Pathways for Future Sustainable Cities

Thesis submitted by

Swati Dutta

Doctor of Philosophy (Engineering)

Department of Architecture Faculty Council of Engineering & Technology Jadavpur University Kolkata, India

2018

CERTIFICATE FROM THE SUPERVISORS

This is to certify that the thesis entitled "**Pathways for Future Sustainable Cities**" submitted by **Smt. Swati Dutta**, who got her name registered on 25 February 2011 for the award of Ph. D. (Engineering) degree of Jadavpur University is absolutely based upon her own work under the supervision of **Prof. (Dr.) Suchandra Bardhan** and **Prof. (Dr.) Sanjukkta Bhaduri** and that neither her thesis nor any part of the thesis has been submitted for any other academic award anywhere before.

1.

2.

Dr. Suchandra Bardhan Professor Department of Architecture Jadavpur University Kolkata - 700032 Dr. Sanjukkta Bhaduri Professor Department of Urban Planning School of Planning and Architecture New Delhi - 110002 I take this nice opportunity to acknowledge the guidance, cooperation and help extended to me in various ways by many during the period of my work.

Words will always be inadequate to express my profound sense of gratitude to Prof. (Dr.) Suchandra Bardhan and Prof. (Dr.) Sanjukkta Bhaduri, my revered guides for their continuous encouragement, valuable suggestions, guidance and all possible help in my research and preparation of this report.

I would like to thank the staff of Municipal Town Planning Department, Amritsar; Amritsar Improvement Trust; Librarian, Dept. of Urban and Regional Planning, GNDU, Amritsar; Ar. S.K. Midha, Former Chief Architect, Haryana; Ms. Gurmeet Kaur, Senior Town Planner, Dept. of Urban Planning, Chandigarh Administration and the local residents of Amritsar, Chandigarh and Gurugram for the help extended to me in collecting data for my work. I am also grateful to Dr. Deepak Verma, Asst. Professor, Dept. of Management Studies, MNIT Jaipur for helping me understand the nuances of statistical tests during my data analysis.

I am also thankful to Prof. (Dr.) Biswajit Ghosh, Director, School of Energy Studies, Jadavpur University; Prof. Monideep Chattopadhyay, Former Professor and Head, Dept. of Architecture, Jadavpur University and Prof. (Dr.) Manju Halder, Dept. of Architecture, Town and Regional Planning, IIEST, Shibpur, Howrah, West Bengal along with other members of the research committee for their positive criticism and constructive suggestions at the onset and subsequent stages of my research work.

A special note of thanks to Prof. (Dr.) Madhumita Roy, Dept. of Architecture, Jadavpur University for extending all possible help during my visits to the University.

Thanks are also due to my employers namely Chitkara School of Planning and Architecture, Chitkara University, Punjab and School of Architecture and Design, Manipal University Jaipur for providing a conducive environment to carry on my research.

I express my heartfelt thanks to my husband, *Siddhartha Koduru*, for his unconditional help, support and suggestions in completing this work.

I am really grateful to my parents for providing me constant encouragement and my daughter *Sukanya* for being patient and considerate throughout; and our pets *Olive* and *Munu* for being around and relieving my stress with their playful activities now and then.

Above all, I owe it all to Almighty for giving me the insight, strength, patience and guidance throughout my work.

Swati Dutta

JADAVPUR UNIVERSITY KOLKATA – 700 032, INDIA

INDEX NO. 142/11/E

1. Title of the thesis : Pathways for Future Sustainable Cities

- 2. Name, Designation & Institution of the Supervisors :
 - Dr. Suchandra Bardhan
 Professor,
 Department of Architecture,
 Jadavpur University,
 Kolkata 700 032, INDIA
 - ii. Dr. Sanjukkta Bhaduri
 Professor,
 Department of Urban Planning,
 School of Planning and Architecture,
 New Delhi 110 002, INDIA

2

- 3. List of Journal Publications
 - i. Dutta, S., Bardhan, S. and Bhaduri, S. (2013) **Patterns of Urbanisation and Environmental Quality in the Context of Indian Cities**. *Environment and Urbanization ASIA*, 4 (2), 287 – 299.
 - Dutta, S., Bardhan, S. and Bhaduri, S. (2013) Urban Environment Studies for a Sustainable Future: An Alternative Approach. *ABACUS (Journal of BITs, Mesra)*, 8 (1), 38 49.
 - Dutta, S., Bardhan, S. and Bhaduri, S. (2017) Residential Density and Neighbourhood Environmental Quality – A Comparative Study in the context of Indian Cities. SPECIAL ISSUE of International Journal on Emerging Technologies (IJET), 8 (1), 315 – 323.

