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Abstract

Single-mode optical fiber, through which information is communicated via single mode, has

emerged as the most effective medium of optical communication systems (OCS) in the

context of broadband transmission. The operating wavelength of OCS is selected in the

wavelength band ranging from 1.3 μm to 1.6 μm since the optical fiber made of silica is

characterised by minimum attenuation loss to the extent of 0.15 dB/Km at the wavelength

1.55 μm and almost zero material dispersion at the wavelength 1.3 μm. Again, by shifting

the zero dispersion wavelength to 1.55 μm region, one can obtain minimum attenuation loss

as well as low dispersion simultaneously and this will lead to long repeater less transmission

together with large band width. Fibers of this kind are known as dispersion-shifted fibers.

Further, the operating wavelength of Erbium-doped fiber amplifier being 1.55 µm, the

dispersion-shifted fiber happens to be an important device in the field of all optical

technology. Moreover, in another type of fiber, known as dispersion-flattened fiber, almost

zero dispersion is obtained over a wide range of wavelengths. Fiber of this type is used for

increasing the information carrying capacity by the technique of wavelength division

multiplexing. Therefore, the dispersion-shifted and dispersion-flattened fibers are of

enormous importance in OCS as well as in various optical devices.

Thus, investigations of splice losses associated with single-mode dispersion managed fibers

in the context of OCS have emerged as a potential problem. In addition, the performance of

dispersion managed fibers as directional coupler, switches etc. can be investigated.  Further,

the presence of nonlinearity results in compression of pulse while dispersion causes

broadening of pulse and thus interplay between dispersion and nonlinearity leads to

propagation of optical beam as such. This is known as optical soliton, the study of which is

extremely important in present OCS. Side by side, the study of dual-mode optical fiber in the

context of optical fiber communication has also emerged as an interesting area of research.

The large negative waveguide dispersion of dual mode optical fiber can be utilized to

neutralise the positive dispersion and thus one can have broad band transmission of

information through such fiber. Again, the study of the influence of nonlinearity on the

fundamental modal field, the first higher order modal field and the associated characteristics

will prove beneficial to the communication technologists in terms dispersion management

and minimisation of modal noise as well.
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Further, the study of the launch optics involving laser diode to the optical fiber coupling via

microlenses on the fiber tip is also a potential problem in the area of OCS as well as

associated devices. Accordingly, microlenses of various shapes as well as fibers of different

refractive index profiles are being reported continuously in literature in order to maximise

the source to fiber coupling efficiency. The objective is to identify the suitable refractive

index profile of the fiber as well as the suitable microlens for maximum launch optics.

In chapter 1, the thesis presents the basics of fiber optics together with the relevant

mathematical formulation by using electromagnetic theory. This chapter also describes

briefly the technology of launch optics and other associated topics of interest. This chapter

also contains extensive literature survey concerned with the present investigation. The

objective and importance of the present work in the context of contemporary interest has

also been presented and also the scope of the work in terms of its application in future

research work has also been suggested.

In chapter 2, the series expression of fundamental modal field based on Chebyshev

technique is employed to prescribe analytical expressions for splice losses in single-mode

dispersion-shifted trapezoidal as well as dispersion-flattened graded and step W fibers. The

formulated expressions are used to estimate the concerned losses in case of some typical

fibers of the said kinds. It has been also shown that our results match excellently well with

the available exact results, which are obtained by extensive computations. But, the execution

of our formalism is simple and thus it is expected to benefit the system engineers.

In chapter 3, using the coupled-mode theory and the said Chebyshev power series expression

for fundamental mode of dispersion managed fiber, we prescribe analytical formulation of

normalised coupling length in terms of fiber to fiber separation for a directional coupler

containing two identical single-mode dispersion managed fibers. The said estimations have

been made for directional couplers corresponding to some typical dispersion-shifted

trapezoidal as well as dispersion-flattened graded and step W fibers and the results obtained

are found to be agreeing excellently with the available numerical results in case of

directional coupler formed of two identical single-mode graded index fibers. The analysis is

simple and as such it will prove used friendly to technologists who are working in the field

of optical technology.

In chapter 4, we develop a simple iterative method involving Chebyshev formalism to

predict the modal field of single mode graded index fiber both in presence and in absence of
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Kerr-type nonlinearity. In chapter 5, we also report evaluation of first higher order modal

field for dual- mode graded index optical fiber. Here also, the study is carried out both in

absence as well as in presence of Kerr nonlinearity. The analyses in both chapters 4 and 5

are based on simple iterative method involving Chebyshev formalism. Taking some typical

step and parabolic index fibers as examples in both cases, we show that our results match

excellently with the available exact results obtained rigorously by applying finite element

method. Thus the reported technique can be considered as an accurate alternative to the

existing cumbersome techniques.

Chapter 6 deals with the conclusions derived from the investigations made. This chapter

surfaces the merit of the investigation from the stand point of current research work.

The chapter 6 is followed by “Appendices” and “References”.
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CHAPTER-1
INTRODUCTION
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1.1 BASICS OF FIBER OPTICS

Fig.1.1 Step index fiber with core refractive index n1, cladding refractive index n2

and core radius a.

In the present age of information technology, optical fibers have emerged as the most important

subject of research and development. Optical fibers are being extensively used in

communication, signal processing, sensors etc. Optical fiber communication system is

characterised by low loss and high bandwidth and this is why it has the ability to ensure efficient

transmission of signal containing enormously large information traffic. An optical fiber basically

contains a thin cylindrical dielectric core and the core is surrounded by a coaxial cylindrical

dielectric shell which is known as cladding. The refractive index of cladding is kept slightly less

than that of the core and the refractive index profile of the core is tailored suitably depending on

its application. The fibers are named according to the nature of refractive index distribution

inside the core. The fiber core having uniform refractive index inside the core is called step index

fiber. There are other kinds of fibers like graded index fiber, trapezoidal fiber, graded W fiber,

step W fiber etc., which possess nonhomogeneous refractive index distribution inside the core.

The refractive index distribution inside core (n) versus normalised radial distance (R) of some

typical fibers have been presented in the following figures. Here, R is equal to r/a, with r being

the radial distance from the axis of the core and a being the core radius.

Cladding

Cladding

Coren1

n2

a
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Fig. 1.2: Step index fiber                              Fig. 1.3: Graded index fiber

Fig. 1.4: Dispersion-shifted
trapezoidal fiber

Fig. 1.5: Dispersion-flattened
graded W fiber

Fig. 1.6: Dispersion-flattened
step W fiber
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The fiber material is abundantly available silica which is doped with suitable elements like 

germanium oxide for creation of slight refractive index difference between core and cladding in 

order to minimise pulse dispersion and scattering loss as well (Neumann, 1988). The optical fiber 

is kept jacketed to protect it from damage due to external causes. The attenuation loss in optical 

fiber was due to impurity and its value was about 20dB/Km (Kapron, Keck and Maurer, 1970). 

Later purification technology advanced significantly and thus it became possible to reduce 

attenuation loss to nearly 0.15 dB/Km at the wavelength 1.55 µm (Kanamori, Yokota, Tanaka, 

Watanabe, Ishiguro, Yoshida, Kakii, Itoh, Asano, and Tanaka, 1986) and nearly 0.35dB/Km at 

the wavelength 1.3 µm (Jablonowski, 1986). 

Optical pulses carrying information through optical fiber generate various modes inside the fiber. 

The physics of various modes can be understood by making electromagnetic analysis with the 

help of Maxwell’s equations. A mode can be defined as a specific transverse distribution of 

electromagnetic field and it is characterised by specific group velocity, state of polarisation and 

propagation constant as well. Taking into consideration the number modes supported by the 

fiber, the fiber is called single-mode or dual-mode or multimode. The fiber carrying the 

fundamental mode only is called single-mode fiber while the fiber carrying the fundamental as 

well as first higher order mode is called the dual-mode fiber. Besides these, there are multimode 

fibers supporting many modes inside them. Normally core diameter of single-mode fiber ranges 

between 5 and 10 µm while that of multimode fiber is around 50 µm. The cladding diameter is, 

however, around 125 µm in both kinds of fibers. 

An important propagation parameter known as normalised frequency or V number characterises 

a fiber in terms of its mode support. Each mode is characterised by a cut-off V number below 

which it cannot propagate. Accordingly, V number of single-mode fiber is kept below the cut-off 

V number of first higher order mode so that propagation of only the fundamental mode is 

allowed inside the fiber. Optical communication systems are usually operated in the wavelength 

range from 1.3 to 1.6 µm since it has low attenuation loss (~ 0.15 dB/km) at the wavelength 1.55 

μm and the material dispersion vanishes around the wavelength 1.3 μm. For long distance 

communication of large information with minimum number of repeaters, attenuation and 

dispersion are two important factors relating to the guidance of information through the fiber.  
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The dispersion causes broadening of a particular mode. The dispersion consists of three

components namely waveguide dispersion, material dispersion and composite profile dispersion.

The waveguide dispersion is due to the dependence of propagation constant on the wavelength

while material dispersion arises due to the dependence of the refractive indices of the core and

cladding on the wavelength. The composite profile dispersion is proportional to the derivative of

relative core-cladding refractive index difference with respect to wavelength. The value of the

composite profile dispersion is less than 0.5ps/ (km nm) and thus it can be neglected from

practical point of view. In case of multimode fiber, intermodal as well as intramodal dispersions

are both present resulting in large broadening of optical pulse as it propagates through the fiber.

Thus, multimode mode fiber is not suitable in the context of long distance communication of

information. On the other hand, single-mode fiber, which permits guidance of only the

fundamental mode, is free of intermodal dispersion. Thus, optical communication using single-

mode fiber is more suitable in comparison to communication system using multimode fibers.

It can be mentioned in this connection that narrow spectral width of the light source used in

communication system causes both material and waveguide dispersion leading to broadening of

the pulse. In fibers made of silica, waveguide dispersion and material dispersion are of opposite

signs in the wavelength range 1.3 to 1.8 µm. The fiber parameters can be judiciously selected so

that the material dispersion nuetralises the waveguide dispersion at any wavelength of choice in

the said wavelength band. In case of silica, the zero material dispersion occurs around 1.274 μm

(Cohen, Lin and French, 1979; Neumann, 1988; Ghatak and Thyagarjan, 1998; Tian, Markov,

Wang and Skorobogatiy, 2015) while the waveguide dispersion shifts the zero material

dispersion wavelength towards longer wavelength. Usually, core radius of the fiber and the

refractive index profile inside the core are suitably adjusted so that zero material dispersion

wavelength is obtained at 1.55 μm (Cohen, Lin and French, 1979; Neumann, 1988; Ghatak and

Thyagarjan, 1998). Fiber of this kind is called dispersion shifted fiber (Paek, 1983). This kind of

fiber favours long repeater less communication having large bandwidth. Moreover, there is

another type of fiber where almost nil dispersion is achieved over a range of wavelengths. Fiber

of this kind is called dispersion flattened fiber (Mishra, Hosain, Goyal and Sharma, 1984) which

enhances the information carrying capacity by wavelength division multiplexing (Olsson,

Hegartz, Logen, Johnson, Walker, Cohen, Kasper and Campbell, 1985). Side by side, efforts are
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being made continuously in order to shape the refractive index profile in such a way that the first

higher order cut-off V number is increased. This leads to large core radius and smaller splice

loss.

Moreover, the study of dual-mode optical fiber has also generated tremendous interests (Spajer

and Charquille, 1986; Eguchi, 2001; Eguchi, Koshiba and Tsuji, 2002; Amin, Ali, Chen and

Shieh, 2011). In case of dual-mode optical fiber, the large negative waveguide dispersion

associated with first higher mode can be used to nullify the positive dispersion. Thus, a

dispersion compensated dual mode fiber can be designed so that it operates around the

wavelength 1.55 µm which also happens to be the wavelength at which erbium-doped fiber

amplifier usually works (Pedersen, 1994). It has been also found that double-layer profile core

dispersion shifted fibers possess less bending and transmission losses in comparison to

dispersion shifted fibers having simple core-cladding design (Monerie, 1982).

Therefore, a dual mode fiber with a double layer profile emerges as an important optical

communication medium in terms of its low bending loss, low transmission loss and dispersion

compensation around the wavelength 1.55 µm. It deserves mentioning in this connection that

group delay between the first higher order mode and fundamental mode is utilised successfully in

the technology of sensors. Moreover, method has been developed for separate evaluation of

losses associated with fundamental and higher order mode (Ohashi, Kitayama, Kobayashi and

Ishida, 1984). Again, excitation of dual-mode fiber by ultra-short laser pulse leads to generation

of both the fundamental and the first higher order mode and this method has been utilised for

study of various propagation characteristics associated with first higher order mode (Ohashi,

Kitayama, Kobayashi and Ishida, 1984). Thus, study of dual mode fiber in presence as well as in

absence of various kinds of nonlinear and doping elements, has generated tremendous interests.

The dispersion for graded index fiber is less compared to that for step index fiber. Thus, use of

graded index fiber in optical communication enhances the bandwidth of transmission.

Accordingly, prescription of simple but accurate formalism for prediction of propagation

characteristics related to fundamental as well as first higher mode in different fibers is

proliferating in literature. Again, development of general framework for study of light wave

propagation through the optical fiber requires electromagnetic analysis. Thus, one needs to solve

vector wave equations in order to obtain electric and magnetic field vectors. However, graded
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index fibers used for communication purpose are characterised by very small relative core

cladding refractive index difference (less than 0.5%). Such fibers are called weakly guiding

fibers (Neumann, 1988; Ghatak and Thyagarjan, 1998) and in case of such fibers, the vector

wave equations can be approximated as scalar wave equations without sacrifice of accuracy. The

said approximation is called weakly guiding approximation. In fact, it can be shown that for the

said kinds of fibers, the propagation parameters found by using complicated vector wave

equations differ insignificantly from those found from scalar wave equations (Gloge, 1971).

The analysis on the basis of scalar wave equation shows that modes in the fibers are almost

linearly polarized with very small longitudinal components. It is relevant to mention in this

context that analytical solution for scalar wave equation is available for step index fiber only.

Besides step index fiber, one needs to apply either numerical or variational (Pattojoshi and

Hosain, 1998; Chaudhuri and Roy, 2007; Khijwania, Nair and Sarkar, 2009; Ghosh, Roy

and Bhadra, 2010; Behera, Hosain and Pattojoshi, 2011; Mallick and Sarkar, 2014) technique in

order to obtain the solution of scalar wave equation.

The single parameter variational technique (Marcuse, 1978) provides analysis in a simple fashion

but the results found lack accuracy. The double parameter variational technique permits the

analysis in an accurate fashion but the concerned execution involves complicated computations

(Hossain, Sharma and Ghatak 1982; Mishra, Hosain, Goyal and Sharma, 1984; Ankiewicz and

Peng, 1992).

