, but their purpose is different. The Sequence

diagram focuses primarily on the sequences of messages in operational scenarios.

Timing diagram focuses on the qualities of service having to do with time, such

as execution time, jitter, deadlines, periodicity, and so on, and how they affect the

state of the system (or, more precisely, of the use case) or an important value held

by the system.

7.4.2 Advantages of Sequence diagram over Timing diagram

The Sequence diagram is used to model the flow of messages, events and actions

between the objects or components of a system.

The Sequence diagram is often used to design the interactions between components

of a system that need to work together to accomplish a task. It focuses on when

the individual objects interact with each other during execution. It is particularly

useful for modeling usage scenarios such as the logic of methods and the logic of

services.

The Sequence diagram emphasizes message sequence, so the time of the next message

is the message following the current one on the diagram.

The Timing diagram does not represent these.
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7.4.3 Advantages of Timing diagram over Sequence diagram

A Timing diagram is a simple representation with time along the horizontal axis

and objects state or attribute value along the vertical axis.

Although the Timing diagram does not show any information beyond that available

in the annotated Sequence diagram, the absolute timing of events, state changes and

the relative timing among the lifelines is clearer and more readable than Sequence

diagram, even when explicit timing constraints are added. Messages on the Sequence

diagram are only partially ordered, so in many cases, the relative timing between

two messages is not specified.

When messages on the Sequence diagram begin or finish on different lifelines, it is

not possible to compare which one starts or terminates first.

Time goes down the page on the Sequence diagram, but usually, linearity is not

implied; that is, further down implies later in time, but the same distance at different

places in the diagram does not imply the same amount of time. However, each

diagram provides different points of view to the same scenario and both could be

very useful.

7.4.4 UML/SPT

UML profile for Schedulability, Performance and Time (UML/SPT) is a UML pro-

file for real-time modeling. UML/SPT is a framework to model resource, time,

concurrency concepts as well as the quality of services. Besides, UML/SPT also can

support ordinary UML models for predicting quantitative analysis, which includes

schedulability and performance analysis [45]. UML/SPT provides a set of stereo-

types to the designer and the developers and tagged values to interpret the UML

models.
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This chapter focuses on the UML/SPT based Sequence and Timing diagrams to

model real-time resource access control protocols.

7.4.4.1 UML/SPT Sequence diagram

In UML/SPT, the notation for an interaction in a sequence diagram is a solid-outline

rectangle (a rectangular frame). The five-sided box at the upper left-hand corner

names the sequence diagram: keyword sd followed by the interaction name. Each

lifeline in the diagram represents an individual participant in the scenario.

s1: Scheduler. A scheduler (in our domain, a processor) is responsible for processing

the acquisition requests from the clients of service and based on the appropriate

access control policy for that service, it dispenses access to the service. If a service

instance is busy, then the reply may remain pending until the access is possible. The

scheduler determines a schedule that allocates a set of scheduling tasks to its set of

execution engines.

r1, r2: Resources. The stereotype <<SAresource>> of the UML Profile for Schedu-

lability, Performance and Time (schedulability modeling) represents a kind of pro-

tected resource (e.g., a semaphore) that is accessed during the execution of a schedul-

ing task. It may be shared by multiple concurrent actions and must be protected by a

locking mechanism. The tag ”SAaccessControl” represents the access control policy

for handling requests from scheduling tasks (in our model, ’Priority Inheritance’).

T1, T2, T3: Tasks. The stereotype <<SAschedRes>> of the UML Profile for

Schedulability, Performance, and Time (schedulability modeling) represents a unit

of concurrent execution (in our domain, a task), which is capable of executing a

single scenario concurrently with other concurrent units. In the general resource

modeling of the UML Profile for Schedulability, Performance and Time, an action

is defined as a kind of scenario. Therefore, the stereotype <<SAaction>> of this

profile (schedulability modeling) is used to characterize the behavior of each task
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in the developed model. The new metaclass in UML/SPT, TimeObservationAc-

tion, is used to know when a task awakes. A time observation triggers an action

that, when executed, returns the current value of time in the context in which it

is executing. It is depicted with the keyword ”now”. Another new metaclass in

UML/SPT, StateInvariant, is used to show the different states associated with each

lifeline as restrictions. A state invariant is a constraint on the state of a lifeline. If

the constraint is true, the trace is valid. Finally, notes are used to display textual

information.

7.4.4.2 UML/SPT Timing diagram

The timing diagram can be stereotyped as <<SAsituation>> to use it in the context

of schedulability analysis, representing a real-time situation.

The notations of the rectangular frame and the five-sided box are the same as in the

previous sequence diagram, but now we have different elements in the model. Five

lifelines are generated one each for the two resources (r1, r2) and the three tasks (T1,

T2 and T3) respectively. In this case, scheduler (s1) can be ignored, because it is

not necessary to understand the scheduling. Since the changes in states of different

lifelines can be represented over linear time, there is no need to show the message

passing.

The task states used in the timing diagram are explained in Table 7.3. There are

two simple states for the resource lifeline: idle and busy. Using the timing diagrams

it can be seen how the states get changed over time for each lifeline. Therefore, it is

not required to use the metaclass StateInvariant as a restriction in lifelines to know

the state value at a particular time.

The time axis is linear so it clarifies the absolute timing of events, state changes and

relative timing between the different lifelines. Therefore, it is not required to use
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notes indicating when a task awakes (when the state of a task changes to ”Ready”)

[131].

7.4.5 Case study

In [131], the Priority Inheritance Protocol is used for sharing critical resources but

this protocol does not prevent deadlock. In this research work, the occurrence of

deadlock is first highlighted by considering the following task set which is described

by the classical parameters given in Table 7.2. Further, deadlock avoidance is dis-

cussed using the Basic Priority Ceiling Protocol, Stack Based Priority Ceiling Pro-

tocol and Stack Based Preemption Ceiling Protocol by considering the same task

set.

System description

Consider a set T of n simple independent tasks {T1, T2,...,Tn} to be scheduled pre-

emptively on uniprocessor system. Each task Ti (1≤i≤n) consists of a potentially

unbounded stream of jobs and is characterized by release time Rei, priority Pi,

relative deadline Di, execution time Ei, preemption level PLi and its resource re-

quirements (discussed in Table 7.2).