- 4. List of Patents : Not Applicable
- 5. List of Presentations in National / International Conferences / Workshops
 - Dutta, S., Bardhan, S. and Bhaduri, S. (2015) A Model Framework for Assessing Urban Environmental Quality presented and published in proceedings of National Conference on Re-discovering Cities (NCRC – 2015) organized by School of Architecture, MM University, Sadopur, Ambala, India and Indian Institute of Architects (Chd-Pb Chapter), 10–11 April 2015, (pp. 331-339).
 - Dutta, S., Bardhan, S. and Bhaduri, S. (2017) Multi-criteria Approach for Assessing Neighbourhood Environmental Quality - A Way towards Future Sustainable Development of Indian Cities presented at International Conference on Sustainable Built Environment 2017 (SBE 2017) organized by Department of Architecture and Planning, IIT Roorkee, 03-05 February 2017.

Received "Best Paper Award" under the theme 'Planning for Resilience'.

iii. Dutta, S., Bardhan, S. and Bhaduri, S. (2017) Residential Density and Neighbourhood Environmental Quality – A Comparative Study in the context of Indian Cities presented at National Conference on Urban Environmental Management: Problems and Prospects organized by Department of Architecture and Planning, MNIT Jaipur, 13-14 February 2017.

Abstract

The emergent urban problems such as unprecedented population growth, urban sprawl, disparities between city core and its periphery, increasing traffic volume and congestion pose ever increasing challenges for our cities. It is generally seen that current trends and patterns of urbanisation point towards an uncertain future. Therefore, cities need to manoeuvre themselves to a position where they can improve life for people who flock to them and be environmentally sustainable.

It is found from the background studies that while the more conventional challenges of providing adequate housing, public transportation and other civic amenities to urbanising societies are recognised to some extent, the impact of India's urbanisation on the immediate environment of the human habitat has scope for further research and study. A general study of the urban morphology of our cities reveals that different configuration and types of built form and related population distribution characterize the urban form across the geographical extent of the city. Alternatively, it can be stated that density given by distribution of buildings, their typology and geometry, layout patterns, distribution / availability of open spaces, quality of infrastructure etc. varies from one locality to the other within the city. Thus, density gives rise to particular urban forms, land use and transit patterns in the city; and urban form and land-use along with transport system of a city are critical factors affecting urban environmental quality. Thus, it can be hypothesised that sometimes as a cause and sometimes as an outcome of urbanisation: Density impacts Urban Environmental Quality

The relationship between density and environmental quality is also found to be based on the concept of viable thresholds: at certain densities, the amount of development and number of people within a given area becomes sufficient to generate the interactions needed to make urban functions or activities viable without putting a stress on the environmental carrying capacity. Hence, in order to provide a cleaner and sustainable environment to the city residents, it becomes pertinent to look at the urban environment at a micro scale, specifically the habitat of a neighbourhood / locality. In this context, the present thesis tries to understand the relationship between residential patterns observed in Indian cities and associated environmental quality at the neighbourhood level. The research hypothesis is formulated accordingly as – *Density impacts Environmental Quality in Residential Neighbourhoods*.

The scope is limited to the objective analysis of the physical aspects of the different residential neighbourhoods. This is grounded on the understanding that even though people evaluate their environments as they perceive, it is the physical aspect that provides a basis to objectively assess the quality of a place¹.

In order to comprehend the entire scenario, a detailed literature review is undertaken to understand the diverse types of urban processes and related environmental problems in different types of cities. Alongside, the terms density and environmental quality are defined and common measures adopted to describe the different types of density (People, Building and Spatial Density) and indicators to assess neighbourhood environmental quality (Crowding and Congestion, Nature and Use of Open Spaces, Shade and Ventilation, Temperature Variations, Average Noise Levels, Level of Cleanliness, Neighbourhood Walkability and Air Quality) are identified. The literature review reveals that studies taking into account physical aspects of the built environment and their impact on urban environmental quality are quite few especially in the Indian context and/or are sparsely reported, thus justifying the scope of the present work. Considering the significance of impacts, those responsible for poor environmental quality in residential neighbourhoods are acknowledged as the most urgent and greatest because of the immediate risk they present to their inhabitants' health and wellbeing. From these findings, finally, a set of variables as emerging from the literature review are identified to objectively measure the indicators of neighbourhood environmental quality.