Thus, the literature of fiber optics requires expressions for fundamental as well as higher order

modal fields for various kinds of fibers. The concerned prescription will allow one to predict the

propagation parameters associated with each mode in case of each kind of fiber. Further, it can

be mentioned in this connection, a simple power but accurate power series form of fundamental

modal field of graded index fiber based on Chebyshev formalism is available in literature

(Gangopadhyay, Sengupta, Mondal, Das and Sarkar, 1997). This method involves use of a linear

formulation of
)(

)(

0

1

WK

WK with
W

1 over a long and practical range of W values ( 5.26.0 W ).

For the sake of simplicity, only the first four terms in the series expression for the fundamental

mode of graded index fiber, is retained. Still, it has been shown that the modal fields evaluated
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by this simple formalism match excellently with the exact results found by cumbersome

computations. Moreover, the application of this simple formulation for the purpose of estimation

of different propagation parameters of single-mode graded index fibers has produced excellently

accurate results (Gangopadhyay, Sengupta, Mondal, Das and Sarkar, 1997; Gangopadhyay and

Sarkar, 1997a, 1998a, 1998b; Gangopadhyay, Choudhury and Sarkar, 1999).

The said formalism for prediction of fundamental mode of graded index fiber has also been

extended to the concerned study in the low V region with some minor modification. In the low V

region, linear least square fitting technique is applied in order to formulate linearly
)(

)(

0

1

WK

WK as a

function of
W

1 for different short intervals of W (Patra, Gangopadhyay and Sarkar, 2000).

It has also been shown that application of this simple series formulation appropriate for low V

number has resulted in accurate prediction of different propagation parameters associated with

graded index fiber of low V number like V<1.9 and V<1.4 for parabolic and step index fibers

respectively (Patra, Gangopadhyay and Sarkar, 2001a; Patra, Gangopadhyay and Sarkar, 2001b).

The extension of this simple series expression for fundamental mode has also been made for

study of dispersion shifted as well dispersion flattened fibers (Bose, Gangopadhyay and Saha,

2012c). The execution of this formalism is simple and the results found have been shown to be

excellent. As mentioned earlier, the dual-mode fiber has also emerged as a potential medium of

transmission of information and thus study of first higher order modal field is also an important

matter. In this context, it can be mentioned that analytical expression for first higher order modal

field is available only in case of step index fiber.  Still, its execution for prediction of different

propagation parameters related to first higher order mode involves lengthy computation owing to

the presence of modified Bessel functions.

Existing numerical methods (Sharma, Goyal and Ghatak, 1981) for evaluation of first higher

order modal field in case of graded index fiber, however, require rigorous computation involving

a lot of time and as such these methods are not suitable from practical point of view.

The Chebyshev formalism for prediction of first higher order mode cut-off V number in case of

graded index fiber is available in literature (Chen, 1982; Shijun, 1987). The concerned
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calculations require solution of an equation involving a third order determinant and the execution

can be even made with the help a pocket calculator. Thus, this formulation will prove extremely

advantageous to the system engineers. In this context, literature has been further enriched by

formulation of power series expression for first higher order modal field of graded index fiber

(Patra, Gangopadhyay and Goswami, 2008). This simple power series formulation has been

found to be excellent in estimating different propagation parameters related to first higher order

mode of graded index fiber (Bose, Gangopadhyay and Saha, 2011a; Bose, Gangopadhyay and

Saha, 2011b; Bose, Gangopadhyay and Saha, 2012a).

Any optical communication system comprising single-mode optical fibers involves splice losses

and thus literature requires prescription of simple but accurate formalism for prediction of

transmission coefficients at the splice (Hosain, Sharma and Ghatak 1982; Gangopadhyay,

Choudhury and Sarkar, 1999; Debnath and Gangopadhyay, 2016) in presence of practical

transverse and angular mismatches. The necessary prediction, however, requires accurate

knowledge of fundamental mode of concerned kind of fiber. Accordingly, one may be motivated

to apply the simple series expression for fundamental mode for the needful prediction. Further,

as regards study of optical devices like filters, fiber Bragg grating, directional couplers etc. (Lam

and Garside, 1981; Gaylord and Moharam, 1985; Kersey, Berkoff and Morey, 1993; Jung, Nam,

Lee, Byun and Kim, 1999; Sanyal, Gangopadhyay and Sarkar, 2000; Fang, Liao and Wang,

2010; Dai, Wang and Bowers, 2011), one may also be motivated to apply the said simple series

formulation of the modal field.

Fig. 1.7 (a) Angular mismatch  at the splice; (b) Transverse mismatch d at the splice
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Thus, the said Chebyshev based formalism for study of propagation parameters related to

fundamental as well as first higher order mode in case of graded index dispersion managed

fibers, requires more attention for study of related fiber optic components. Side by side, attempts

are being constantly made in order to maximise laser source to fiber excitation efficiency.

Further, in the area of coupling optics, different kinds of microlenses on tips of fibers are being

fabricated for maximum coupling efficiencies (Saruwatari and Nawata, 1979; Ghafouri-Shiraj

and Asano, 1986; Sarkar, Pal and Thyagrajan, 1986; Ghafouri-Shiraj, 1988; Hillerich and

Guttmann, 1989; Modavis and Webb, 1995; An, 2000; Rahman, Takahashi and Teik, 2002,

2003; Thual, Chanclou, Gautreau, Caledec, Guignard and Besnard, 2003; Liu, Liren, Rongwei

and Zhu, 2005; Sambanthan and Rahman, 2005; Hu, Lin, Hung, Yang and chao, 2008; Liu,

2008; Chao, Hu, Hung and Yang, 2010; Huang and Yang, 2010; Yang, Chen, Ro and Liang,

2010; Mukhopadhyay, 2016). In this context, a microlens on the fiber tip will be most efficient

coupler provided it has focal length which leads to matching of laser and fiber modes, it has

aperture large enough to collect the entire input radiation and it is free of spherical aberration

(Presby and Edwards, 1992; Edwards, Presby and Dragone, 1993). Incidentally, a hyperbolic

microlens on the fiber tip satisfies all the said criteria and thus it can produce coupling efficiency

around 100% at a particular focal length (Presby and Edwards, 1992). Moreover, the fabrication

of hyperbolic microlens on the fiber tip requires sophisticated laser micromachining technique.

Hemispherical microlens on account of mode mismatch, spherical aberration and limited

aperture is not efficient in respect of coupling. But its fabrication on the fiber tip can be done by

simple photolithographic technique and this is why it is being widely used as a coupler in spite of

its slightly less coupling efficiency (Edwards, Presby and Dragone, 1993).

The evaluation of excitation efficiency on the basis of phase matching technique requires

complicated numerical integrations. However, ABCD matrix (Massey and Siegman, 1969;

McMullin, 1986; Yariv, 1991) technique has made the prediction of coupling optics simple but

accurate (Gangopadhyay and Sarkar, 1996, 1997b, 1998c, 1998d, 1998e; Mukhopadhyay,

Gangopadhyay and Sarkar, 2007, 2010; Huang and Yang, 2010; Mukhopadhyay and Sarkar,

2011). Side by side, tapered lenses of different profiles (Mondal, Gangopadhyay and Sarkar,

1998; Mukhopadhyay, Gangopadhyay and Sarkar, 2010) as well as suitable refractive index

profiles inside fibers (Mukhopadhyay and Sarkar, 2011; Bose, Gangopadhyay and Saha, 2012b)
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are being designed in order to achieve maximum coupling efficiency. In this context, relevant

ABCD matrix for each kind of device is formulated for the prediction of coupling optics in

simple but accurate fashion. It is relevant to mention in this connection that modal spot size

(around 5 µm) has to match with the small spot size (around 1 µm) of incident laser beam for

maximum coupling efficiency. Suitable lensing system increases the size of laser beam spot size

so that it becomes comparable to the fiber spot size. Accordingly, one can be motivated to carry

on extensive investigations for prediction of cost effective coupler clubbed with prescription of

user friendly formalism.

Fig 1.8: Schematic diagram of microlens on the tip of the fiber
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Fig. 1.9: Schematic diagram of tapered microlens drawn on optical fiber

In long haul communication system involving optical fibers, it is necessary to install optical

amplifier between two communicating fibers for the purpose of amplifying the weak signal

(Pedersen, 1994; Ghatak and Thyagarajan, 1999; Ono, Yamada and Shimizu, 2003; Thyagarajan

and Kakkar, 2004a, 2004b). These optical amplifiers placed periodically, amplify the attenuated

signals directly. Thus, the complicated process of conversion of optical signal to electrical signal,

then amplification by electronic amplifier and finally restoring it to optical signal is avoided.

Thus, the rare earth doped fiber amplifier emerges as a potential device in present optical

communication system.

In this context, the efficient performance of such amplifier demands extensive study in terms of

signal wavelength as well as doping material. As an optical amplifier, Raman gain amplifier has

also shown its merit (Felinskyi and Dyriv, 2016; Tan, Rosa, Le, Iqbal, Phillips and Harper,

2016). Thus, there is enough scope for prescription of new design as well as concerned simple

but accurate formalism for study of fiber amplifier.

Another emerging area is the study of propagation characteristics of optical fiber in presence of

nonlinearity (Tomlinson, Stolen and Chank, 1984; Tai, Tomita, Jewell and Hasegawa, 1986;

Snyder, Chen, Poladian and Mitchel, 1990; Goncharenko, 1990; Agrawal and Boyd, 1992).

Nonlinearity can be catagorised as third order, fifth order etc. including saturable nonlinearity

(Saitoh, Fujisawa, Kirihara and Koshiba, 2006). Intensity of optical beam as well as the nature of
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doping material, decide which kind of nonlinearity will be generated (Agrawal, 2013). The

presence of nonlinearity causes pulse compression while dispersion broadens the pulse. Thus,

suitable interplay between dispersion and nonlinearity leads to transmission of optical pulse as

such (Agrawal and Boyd, 1992). This is known as propagation of temporal soliton (Herr, Brasch,

Jost, Wang, Kondratiev, Gororodetsky and Kippenberg, 2014), the study of which has generated

huge interest in the field of fiber optic communication as well as integrated photonics (Lu, Lee,

Rogers and Lin, 2014). Another interesting area developed by nonlinearity is the study of spatial

soliton (Sammut, Li and Pask, 1992; Gangopadhyay and Sarkar, 2001; Zhang, Huo and Duan,

2016) where diffraction effect is neutralized by change of refractive index profile due to

nonlinearity. Thus, propagation of spatial soliton takes place spatially in undistorted form.

Moreover, spatial and temporal solitons combined together generate light bullets which travel

without distortion temporally as well as spatially (Yeh, 1994; Synder and Mitchell, 1997;

Mihalache, 2012; Biswas, Mirzazadeh, Eslami, Zhou, Bhrawy and Belic, 2016). Thus,

investigations relating to different propagation parameters of spatiotemporal solitons (Sharka,

Berezhiani and Miklaszewski, 1997; Xu, Jovanoski, Bouasla, Triki, Moraru and Biswas, 2013;

Zhou, Mirzazadeh, Zerrad, Biswas and Belic, 2016) have also emerged as potential area of

research.



14

1.2 ELECTROMAGNETIC ANALYSIS OF OPTICAL FIBER

In case of a linear, isotropic, non-conducting, non-magnetic fiber material (Ghatak and

Thyagarjan, 1999), Maxwell’s equations for the fiber material can be given by
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



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(1.1)
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where, E


, H


and B


represent the electric intensity, magnetic intensity and magnetic induction

vectors respectively.  Here, D


represents the electric displacement vector which is given as

EnD
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2
0 (1.2)

where 0 , 0 and n stand for the magnetic permeability of free space, the permittivity of free

space and the refractive index of the corresponding medium respectively. Use of Eqs. (1.1) and

(1.2) lead to the following vector wave equations

0.
2

2
2

002

2
2 











 


t

E
n

n

n
EE




 (1.3)

    0
1

2

2
2

00
2

2
2 





t

H
nHn

n
H




 (1.4)



15

In case of inhomogeneous medium, Eq. (1.3) shows that equations for Ex, Ey and Ez are coupled

while Eq. (1.4) shows that equations for Hx, Hy and Hz are also coupled.

Further, we consider a refractive index profile which possesses translational invariance along the

direction of propagation (Z axis) of a particular optical waveguide.  Thus, we can write

),(22 yxnn  (1.5)

Accordingly, the time and Z dependent parts of electric (or magnetic) field should be of the form

exp (±iωt) and exp (±iβz) respectively.

Thus, in case of such refractive index profile, the solutions of Eqs. (1.3) and (1.4) can be given as

     tzjeyxEtzyxE   ,,,,


=       tzj
zt eyxEyxE   ),,


(1.6)

     tzjeyxHtzyxH   ,,,,


=       tzj
zt eyxHyxH   ,,


(1.7)

Here, tE


(or tH


) and zE


(or zH


) are the transverse and longitudinal components of electric (or

magnetic) field vectors respectively in the Cartesian coordinates system while  represents the

propagation constant.

Employing Eq. (1.6) in Eq. (1.3), one can obtain the vector wave equation for tE


as follows

     2222
0

2 ln.., nEEyxnkE tttttt 


 (1.8)

where,
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Here, 0k represents the free space wave number.

In order to get minimum pulse dispersion and scattering loss simultaneously, the manufacturers

of optical fibers maintain small relative core cladding refractive index difference. This condition

is termed as weakly guiding condition. This condition, which is also known as scalar wave

approximation, allows one to neglect the term on the right hand side of Eq. (1.8). Accordingly,

Eq. (1.8) reduces to

   0, 222
0

2  fyxnkft  (1.10)

The x or y component of  yxE ,


is denoted by f while 2
t represents the scalar Laplacian

operator.

Further, since the optical fiber has cylindrical symmetry, the refractive index depends on the

radial coordinate only and thus it is convenient to write )(),( 22 rnyxn  and use cylindrical

coordinates for the necessary electromagnetic analysis of the fiber.

Accordingly, Eq. (1.10) can be written as
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We can solve Eq. (1.11) by using separation of variables method since the medium has

cylindrical symmetry. Thus, we write

      Frrf , (1.12)

Employing Eq. (1.12) in Eq. (1.11), we have
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Here, l is a constant.

Eq. (1.13) leads to the following relation
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The solution of Eq. (1.14) can be given as

 lorlF cossin)(  (1.15)

The corresponding boundary condition   )(2  FF  gives l= 0, 1, 2…etc., where the

constant l is called the azimuthal mode number. It deserves mentioning in this connection that

the negative values of l correspond to the same field distribution.

Further, Eq. (1.13) also gives the following equation for )(r
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For a given value of l and a prescribed set of values of the fiber parameters, Eq. (1.16) leads to a

finite number of allowed solutions for 2 which can be presented as ,.........,, 2
3

2
2

2
1 lll  etc.  Thus

the general representation of those can be written in the form of 2
lm with m being 1, 2, 3,….etc.

The corresponding modes are known as LPlm (linearly polarized) modes while ‘m’ is termed as

radial mode number. For example, 11 stands for the propagation constant corresponding to first
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solution of Eq. (1.16) for l =1. The corresponding mode is known as LP11 mode. Here, the term

LP denotes linearly polarized mode.