Three parameters Ea, Eb and Ec related to the execution time are defined as follows:

-Ea: Execution time before holding the resource

-Eb: Execution time using the resource

-Ec: Execution time after releasing the resource

Then, the execution time E=Ea+Eb+Ec

The system also comprises of m non-preemptable serially reusable resources {R1,

R2, . . . , Rm}.
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Table 7.2: Task set sharing critical resources

Task Rei Ei Ea Eb Ec Pi Di PLi

T1 4 2 1 (R1, 1) 0 1 7 1
T2 2 5 1 (R2, 3)(R1, 1) 0 2 9 2
T3 0 5 1 (R1, 3)(R2, 1) 0 3 12 3

7.5 Modeling and analysis of PIP to highlight dead-

lock occurrence

Priority Inheritance Protocol can be used to overcome the priority inversion problem,

but it does not prevent deadlock. Deadlock occurrence is modeled using sequence

diagram(Figure 7.2) and timing diagram (Figure 7.3).

7.5.1 Observation

The sequence diagram in Figure 7.2 shows that deadlock occurs. T1 is blocked by

T3. T3 is waiting for a resource that is held by T2. T2 is waiting for a resource

that is held by T3. As a result, all of the three tasks are blocking.

The timing diagram in Figure 7.3 describes how deadlock occurs in the Priority

Inheritance Protocol.

7.5.2 Result and discussion

At time 0, task T3 is released and executes at its assigned priority 3. At time 1,

resource R1 is assigned to T3.

At time 2, T2 is released. It preempts T3 (as priority of T2 is greater than the

priority of T3) and starts executing.
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Figure 7.2: Sequence diagram showing deadlock occurrence using PIP

At time 3, T2 requests resource R2. R2, being free, is assigned to T2. The task T2

continues to execute. At time 4, T1 is released and it preempts T2 (as priority of

T1 is greater than the priority of T2).

At time 5, T1 requests R1 but R1 is already assigned to T3. So T1 is now directly

blocked by T3 though the priority of T1 is greater than the priority of T3. Accord-

ing to Rule 3 in section 7.2.2, T3 inherits T1’s priority (i.e. 1) and T3 continues

execution.
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Figure 7.3: Timing diagram showing deadlock occurrence using PIP

At time 6, T3 requests R2 but R2 is already assigned to T2. So T3 is blocked by T2

though the current priority of T3 (presently the priority of T3 is 1 which it inherits

from T1) is greater than the priority of T2. According to the same Rule 3, T2

inherits T3’s priority (i.e. 1) and T2 continues execution.

At time 8, T2 requests R1 but R1 is already assigned to T3, so T2 is blocked by T3.

As T3 is already blocked by T2, a deadlock occurs.
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Table 7.3: Task states

State Description

Dormant The task is set up
Ready The task awakes
Preempted When running, the task is preempted
Blocked The task is waiting for a signal or a resource
Running Assignment of processor to task

7.6 Modeling and analysis of resource access con-

trol protocols to prevent deadlock

Basic PCP, SPCP and SBPCP are used to prevent the deadlock.

7.6.1 Basic PCP

7.6.1.1 Observation

The sequence diagram (Figure 7.4) shows that deadlock does not occur for this

protocol. All the three tasks complete their executions successfully.

The Timing diagram (Figure 7.5) shows how deadlock is prevented.

7.6.1.2 Result and discussion

T3 is released at time 0. The ceiling of the system at time 1 is Ω. When T3 requests

R1, it is allocated to T3 according to (i) in part (b) of Rule 2 of section 7.2.3. After

the allocation of R1, the ceiling of the system is raised to 1, the priority ceiling of

R1.

At time 2, T2 is released and it preempts T3 (as the priority of T2 is greater than

the priority of T3). At time 3, T2 requests resource R2. R2 is free; however because

the ceiling π’(3)(=1) of the system is higher than the priority of T2, T2’s request is
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Figure 7.4: Sequence diagram showing deadlock prevention using PCP

denied according to (ii) in part (b) of Rule 2 of section 7.2.3. T2 is blocked and T3

inherits T2’s priority.

At time 4, T1 is released and it preempts T3 (as priority of T1 is greater than the

priority of T3). At time 5, T1 requests resource R1 and becomes directly blocked

by T3 and T3 inherits T1’s priority. At time 5, T3 requests for resource R2. R2 is

free and it is allocated to T3 because T3 is holding the resource R1 whose priority

ceiling is equal to π’(t)(=1).
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Figure 7.5: Timing diagram showing deadlock prevention using PCP

At time 6, T3 releases R2 and at time 7, T3 releases R1. So T3 executes at its

inherited priority π(t) (=1) until the time when it releases every resource whose

priority ceiling is equal to higher than π(t) (i.e. its inherited priority). T3 completes

its execution at time 7.

At that time 7, T1 and T2 are ready. But T1 has higher priority (i.e.,1) it resumes.

At time 8, T1 completes its execution and T2 resumes.

7.6.2 SPCP

Further, we have considered Stack Based Priority Ceiling Protocol instead of the

Basic Priority Ceiling Protocol for the following reasons-
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• Stack Based Priority Ceiling Protocol is simple; the complex priority inheri-

tance rule is not required here.

• No task is ever blocked in Stack Based Priority Ceiling Protocol once its exe-

cution begins, so it has a lower context switching overhead.

7.6.2.1 Observation

The sequence diagram (Figure 7.6) shows that deadlock does not occur for this

protocol. All the three tasks complete their executions successfully.

The timing diagram (Figure 7.7) shows how deadlock is prevented.

7.6.2.2 Result and discussion

T3 is released at time 0. The ceiling of the system at time 1 is Ω (a non-existing

priority level). When T3 requests R1 which is allocated to T3 according to rule 2

(discussed in section 7.2.4). After the allocation of R1, the ceiling of the system is

raised to 1, the priority ceiling of R1.

At time 2, T2 is released and it is blocked from starting because the ceiling π’(3)(=1)

of the system is higher than the priority of T2. T2’s request is denied according to

rule 1. This allows T3 to continue execution.