Moving ahead, it is seen that much of the current sustainable cities debate focuses on the formidable problems of the world's largest urban agglomerations. However, it is predicted that in future majority of all urban dwellers will reside in smaller urban settlements of fewer than 500,000 residents². This does not however mean that mega cities and larger metropolises would be neglected as they will continue playing a significant role in absorbing future anticipated growth, but for the foreseeable future metropolitan cities having population less than equal to half a million will hold the key to urbanisation³. Keeping this in mind, the research is primarily based on cities with 0.75 million \leq population \leq 1.5 million as it is known from literature and

¹ Alexander, E. (1993) Density Measures: A Review and Analysis. *Journal of Architectural and Planning Research*, 10 (3), 181-202.

² World urbanisation prospects: the 2003 revision data tables and highlights. New York, United Nations, 2004.

³ Cohen, B. (2006) Urbanisation in Developing Countries: Current trends, future projections, and key challenges for sustainability. *Technology in Society*, 28, 63-80.

background study that there is dearth of comprehensive database of Indian cities with population under 0.75 million^{4,5}.

The multiple case design is selected as the appropriate research strategy for the present study and subsequently, three rapidly urbanising cities namely - Amritsar, Chandigarh and Gurgaon (now Gurugram) with population size within the given range and situated in the same climatic zone (composite climate) are selected to explore and compare the residential patterns and neighbourhood environmental quality. A conceptual framework showing possible correlations between density variables and indicators of environmental quality is developed and an analytical model between the independent and dependent variables is proposed for the multiple hierarchical regression analysis. Three stages are identified beginning with i) the organisation of data, followed by ii) assessment of aggregated neighbourhood environmental quality (ANEQ) and formulation of the environmental quality index (EQI) and iii) culminating with the testing of hypothesis and best-to-fit analysis to identify optimum density ranges to maintain favourable environmental quality in different residential neighbourhoods of our cities.

A detailed study of eight neighbourhoods with different residential patterns from the three case study cities based on primary and secondary data is undertaken. The correlation coefficient analyses show that significant relationships (both positive and negative) exist between the density variables and indicators of neighbourhood environmental quality. While crowding and congestion generally increase with people density (R^2 =0.466), people engage in different activities and greater social interaction happens in high density neighbourhoods (R^2 =0.584). Other aspects like presence of sidewalks, streetlights, outdoor furniture, level of cleanliness, etc. determine peoples' desire to reside, walk and utilize spaces. Open spaces regulate the microclimate (temperature) as shown by the negative correlation with R^2 =0.182. Trees and vegetation also ameliorate noise and air pollution with average day time noise levels of 50dB and low RSPM₁₀ levels (80-100µg/m³ against prescribed standard of 60µg/m³) in some localities inspite of vehicular traffic. Both shade and naturalness increase the outdoor comfort conditions for the residents especially during the summer months as temperatures are more comfortable inside the locality (R^2 =0.136). Good level of services and regular maintenance and upkeep of the

⁴ World Wide Fund for Nature (WWF) (2010) Urbanisation and Sustainability in India: An Interdependent Agenda. *The Alternative Urban Futures Report 2010.*

⁵ Indian Institute for Human Settlements (IIHS) (2011) Urban India 2011: Evidence. *Report of India Urban Conference 2011: Evidence & Experience (IUC 2011).*

neighbourhood ensure higher level of cleanliness as shown by the positive correlation with R^2 =0.447 while proximity to daily needs, good condition of sidewalks with streetlights and open spaces helps in creating walkable neighbourhoods (higher scores between 3.5-5) – key factors for creation of sustainable cities.

The multi-criteria approach is adopted to assess the aggregated neighbourhood environmental quality (ANEQ). The approach helps to consider several density variables that can be controlled and modified during the planning and design phase to achieve better spatial quality of the designed space. The 'Environmental Quality Index' (EQI) and 'Environmental Quality Profiles' (EQP) formulated serve as tools to identify commonalities and differences in the indicators of environmental quality and justify the level of aggregated neighbourhood environmental quality (ANEQ) ascertained. The best-to-fit analysis and optimization technique enable identification of optimum values of the density variables that can be used as measures to attain favourable environmental quality in neighbourhoods with different residential patterns.