In case of weakly guiding fiber, the refractive index profile is given by

))(21()( 2
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2 RfnRn  , 1R

,)( 2
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1 2/)( nnn  with 1n and 2n being the  refractive indices

of the core axis and the cladding respectively.

The shape of the refractive index profile is represented by )(Rf .

Eqs. (1.16) and (1.17) lead to the following equation
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Here,   2/12
2

2
10 nnakV  is known as the normalized frequency or the dimensionless frequency

or simply V number of the fiber and   2/12
2

2
0

2 nkaW   is the cladding decay parameter.

In case of fundamental mode ( 0l  ), Eqs. (1.18) and (1.19) are respectively given by
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For large value ofWR , the solution of Eq. (1.21) can be approximated as
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Eq. (1.22) shows that the electric field inside the cladding decays almost exponentially as a

function of WR. Accordingly, W is called the cladding decay parameter.

Moreover, for a particular refractive index profile, the number of allowed values of  , which

gives the number of LP modes propagating through the fiber, depends on ‘a’, ‘n1’, ‘n2’ and 

and thus on the normalized frequency ‘V’.

The propagation constant for guided mode in optical fiber, which decays in an exponential

manner inside the cladding, must satisfy the following condition

1020 nknk   (1.23)

It is clearly seen that in case 20nk , the mode is cut off and this mode leaks into cladding

instead of being guided through core. Such modes are known as leaky modes.

1.3 OBJECTIVE AND SCOPE OF THE THESIS

Dispersion-shifted as well as dispersion-flattened optical fibers have emerged as an important

media in the field of optical technology. The design of optical communication system involving

such dispersion managed fibers requires accurate knowledge of splice losses. In this context, the

fundamental modal field associated with each kind of said fibers has to be known accurately.

Moreover, it is desirable that the expression for the field should be simple so that concerned

evaluations can be executed easily with sufficient accuracy.
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Literature has been already enriched with the Chebyshev power series expressions for

fundamental modes of dispersion-shifted as well as dispersion-flattened fibers. The simplicity

and the accuracy of the power series expression in predicting different propagation parameters

associated with such dispersion managed fibers have motivated us to employ the concerned

power series expressions for evaluation of transmission coefficient at the splice in presence of

both transverse and angular mismatches. It may be mentioned in this connection that splices

being highly tolerant with respect to longitudinal separation, the investigations have been

restricted to transverse and angular mismatches only.

Directional coupler, consisting of two adjacent, parallel single mode optical fibers, use

evanescent field coupling. It has emerged as the most prospective device in the domain of

sensors, switches, filters etc.. The design of directional coupler requires knowledge of coupling

parameters relevant for particular field of use. Being motivated by the simplicity and accuracy of

the series expression for fundamental mode of each kind of dispersion managed fiber, we use the

coupled-mode theory together with series expression for fundamental mode in order to predict

the coupling characteristics of directional coupler made of two identical types of dispersion

managed fibers in a very simple but accurate manner.

Again, the power series formulation for the fundamental mode for graded index fiber by

Chebyshev technique has been found to be excellent in predicting accurately different

propagation parameters in simple fashion. This led us to develop a simple iterative method

involving the said power series expression in order to predict the modal field of single-mode

graded index fiber both in presence and absence of Kerr-type nonlinearity.

Further, dual-mode optical fiber has also emerged as a potential candidate in the field of optical

fiber communication system. Moreover, Chebyshev power series expression for first higher

order modal field in case of graded index fiber is available in literature. The said power series

expression has produced excellent results in predicting different propagation parameters

associated with first higher order mode in case of linear graded index fibers. Taking into

consideration that evaluation of first higher order modal field associated with Kerr-type

nonlinearity is also an important matter in the study of dual-mode fiber, we develop an iterative

technique in the context, using the Chebyshev power series expression for first higher order

modal field of graded index fiber.
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The excellent prediction of splice losses as well as coupling characteristics of directional coupler

by this simple formalism, generates ample scope for estimation of the said parameters involving

fibers of different kinds.

Our results for both fundamental as well as first higher order modal fields for graded index fiber

in presence of nonlinearity, match excellently well with the available exact results obtained by

finite element method quite rigorously. Thus, the investigations involve formulation of some

simple but accurate methods which will benefit the technologists. The execution of our

formalism for evaluation of the concerned parameters in all the cases is very simple and as such

it is user friendly. Further, the study made, leaves scope for extension of the formalism in

devices involving photonic crystal fibers, holey fibers etc. Side by side there is scope for

extension of our formalism in investigation involving different kinds of fibers having different

types of nonlinearity.

1.4 STRUCTURE OF THE THESIS

The chapter of Introduction presents literature survey concerned with the review of the

background and current scenario as well in the context of motivation of present work. The

investigations made, have been described in the next four chapters.  Finally, in chapter 6, the

conclusion relating to the investigations associated with the research work has been presented.

The thesis comprises three parts. The first part of the thesis has been presented in chapter 2,

where the thesis involves prescription of a simple but accurate method for prediction of splice

loss in single-mode dispersion- shifted trapezoidal as well as dispersion-flattened graded and step

W fibers. Further, splice being highly tolerant for longitudinal separation, the analysis of splice

loss relating to single-mode dispersion managed fiber in chapter 2 is judiciously restricted to the

case of transverse and angular mismatches only. Chapter 3 contains the second part of the thesis

where a novel, simple but accurate method has been developed for analysis of directional coupler

made of dispersion managed fibers.  The third part of the thesis is presented in chapters 4 and 5.

Chapter 4 contains prediction of fundamental modal field for graded index fiber both in presence

as well as in absence of Kerr-type nonlinearity while chapter 5 deals with prediction of first
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higher order modal field for graded index fiber both in presence and in absence of Kerr-type

nonlinearity.

Regarding the estimation of splice loss given in first part of the thesis, the series expression for

fundamental modal field appropriate for each kind of dispersion managed fiber is employed. It

deserves mentioning in this connection that this method uses a linear relation of the ratio of first

and zero-order modified Bessel function with reciprocal of cladding decay parameter. The

cladding decay parameter is estimated from an equation consisting of a fourth order determinant

(Bose, Gangopadhyay and Saha, 2012c). Simple but accurate analytical expressions for splice

losses are formulated. Choosing some typical dispersion-shifted trapezoidal and dispersion-

flattened graded and step W fibers, it has been shown that the concerned estimations match

excellently with the available exact results. Further, the evaluations based on the prescribed

formulations require little computations. Thus, this simple but accurate formalism is expected to

be of immense importance in the field of optical technology.

As done in chapter 2, we, in chapter 3 also, applied the series expression for fundamental mode

appropriate for each kind of dispersion-managed fiber. Analytical expressions for coupling

characteristics of directional coupler involving two identical dispersion-managed fibers are

prescribed. From the formulated expressions, one can easily select the normalised separation

between the axes of the two fibers belonging to the directional coupler so that the coupling

length remains less than 9.5 mm. The estimation is simple and as such it will prove user friendly

to the technologists who are working with such devices.

In chapter 4, we have prescribed a simple but accurate method based on iteration in order to

predict the modal field of single-mode graded index fiber in the presence as well as in absence of

Kerr-type nonlinearity. Here, we have used the series expression for fundamental mode of

graded index fiber developed by Chebyshev formalism and applied the iteration technique on it

for obtaining the modal field of single-mode graded index fiber in presence as well as in absence

of Kerr-type nonlinearity. The accuracy of this simple formalism may lead one to reconsider the

prescribed method as an accurate alterative to the existing cumbersome finite element method.

The execution of the formalism being simple, it will benefit the system users in the process of

minimization of modal noise due to nonlinearity.
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In chapter 5, we present evaluation of first higher order modal field for dual mode graded index

fiber in the presence as well as in absence of Kerr-type nonlinearity. The analysis uses the simple

series expression for first higher order modal field in case of graded index fiber. The said series

expression has been formulated by Chebyshev method and the analysis both in presence and in

absence of Kerr-type nonlinearity employs iterative technique involving the said series

expression. The execution of the formalism is very simple but the results found match

excellently well with the available exact results found by cumbersome finite element method.

Thus, the formalism developed may prove immensely important in the field of communication,

sensor etc. concerned with dual mode fiber.

In chapter 6, the conclusion relating to the research work has been presented in nutshell. There is

also “Appendices” section following chapter 6. Mathematical formulae used in the research work

have been presented in the section, ‘Appendices’. Finally, there is “References” section

containing the published papers and books wherefrom citations have been made in our

investigations. Further, the list of publications in the context of present work have also have also

been presented in the page just before the page containing the certificate from the supervisors.
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CHAPTER – 2

A SIMPLE BUT ACCURATE METHOD FOR

PREDICTION OF SPLICE LOSS IN SINGLE-MODE

DISPERSION-SHIFTED TRAPEZOIDAL AS WELL AS

DISPERSION-FLATTENED GRADED AND STEP W

FIBERS
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2.1 INTRODUCTION

Presently, single-mode optical fiber has emerged as an effective broad band medium of

communication. The optical fiber made of silica possesses minimum attenuation loss to the

extent of 0.15 dB/km at the wavelength 1.55 µm while its material dispersion becomes zero at

the wavelength 1.3 µm. This is the reason why long haul optical communication system operates

at wavelengths ranging from 1.3 to 1.6 µm. Further, if the wavelength for zero dispersion is

shifted to 1.55 µm, one achieves minimum attenuation loss and low dispersion simultaneously.

This provides large bandwidth system having appreciably long repeater less transmission. Such

fibers, known as dispersion-shifted fibers, can be produced by suitable change of the parameters

of the fiber (Paek, 1983; Ainslie and Day, 1986; Tewari, Pal and Das, 1992). In view of the fact

that Erbium-doped fiber amplifier operates at wavelength 1.55 µm, the dispersion-shifted fiber

emerges as a potential device (Pederson, 1994; Thyagarajan and Kakkar, 2004a). Moreover,

there is another type of fiber, where waveguide dispersion and the material dispersion almost

cancel out with each other over a range of wavelengths. Fibers of this kind are called dispersion-

flattened fibers, which can be employed to enhance the information carrying capacity by the

technique of wavelength division multiplexing (Olsson, Hegartz, Logen, Johnson, Walker,

Cohen, Kasper and Campbell, 1985). In this context, the prescription of simple but accurate

expressions for fundamental modes of dispersion-shifted trapezoidal (Paek, 1983) and dispersion

-flattened graded W (Mishra, Hosain, Goyal and Sharma, 1984) and step W fibers (Monerie,

1982; Garth, 1989) is of tremendous importance for predicting the various propagation

characteristics of such fibers and also the coupling optics concerned with different kinds of lens

systems. In this connection, it deserves mentioning that the generalised study of transmission of

light through an optical fiber requires an electromagnetic analysis which involves tedious

solution of vector wave equations. Now fibers, used for communication purposes, are made of

low relative core-cladding refractive index difference (less than 0.5%). For such kind of fiber,

called weakly guiding fiber, the vector wave equation can be reduced to scalar wave equation by

reasonable approximation. It has been also established that the relevant parameters estimated by

scalar and vector wave equations are almost identical and hence for the sake of simplicity and

accuracy as well (Hosain, Goyal and Ghatak, 1983), it is justified to make the analysis by scalar

wave theory. Still, prediction of propagation parameters for mono-mode weakly guiding fiber

remains difficult due to the involvement of Bessel functions. The application of two parameter
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variational technique (Mishra, Hosain, Goyal and Sharma, 1984; Ankiewicz and Peng, 1992) can

predict the fundamental mode and the associated propagation parameters with sufficient

accuracy. But the concerned evaluations by this formalism require complicated computations.

Therefore, formulation of simple but accurate expression of fundamental mode in this context is

still in demand in literature. A simple power series expression of fundamental mode of graded

index fiber based on Chebyshev technique is available in literature (Gangopadhyay, Sengupta,

Mondal, Das and Sarkar, 1997). This simple form of fundamental mode has been shown to have

estimated the propagation parameters of single-mode graded index fibers excellently

(Gangopadhyay, Sengupta, Mondal, Das and Sarkar, 1997; Gangopadhyay and Sarkar, 1997a,

1998a, 1998b). This method comprises formulation of linear relation of
)(

)(

0

1

WK

WK
with 1/W in the

range defined by 5.260.0 W . Following this simple formalism, simple but accurate

expressions for fundamental mode of dispersion-shifted trapezoidal as well as of dispersion-

flattened graded and step W fibers have also been prescribed (Bose, Gangopadhyay and Saha,

2012c). It has been shown that application of this formalism has led to accurate estimations of

the relevant parameters in a simple fashion (Bose, Gangopadhyay and Saha, 2012c). The design

of optical communication system involving such dispersion-shifted and dispersion-flattened

fibers requires accurate knowledge of splice losses. For evaluation of transmission coefficients at

the splice for fundamental modal field, one must know accurately such field for the said kinds of

fibers. The accurate predictions of fundamental modal fields and cladding decay parameters of

the dispersion managed fibers by the simple but accurate formalism prescribed in (Bose,

Gangopadhyay and Saha, 2012c) have motivated us to apply this methodology in predicting

transmission coefficients at the splice with angular offset and transverse offset in case of such

fibers.

In this chapter, we report the prescriptions of analytical expressions of the said splice losses by

this formalism and estimations of those thereof. We also show that our estimations are virtually

indistinguishable from the numerical exact ones. In appendix A, we present how the series

expression of fundamental mode for both dispersion-shifted as well as dispersion-flattened fiber

has been formulated. The evaluations by this simple method, however, comprise some

differentiation and integration involving modified Bessel functions (Watson, 1944; Gradshteyn

and Ryzhik, 1980; Abramowitz and Stegun, 1981). In the appendix B, we have presented some
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important formulae regarding differentiation and integration of Bessel functions which have been

used by us in the analysis.  The formulae given are expected to benefit the system engineers in

many branches of technology.

2.2. THEORY

The refractive index profile of optical fiber can be given by
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where, R = r/a with a being the radius of the core and 2
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2
1 2/)( nnn  with 1n and 2n

being the refractive indices of the fiber-core and the fiber-cladding respectively. Here, f(R)

defines the shape of refractive index profile.

The profile functions f(R) for the concerned fibers are given below,

(I)
1,

1
)(

0,0)(









RS
S

SR
Rf

SRRf
► dispersion-shifted trapezoidal fiber

(II)

1
1

,)(

1
,)(





R
C

Rf

C
RRRf q




► dispersion-flattened graded W fiber

(III)

1
1

,)(

1
,0)(





R
C

Rf

C
RRf



► dispersion-flattened step W fiber



28

Here, S represents the aspect ratio for trapezoidal fiber. Again, q stands for profile exponent in

case of W fiber and its value  is  for step type profile while ρ denotes the relative index depth

of inner cladding having refractive index ni and it is defined as,
2 2
1
2 2
1 2

( )

( )
in n

n n






.