At time 3 T3 requests R2 which is allocated to T3 according to rule 2. When T1 is

released at time 4, it cannot start execution according to rule 1.

At time 5, T3 completes execution and releases resources (R1 and R2) and the

ceiling of the system is Ω. Consequently, T1 starts execution since it has the highest

priority among all the tasks ready at the time. When T1 requests R1, it is allocated

to T1.



Chapter 7. Schedulability Analysis of Real-Time Software Systems 149

Figure 7.6: Sequence diagram showing deadlock prevention using SPCP

T1 completes at time 7 and T2 starts its execution and acquires all the required

resources. T2 completes at time 12.

7.6.3 SBPCP

Further, we have considered SBPCP for the following reasons:

• SBPCP avoids paying time or storage overhead.
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Figure 7.7: Timing diagram showing deadlock prevention using SPCP

• Ceilings are defined in terms of preemption levels, instead of priorities, so

that the SBPCP applies directly to Earliest Deadline First (EDF) scheduling

(without dynamic recomputation of ceilings).

• Potential of resource contentions in dynamic priority systems does not change

with time.

• Because there is no blocking after a job starts executing, a stronger EDF

schedulability result can be obtained than with dynamic priority ceilings.
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Figure 7.8: Sequence diagram showing deadlock prevention using SBPCP

7.6.3.1 Observation

The sequence diagram (Figure 7.8) shows that deadlock does not occur for this

protocol. All the three tasks complete their executions successfully.

The Timing diagram (Figure 7.9) shows how deadlock is prevented.
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Figure 7.9: Timing diagram showing deadlock prevention using SBPCP

7.6.3.2 Result and discussion

T3 is released and starts execution at time 0. At time 1, T3 requests R1. R1 is

allocated to T3 according to Rule 2 in section 7.2.5.

At time 2, T2 is released and it is blocked from starting according to Rule 1. T3

inherits T2’s priority and requests R2 which is allocated to T3 at the same time

instance according to Rule 2. When T1 is released at time 4, it cannot start execution

according to Rule 1. T3 inherits T1’s priority and continue execution.

At time 5, T3 completes execution and releases resources (R1 and R2) and the

ceiling of the system is Ω. Consequently, T1 starts execution since it has the highest
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priority among all the tasks ready at that time. When T1 requests for R1, it is

allocated to T1.

T1 completes at time 7 and T2 starts its execution and acquires all required re-

sources. T2 completes at time 12.

7.7 Verification of resource access control proto-

cols

In this section, we are considering the formal representation of resource access control

protocols utilizing CFG for the automated verification of deadlock occurrence and

its prevention. Further, the demonstrated formal portrayals have been confirmed

for the rightness of the outline utilizing the ANTLR tool. Next, with the reference

to this work, these protocols have been investigated and implemented using JAVA

and Python to demonstrate the occurrence of deadlock for PIP and how this can be

avoided by using PCP, SPCP and SBPCP.

7.7.1 Formal specification

Table 7.4 shows the formal representation of the PIP, PCP, SPCP and SBPCP.

7.7.1.1 Illustration of the grammar

For the grammar, test PIP ps has been considered as the start symbol.

test PIP ps : pip;

The formal specification of the four protocols of interest considers the set of active

objects of type task, resource and the scheduler and also considers events that are

responsible for the interactions among the objects. Events may occur based on some
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Table 7.4: Formal specification of resource access control protocols

grammar abc.g;
//Parser
options output=AST; backtrack=true;
test PIP ps : pip ;
pip : act obj type event;
event : ’pipAlgo’|’pcpAlgo’| ’stackPcpAlgo’|’stackPreAlgo’;
act obj type : task|resource|scheduler;
scheduler : schd id;
schd id : SID;
resourceWithstate : resource state ;
state : ’Busy’ | ’Idle’;
task : t1 t2 t3 ;
t1 : ’{’sapriority sarelease saworstcase sausedresource’}’;
t2 : ’{’sapriority sarelease saworstcase sausedresource’}’ ;
t3 : ’{’sapriority sarelease saworstcase sausedresource’}’ ;
sapriority : INT ;
sarelease : INT ;
saworstcase : INT ;
sausedresource : ’(1,’ (’(’resource’,’ time’),’)+ ’0)’;
resource : ’R1’|’R2’;
time : INT;
//Lexer
INT : (’0’..’9’)+;
CHAR : (’A’..’Z’|’a’..’z’)+;
SID : (’s’|’S’)(’0’..’9’)+;
RID : (’r’|’R’)(’0’..’9’)+;
TID : (’t’|’T’)(’0’..’9’)+;
ID : (’a’..’z’|’A’..’Z’)+(’0’..’9’)+;
REAL : (’0’..’9’)+(’.’)*(’0’..’9’)*;

specific conditions. Since this research work aims at formally representing the above

mentioned four protocols thus only the conditions specified for those four protocols

have been considered here.

pip : act obj type event;

event : ’pipAlgo’|’pcpAlgo’| ’stackPcpAlgo’|’stackPreAlgo’;

act obj type : task|resource|scheduler;
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The scheduler has an identification number, denoted by, schd id which is of type

SID, defined in the lexer specification section.

scheduler : schd id;

schd id : SID;

Each resource has a name denoted by resource and its associated state is denoted

by state. For a resource type, the state can be either Busy or Idle.

resourceWithstate : resource state ;

state : ’Busy’ | ’Idle’;

Here a set of three tasks t1, t2 and t3 have been considered for simplicity. Each task

has its associated priority, release time, computation time denoted by sapriority,

sarelease, saworstcase respectively. Each of these is of type INT, defined in the lexer

specification part. The tasks may also have a set of used resources for execution

which is denoted by sausedresource. Here, two resources named R1 and R2 have

been considered given by the production,

resource : ’R1’|’R2’;

While specifying used resources, the duration of the time for which these resources

have been used must be specified and is denoted by “time” which is of type INT.