The study convincingly shows that all the measures of physical density (people, building and spatial density) have significant impact on neighbourhood environmental quality thus justifying their adoption for planning/design of new neighbourhoods or retrofitting/revitalization of existing neighbourhoods in rapidly urbanising Indian cities. The study also reinforces the need to promote contextual and participatory planning to cater to the needs and aspirations of the local people and enhance the environmental quality at the micro level. It helps in formulating several urban design guidelines for environmentally conducive development of residential neighbourhoods.

Finally, it is concluded from the research that the neighbourhood is a valid level of aggregation and a holistic approach incorporating social and economic factors along with physical factors is required for the assessment of environmental quality. The present research also provides immense possibility of advancing the derived methodology by future researchers to include cities of different sizes, classes, types, regions, etc. to derive case-specific solutions and suggest suitable measures to improve the neighbourhood environmental quality. Last but not least, the study can serve as a foundation for formulation of building or development control regulations for the planning and design of sustainable neighbourhoods with varying residential patterns suitable for different parts of a city.

Table of Contents

Chapter		Title	Page
	Abstra List of List of List of	owledgement act f Figures f Maps f Plates f Tables	v ix xviii xxii xxiii xxiii xxv
1.	INTRO	ODUCTION	1-24
	1.1	Background Study – Patterns of Urbanisation in Developing Countries	2
		1.1.1 Peri-urbanisation or Suburban Sprawl and formation of City Regions	2
		1.1.2 Low Density Urbanism or Restricted Residential Enclave	2
		1.1.3 Urban Compaction and High Density	2
	1.2	Need of Study	4
	1.3	Area of Research	6
	1.4	The Research Hypothesis and Key Research Questions	10
	1.5	Aim and Objectives of the Study	11
	1.6	Scope of Study	12
	1.7	Limitations	13
	1.8	Research Methodology	14
	1.9	Structure of the Report	18
		References	22
2.	LITER	RATURE REVIEW	25-75
	2.1	Introduction	25
	2.2	Urbanisation in India	28
	2.3	Intra-city Residential Patterns in Indian Cities	31
	2.4	Understanding Density	34

Chapter			Title	Page
		2.4.1	Measuring Physical Density	34
			2.4.1.1 Measures of People Density	34
			2.4.1.2 Measures of Building Density	36
		0.4.0	2.4.1.3 Measures of Perceived Density	38
		2.4.2	People Density in Indian Cities	40
		2.4.3	Building Density in Indian Cities	42
	0.5	2.4.4	Spatial Density in Indian Cities	47
	2.5 2.6	•	ourhood Environmental Quality	53 61
	2.0	2.6.1	y and its impact on Environmental Quality	61
		2.6.1	Significance of Impacts	62 63
	2.7		Measurement of Impacts	63 66
	2.1	Refere	iding Remarks	68
		Releie	nces	00
3.	RESE	EARCH	DESIGN	76-103
	3.1	Introdu	ction	76
	3.2	The Ca	se Study Approach	76
	3.3	Identify Quality	ing Cities for Assessing Neighbourhood Environmental	77
	3.4	Identify	ing Case Study Neighbourhoods	85
	3.5	Disagg	regating Density	89
	3.6	The Co	nceptual Framework	90
	3.7	The An	alytical Model for Assessing Environmental Quality	93
	3.8	Types of	of Data and Methods of Data Collection	95
		3.8.1	Calculation of Sample Size	98
	3.9	Tools fo	or Data Analysis	99
	3.10	Conclue	ding Remarks	101
		Referei	nces	101
4.	STUE	DY OF R	ESIDENTIAL NEIGHBOURHOODS	104-175
	4.1	Introdu	ction	104
	4.2		verview of Amritsar	104
		4.2.1	Choice of Residential Neighbourhoods	107