The refractive index profiles of trapezoidal, graded W and step W fibers have been presented in

Figs. 1.4, 1.5 and 1.6 respectively. Further, angular mismatch as well as transverse mismatch at

the splice have been shown in Figs 1.7 (a) and 1.7(b) respectively.

In case of small angular mismatch θ, the concerned overlap integral is given as (Hosain, Sharma

and Ghatak, 1982; Gangopadhyay, Choudhury and Sarkar, 1999)
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 (2.2)

where, 20nakp  with 0k being the free-space wave number. It deserves mentioning in this

connection that the fibers are assumed to be joined by an index matching fluid of refractive index

2n . The transmission coefficient )( pTa at the splice with angular misalignment is defined as

2
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a

a
a C

pC
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Expanding the exponential term first, we obtain Eq. (2.2) as
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It has been shown in (Hosain, Sharma and Ghatak, 1982; Gangopadhyay, Choudhury and Sarkar,

1999) that for sufficient accuracy, one needs to retain only the first four terms in Eq. (2.4) for

angular mismatch up to 1° which nearly corresponds to p= 0.8.
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Using Eqs.(2.3) and (2. 4) and also, the expression for )(R  given by Eq. (A13) in Appendix A 

together with the results (Watson, 1944; Gradshteyn and Ryzhik, 1980; Abramowitz and Stegun, 

1981) given in Appendix B, we obtain (Gangopadhyay, Choudhury and Sarkar, 1999) 
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Here, cW is the value of cladding decay parameter W (Nuemann, 1988) evaluated by the present

method.

The transmission coefficient Tt(Δ) at the splice for a transverse mismatch d is found as (Hosain,

Sharma and Ghatak, 1982; Gangopadhyay, Choudhury and Sarkar, 1999)
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where, Δ=d/a and for the case 8.0 ,  the expression of Tt(Δ) is approximated as (Hosain,

Sharma and Ghatak, 1982; Gangopadhyay, Choudhury and Sarkar, 1999)
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These integrals are evaluated by using the expression of ψ(R) given in Eq. (A13) together with

the results (Watson, 1944; Gradshteyn and Ryzhik, 1980; Abramowitz and Stegun, 1981) given

in Appendix B. Thus, we obtain (Gangopadhyay, Choudhury and Sarkar, 1999)
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The transmission coefficient Ta(p) for  angular mismatch and the transmission coefficient Tt(Δ)

for transverse mismatch at the splice are prescribed  in terms of A2 , A4 and A6 and  therefore,

those can be predicted.
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2.3 RESULTS AND DISCUSSIONS

In order to show the accuracy for our analytical formulations for Ta(p) and Tt(Δ), we compare
our results with the numerical exact results in case of both single-mode dispersion-shifted and

dispersion-flattened fibers. In this context, we choose three typical trapezoidal fibers, each of V

number 2.5, but of different aspect ratio (S) having values 0.25, 0.50 and 0.75 respectively (Paek,

1983) as example of dispersion-shifted fibers. Side by side, as regards dispersion-flattened fibers,

we take two typical parabolic W fibers, each of V number 3.0, (Mishra, Hosain, Goyal and

Sharma, 1984) and also two step W fibers each having value V number 2.0, (Monerie, 1982;

Garth, 1989). Further, the parabolic W fibers taken here correspond to same C values but

different  values and so also is the case with step W fibers. In Fig. 2.1a, in case of three

trapezoidal fibers taken for study, we plot the transmission coefficient Ta(p) at the splice against

normalised angular offset p for splicing of two identical trapezoidal fibers in each case.

Similarly, in Fig. 2.1b, we present the variation of the transmission coefficient Tt(Δ) with

normalised transverse offset Δ for splicing of the two identical trapezoidal fibers for three types
of such fibers as chosen.  Here, the results found by our formalism are indicated by markings

while the exact numerical ones by solid lines. It is found that our results are indistinguishable

from the exact numerical ones. Further, in Figs. 2.2a and 2.2b, we present the variation of the

transmission coefficient Ta(p) at the splice against normalised angular offset p and that of the

transmission coefficient Tt(Δ) with normalised transverse offset Δ respectively in case of splicing
of two identical parabolic W fibers for two typical fibers of this kind. As before, in Figs. 2.3a and

2.3b, we plot the transmission coefficient Ta(p) at the splice against normalised angular offset p

and the transmission coefficient Tt(Δ) against normalised transverse offset Δ respectively in case
of splicing of two identical step W fibers for two types of such fibers. In Figs. 2.2a, 2.2b and

2.3a, 2.3b, we find that our results shown by distinct markings, as presented in the figures, match

excellently with the exact numerical ones presented by solid lines. The figures show that the

degree of tolerance at the splice for all kinds of fibers with respect angular mismatch is more

than that with respect to transverse mismatch. In addition, for the typical step W fibers selected

here, the degree of tolerance with respect to the said types of practical mismatches, is

satisfactory. It is relevant to mention in this connection that increase of V number results in

decrease of spot size causing more concentration near the core axis. Consequently, splice

becomes less tolerant with respect to transverse offset.  In fact, the present study will benefit the

communication engineers from the point of view splicing of such important kinds of fibers.
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Fig. 2.1a: Power Transmission coefficient Ta versus normalised angular offset p for splicing 

of two identical Trapezoidal fibers in each case (V =2.5 for each fiber) (Case I – S=0.25), 

(Case II - S=0.50) and (Case III – S=0.75). 
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Fig.  2.1b: Power Transmission coefficient Tt versus normalised transverse offset   for 

splicing of two identical Trapezoidal fibers in each case (V=2.5 for each fiber) (Case I – 

S=0.25), (Case II - S=0.50) and (Case III – S=0.75).  
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Fig. 2.2a: Power Transmission coefficient Ta versus normalised angular offset p for splicing 

of two identical parabolic W fibers in each case (V=3.0 for each fiber) (Case I - C=1.5 and 

 =1.4975) and (Case II  - C=1.5 and  =1.5000). 
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Fig. 2.2b: Power Transmission coefficient Tt versus normalised transverse offset   for  

splicing of two identical  parabolic W fibers in each case (V=3.0 for each fiber) (Case I - 

C=1.5 and  =1.4975) and (Case II - C=1.5 and  =1.5000).  
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Fig. 2.3a: Power Transmission coefficient Ta versus normalised angular offset p for splicing 

of two identical step W fibers in each case (V=2.0 for each fiber) (Case I - C= 2 and 

=1.3333) and (Case II - C=2 and  =1.2500).  
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Fig. 2.3b:  Power Transmission coefficient Tt versus normalised transverse offset ∆ for 

splicing of two identical step W fibers in each case (V=2.0 for each fiber) (Case I - C= 2 and 

 =1.3333) and (Case II - C=2 and  =1.2500).  
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2.4 SUMMARY

Based on the simple power series expression of fundamental modal field in single-mode

dispersion-shifted trapezoidal as well as dispersion-flattened graded and step W fibers, we

formulate simple analytical formulations for power transmission coefficients at the splice

separately for both angular and transverse mismatches. Further, splices being highly tolerant with

respect to longitudinal separation, we restrict our investigations to the cases of transverse and

angular mismatches only. Taking some typical trapezoidal fibers and parabolic as well as step W

fibers as examples, we show that results found by our simple formalism agree excellently with

the available exact numerical results. Further, the degree of tolerance at the splice for all kinds of

fibers with respect angular mismatch is more than that with respect to transverse mismatch. The

evaluations of the said parameters by this formalism require very little computations. Such

excellent predictions leave scope for system engineers to use this user friendly but accurate

formalism for study of other relevant characteristics concerned with all optical technology.
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CHAPTER – 3

A NOVEL AND ACCURATE METHOD FOR ANALYSIS

OF SINGLE-MODE DISPERSION-SHIFTED AND

DISPERSION-FLATTENED FIBER DIRECTIONAL

COUPLER
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3.1 INTRODUCTION

Directional coupler formed by single-mode optical fibers using evanescent field coupling

between two adjacent parallel single-mode fibers have come out as the most prospective device

in optical-fiber sensor (Budiansky, Drucker, Kino and Rice, 1979; Hocker, 1979; Parriaux,

Chartier and Bernoux, 1982; Nelson and Goss, 1982), nonlinear optics (Stegeman and Wright,

1990), wavelength filter (Digonnet and Shaw, 1983) etc. In order to design this type of coupling

appropriately in various field of use, one should have proper knowledge on all types of coupling

parameters. The directional coupling characteristics of step-index fiber have been accurately

explained over the practical range of parameters (Eyges and Wintersteiner, 1981) using coupled-

mode theory (Snyder and Love, 1983; Thyagarajan and Tewari, 1985). Based on Chebyshev

formalism (Gangopadhyay, Sengupta, Mondal, Das and Sarkar, 1997), the characteristics of

single-mode graded index fiber directional couplers (Sanyal, Gangopadhyay and Sarkar, 2000)

have also been estimated accurately. However, to the best of our knowledge, there is no such

analysis available on the characteristics of the directional couplers formed by a pair of

dispersion-shifted trapezoidal fibers (Peak, 1983) or dispersion-flattened graded W fibers

(Mishra, Hosain, Goyal and Sharma, 1984) or dispersion-flattened step W fibers (Monerie, 1982;

Garth, 1989) till date. We know that, single-mode optical fiber emerges as the most effective

medium in long-haul optical communication system. The operating wavelength in this context,

ranges from 1.3 to 1.6 µm since silica has minimum attenuation loss to the extent of 0.15 dB/km

at the wavelength 1.55 µm while material dispersion vanishes at the wavelength 1.3 µm. Thus, if

zero dispersion wavelength is shifted to 1.55 µm, one can obtain minimum attenuation loss and

zero dispersion simultaneously. Fibers, belonging to this category are called dispersion-shifted

fibers and importance of those have been well realised in view of the fact that Erbium-doped

fiber amplifier operates at wavelength 1.55 µm (Thyagarajan and Kakkar, 2004a; Pederson,

1994). In case of dispersion-flattened fibers, the material dispersion almost nullifies waveguide

dispersion over a range of wavelengths. Accordingly such kind of fiber is best suited to enhance

the information carrying capacity by means of wavelength division multiplexing (Olsson,

Hegartz, Logen, Johnson, Walker, Cohen, Kasper and Campbell, 1985). Hence, they have a great

importance in modern-day optical communication system. Therefore, it is very relevant to make

a significant study on such type of fiber directional couplers. Moreover, investigations of
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different kinds of directional coupler are of tremendous importance in the field of optical

technology. Accordingly, investigations performed in different laboratories have been constantly

enriching the literature. In this respect, it is relevant to mention some research work as follows.

The measurement of field bandwidth achievable with directional couplers using two dissimilar

optical fibers is available in literature (Marcuse, 1985). Side by side, directional couplers with

Kerr-type nonlinearity is also a potential problem in current scenario (Chaing, 1997). Several

strategies for fabrication of porous sub-wavelength fibers together with measurement of

transmission losses in terahertz using a novel non-destructive directional coupler method have

also been reported (Dupuis, Allard, Morris, Stoeffler, Dubois and Skorobogatiy, 2009). Study of

mismatched directional couplers has been added to literature (Snyder, Chen, Rowland and

Mitchell, 1990). Taking into consideration that nonlinearity causes periodic mismatch between

axially uniform twin cores, such study is also important in the context of nonlinear coupling

(Snyder, Chen, Rowland and Mitchell, 1990). Thermo-optic modulation has been also employed

for measurement of beat length in the directional coupler (Gnewuch, Román, Ulrich, Hempstead

and Wilkinson, 1996). Further, photonic directional coupler has been designed as phase selector

(Lee, Huang and Hsieh, 2013). Fabrication and measurement of a compact 3dB hybrid plasmonic

directional coupler for silicon photonics integrated circuits have been successfully implemented

(Caspers and Mojahedi, 2014). The investigations on substrate integrated waveguide based

directional coupler for three dimensional integrated circuits have also been reported (Doghri,

Djerafi, Ghiotto and Wu, 2015).

To use the coupled-mode theory, one should have clear idea about the modal field distributions

of two single-mode fibers when they are non-interacting. The fundamental modal field for a

single-mode dispersion-shifted and dispersion-flattened fiber can be calculated by applying

numerical techniques or approximate methods. However, the simplest method under this

circumstance is Gaussian variational method (Peng and Ankiewiez, 1991) but it does not predict

the modal field distribution in the cladding region accurately. Again, the characteristic of single-

mode parabolic core fiber directional coupler predicted by the Gaussian-exponential-Hankel

function employing variational technique (Sharma, Hosain and Ghatak, 1982; Thyagarajan and

Tewari, 1985) has also been reported with very high degree of accuracy. But this technique

involves enormous computation. By using Chebyshev technique, a very simple but accurate

power series expression has been reported for the fundamental mode of such dispersion-managed
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fibers (Bose, Gangopadhyay and Saha, 2012c). The simplicity as well as accuracy involved in

the analysis of single-mode graded index fiber directional coupler by Chebyshev formalism

(Sanyal, Gangopadhyay and Sarkar, 2000) has generated motivation for application of such

reported formalism (Bose, Gangopadhyay and Saha, 2012c) for analysis of dispersion managed

fiber directional couplers.

In this chapter, we report a simple but accurate analysis of coupling characteristics of directional

coupler formed by either two identical single-mode dispersion-shifted trapezoidal fibers or

dispersion-flattened graded W fibers or dispersion-flattened step W fibers. Here, our analysis is

based on the simple series expression for the fundamental mode concerned with each kind of

dispersion managed fiber.

3.2 THEORY

We consider directional coupler made of a pair of identical single-mode fibers having refractive

index profile as expressed below,

   2 2
1 1 ,sn R n f R    0 1R 

2
2 ,n 1R  (3.1)

where,  2 2 2
1 2 1n n n   is the grading parameter with 1n and 2n being the axial core and

cladding refractive indices, with R being equal to r/a (a=core radius). Here,  f R defines the

shape of the refractive index profile.

As illustrated in chapter 2, we present the profile function  f R relating to some dispersion-

managed fibers for ready reference.
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(I) Trapezoidal fiber (Paek, 1983)
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(II) Graded W fiber (Mishra, Hosain, Goyal and Sharma, 1984)
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(III) Step W fiber (Monerie, 1982; Garth, 1989)
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Here S stands for the aspect ratio for trapezoidal fiber and 1 C represents the normalised radial

distance beyond which there occurs change of refractive index profile, as shown for Graded W

and step W fibers. Further, q denotes the profile exponent in case of W fiber and its value is 

for step type profile. Here,  represents the relative index depth of inner cladding having

refractive index in and it is expressed as,

2 2
1
2 2
1 2

in n

n n






.