task : t1 t2 t3 ;

t1 : ’{’sapriority sarelease saworstcase sausedresource’}’;

t2 : ’{’sapriority sarelease saworstcase sausedresource’}’;

t3 : ’{’sapriority sarelease saworstcase sausedresource’}’;

sapriority : INT ;

sarelease : INT ;

saworstcase : INT ;
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Table 7.5: Production rules with associated action statements

pip returns[String param, String algo]:act obj type{$param= $act obj type.finalString;}
event{$algo = $event.text;};
event : ’pipAlgo’|’pcpAlgo’| ’stackPcpAlgo’|’stackPreAlgo’;
act obj type returns[String finalString]task{String str1=”name:T3@release:” +
Integer.toString($task.t3releasetime) + ”@currentPriority:” +
Integer.toString($task.t3priority) + ”@state:READY@resource:” +$task.t3usedresouce;
. . . . . .
$ finalString = str1+’;’+str2+’;’+str3;}|resource|scheduler;

sausedresource : ’(1,’ (’(’resource’,’ time’),’)+ ’0)’;

resource : ’R1’|’R2’;

time : INT;

For the sake of simplicity in the implementation, this grammar considers only three

tasks. It can be further extended to include a set of tasks by slightly modifying the

grammar.

7.7.2 Implementation

Those four resource access control protocols have been implemented and linked to the

developed grammar in a form accepted by ANTLR tool to show the schedulability

of these two protocols. To encode the given algorithms Python language has been

used for ease of implementation. Each production rule has been associated with

some action statements that help to return the intermediate results at each step.

Some portions of the grammar production rules with associated action statements

are shown in Table 7.5.

7.7.3 Result analysis

Some portions of the output of the developed python programs for those protocols

are given in Table 7.6 and Table 7.7. Hypothetically, it is known that Priority
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Table 7.6: Output of the Priority Inheritance Protocol

T3 READY
Schedular—-run()———–→ T3
T3 RUNNING
Schedular←—–request(R1)—–T3
Schedular—–assign(R1)———→T3
R1——-→ BUSY
================================
Schedular——-preempt()—–T3
Schedular —–Run() —–T2
T2 RUNNING
Schedular←—–Request(R2)—–T2
Schedular—–assign(R2)—–→T2
R2—-→ BUSY
================================
Schedular—–preempt()—–T2
Schedular—–Run()—–T1
T1 RUNNING
Schedular ←—–Request(R1)—–T1
Schedular—–block()——→ T1
T3—–inherits—–T1′s priority
Schedular—–run()—–→T3
T3 RUNNING
================================
Schedular←—–Request(R1)—–T3
Schedular—–assign(R1)—–→T3
R1—-→BUSY
================================
Schedular ←—–Request(R2)—–T3
Schedular—–block()——-→T3
T2—–inherits—–T3′s priority
Schedular—–run()——→T2
T2 RUNNING
================================
Schedular←—–Request(R2)—–T2
Schedular—–assign(R2)——-→T2
R2——-→ BUSY
================================
Schedular ←——-Request(R1)—–T2
Schedular—–block()——-→T2
T3—–inherits—–T2′s priority
Schedular—–run()——- →T3
T3 RUNNING
================================
———–DEADLOCK—————
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Table 7.7: Output of the Stack Based Priority Ceiling Protocol

T3 READY
Schedular—-run()—–→T3
T3 RUNNING
Schedular←—–request(R1)—–T3
Schedular—–assign(R1)—–→T3
R1—-→BUSY
===================================
Schedular—-block()—–→T2
===================================
Schedular—-block()—–→T1
===================================
Schedular—–release()—–→R1
Schedular←—–complete()—–T3
===================================
Schedular—-run()—–→T1
T1 RUNNING
Schedular←—–request(R1)—–T1
Schedular—–assign(R1)—–→T1
R1—-BUSY
Schedular—–release()—–→R1
Schedular←—–complete()—–T1
===================================
Schedular—-run()—–→T2
T2 RUNNING
Schedular←—–request(R2)—–T2
Schedular—–assign(R2)—–→T2
R2—-→BUSY
===================================
Schedular—–release()—–→R2
Schedular←—–complete()—–T2
===================================

Inheritance Protocol may hinder the execution of the tasks and results in a dead-

lock whereas, in the case of PCP, SPCP and SBPCP, all tasks will be executed

successfully to completion without causing a deadlock situation.
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7.8 Comparison with related work

Maria et al. discussed the task scheduling capabilities of UML and its profiles in

RTS [131]. Their work is focused primarily on the priority inheritance protocol

but analysis of the protocol regarding resource contention of deadlock prevention is

outside the scope. Authors in [136] presents a formalized and mechanically checked

verification for the rightness of only priority inheritance protocol. In comparison

to those research works, this Chapter formally analyses the existing resource access

control protocols (Priority Inheritance, Priority Ceiling, Stack Based Priority Ceiling

and Stack Based Preemption Ceiling Protocols) using sequence and timing diagrams

to study deadlock in real-time systems.

7.9 Threats to validity of proposed approach

This research work emphasizes on the issues related to deadlock and deadline of

resource access control protocols. The Priority Inheritance Protocol is used for

sharing critical resources but it does not prevent deadlock if nested critical sections

are present. This shortcoming is represented using one UML model. Further, the

Priority Ceiling, Stack Based Priority Ceiling and Stack Based Preemption Ceiling

Protocols are used to overcome the difficulty using other improved models. We

have analyzed those protocols using a limited number of data set. However, model

behavior may change with increasing data set values.

7.10 Conclusion

In the last few years, real-time processing seems to be the essential part of an operat-

ing system and the scheduling of RTS is an important area of research in today’s life.



Chapter 7. Schedulability Analysis of Real-Time Software Systems 160

This dissertation explores the comparison among the various resource access proto-

cols for uniprocessor RTS. This chapter concentrates on the occurrence of deadlock

in the Priority Inheritance Protocol and the prevention of such using Priority Ceiling

Protocol, Stack Based Priority Ceiling Protocol and Stack Based Preemption Ceil-

ing Protocol. Using UML/SPT based Sequence and Timing Diagrams, we model

the above mentioned protocols. Further, we analyze these to highlight deadlock

occurrence and deadlock avoidance.



 



Chapter 8

Conclusion

8.1 Conclusion

RTSS are deployed nowadays in many applications, including home appliances, auto-

motive, avionics, military applications etc. These systems should be logically correct

and should satisfy a set of timing constraints. In addition, they are reactive and

concurrent to handle the different concurrent events that come from the environment

in which these systems are deployed. Such characteristics make the design of RTSS

complex and challenging.

In this dissertation, we have presented some new ideas and developed some novel ap-

proaches for modeling, analysis and verification of RTSS through the different phases

of development. We have considered some of the commonly used UML diagrams to

develop our methodology.

Modeling is an important engineering activity, which relies on using models to raise

the abstraction level. This widens the engineers’ visibility and increases their control

over the complexity of the systems they are building or managing. The model-driven

approach is therefore adequate to address the complex issues of RTSS. It is very
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advantageous to use models with rigorous semantics. This enables the verification

of design and potentially the automatic synthesis of implementations.

The design specification for RTSS modeled using UML diagrams presents different

aspects of the system, some of which represent overlapping characteristics. Hence,

risks of inconsistencies between such related design models are inevitable. We have

defined a set of conditions for ensuring consistency between the UML models. A

formal representation with semantic actions has been defined for representing four

UML diagrams, which are mostly used in modeling. The consistency rules have been

verified using the formal representation of UML diagrams depicting design.

It is seen that most of the errors detected at the later stage of any software de-

velopment are caused due to inconsistency between requirements and design. This

leads to huge project cost for correction and sometimes schedule slippages. Large-

scale software developments often fail as designers are not able to produce complete,

understandable, unambiguous and traceable design documents from the functional

requirements phase. A prime concern of RTSS is that all the requirements related

to time must be traced in all the phases of the software development life cycle con-

sistently. A comprehensive framework is developed that helps in the verification of

requirements in design. This framework is based on the formal design with semantic

constructs that verifies the timing constraints through metrics-based approach.

Due to the concurrent nature of RTSS, there may be contention for resources that

requires scheduling (i.e. how tasks are granted access to a given resource). An

important problem that arises in the context of such RTS is the effect of blocking

which occurs due to the need for synchronization of tasks that share common logical

or physical resources. We have compared various resource access control protocols

using model-based approach.

Modeling, analysis and verification are significant activities in the development cycle

of any RTSS, which consumes a considerable amount of overall effort. The methods

and frameworks presented in this dissertation provide a firm foundation towards
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a significant reduction of designing effort and cost for the software industry. Our

derived framework guides practitioners in their application of UML/MARTE in in-

dustrial contexts. This will help practitioners bridge the gap between modeling

standards and the modeling needs of industrial RTSS.

8.2 Future work

• The metamodeling approach used for the definition of UML profile in general

and which we used for the extension of UML/MARTE presents an interesting

issue. Indeed, the concepts required for a certain domain could be modeled

in a variety of manners, which leads to different metamodels. Therefore, it is

necessary to assess the consistency between the different profiles and exten-

sions.

• Our approach on using schedulability analysis to model, analyze and verify

different resource access control protocols provides limited feedback to the

designer. Other improtant questions need to be addressed such as when the

analysis shows that various requirements are not consistent, what can be done

to fix the inconsistency? Is it possible to provide more fine-grained feedback

in pointing out the origin of the inconsistency? What changes can be operated

on the design model that might fix the problem?

• Our framework concentrates on the requirements analysis and design phases of

a software development life cycle. In future, we plan to consider other stages of

development life cycle like tracing requirements to implementation and develop

testing techniques for RTSS.
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Table A.1: Formal specification for collecting information from Use case diagram
//Parser
grammar usecase;
options {language = Java; output = AST; backtrack=true;}
scope global{

static String str; //storing use case ids
static ArrayList usecase; //List for storing use cases
static ArrayList uactor; //List for storing actors of each use case
static ArrayList ustereo; //List for storing stereotypes of each use case
static ArrayList timing constraint; //List for storing timing constraints of each use case
static HashMap hm; //Storing all the actors, stereotypes and timing constraints for all use cases
}
usecase diagram:(use case dia id { //Unique id for each Use case diagram

global scope.usecase=new ArrayList();
}) use case+ actor* uc relation* actor relation*;
use case: (UC id {

global scope.str=$UC id.text;
global scope.uactor=new ArrayList();
global scope.ustereo=new ArrayList();
global scope.timing constraint=new ArrayList();
global scope.hm = new HashMap();
if(!global scope.usecase.contains($UC id.text)) //Checking uniqueness of use cases

global scope.usecase.add($UC id.text); //Adding use cases in the list
}) uc name uannotation;
uc name : CHAR;
uannotation: ustereotype* utiming cons*;
utiming cons: (ucons id {

//Semantic actions
if(!global scope.timing constraint.contains($ucons id.text)) //Checking uniqueness of timing constraints

global scope.timing constraint.add($ucons id.text); //Adding timing constraints in the list
global scope.hm.put(global scope.str+” TC”, global scope.timing constraint); //Associates a use case id with its timing constraints

})ucon type ucons desc;
ucons type : ’delay’|’duration’|’deadline’;
ustereotype : (ustreo id {

//Semantic actions
if(!global scope.ustereo.contains($ustereo id.text)) //Checking uniqueness of stereotypes
global scope.ustereo.add($ustereo id.text); //Adding stereotypes in list
global scope.hm.put(global scope.str+” ST”, global scope.ustereo); //Associates a use case id with its stereotypes
}) stereotype name {utag+};
utag:utag name utag value;
stereotype name :CHAR;
stereotype name:’<<’CHAR’>>’;
utag name:CHAR;
utag value:CHAR;
ucons desc: CHAR;
uc relation: UC id UC reltype UC id;
actor relation: actor id Actor reltype actor id;
actor : (actor id {

//Semantic actions
if(!global scope.uactor.contains($actor id.text)) //Checking uniqueness of actors
global scope.uactor.add($actor id.text); //Adding actors in list
global scope.hm.put(global scope.str+” AT”, global scope.uactor);