The refractive index profiles of trapezoidal, graded W and step W fibers have been presented in

Figs. 1.4, 1.5 and 1.6 respectively.
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3.2.1 DISPERSION-SHIFTED TRAPEZOIDAL FIBER

Using Eq. (3.2) the refractive index profile for a directional coupler formed by a pair of such

type of fibers can be written as (Thyagarajan and Tewari, 1985; Sanyal, Gangopadhyay and

Sarkar, 2000),

 2 2
1 ,n R n 10 R S  and

20 R S 

2 1
1 1 ,

1

R S
n

S

    

1 1S R 

2 2
1 1 ,

1

R S
n

S

    

2 1S R 

 2 2
1 21 ,n n   Otherwise (3.5)

where, 1 1R r a and
2 2R r a with 1r and 2r representing the radial distance from the centres

of the two fibers to point P as shown in Fig. 3.1.

Fig. 3.1: Cross-section of a directional coupler formed by two identical single-mode optical

fibers

Considering the coupled-mode theory under the condition of weak coupling, the coupling

coefficient ( ) between the fibers can be written as (Snyder and Love, 1983; Thyagarajan and

Tewari, 1985),
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where, 0k is free space wave number and 1 is the propagation constant in the each fiber. 1

and 2 represent the fundamental modal field distribution for fiber 1 and fiber 2 respectively. In

the above equation 2 2( ) ( )sn R n R   can expressed as,

2 2 2 2
1 2( ) ( ) ( ),sn R n R n n     20 R S 

2 2 2
1 2

1
( ) ,

1

R
n n

S

     
2 1S R  (3.7)

0, 2 1R 

As presented in Appendix A, we use the following linear relationship of 1

0

( )

( )

K W

K W
with

1

W, valid in

the range 5.26.0 W (Gangopadhyay, Sengupta, Mondal, Das and Sarkar, 1997),

1

0

( )
1.034623 0.3890323 /

( )

K W
W

K W
  (3.8)

Again, as elucidated in Appendix A, the field inside the core and cladding is presented below

(Bose, Gangopadhyay and Saha, 2012c)
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where,
2

2
0

; 1, 2, 3j
j

a
A j

a
  and cW is the value of W as found by Chebyshev technique. The

value of W and the constant 2 jA for a given value of V can be easily calculated with little

computations.

Using Eqs. (3.7), (3.8) and (3.9) in Eq. (3.6) one can obtain (Watson, 1944; Gradshteyn and

Ryzhik, 1980; Abramowitz and Stegun, 1981) the expression of coupling coefficient ( ) in case

of dispersion-shifted trapezoidal fiber directional coupler as,

     

 

2 2 2
00 1 2 2 27 1 28 0 29 1 30 0 31

2
1 0 2 1

1 2 2
0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
1 1

( )

c c c c c c c

c c

c

dK Wk n n T T I W S T I W S T I W T I W T W S Wa
K W K W

S T T
K W




        
  

    
  

(3.10)

The coupling length  cL which represents the minimum distance at which power is transferred

from the input fiber to the other fiber, is given by,

2cL



 (3.11)

In this context, it is necessary to mention that a small value of coupling length implies strong

interaction. Using Eq. (3.10) and Eq. (3.11), we can express the normalised coupling length

c
c

L
L

a

 
  
 
 as,

 
 

 

22
11 2
2
00

2 27 1 28 0 29 1 30 0 310

( )
1 1

2 2 ( )( )

( ) ( ) ( ) ( ) ( ) ( )

c

cc
c

c c c c c cc

K WT T
S

K WK W
L

dV T T I W S T I W S T I W T I W T W S WK W a



  
    

  
       

 (3.12)

where

2 2 2
1 2 4 6 2 4 6 2 4 2 6 4 61 3 5 7 2 3 2 2 2 5 3T A A A A A A A A A A A A         

2 2 4 61T A A A   

3 3
3 4c cT S W S W 
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2 2
4 2 cT S W

5 3 3 5
5 16 64c c cT S W S W S W  

4 2 2 4
6 4 32c cT S W S W 

7 5 3 3 5 7
7 36 576 2304c c c cT S W S W S W S W   

6 2 4 4 2 6
8 6 144 1152c c cT S W S W S W  

3
9 1 4c cT W W 

2
10 2 cT W

3 5
11 1 16 64c c cT W W W  

2 4
12 4 32c cT W W 

3 5 7
13 1 36 576 2304c c c cT W W W W   

2 4 6
14 6 144 1152c c cT W W W  

3
15 1 9 cT Wc W 

2
16 3 cT W

4 2 3
17 9c cT S W S W 

3 2
18 3 cT S W

3 5
19 1 25 225c c cT W W W  

3 4
20 5 75c cT W W 

6 4 3 2 5
21 25 225c c cT S W S W S W  

5 2 3 4
22 5 75c cT S W S W 

3 5 7
23 1 49 1225 11025c c c cT W W W W   
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2 4 6
24 7 245 3675c c cT W W W  

8 6 3 4 5 2 7
25 49 1225 11025c c c cT S W S W S W S W   

7 2 5 4 3 6
26 7 245 3675c c cT S W S W S W  

     27 17 3 2 21 5 4 25 7 6T T ST A T ST A T ST A     

     28 4 18 2 6 22 4 8 26 6T ST T A ST T A ST T A     

     29 9 15 2 11 19 4 13 23 6T T T A T T A T T A     

     30 16 10 2 20 12 4 24 14 6T T T A T T A T T A     

3 5 7 9
31 2 4 61 9 225 11025c c c cT W A W A W A W   

3.2.2 DISPERSION-FLATTENED GRADED W FIBER

Now, we consider a directional coupler is formed by two identical dispersion-flattened graded W

fibers. Therefore, the refractive index profile will be (using Eq. (3.3)) (Thyagarajan and Tewari,

1985; Sanyal, Gangopadhyay and Sarkar, 2000),

 2 2
1 1( ) 1 ,qn R n R  10 1R C 

 2
1 21 ,qn R  20 1R C 

 2
1 1 ,n   11 1C R  and

21 1C R 

 2 2
1 21 ,n n   otherwise. (3.13)

Hence, for this type of couplers the term 2 2( ) ( )sn R n R   will be,
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  2 2 2 2
1 2 2( ) ( ) 1 ,q

sn R n R n n R      20 1R C 

   2 2
1 2 1 ,n n    21 1C R  (3.14)

0, 2 1R 

where, q represents the profile exponent of the fiber and for graded W fiber, we consider

parabolic profile and accordingly, we take q=2. Therefore, the coupling coefficient   of

dispersion-flattened graded W fiber directional coupler is obtained (Watson, 1944; Gradshteyn

and Ryzhik, 1980; Abramowitz and Stegun, 1981) by using Eqs. (3.8), (3.9) and (3.14) in Eq.

(3.6),

   
 

           2 2 2
0 2 40 1 41 0 42 1 43 00 1 2

2
1 0 2 1

1 2 2
0

1
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1
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c c c c c

c c

c

dK W T T I W T I W T I W C T I W Ck n n a
K W K W

T T
K W

 




      
  
   
   (3.15)

Corresponding normalised coupling length  cL will be,

             

22
11 2
2
00

2 40 1 41 0 42 1 43 00

( )
1

2 2 ( )( )

1

c

cc
c

c c c cc

K WT T

K WK W
L

dV T T I W T I W T I W C T I W CK W a


 

  
   

  
     

 (3.16)

where

3 3
32 1 4c cT W C W C 

2 2
33 2 cT W C

5 3 3 5
34 1 16 64c c cT W C W C W C  

2 4 4 2
35 4 32c cT W C W C 

7 3 5 5 3 7
36 1 36 576 2304c c c cT W C W C W C W C   

2 6 4 4 6 2
37 6 144 1152c c cT W C W C W C  
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9 3 7 5 5 7 3 9
38 1 64 2304 36864 147456c c c c cT W C W C W C W C W C    

2 8 4 6 6 4 8 2
39 8 384 9216 73728c c c cT W C W C W C W C   

40 2 9 4 11 6 131 cT W A T A T A T   

41 2 10 4 12 6 14T A T A T A T  

       42 32 2 34 32 4 36 34 6 38 361 cT T W C A T T A T T A T T       

     43 33 2 35 33 4 37 35 6 39 37T T A T T A T T A T T      

3.2.3 DISPERSION-FLATTENED STEP W FIBER

In case of coupler formed by a pair of identical dispersion-flattened step W fibers, the refractive-

index profile corresponding to coupled structure is given by (Thyagarajan and Tewari, 1985;

Sanyal, Gangopadhyay and Sarkar, 2000),

2 2
1( )n R n , 10 1R C  and 20 1R C 

 2
1 1n   ,

11 1C R  and
21 1C R 

 2 2
1 21 ,n n   otherwise. (3.17)

Thus, the expression of 2 2( ) ( )sn R n R  will be,

 2 2 2 2
1 2( ) ( ) ,sn R n R n n     20 1R C 

  2 2
1 2 1 ,n n    21 1C R 

0, 2 1R  (3.18)
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Further, substituting Eqs. (3.8), (3.9) and (3.18) in Eq. (3.6), we find (Watson, 1944; Gradshteyn

and Ryzhik, 1980; Abramowitz and Stegun, 1981) the expression of coupling coefficient   for

dispersion-flattened step W fiber directional coupler as below,

   
 

           2 2 2
0 2 40 1 41 0 44 1 45 00 1 2

2
1 0 2 1

1 2 2
0

1
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1
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c c c c c

c c

c

dK W T T I W T I W T I W C T I W Ck n n a
K W K W

T T
K W

 




      
  
   
  

(3.19)

Accordingly, in case of dispersion-flattened step W fiber directional coupler, the normalised

coupling length can be expressed as,

             
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  
   

  
     

 (3.20)

where

44 2 32 4 34 6 361 cT W C A T A T A T   

45 2 33 4 35 6 37T A T A T A T   .

3.3 RESULTS AND DISCUSSIONS

Using our formulation, we have evaluated normalised coupling length and plotted it against

normalised centre-to-centre core separation D(=d/a) of two identical fibers. The study is

conducted for some typical dispersion-managed fibers. Here, the solid line in Fig. 3.2 shows the

variation of normalised coupling length ( cL ) with normalised separation (D) for a directional

coupler comprising two identical dispersion-shifted trapezoidal fibers, each having V value 2.5

and aspect ratio (S) equal to 0.5.Similarly, the broken line in Fig. 3.2 represents cL versus D for

directional coupler consisting of two identical trapezoidal fibers, each having V and S values as

2.5 and 0.75 respectively. Such choice of D and S values has been borrowed from Ref. (Paek,
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1983). Further, it is pertinent to mention that first higher order mode cut-off V values for

trapezoidal fibers with S= 0.50 and 0.75 are respectively 3.1979 and 2.7801 (Paek, 1983).

Again, in Fig. 3.3, we have plotted the normalised coupling length ( )cL versus the normalised

separation (D) by solid line for a directional coupler consisting of a pair of identical dispersion-

flattened graded W fibers, each having V number 3.0, C value 1.5 and ρ value 1.4975.  Here, the

broken line in  Fig. 3.3,  presents the variation of cL with D for the directional coupler containing

two identical dispersion-flattened graded W fibers, each being characterised by V=3.0, C value

1.5  and ρ=1.5000 . Further, in case of choice of C and ρ values for graded W fiber, Ref. (Mishra,

Hosain, Goyal and Sharma, 1984) has been followed. Side by side, it can be pointed out that first

higher mode cut-off V values for graded W fibers having ρ=1.4975, C=1.5 and   ρ=1.5, C=1.5

are respectively 4.8452 and 4.8490 (Mishra, Hosain, Goyal and Sharma, 1984).

In Fig. 3.4, the solid curve shows the variation of the normalised coupling length with

normalised separation for directional coupler made of two identical dispersion-flattened step W

fibers, each with V=2.0, 1/C = 0.5 and ρ=1.3333. Again, the change of cL with D for a

directional coupler comprising two identical dispersion-flattened step W fibers, each of V, 1/C

and ρ values as 2.0, 0.5 and 1.2500 respectively, is represented by broken line in Fig. 3.4. It is

relevant to mention in this context that Ref. (Garth, 1989) has been used to select step W fiber

having 1/C = 0.5 and   ρ=1.3333 while the step W fiber characterized by 1/C = 0.5 and ρ=1.2500

has been chosen following reference (Monerie, 1982). Further, the first higher order mode cut off

V values corresponding to the said step W fibers having ρ=1.3333 and ρ=1.2500 are respectively

2.7789 (Garth, 1989) and 2.8000 (Monerie, 1982).
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Fig. 3.2: Variation of normalised coupling length with normalised separation of

directional coupler consisting of two dispersion-shifted trapezoidal fibers (V=2.5) for

different aspect ratio (S) values

Fig. 3.3: Variation of normalised coupling length with normalised separation of

directional coupler consisting of two dispersion-flattened graded W fibers (V=3.0) for

different ρ values
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Fig. 3.4: Variation of normalised coupling length with normalised separation of

directional coupler consisting of two dispersion-flattened step W fibers (V=2.0) for

different ρ values

It deserves mentioning in this connection that a directional coupler containing two identical

graded index single-mode fibers, each having core radius a=3 µm, δ=0.004 and normalised

coupling length ( )cL less than 200 (Thyagarajan and Tewari, 1985) will imply that

corresponding coupling length ( ) must be less than 9.5 mm. The results found have close

agreement with those predicted in case of directional coupler comprising two identical grade

index fibers (Thyagarajan and Tewari, 1985). In this context, the model proposed for a step

index fiber in the form of an equivalent slab guiding structure justifies the results obtained

(Sharma, Kompella and Mishra, 1990). Moreover, the analysis reported in reference (Sanyal,

Gangopadhyay and Sarkar, 2000) also verifies the accuracy of the results obtained. Accordingly,

our study will focus on the choice of D value for which the coupling length remains less than 9.5

mm in case of each directional coupler under investigation. We tabulate below the respective D

values for different directional couplers used, where coupling length remains less than 9.5 mm.

In Table 3.1, the relevant values have been presented and side by side, the corresponding graphs

also indicate the same.
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TABLE 3.1

Normalised Distance(D) Values for Directional Couplers of Different Type of Optical Fibers.

Trapezoidal fiber
(Figure 3.2)

Graded W fiber
(Figure 3.3)

Step W fiber
(Figure 3.4)

Aspect
ratio(S)

Normalised
Distance(D)

Relative
index
depth

(ρ)

Normalised
Distance(D)

Relative
index
depth

(ρ)

Normalised
Distance(D)

0.5 7.65 1.4975 3 1.25 3.5

0.75 6.55 1.5 3.05 1.3333 3.25

3.4 SUMMARY

Using the coupled-mode theory and Chebyshev power series expression for fundamental mode

of dispersion managed fiber, we prescribe analytical formulation of normalised coupling length

in terms of fiber to fiber separation for a directional coupler containing two identical single-mode

dispersion managed fibers. The said estimations have been made for directional couplers

corresponding to some typical dispersion managed fibers and the results obtained are comparable

to available numerical results in case of directional coupler formed of two identical single-mode

graded index fibers. The concerned calculations require simple and little computation and as

such it will prove user friendly to technologists who are working in the field of optical

technology.
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CHAPTER – 4

PREDICTION OF FUNDAMENTAL MODAL FIELD FOR

GRADED INDEX FIBER IN PRESENCE OF KERR

NONLINEARITY
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4.1 INTRODUCTION

Investigation of propagation characteristics of single-mode optical fiber in the nonlinear region

(Tomlinson, Stolen and Chank, 1984; Tai, Tomita, Jewell and Hasegawa, 1986; Snyder, Chen,

Poladian and Mitchel, 1990; Goncharenko, 1990; Sammut and Pask, 1990; Agrawal and Boyd,

1992) is of great interest since the intensity of optical beam changes the refractive index profile

of those fibers. As a result, the fibers subjected to high optical intensity show propagation

characteristics different from those relating to the same fibers operating in the linear region.