//Associates a use case id with its actors
}) actor name;
actor id : AID;
actor name : CHAR;
ucons id: CID;
ustreo id:STID;
//Lexer
use case dia id:CHAR;
UC reltype: ’association’|’<<include>>’|’<<extend>>’|’generalization’;
Actor reltype:’generalization’;
CID : (’C’|’c’)(′0′..′9′)+ ;
AID : (’A’|’a’)(′0′..′9′)+ ;
UC id : (’U’|’u’)(′0′..′9′)+ ;
STID : (’ST’|’st’)(′0′..′9′)+ ;
CHAR : (’0’..’9’|’A’..’Z’|’a’..’z’|’≤’|’ ’)+ ;
WS : ( ’ ’ | ’\t’ | ’\r’ | ’\n’ ){$channel=HIDDEN;};
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Table A.2: Formal specification for consistency checking from Sequence diagram
//Parser
grammar seq dia;
options {language = Java; output = AST; backtrack=true;}
scope global{

static String seq diagram; //Storing sequence diagram id
static ArrayList seq actor;
static ArrayList seq stereo;
static ArrayList seq usecase;
static ArrayList seq timing constraint;
static ArrayList seq lifeline;
static ArrayList seq par;
static ArrayList seq method;
static ArrayList seq message;
}
sequence diagram: (seq id {
global scope.seq diagram=$seq id.text;
global scope.seq usecase=new ArrayList(); //Lists for storing usecase id
global scope.seq actor=new ArrayList(); //Lists for storing actors
global scope.seq stereo=new ArrayList(); //Lists for storing stereotypes
global scope.seq timing constraint=new ArrayList(); //Lists for storing timing constraints
global scope.seq lifeline= new ArrayList(); //Lists for storing lifelines
global scope.seq par= new ArrayList(); //Lists for storing participants
global scope.seq method= new ArrayList(); //Lists for storing methods
global scope.seq message= new ArrayList(); //Lists for storing messages
}) (uc id {

if(global scope.usecase.contains($uc id.text)) //Try to find out if the current token exists in use case
global scope.seq usecase.add($uc id.text); //Adding use case id in list

} )life line+ seq annotation;
uc id : UID;
seq id : SID;
life line:participant | actor;
participant : (par id {
if(!global scope.seq par.contains($par id.text))
global scope.seq par.add($par id.text);}) par name edge+;
actor: (actor id {

//Semantic actions
if(global scope.uactor.contains($actor id.text)) //Try to find out if the current token exists in use case

if(!global scope.seq actor.contains($actor id.text)) //Checking uniqueness of actors
global scope.seq actor.add($actor id.text); //Adding actors in list
} ) actor name edge+;
seq lifeline.addAll(seq actor);
seq lifeline.addAll(seq par);
seq annotation: seq stereotype* seq timing cons*;
seq stereotype : (seq streo id {

//Semantic actions
if(global scope.ustereo.contains($seq stereo id.text))
//Try to find out if the current token exists in use case

if(!global scope.seq stereo.contains($seq stereo id.text)) //Checking uniqueness of stereotypes
global scope.seq stereo.add($seq stereo id.text); //Adding stereotypes in list
}) stereotype name {seq tag+};
seq tag: seq tag name seq tag value;
seq tag name: CHAR;
seq tag value:CHAR;
seq timing cons: (seq cons id { //Semantic actions
if(global scope.timing constraint.contains($seq cons id.text))

//Try to find out if the current token exists in use case
if(!global scope.seq timing constraint.contains($seq cons id.text))

//Checking uniqueness of timing constraints
global scope.seq timing constraint.add($seq cons id.text); //Adding timing constraints in list
}) seq type seq desc;
seq type : ’delay’|’duration’|’deadline’;
par id : PID ;
par name : CHAR ;
seq event : event id event name Event type event time ;
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event id: EID;
event name: CHAR;
val :INT|REAL ;
stmt: edge|CHAR;
edge: event src map func event dest;
event src : seq event;
event dest : seq event;
map func : msg func|method func;
msg func : (msg ID {
if (!global scope.seq message.contains($msg id.text)) //Checking uniqueness of messages
global scope.seq message.add($message id.text); //Adding messages in list
}) msg name;
msg ID : MSID;
msg name : CHAR;
actor name: CHAR;
method func : (method ID {
if (!global scope.seq method.contains($method id.text)) //Checking uniqueness of methods
global scope.seq method.add($method id.text); //Adding methods in list
}) method name;
method ID : MTID;
method name : CHAR;
actor id:AID;
seq cons id:CID;
seq streo id:STID;
stereotype name :’<<’CHAR’>>’;
seq tag value:CHAR;
cons desc : ’(’ time diff event relation dur ’)’;
time diff event: start event time alg op end event time;
start event time : event time;
end even time : event time;
alg op : ’+’ |’-’ |’*’ |’/’ ;
relation : ’<’ |’>’ | ’=’ |’≥’ |’≤’;
dur: INT ;
event time : INT ;
Event type : ’send’| ’recv’;
//Lexer
AID : (’A’|’a’)(′0′..′9′)+ ;
UID : (’U’|’u’)(′0′..′9′)+ ;
PID : (’P’|’p’)(′0′..′9′)+ ;
EID : (’E’|’e’)(′0′..′9′)+ ;
SID : (’S’|’s’)(′0′..′9′)+ ;
SCID : (’C’|’c’)(′0′..′9′)+ ;
STID : (’ST’|’st’)(′0′..′9′)+ ;
MSID : (’MS’|’ms’)(′0′..′9′)+ ;
MTID : (’MT’|’mt’)(′0′..′9′)+ ;
CHAR : (’A’..’Z’|’a’..’z’|’≤’|’ ’)+ ;
WS : ( ’ ’ | ’\t’ | ’\r’ | ’\n’ ){$channel=HIDDEN;};
INT : (’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’)+ ;
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Table A.3: Formal specification for consistency checking from Timing diagram

//Parser
grammar timing;
options output = AST; backtrack=true;
scope global{

static String timing diagram; //Storing timing diagram id
static String t seq dia; //storing sequence diagram id
static ArrayList par; //List for storing participants
static ArrayList par method; //List for storing methods for each partcipants
static ArrayList par message; //List for storing messages for each partcipants
static ArrayList stereo; //List for storing stereotypes
static ArrayList timing constraint; //List for storing timing constraints
}
timing diagram: (time id {