There are different kinds of nonlinearity like third order, fifth order etc. and saturable non

linearity as well (Saitoh, Fujisawa, Kirihara and Koshiba, 2006). Generation of a particular kind

of nonlinearity will be dependent on the intensity of optical beam and also on the doped medium

of the fiber (Agrawal, 2013). The presence of nonlinearity leads to compression of pulse while

dispersion causes broadening of the pulse and thus interplay between dispersion and nonlinearity

results in propagation of optical beam as such (Agrawal and Boyd, 1992). This is known as

propagation of optical soliton, the study of which happens to be an emerging matter in the field

of optical communication system. Kerr–type nonlinearity imposes constraint on the performance

of optical fiber communication. However, cancellation of signal to signal interaction can be

obtained by superposition of twin waves at the end of transmission line (Liu, Chraplyvy, Winzer,

Tkach and Chandrasekhar, 2013). The study of nonlinear interference noise generated in space

division multiplexed transmission through optical fiber is also an emerging problem (Antonelli,

Golani, Shtaif and Mecozzil, 2017).

Further, the strong Kerr-type nonlinearity clubbed with high quality microresonator provides the

necessary platform for integrated nonlinear photonics (Lu, Lee, Rogers and Lin, 2014). The

influence of Kerr-type nonlinearity in opto-mechanical ring resonator has also been

demonstrated (Yu, Ren, Zhang, Bourouina, Tan, Tsai and Liu, 2012). Estimation of propagation

characteristics along with field distribution of single-mode fiber as well as photonic crystal fibers

subjected to Kerr effect has already been reported (Seaton, Valera, Shoemaker, Stegeman,

Chilwell and Smith, 1985; Hayata, Koshiba and Suzuki, 1987; Okamoto and Marcatili, 1989;

Khijwania, Nair and Sarkar, 2009; Diaz-Soriano, Ortiz-Mora and Dengra, 2013). But the

numerical methods involved in this context require lengthy computation. Hence, a simple but

accurate study of effect of optical Kerr-type nonlinearity on the said kinds of fibers in single-
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mode region is in demand in literature. Based on Chebyshev technique, a simple power series

expression of fundamental mode of graded index fiber has been formulated (Gangopadhyay,

Sengupta, Mondal, Das and Sarkar, 1997; Patra, Gangopadhyay and Sarkar, 2000). This

formulation of fundamental mode has predicted the propagation parameters of single-mode

graded index fibers efficiently (Gangopadhyay and Sarkar, 1997a; Gangopadhyay and Sarkar,

1998a; Gangopadhyay and Sarkar, 1998b; Patra, Gangopadhyay and Sarkar, 2001a; Patra,

Gangopadhyay and Sarkar, 2001b) over a wide range of normalised frequency (V) values. This

method involves formulation of linear relationship of
)(

)(

0

1

WK

WK with
W

1 by applying least square

fitting technique. Here, W represents the cladding decay parameter. Applying this series

expression for fundamental modal field, splice losses for step, parabolic and triangular index

fibers in presence of transverse and angular mismatches have also been evaluated

(Gangopadhyay, Choudhury and Sarkar, 1999; Debnath and Gangopadhyay, 2016). Further, it

has been found that the said predictions, though evaluated in a simple fashion, agree excellently

well with those found on the basis of analytical expression for step index fiber and Gaussian

Hankel-exponential approximation for parabolic index fiber (Hosain, Sharma and Ghatak, 1982).

It is relevant to mention in this connection that application of Chevbyshev technique for

evaluation of first higher order mode cut-off frequency in case of optical fibers having Kerr-type

nonlinearity, has produced excellent results (Roy and Sarkar, 2016). Moreover, Chebyshev

formalism has also been successfully employed to analyse the propagation constants of single-

mode optical fibers having Kerr-type nonlinearity (Sadhu, Karak and Sarkar, 2013). Thus,

recalling that the evaluation of modal field is an important issue in predicting various

propagation parameters associated with Kerr-type nonlinear fibers, we, in this chapter, report

estimation of modal field for some typical step and parabolic index fibers. In this context, we

have applied iterative technique. Further, we have compared our results with the available exact

results found by finite element method involving variational technique (Hayata, Koshiba and

Suzuki, 1987).
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4.2 THEORY

As described in chapters 2 and 3, we, for the sake of ready reference, present the refractive index

profile ( )n R for a weakly guiding circular core optical fiber as below












1,

1)),(21(
)(

2
2

2
12

Rn

RRfn
Rn


(4.1)

where, R = r/a, a= core radius and 2
1

2
2

2
1 2/)( nnn  with n1 and n2 being the refractive

indices of the core axis and the cladding respectively. Here, f(R) represents the shape of

refractive index profile and in case of graded index fiber, it is given by,

f(R) = qR (4.2)

where, q is the profile exponent whose values for step and parabolic index fibers are  and 2

respectively.

The refractive index ( )n R of the fiber involving Kerr-type nonlinearity is denoted as (Mondal

and Sarkar, 1996)

(4.3)

where, 0 (= ))/( 2/1
00  with 0 and 0 presenting respectively the permeability and

permittivity of free space and )(RnL , )(RnNL denoting the linear refractive index and the

distribution of nonlinear Kerr coefficient (m2/W) respectively. The modal field of circularly

symmetric scalar nonlinear LP01 mode is given as ( )R which obeys the following scalar wave

equation (Mondal and Sarkar, 1996)

)(
)(

)()( 2

0

2
222 R

Rnn
RnRn NL

L 

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together with the boundary condition at core cladding interface as
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where W is the cladding decay parameter and
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where 1K and 0K are the modified Bessel functions of first and zero order respectively.

The field in the cladding is, however, given by

)(~)( 0 WRKR for     R>1

where,  2/12
2

2
10 )( nnakV  is the normalised frequency while  2/12

0
2
2

2 )( knaW   is the

cladding delay parameter. Here,  and 0k are the propagation constant and free space wave

number respectively.

Following (Shijun, 1987; Chen, 1982), the power series expression for the fundamental modal

field in graded index fiber based on Chebyshev formalism is approximated as (Gangopadhyay,

Sengupta, Mondal, Das and Sarkar, 1997; Patra, Gangopadhyay and Sarkar, 2000)

where, a0,  a2 , a4 , a6 are constants.
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The Chebyshev points are given by (Chen, 1982)
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m
Rm )1(,...,2,1  Mm (4.7)

By putting M=4 appropriate for Eq. (4.7), we get three values of R as follows

R1=0.9749, R2=0.7818 and R3=0.4338 (4.8)

Now applying Eq.(4.6) in Eq.(4.4), we get
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(4.9)

where i = 1, 2, 3.

Application of least square fitting in the interval 5.26.0 W leads to the following expression

(Gangopadhyay, Sengupta, Mondal, Das and Sarkar, 1997)

WWK

WK 
 

)(

)(

0

1 (4.10)

where α= 1.034623 and β= 0.3890323.

However, when W is less than 0.6, linear least square fitting technique is applied  in order to

make linear formulation of
)(

)(

0

1

WK

WK
as a function of

W

1
for different short intervals of W (Patra,

Gangopadhyay and Sarkar, 2000). Accordingly α and β  for different short intervals will be

different.

Using Eqs. (4.6) and (4.10) in Eq. (4.5), we get

0)6()4()2()( 6420   WaWaWaWa (4.11)

The nontrivial solution of a2, a4, a6 in terms a0 from three equations in (4.9) and one equation in

(4.11) requires the following condition
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here,
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where i = 1, 2, 3 and
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The solution of Eq. (4.12) appears complicated due to the presence of the terms like )(2
iR .

Therefore, we first solve Eq. (4.12) for the linear region by taking g=0 whereby one can get W

value for a particular V. Next, this W value and corresponding V value are used in any three of

four equations given by Eqs. (4.9) and (4.11) to obtain a2, a4 and a6 in terms of  a0 in the linear

domain. Then, a particular value of g is taken and we resort to iteration technique a number of

times until for a particular V value in case of a particular kind of fiber, convergent values of W

and a2, a4 and a6 in terms of a0 are found.



64

4.3 RESULTS AND DISCUSSIONS

Here, we estimate cladding decay parameter in presence of Kerr-type nonlinearity for different V

values in case of step and parabolic index single-mode fibers and we compare our results with

the exact results for the fundamental mode (Hayata, Koshiba and Suzuki, 1987). Here, the values

taken for refractive index of cladding ( 2n ) and basic fiber parameter  2 2
1 2a n n are 1.47 and

0.22 µm respectively (Mondal and Sarkar, 1996; Roy and Sarkar, 2016). Further, it deserves

mentioning in this connection that Eq. (4.3) shows that nonlinear Kerr coefficient )(RnNL takes

care of intensity dependent part of refractive index as a multiplicative constant only at a

particular value of R. On the other hand, the change of refractive index at a particular value of R

due to incident light intensity, can be evaluated only when both nonlinear Kerr coefficient

)(RnNL (m2/W) and power P (W) are considered simultaneously. This necessitates introduction

of the nonlinear term )(RnNL P (m2) for the present study. Here, the range of PnNL varies from

−1.5x10-14 m2 to 1.5x10-14 m2 (Mondal and Sarkar, 1996; Roy and Sarkar, 2016). Further, self-

focusing and self-defocussing effects correspond to positive and negative values of PnNL

respectively.

In Fig. 4.1, we present the variation of cladding decay parameter with Kerr-type nonlinearity

parameter for three typical single-mode step index fibers having V numbers 1.4, 2.0 and 2.4.

Similarly, in Fig. 4.2, we represent the graph of cladding decay parameter versus Kerr-type

nonlinearity parameter in case of three typical parabolic index fibers having V numbers 2.5, 3.0

and 3.5.

In Figs. 4.3, 4.4 and 4.5, we plot variation of fundamental modal field with respect to normalised

radial distance in presence and in absence of Kerr-type nonlinearity for step index fibers having

V numbers 1.4, 2.0 and 2.4 (close to first higher order cut-off) respectively. Similarly, in Figs.

4.6, 4.7 and 4.8, we show the variation of fundamental modal field with respect to normalised

radial distance in presence and in absence of Kerr-type nonlinearity for parabolic index fibers

having V numbers 2.5, 3.0 and 3.5 (close to first higher order cut-off) respectively. Here, we

observe that the modal field increases with the decrease in the V number in case of both step and

parabolic index fibers. Further, it is seen that with increase of V number in case of both kinds of
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fibers, the effect of nonlinearity in predominant. For example, in case of step index fiber having

V=1.4, the field near the core axis in presence of nonlinearity is slightly separated from that in

absence of nonlinearity, while for step index fiber having V=2.4, the modal field near the core

axis is influenced largely by nonlinearity as seen from Fig. 4.5. Such behavior is also applicable

for parabolic index fiber. This is consistent with the prediction that with increase in V number,

the effective area decreases resulting in more nonlinear effect (Majumdar, Das and

Gangopadhyay, 2014). The influence of nonlinearity within the entire core along with some

portion of cladding have been presented in the figures for the sake of presentation of response to

such nonlinear fibers. Moreover, in domains where nonlinearity is exploited (Yu, Ren, Zhang,

Bourouina, Tan, Tsai and Liu, 2012), the results found will lead to suitable selection of V

number. Here, in Figs. 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, we have presented our predictions by +

corresponding to nNLP = 1.5x10-14, by * corresponding to nNLP = -1.5x10-14 and by

corresponding to nNLP=0. Further in all the said figures, solid lines like correspond

to the exact values obtained by finite element based variational method (Hayata, Koshiba and

Suzuki, 1987). We find that out results are virtually indistinguishable from the exact ones.

Further, taking nNLP=0, we predict the fundamental modal field for fiber in absence of

nonlinearity and here the results match excellently with available exact results (Gangopadhyay,

Sengupta, Mondal, Das and Sarkar, 1997). Thus, one may reliably predict the fundamental modal

field for single-mode graded index Kerr-type nonlinear fiber by solving a (4x4) determinant by

this iterative Chebyshev formalism. Thus, one should choose V number judiciously so that

performance of communication is not reduced owing to predominance of nonlinearity.

Conclusively, the effect of nonlinearity is investigated in such kinds of fibers, the operations of

which are being powered by several watts. It is worth saying that the results found can be utilised

in reducing modal noise in concerned devices.
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Fig. 4.1: Variation of Cladding decay parameter for fundamental mode against

nonlinearity parameter nNLP (x10-14 m2) in case of step index fibers having different V

numbers.
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Fig. 4.2: Variation of Cladding decay parameter for fundamental mode against

nonlinearity parameter nNLP (x10-14 m2) in case of parabolic index fibers having different V

numbers.
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Fig. 4.3: Variation of fundamental modal field Ψ(R) against normalised radial distance R

in case of step index fiber having V=1.4 for different nonlinearity parameter  nNLP ( + for

nNLP =1.5x10-14 ,  * for  nNLP = -1.5x10-14, O  for   nNLP = 0 : Our results  and :

Simulated exact ones (Hayata, Koshiba and Suzuki, 1987) .
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Fig. 4.4:  Variation of fundamental modal field Ψ(R) against normalised radial distance R

in case of step index fiber having V=2.0 for different nonlinearity parameter nNLP ( + for

nNLP =1.5x10-14 ,  * for  nNLP = -1.5x10-14, O  for   nNLP = 0: Our results  and :

Simulated exact ones (Hayata, Koshiba and Suzuki, 1987) ).
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Fig. 4.5:  Variation of fundamental modal field Ψ(R) against normalised radial distance R

in case of step index fiber having V=2.4 for different nonlinearity parameter nNLP ( + for

nNLP =1.5x10-14 ,  * for  nNLP = -1.5x10-14, O  for   nNLP = 0: Our results  and :

Simulated exact ones (Hayata, Koshiba and Suzuki, 1987)).
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Fig. 4.6:  Variation of fundamental modal field Ψ(R) against normalised radial distance R

in case of parabolic index fiber having V=2.5 for different nonlinearity parameter nNLP ( +

for   nNLP =1.5x10-14 ,  * for  nNLP = -1.5x10-14 , O  for   nNLP = 0: Our results  and :

Simulated exact ones (Hayata, Koshiba and Suzuki, 1987) ).
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Fig. 4.7:  Variation of fundamental modal field Ψ(R) against normalised radial distance R

in case of parabolic index fiber having V=3.0 for different nonlinearity parameter ( + for

nNLP =1.5x10-14 ,  * for  nNLP = -1.5x10-14, O  for   nNLP = 0: Our results and :

Simulated exact ones (Hayata, Koshiba and Suzuki, 1987) ).
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Fig. 4.8:  Variation of fundamental modal field Ψ(R) against normalised radial distance R

in case of parabolic index fiber having V=3.5 for different nonlinearity parameter ( + for

nNLP =1.5x10-14 ,  * for  nNLP = -1.5x10-14, O  for   nNLP = 0: Our results  and :

Simulated exact ones (Hayata, Koshiba and Suzuki, 1987) ).