//Semantic actions
global scope.timing diagram=$time id.text;
global scope.par=new ArrayList();
global scope.par method=new ArrayList();
global scope.par message=new ArrayList();
global scope.stereo=new ArrayList();
global scope.timing constraint=new ArrayList();})
(seq id {
if(global scope.seq diagram.equals($seq id.text))

//Checking if the current token exists in sequence diagram
global scope.t seq dia=$seq id.text;}) //Adding sequence diagram id in the list

participant+ time annotation;
participant: (par id {

//Semantic actions
if(!global scope.par.contains($par id.text)) //Checking uniqueness of participants

global scope.par.add($par id.text); //Adding participants in list
System.out.println(”Array List Participant Values”+ $par id.text);

//Displaying participant id
}) par name state+ event+;
time id: TID;
par id : PCID;
par name : CHAR;
time :DIGIT;
state: state ID state name;
state ID : SID;
state name : CHAR;
event: event id event name map func? state trans? ;
event id : EID;
event name : CHAR;
map func : msg | mthd annotation;
msg:(msg id {
if(global scope.seq message.contains($msg id.text))
//Checking if the current token exists in sequence diagram
if(!global scope.par message.contains($mthd id.text)) //Checking uniqueness of messages
global scope.par message.add($mthd id.text);
})msg name;
mthd : (mthd id {
if(global scope.seq method.contains($mthd id.text))
//Checking if the current token exists in sequence diagram

if(!global scope.par method.contains($mthd id.text)) //Checking uniqueness of methods
global scope.par method.add($mthd id.text); //Adding methods in list
System.out.println(”Array List Method Values ”+ $mthd id.text); //Displaying method id

}) mthd name;
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msg id : MSID;
msg name : CHAR;
mthd id : MTID;
mthd name: CHAR;
annotation: stereotype* timing cons*;
stereotype : (stereo id {

//Semantic actions
if(!global scope.stereo.contains($stereo id.text))
//Checking uniqueness of stereotypes

global scope.stereo.add($stereo id.text); //Adding stereotypes in list
System.out.println(”Array List stereotype Values”+ $mthd id.text);

//Displaying stereotype id
}) stereotype name ’{’tag+’}’; tag:tag name tag value;
streo id: STID;
stereotype name :’<<’CHAR’>>’;
tag name: CHAR;
tag value : CHAR;
timing cons: (cons id {

//Semantic actions
if(!global scope.timing constraint.contains($cons id.text))

//Checking uniqueness of timing constraints
global scope.timing constraint.add($cons id.text);

//Adding timing constraints in the list
System.out.println(”Array List timing constraint Values ”+ $cons id.text);

//Displaying timing constraint id
}) cons type cons desc ;
cons id: TCID;
cons type : ’delay’|’duration’|’deadline’ ;
cons desc: CHAR ;
state trans: par id from state to state;
from state: state;
to state: state;
//lexer
TID : (’T’|’t’)(′0′..′9′)+ ;
PCID : (’PC’|’pc’)(′0′..′9′)+ ;
SID : (’S’|’s’)(′0′..′9′)+ ;
EID : (’E’|’e’)(′0′..′9′)+ ;
MSID : (’MS’|’ms’)(′0′..′9′)+ ;
MTID : (’MT’|’mt’)(′0′..′9′)+ ;
TCID : (’TC’|’tc’)(′0′..′9′)+ ;
STID : (’ST’|’st’)(′0′..′9′)+ ;
TTID : (’TT’|’tt’)(′0′..′9′)+ ;
DIGIT : (′0′..′9′)+ ;
CHAR : (’A’..’Z’|’a’..’z’|’≤’|’ ’)+ ;
WS : ( ’ ’ | ’\t’ | ’\r’ | ’\n’ ){$channel=HIDDEN;};
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Table A.4: Formal specification for consistency checking from Class diagram
//Parser
grammar class dia;
options language = Java; output = AST; backtrack=true;
scope global{
static String c timing diagram; //Storing Timing diagram id
static ArrayList class; //List for storing classes
static ArrayList c method; //List for storing methods
static ArrayList c stereo; //List for storing stereotypes
static ArrayList c timing constraint; //List for storing timing constraints
}
class diagram:(class dia id { //Unique id for Class diagram

global scope.class=new ArrayList();
global scope.c method=new ArrayList();
global scope.c stereo=new ArrayList();
global scope.c tim con=new ArrayList();
}) (td id {

if(global scope.timing diagram.equals($td id.text))
//Try to find out if the current token exists in Timing diagram

global scope.c timing diagram=$td id.text; //Adding Timing diagram id
}) classes+ relation*;
td id: TID;
classes: (class id {

//Semantic actions
if(global scope.par.contains($class id.text))

//Try to find out if the current token exists in Timing diagram
if(!global scope.class.contains($class id.text)) //Checking uniqueness of classes
global scope.class.add($class id.text); //Adding classes in list

}) cname method class* attribute* c annotation;
cname: CHAR;
class dia id:CID; attribute: Access specifier? Data type attribute name;
attribute name: CHAR;
method class: (method ID {

//Semantic actions
if(global scope.par method.contains($method id.text))

//Try to find out if the current token exists in Timing diagram
if(!global scope.c method.contains($method id.text)) //Checking uniqueness of methods

global scope.c method.add($method id.text); //Adding methods in list
}) Access specifier Data type method name ’(’parameter list’)’ c annotation;
c annotation: c stereotype* c timing cons*;
c stereotype : (c streo id {

//Semantic actions
if(global scope.stereo.contains($c stereo id.text))
//Try to find out if the current token exists in Timing diagram
if(!global scope.c stereo.contains($c stereo id.text))
//Checking uniqueness of stereotypes

global scope.c stereo.add($c stereo id.text); //Adding stereotypes in list
}) stereotype name ’{’c tag+’}’;
c tag: c tag name c tag value;
c tag name: CHAR;
c tag value:CHAR;
c timing cons: (c cons id {