4.4 SUMMARY

We have prescribed a simple, novel but accurate method based on iteration in order to predict

the fundamental modal field of single-mode graded index fiber in presence of Kerr-type

nonlinearity. Our formalism is based on the power series formulation for the modal field of

single-mode graded index fibers by Chebyshev formalism. The results found can be used for

minimisation of modal noise in the field of optical communication. Further, the results may

prove extremely important for different kinds of sensors and in the field of integrated nonlinear

photonics. This method opens up a simple but accurate technique for estimation of various

propagation characteristics of Kerr-type nonlinear graded index fibers. The accuracy of this

simple formalism leaves scope for extension of the analysis for the study of other kinds of fibers.
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CHAPTER – 5
PREDICTION OF FIRST HIGHER ORDER MODAL

FIELD FOR GRADED INDEX FIBER IN PRESENCE OF
KERR NONLINEARITY
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5.1 INTRODUCTION

Prediction of propagation parameters of optical fiber in presence of nonlinearity (Tomlinson,

Stolen and Chank, 1984; Tai, Tomita, Jewell and Hasegawa, 1986; Snyder, Chen, Poladian and

Mitchel, 1990; Goncharenko, 1990; Sammut and Pask, 1992; Agrawal and Boyd, 1992) is a

potential problem since the intensity of optical beam modifies the refractive index profile of

those fibers. Thus, nonlinear fibers exposed to optical beam show propagation parameters

different from those in the linear region.

Nonlinearity can be categorised as third order, fifth order etc. including saturable nonlinearity

(Saitoh, Fujisawa, Kirihara, and Koshiba, 2006). Intensity of optical medium as well as the

nature of doping decide which kind of nonlinearity will come into action (Agrawal, 2013). The

presence of nonlinearity causes pulse compression while dispersion broadens the pulse and

accordingly dispersion and nonlinearity acting together causes propagation of optical beam as

such (Agrawal and Boyd, 1992). This is what is called propagation of optical soliton which is a

matter of huge interest in terms of investigation in the present fiber optic communication system.

The presence of Kerr–type nonlinearity influences the performance of optical fiber

communication. However, signal to signal interaction can be cancelled by superposition of twin

waves at the end of transmission line (Liu, Chraplyvy, Winzer, Tkach and Chandrasekhar, 2013).

Further, the study of nonlinear interference noise produced in space division multiplexed

transmission through optical fiber has emerged as a potential problem (Antonelli, Golani, Shtaif

and Mecozzi1, 2017). Moreover, the strong Kerr-type nonlinearity in presence of high quality

micro resonator leads to the platform for integrated nonlinear photonics (Lu, Lee, Rogers and

Lin, 2014). The role of Kerr-type nonlinearity in opto-mechanical ring resonator has also been

reported (Yu, Ren, Zhang, Bourouina, Tan, Tsai and Liu, 2012).

Further, dual-mode optical fiber has also emerged as an important medium in the context of

optical fiber communication system (Spajer and Charquille, 1986; Eguchi, 2001; Eguchi,

Koshiba and Tsuji, 2002). It has been found that the first higher order mode of dual-mode optical

fiber has large negative waveguide dispersion and this can be used to cancel the positive

dispersion. Thus, such a dispersion compensating dual-mode optical fiber can be designed to

operate around 1.55 µm, the wavelength at which erbium-doped-fiber amplifier usually operates

(Pedersen, 1994). Further, double-layer profile core dispersion-shifted fiber has lower bending
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and transmission losses compared to simple core-cladding dispersion-shifted fibers (Monerie,

1982). Therefore, a dual-mode fiber with a double-layer profile emerges as a suitable optical

device in respect of broad band transmission of communication at wavelength 1.55µm on

account of its low bending and transmission losses and dispersion compensation as well. Again,

methods have been prescribed for separate estimation of LP01 and LP11 mode losses in dual-mode

optical fiber (Ohashi, Kitayama, Kobayashi and Ishida, 1984). The spatial  technique involving

fundamental and first higher order mode has been successfully used for estimation of  time

difference relating to group delay concerned with the two modes (Shibata, Tateda, Seikai and

Uchida, 1980). Further, in the field of sensor technology, group delay between fundamental and

first higher mode is being successfully employed for the associated needful (Bohnert and

Pequignot, 1998).

Finite element solution relating to graded index slab waveguides in presence of nonlinearity is

available in literature (Hayata, Koshiba and Suzuki, 1987). Moreover, the numerical methods

involved for such investigations require lengthy computation. In this context, a simple but

accurate study on effect of optical Kerr nonlinearity on first higher order mode cut-off frequency

for the different kinds of fibers are in demand in literature. Further, formalism regarding

evaluation of first higher order cut-off frequency of nonlinear optical fibers has been reported

(Mondal and Sarkar, 1996; Roy and Sarkar, 2016). The formalism (Roy and Sarkar, 2016) is

based on Chebyshev method and the results found are accurate, though the concerned execution

is simple. In addition, literature has already been enriched in respect of report of method

involving Chebyshev technique for prediction of propagation parameters in single-mode

nonlinear fibers (Sadhu, Karak and Sarkar, 2013). Chebyshev power series technique (Chen,

1982; Shijun, 1987) applied for estimation of propagation parameters of linear fibers has shown

the features of simplicity combined with accuracy as well (Gangopadhyay and Sarkar, 1998b;

Patra, Gangopadhyay and Goswami, 2008; Bose, Gangopadhyay and Saha, 2012c). Being

motivated by the effectiveness of Chebyshev formalism in the domain of linear fibers, we have

recently reported application of this formalism for accurate prediction of fundamental modal

field for graded index fibers in presence of Kerr-type nonlinearity. This has been presented in

chapter 4.
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Taking into consideration that evaluation of first higher order modal field associated with Kerr-

type nonlinearity is also as important matter in the study of dual-mode fiber, we in this chapter,

present application of Chebyshev formalism (Patra, Gangopadhyay and Goswami, 2008) to

estimate the first higher order modal field for some typical step and graded index fibers. Here,

we have applied iterative technique involving Chebyshev formalism in order to predict the first

higher order modal field. Further, we have shown excellent match between our results and the

exact results which can be obtained by finite element method (Hayata, Koshiba and Suzuki,

1987).

5.2 THEORY

As presented in chapters 2, 3 and 4, we express the refractive index profile ( )n R for a weakly

guiding circular core fiber as follows












1,

1)),(21(
)(

2
2

2
12

Rn

RRfn
Rn
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(5.1)

where R = r/a and 2
1

2
2

2
1 2/)( nnn  with a being the core radius and n1, n2 being the

refractive indices of the core axis and the cladding respectively. Here, f(R) represents the shape

of refractive index profile of the fiber.

The profile functions f(R) for different kinds of fibers are given below,

fiberindexstepfor10,0)((I)  RRf
(5.2)

fiberindexparabolicfor10,)((II) 2  RRRf

The refractive index of the fiber involving Kerr-type nonlinearity is expressed as (Mondal and

Sarkar, 1996)
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(5.3)

where 0 = ))/( 2/1
00  with 0 and 0 presenting respectively the permeability and permittivity

of free space and )(RnNL denoting the distribution of nonlinear Kerr coefficient (m2/W). The

modal field of circularly symmetric scalar nonlinear LP11 mode is given as ( )R which satisfies

the following scalar wave equation (Mondal and Sarkar, 1996)
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where, 1K , 0K are the modified Bessel functions of first and zero order respectively while

 2/12
2

2
10 )( nnakV  and  2/12

0
2
2

2 )( knaW   are the normalised frequency and cladding

decay parameter respectively. Here, 0k and  are the free space wave number and propagation

constant respectively.

The Chebyshev formalism based power series expression for the first higher order modal field in

graded index fiber within core and cladding, can be expressed as (Patra,  Gangopadhyay  and

Goswami, 2008)
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Now applying Eq. (5.6) in Eq. (5.4), we get
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Following Refs. (Patra, Gangopadhyay and Goswami, 2008; Bose, Gangopadhyay and Saha,

2011a), we choose two Chebyshev points namely R=R1 and R=R2 in order to find cladding decay

parameter W and also a3 and a5 in terms of a1. The concerned Chebyshev points are given as

(Chen, 1982)
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Here, we use M =3 to get R1=0.9511, R2=0.5878

Using those two relevant Chebyshev points R=R1 and R=R2, we get two following equations
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interval 5.26.0 W as follows (Gangopadhyay, Sengupta, Mondal, Das and Sarkar, 1997);

Bose, Gangopadhyay and Saha, 2012c)

)11.5(
)(

)(

0

1

WWK

WK 
 

where  = 1.034623    and  = 0.3890323

However, when W is less than 0.6, linear least square fitting technique is applied  in order to

make linear formulation of
)(

)(

0

1

WK

WK
as a function of

W

1
for different  short intervals of W (Patra,

Gangopadhyay and Sarkar, 2000). Accordingly α and β for different short intervals will be

different.

Again, applying Eq. (5.6) and Eq. (5.11) in Eq. (5.5), we find

0])(6[

])(4[])(2[
2

5

2
3

2
1





WWa

WWaWWa




(5.12)

a1, a3 and  a5 given in  Eq. (5.9), Eq. (5.10) and Eq. (5.12)  will be conformable for non-trivial
solution if those  satisfy the following condition.

0

333

222

111



CBA

CBA

CBA

(5.13)

here,

1A  )R())(1( 1
222

1
2 gVWRfV 

 2 2 2 2
2 2 2(1 ( )) ( )A V f R W V g R   

2
3 )(2 WWA  

 2 2 2 2 2
1 1 1 18 [ (1 ( )) ( )]B R V f R W V g R    
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 2 2 2 2 2
2 2 2 28 [ (1 ( )) ( )]B R V f R W V g R    

2
3 )(4 WWB  

)]}())(1([24{ 1
222

1
24

1
2

11 RgVWRfVRRC 

)]}())(1([24{ 2
222

2
24

2
2
22 RgVWRfVRRC  (5.14)

2
3 )(6 WWC  

Initially, we can calculate the value of W for a given value of V by solving Eq. (5.13) in absence

of nonlinearity by considering g=0. Moreover, using a particular value of W corresponding to a

given V number, a3 and a5 in terms of a1 is calculated in absence of Kerr-type nonlinearity by

using any two of the three equations given by Eqs. (5.9), (5.10) and (5.12). Further, in order to

evaluate the first higher order modal field in presence of Kerr-type nonlinearity for a particular

value of g corresponding to a typical fiber having a specific V value, an iterative technique is

adopted and iteration is continued till the convergent values of W and corresponding a3, a5 values

in terms of a1 are obtained.

5.3 RESULTS AND DISCUSSIONS

Here, we choose some typical step and parabolic index fibers (Bose, Gangopadhyay and Saha,

2011a) for verification of our formalism. In this context, we compare our results with available

exact numerical results obtainable following Ref. (Hayata, Koshiba and Suzuki, 1987). Further,

we have considered the refractive index of cladding 2( )n and basic fiber parameter  2 2
1 2a n n

as 1.47 and 0.22 µm respectively (Mondal and Sarkar, 1996; Roy and Sarkar, 2016). The product

of nonlinear refractive index NLn (R) (m2/W) and power P (W)  is introduced as PnNL , the value

of which in our present study has been taken as -1.5x10-14 m2 and 1.5x10-14 m2 (Mondal and

Sarkar, 1996; Roy and  Sarkar, 2016).

In Fig. 5.1, we show the variation of cladding decay parameter with respect to Kerr-type

nonlinearity for step index fibers having V numbers 2.5, 3.0 and 3.5 respectively. Similarly, in



82

Fig. 5.2, we represent the variation of cladding decay parameter with respect to Kerr-type

nonlinearity for parabolic index fibers having V numbers 4.0, 4.5 and 5.0 respectively.

It is relevant to mention in this connection that such choice of V numbers has been made, taking

into consideration that in case of step index fiber, the first higher mode cut-off value is 2.4048

and the next higher mode cut-off value is 3.8317 while those in case of parabolic index fibers are

respectively 3.518 and 6.37 (Nuemann,1988). As such corresponding to the selected values of V,

only fundamental and first higher order mode propagate through both step and parabolic index

fibers. Incidentally, V numbers for the said kinds of fibers which correspond to W values in the

interval 0.6 ≤ W ≤ 2.5 ,
)(

)(

0

1

WK

WK can be linearly formulated by least square fitting technique while

in case W values are less than 0.6,
)(

)(

0

1

WK

WK is linearly formulated for some short intervals of W

(Gangopadhyay, Sengupta, Mondal, Das and Sarkar, 1997; Patra, Gangopadhyay and Sarkar,

2000). This has been also used in chapter 4.

In Figs. 5.3, 5.4 and 5.5, we plot variation of first higher order modal field with respect to

normalised radial distance (R) in presence and in absence of Kerr-type nonlinearity for step index

fibers having V numbers 2.5, 3.0 and 3.5 respectively. Similarly, in Figs. 5.6, 5.7 and 5.8, we

show the variation of first higher order modal field with respect to normalised radial distance (R)

in presence and in absence of Kerr-type nonlinearity for parabolic index fibers having V numbers

4.0, 4.5 and 5.0 respectively. Here, it is also seen that the effect of nonlinearity on the first higher

order modal field becomes more as we move more towards cladding. Further, it is seen from the

graphs that influence of Kerr-type nonlinearity becomes more effective for fibers having less V

number, such influence being more prominent in case of step index fiber. The observation

predicts that decrease of V number with respect to first higher order modal field leads to more

nonlinear influence. In figures 5.3-5.6, we have presented our estimation by * in case of nNLP

=1.5x10-14 m2, by + in case of nNLP = -1.5x10-14 m2 and by in case of nNLP=0. Again, nNLP=0

corresponds to linear fiber and here our results are seen to agree excellently with the results found

in Ref. (Patra, Gangopadhyay and Goswami, 2008). Further, in case of nonlinearity used, our

results also agree excellently with the results obtained by finite element based variational method

(Hayata, Koshiba and Suzuki, 1987). The analysis prescribes prediction of first higher order

modal field for graded fiber in presence of Kerr-type nonlinearity by means of solution of a third
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order determinant. The study also presents choice of appropriate V number concerned with dual-

mode fiber for minimization of noise due to nonlinearity.