//Semantic actions
if(global scope.timing constraint.contains($c cons id.text))
//Try to find out if the current token exists in Timing diagram
if(!global scope.c tim con.contains($c cons id.text))
//Checking uniqueness of timing constraints

global scope.c tim con.add($c cons id.text); //Adding timing constraints in list
}) c type c desc ;
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c streo id: STID;
stereotype name :’<<’CHAR’>>’;
class id:PCID;
c cons id: TCID ;
c type : ’delay’|’duration’|’deadline’ ;
c desc: CHAR ;
method ID : MTID;
method name:CHAR;
parameter list: parameter* ;
parameter: Data type parameter name ;
parameter name: CHAR ;
relation: cname multiplicity* cname relationship ;
relationship: class id description Type | class id Type;
multiplicity: DIGIT ’..’ DIGIT ;
Access specifier: ’+’ |’-’| ’#’;
description: CHAR;
Data type: CHAR;
Type: ’aggregation’ |’association’ |’generalization’ ;
//lexer
TID : (’T’|’t’)(′0′..′9′)+ ;
CID : (’C’|’c’)(′0′..′9′)+ ;
PCID : (’PC’|’pc’)(′0′..′9′)+ ;
MTID : (’MT’|’mt’)(′0′..′9′)+ ;
TCID : (’TC’|’tc’)(′0′..′9′)+ ;
STID : (’ST’|’st’)(′0′..′9′)+ ;
DIGIT : (′0′..′9′)+ ;
CHAR : (’A’..’Z’|’a’..’z’|’≤’|’ ’) ;
WS : ( ’ ’ | ’\t’ | ’\r’ | ’\n’ ){$channel=HIDDEN;};
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drigo Lange. Implementation and Evaluation of the Synchronization Protocol

Immediate Priority Ceiling in PREEMPT-RT Linux. Journal of Software,

7(3):516–525, 2012.

[20] Jayeeta Chanda, Ananya Kanjilal, Sabnam Sengupta, and Swapan Bhat-

tacharya. Traceability of requirements and consistency verification of UML

Use case, Activity and Class diagram: A Formal approach. In Methods and

Models in Computer Science, 2009. ICM2CS 2009. Proceeding of International

Conference on, pages 1–4. IEEE, 2009.

[21] Marsha Chechik and John Gannon. Automatic analysis of consistency be-

tween requirements and designs. IEEE Transactions on Software Engineering,

27(7):651–672, 2001.

[22] Min-Ih Chen and Kwei-Jay Lin. Dynamic priority ceilings: A concurrency

control protocol for real-time systems. Real-Time Systems, 2(4):325–346, 1990.

[23] Zhenbang Chen, Zhiming Liu, Anders P Ravn, Volker Stolz, and Naijun Zhan.

Refinement and verification in component-based model-driven design. Science

of Computer Programming, 74(4):168–196, 2009.

[24] Jinho Choi, Eunkyoung Jee, and Doo-Hwan Bae. Timing consistency checking

for UML/MARTE behavioral models. Software Quality Journal, 24(3):835–

876, 2016.



References 175

[25] Jane Cleland-Huang, Carl K Chang, and Mark Christensen. Event-based

traceability for managing evolutionary change. IEEE Transactions on Software

Engineering, 29(9):796–810, 2003.

[26] Jane Cleland-Huang, Raffaella Settimi, Chuan Duan, and Xuchang Zou. Uti-

lizing supporting evidence to improve dynamic requirements traceability. In

Requirements Engineering, 2005. Proceedings. 13th IEEE International Con-

ference on, pages 135–144. IEEE, 2005.

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2009.

[28] Miguel A de Miguel. General framework for the description of QoS in UML.

In Object-Oriented Real-Time Distributed Computing, 2003. Sixth IEEE In-

ternational Symposium on, pages 61–68. IEEE, 2003.

[29] Shouvik Dey and Swapan Bhattacharya. Formal Specification of Structural

and Behavioural Aspects of Design Patterns. Journal of Object Technology,

9(6):99–126, 2010.

[30] Brian Dobing and Jeffrey Parsons. Dimensions of UML diagram use: a survey

of practitioners. Journal of Database Management, 19(1):1, 2008.

[31] Bruce P Douglass. Designing Real-Time Systems with UML-Part II. Embedded

Systems Programming, 11:42–65, 1998.

[32] Bruce Powel Douglass. Real time UML: advances in the UML for real-time

systems. Addison-Wesley Professional, 2004.

[33] Steve Easterbrook and Marsha Chechik. Automated paraconsistent reasoning

via model cheking. In Proceedings of IJCAI Inconsistency Workshop, volume 8,

Aug 2001.

[34] Alexander Egyed. Scalable consistency checking between diagrams-The

VIEWINTEGRA Approach. In Automated Software Engineering, 2001.(ASE



References 176

2001). Proceedings. 16th Annual International Conference on, pages 387–390.

IEEE, 2001.

[35] Alexander Egyed. A scenario-driven approach to trace dependency analysis.

IEEE Transactions on Software Engineering, 29(2):116–132, 2003.

[36] Alexander Egyed. Automatically detecting and tracking inconsistencies in soft-

ware design models. IEEE Transactions on Software Engineering, 37(2):188–

204, 2011.

[37] Alexander Egyed and Paul Grunbacher. Identifying requirements conflicts

and cooperation: How quality attributes and automated traceability can help.

IEEE Software, 21(6):50–58, 2004.

[38] Mohammed El Shobaki. On-chip monitoring for non-intrusive hardware/soft-

ware observability. PhD thesis, Uppsala University, 2004.

[39] Davide Falessi, Massimiliano Di Penta, Gerardo Canfora, and Giovanni Can-

tone. Estimating the number of remaining links in traceability recovery. Em-

pirical Software Engineering, 22(3):996–1027, 2017.

[40] Flávio Fernandes and Mark Song. UML-Checker: An Approach for Verifying

UML Behavioral Diagrams. Journal of Software, 9(5):1229–1236, 2014.

[41] Stephan Flake and Wolfgang Mueller. A UML profille for Real-Time Con-

straints with the OCL. In International Conference on the Unified Modeling

Language, Berlin, Heidelberg, pages 179–195. Springer, 2002.
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