The literature contains the effect of nonlinearity on the first higher order modal field (Tai,

Tomita, Jewell and Hasegaw, 1986; Snyder and Chen, 1990; Goncharenko, 1990; Sammut and

Pask, 1990; Agrawal and Boyd, 1992).  In case of few mode fibers, the modal analysis in

presence of nonlinearity is implemented by using nonlinear Schrödinger equations and then

adopting simulation technique (Kutluyarov, Lyubopytov, Bagmanov and Sultanov, 2017).

Moreover, the fiber nonlinear Kerr coefficient of two mode fiber can be also measured by

characterising the four-wave mixing components (Chen, Li, Gao, Amin and Shieh, 2012). The

involved processes are lengthy and cumbersome. On the other hand, our formalism based on

iterative Chebyshev technique provides prediction of the first higher order modal field in an

accurate fashion. Our approach is novel in the sense that no such simple but accurate formalism

for prediction of first higher order mode has been added to literature till date. The merit of our

formalism leaves ample scope for its extension in study of other kinds of fiber in presence of

nonlinearity.
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Fig. 5.1: Variation of Cladding decay parameter for first higher order mode against

nonlinearity parameter nNLP (x10-14 m2)  in case of step index fibers having different

V numbers.
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Fig. 5.2:  Variation of Cladding decay parameter for first higher order mode against

nonlinearity parameter nNLP (x10-14 m2)  in case of parabolic index fibers  having different

V numbers.
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Fig. 5.3: Variation of first higher order modal field against normalised radial distance R in

case of step index fiber having V=2.5 for different nonlinearity parameter  nNLP ( * for

nNLP =1.5x10-14 m2,  +for  nNLP = -1.5x10-14 m2, O  for   nNLP = 0 : Our results  ;

: Simulated exact ones (Hayata, Koshiba and Suzuki, 1987) ).
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Fig. 5.4: Variation of first higher order modal field against normalised radial distance R in

case of step index fiber having V=3.0  for different nonlinearity parameter  nNLP ( * for

nNLP =1.5x10-14 m2,  + for  nNLP = -1.5x10-14 m2, O  for   nNLP = 0 : Our results  ;

: Simulated exact ones (Hayata, Koshiba and Suzuki, 1987)).
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Fig. 5.5: Variation of first higher order modal field against normalised radial distance R in

case of step index fiber having V=3.5  for different nonlinearity parameter  nNLP( * for

nNLP =1.5x10-14 m2, + for nNLP = -1.5x10-14 m2, O  for   nNLP = 0 : Our results  ;

: Simulated exact ones (Hayata, Koshiba and Suzuki, 1987)).
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Fig. 5.6:   Variation of first higher order modal field against normalised radial distance R

in case of parabolic index fiber having V=4.0 for different nonlinearity parameter  nNLP ( *

for nNLP =1.5x10-14 m2, + for nNLP = -1.5x10-14 m2, O for   nNLP = 0 Our results; :

Simulated exact ones (Hayata, Koshiba and Suzuki, 1987)).
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Fig. 5.7: Variation of first higher order modal field against normalised radial distance R in

case of parabolic index fiber having V = 4.5  for different nonlinearity parameter  nNLP ( *

for nNLP =1.5x10-14 m2, + for  nNLP = -1.5x10-14 m2, O  for   nNLP = 0 : Our results ; :

Simulated exact ones (Hayata, Kohiba and Suzuki, 1987)).
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Fig. 5.8: Variation of first higher order modal field against normalised radial distance R in
case of parabolic index fiber having V = 5.0 for different nonlinearity parameter nNLP (*
for nNLP = 1.5x10-14 m2,  + for  nNLP = -1.5x10-14 m2, O  for nNLP = 0 : Our results; :
Simulated exact ones (Hayata, Koshiba and Suzuki, 1987)).

5.4 SUMMARY

We have presented a simple but accurate formalism based on iteration for prediction of first

higher order modal field for dual mode graded index optical fiber in presence Kerr-type

nonlinearity. The study is carried out both in absence as well as in presence of Kerr-type

nonlinearity. The analysis is based on a simple method involving Chebyshev formalism. Taking

some typical step and parabolic index fibers as examples, we show that our results agree

excellently with the exact results which can be obtained by applying rigorous methods. Thus, our

simple formalism stands the merit of being considered as an accurate alternative to the existing

cumbersome methods. The prescribed formalism provides scope for accurate estimation of

different propagation parameters associated with first higher order mode in such kinds of fibers

in presence of Kerr nonlinearity. The execution of formalism being user friendly, it will be

beneficial to the system engineers working in the field of optical technology.
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CHAPTER – 6

CONCLUSIONS
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CONCLUSIONS

In chapter 1, the basics of fiber optics along with extensive literature survey concerned with

review of the background and current scenario, have been presented. This chapter also comprises

how the literature survey has generated the motivation for the present work.  Further, this chapter

also presents the objective and scope of the thesis from the standpoint of contemporary interest.

In chapter 2, the thesis contains formulation of simple analytical expressions for power

transmission coefficients at the splice separately for both angular and transverse mismatches in

case of single-mode dispersion shifted trapezoidal as well as dispersion flattened graded and step

W fibers. Here, the series expression for fundamental mode developed by Chebyshev technique

for each kind of dispersion managed fiber, is employed. Further, taking into consideration that

splices are highly tolerant with respect to longitudinal separation, the investigations are restricted

to the cases of transverse and angular mismatches only. This chapter also shows excellent match

between our results and available exact numerical results in case of some typical trapezoidal

fibers and parabolic as well as step W fibers which have been chosen as examples. The

evaluations of the said parameters by this formalism involve very little computations. Such

excellent predictions leave scope for system engineers to use this user friendly but accurate

formalism for study of other relevant characteristics concerned with all optical technology. Thus,

our formalism may prove immensely helpful in present communication system.

In chapter 3, the thesis presents analytical formulation of normalised coupling length in terms of

fiber to fiber separation for a directional coupler containing two identical single-mode dispersion

managed fibers. The said prescriptions have been made by using the coupled-mode theory along

with Chebyshev power series expression for fundamental mode of each kind of dispersion

managed fiber. The said estimations have been made for directional couplers corresponding to

some typical dispersion managed fibers and the results obtained have been shown to be

comparable to available numerical results in case of directional coupler formed of two identical

single-mode graded index fibers. The concerned calculations require simple and little

computation and as such the formalism developed will prove beneficial to technologists who are

working in the field of optical technology. Moreover, the method developed generate ample

scope for extension to the analysis of directional couplers, switches etc. made of other kinds of
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fibers. In addition present formalism with some modification can be also applied for such

devices in the low V region which happen to be conducive to evanescent coupling.

In chapter 4, the thesis contains prediction of fundamental modal field of single mode graded

index fiber in presence of Kerr-nonlinearity. The formalism is based on power series expression

for the modal field of single mode graded index fibers by Chebyshev formalism. The method

involves necessary iteration for estimation modal field of single mode graded index fiber in

presence of Kerr-nonlinearity. The results found are important for the purpose of minimisation of

modal noise due to such nonlinearity in the field of optical communication. Thus, the results may

prove extremely important for different kinds of sensors and in the field of integrated nonlinear

photonics. The accuracy of the method opens up a simple technique for estimating various

propagation characteristics of Kerr-type nonlinear graded index fibers.  This simple formalism

leaves scope for extension of the analysis for the study of other kinds of fibers. Moreover, such

type of formalism can also be tested for analysis of different kinds of fibers in presence of higher

order nonlinearity including saturable nonlinearity.

Chapter 5 of the thesis deals with prediction of first higher order modal field for dual mode

graded index optical fiber in presence Kerr-type nonlinearity. The study is carried out both in

absence as well as in presence of Kerr-type nonlinearity. The analysis is based on a simple

iterative method involving Chebyshev formalism. It has been shown that the results found in

case of some typical step and parabolic index fibers as examples, agree excellently with the exact

results which can be obtained by applying rigorous methods. Thus, our simple formalism stands

the merit of being considered as an accurate alternative to the existing cumbersome methods.

The prescribed formalism provides scope for accurate estimation of different propagation

parameters associated with first higher order mode in such kinds of fibers in presence of Kerr-

type nonlinearity. The execution of formalism being user friendly, it will be beneficial to the

system engineers working in the field of optical technology. The accuracy of this simple

formalism opens up scope for its application with necessary modification in other kinds of fiber

and other types of nonlinearity as well.

The investigations made have resulted in four publications in international journal of repute. The

present work can motivate one to proceed ahead with prescribed formalism in various areas

involving splice losses, directional couplers, switches etc.. The formalism developed for study of
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influence of Kerr-type nonlinearity on single-mode as well as dual mode graded index fiber

generates ample scope for extension to fibers of different kinds of refractive index profile

subjected to nonlinearity of various kinds. In this respect, one needs to keep track of recent

publications from laboratories where necessary infrastructural facilities are available.
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Appendix – A

For weakly guiding fibers, the fundamental modal field )(R inside the core of the fiber is

given by the following scalar wave equation

  1,0))(1(
1 22

2

2

 RWRfV
dR

d

RdR

d



(A1)

together with the boundary condition
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)(1
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1

1
WK
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dR
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R















(A2)

where ])([ 2/12
2

2
10 nnakV  and ])([ 2/12

0
2
2

2 knaW   represent the normalized  frequency

and cladding decay parameter respectively with k0 and  being the  free space wave number

and  propagation constant respectively. Here,  denotes )(R for brevity.

The fundamental modal field in the cladding of the fiber is given as

1),(~)( 0 RWRKR (A3)

The fundamental modal field )(R being  an even function of  R with )0(' being zero and

)0( nonzero,  one can approximate )(R in  the following form of Chebyshev power series

(Chen,1982;Shijun,1987)







1

0

2
2)(

Mj

j

j
j RaR (A4)

For simplicity and accuracy as well, it is enough to retain terms up to j = 3 in (A4)

(Gangopadhyay, Sengupta, Mondal, Das and Sarkar, 1997; Gangopadhyay and Sarkar, 1997a,

1998a, 1998b) whereby one obtains
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6
6

4
4

2
20)( RaRaRaaR  (A5)

The Chebyshev points are defined as follows (Chen,1982)













212

12
cos


M

m
Rm ; m = 1, 2, ………………….(M-1) (A6)

Clearly M=4 will give Chebyshev points appropriate for (A5) and therefore the relevant three

values of R corresponding to m = 1, 2 and 3, are found as follows

R1 = 0.9749,     R2 = 0.7818 and       R3 = 0.4338 (A7)

Employing (A5) in (A1), one obtains the following three equations corresponding to three values

of R given in (A7).

2 2 2 2 2
0 2

2 4 2 2
4

4 6 2 2
6

[ ( (1 ( ) ) ) ] [4 ( (1 ( )) )]

[16 ( (1 ( )) )]

[36 ( (1 ( )) )] 0

i i i

i i i

i i i

a V f R W a R V f R W

a R R V f R W

a R R V f R W

     

   

    

(A8)

Application of least square fitting technique over the range 5.260.0 W , a long interval

allowing mono-mode operation of such fibers, gives the following formulation (Gangopadhyay,

Sengupta, Mondal, Das and Sarkar, 1997)

WWK

WK 3890323.0
034623.1

)(

)(

0

1  (A9)
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Using (A5) and (A9) in (A2), one obtains

0 2

4 6

a (0.3890323 +1.034623W)+a (2.3890323+1.034623W)+

a (4.3890323+1.034623W)+a (6.3890323+1.034623W) = 0
(A10)

The condition of nontrivial solution of a2, a4, a6 in terms a0 from three equations in (A8) and one

equation in (A10) is given as follows
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(A11)

here,
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where i = 1, 2, 3 and

444444

4

6;4;2

3890323.0034623.1





 W

Employing (A11), one can evaluate W for a given value of V. Further, from the evaluated value

of W for a particular V, one can obtain a2, a4 , a6 in terms of a0 by using any three of four

equations given by (A8) and (A10). Therefore, the transverse field of fundamental mode for a

particular value of V is found by this simple method and those are given below
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where, ;/ 022 aaA jj  j = 1, 2, 3 and WC is the value of W estimated by the present method. 

The profile functions f(R) for some typical dispersion managed fibers are given as  (Bose, 

Gangopadhyay and Saha, 2012c)   
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    for trapezoidal fiber (Paek, 1983) 
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  for graded W fibers (Mishra, Hosain, Goyal and 

Sharma, 1984) 

                                                              

(III)             
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for step W fiber (Monerie, 1982) 

Here, S represents the aspect ratio for trapezoidal fiber. Further, q denotes the profile exponent 

for W fiber and its value is ∞ for step type while ρ stands for the relative index depth of inner 

cladding having index ni and it is given by, )./()( 2

2

2

1

22

1 nnnn i    
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The relevant values of profile functions along with cladding decay parameter for the above

mentioned dispersion managed fibers corresponding to typical fiber parameters, have been

presented below for ready reference.

Table – A1

Trapezoidal profile of V number 2.5 (Paek, 1983)

Chebyshev points Value of aspect
ratio S

Profile function )(Rf Cladding decay
parameter W
found by this
method

R1=0.9749

R2=0.7818

R3=0.4338

0.25

)( 1Rf =0.9665

)( 2Rf =0.7091

)( 3Rf =0.2451

1.14944

0.50

)( 1Rf =0.9498

)( 2Rf =0.5636

)( 3Rf =0

1.54153

0.75

)( 1Rf =0.8996

)( 2Rf =0.1272

)( 3Rf =0

1.71141
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Table – A2

Graded W profile of V number 3.0; the profile exponent q = 2 (Mishra, Hosain, Goyal and
Sharma, 1984)

Chebyshev
points

Value of C Value of ρ Profile function
)(Rf

Cladding decay
parameter W
found by this
method

R1=0.9749

R2=0.7818

R3=0.4338

1.5 1.4975 )( 1Rf =1.4975

)( 2Rf =1.4975

)( 3Rf =0.2818

1.12677

1.5 1.5000 )( 1Rf =1.5

)( 2Rf =1.5

)( 3Rf =0.2823

1.12383
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Table – A3

Step W profile of V number 2.0 (Monerie, 1982; Garth, 1989)

Chebyshev
points

Value of C Value of ρ Profile function
)(Rf

Cladding decay
parameter W found
by this method

R1=0.9749

R2=0.7818

R3=0.4338

2.0 1.3333 )( 1Rf =1.3333

)( 2Rf =1.3333

)( 3Rf =0

0.604563

2.0 1.2500 )( 1Rf =1.2500

)( 2Rf =1.2500

)( 3Rf =0

0.655343
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Appendix – B

We have the following important relations (Watson, 1944; Gradshteyn and Ryzhik, 1980;
Abramowitz and Stegun, 1981)

 
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Here, )(xZ stands for either the Bessel function )(xJ or the modified Bessel function )(xK

with the upper and lower signs representing J type and K type Bessel functions respectively.
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