Chapter				Title	Page
			4.2.1.1	Brief Background of the Case Study	107
		100		Neighbourhoods of Amritsar	
		4.2.2	Detailed	d Study of the Neighbourhoods	108
			4.2.2.1	Katra Dullo, Amritsar – Low Rise High Density Neighbourhood (LRHD)	108
			4.2.2.2	Ranjit Avenue, Amritsar – Low Rise Medium Density Neighbourhood (LRMD)	111
	4.3	Brief ov	verview o	f Chandigarh	118
		4.3.1	Choice	of Residential Neighbourhoods	120
		4.3.2	Detailed	d Study of the Neighbourhoods	121
				 Key Features of the Case Study Neighbourhoods of Chandigarh Sector 8 – Low Rise Low Density (LRLD) 	
			4.3.2.1	 Sector 38W – Low Rise High Density (LRHD) Marble Arch, Manimajra – Medium Rise Medium Density (MRMD) Sector 20, Panchkula – Medium Rise High Density (MRHD) 	129
	4.4	Brief ov	verview o	f Gurugram (Gurgaon)	136
		4.4.1	Choice	of Residential Neighbourhoods	137
		4.4.2	Detailed	d Study of the Neighbourhoods	138
			4.4.2.1	World Spa, Gurugram – High Rise Low Density Neighbourhood (HRLD)	138
			4.4.2.2	Uniworld City, Gurugram – High Rise High Density Neighbourhood (HRHD)	140
	4.5	Data O	rganisatio	on	144
	4.6	Compa	rative An	alysis and Preliminary Findings	144
		4.6.1	Crowdir	ng and Congestion	144
		4.6.2	Nature	and Use of Open Spaces	149
		4.6.3	Shade a	and Ventilation	151
		4.6.4	Temper neighbo	ature variations within and outside the ourhood	156
		4.6.5	Noise L	evels	160
		4.6.6	Level of	Cleanliness	163
		4.6.7	Walkab	ility	165
		4.6.8	Air Qua	lity	167

Chapter		Title	Page
	4.7	Concluding Remarks	171
		References	174
5.		ESSING NEIGHBOURHOOD ENVIRONMENTAL	176-199
	5.1	Introduction	176
	5.2	The Multi-criteria Approach for assessing Environmental Quality and Formulation of the Environmental Quality Index (EQI)	176
	5.3	Environmental Quality Profile of Case Study Neighbourhoods	184
	5.4	Relationship between Density and Environmental Quality	190
	5.5	Concluding Remarks	197
		References	198
6.	IMPA	ACT OF DENSITY ON ENVIRONMENTAL QUALITY	200-219
	6.1	Introduction	200
	6.2	The Multiple Hierarchical Regression (MHR) Approach	200
	6.3	The Best-to-Fit Analysis	205
		6.3.1 ZAEQ and People Density	206
		6.3.2 ZAEQ and Building Density	208
		6.3.3 ZAEQ and Spatial Density	212
	6.4	Concluding Remarks	218
		References	219
7.	SUM	IMARY, FINDINGS AND RECOMMENDATIONS	220-230
	7.1	Introduction	220
	7.2	Summary of the Studies	221
		7.2.1 Answers to the Research Questions	222
	7.3	Policies and Guidelines for Environmentally Conducive Development of Residential Neighbourhoods	226
	7.4	Conclusion	228
		References	229

Chapter	Title	Page
8.	 AVENUES FOR FUTURE WORK 8.1 Introduction 8.2 Limitations and Parallel Challenges 8.3 Directions for Future Research References 	231-233 231 231 232 233
	Glossary Annexure 1 Annexure 2	234 235 238
	Journal Publications and Conference Paper Abstracts	266
	Vitae	312

List of Figures

Figure	Title	Page
1.1	Urban Densities and Spatial Structure of Indian Cities compared with some World Cities	3
1.2	Key Challenges of Urban India	5
1.3	Population and Built-up Area - Outside ULB Boundaries in Indian cities	7
1.4	Urban Growth - Population versus Built-up Areas	8
1.5a	Change in Urban Built-up Area and Land Cover	8
1.5b	Change in Urban Built-up Area and Land Cover	9
1.6	Distribution of urban residents by size of urban area, 2000	13
1.7	Research Boundary	14
1.8	Research Methodology	15-18
2.1	Urban Processes adding to Environmental Burdens	25
2.2	Environmental Issues in different types of Cities	26
2.3	Population Growth in India	28
2.4	Population projections of India and China	29
2.5	Trends in Urban and Rural Population Growth	30
2.6	Measures of People Density	35
2.7	Relationship between density and urban form	37
2.8	Permissible FAR in 10 Indian Cities	44
2.9	Figure ground drawings of six case study neighbourhoods	48
2.10	Percentage Distribution of Storm Water Drainage in Indian Cities	52
2.11	Net Density (ND) and Gross Density (GD) based on BUA, PGA, PF and FSI	57
3.1	Largest 20 Urban Agglomerations by Population – 2011	78
3.2	Estimates of Land Covered, Distribution of Population and Economic Output across cities of various sizes	79
3.3	Growth of Case Study Cities by Population	82
3.4	The Case Study Approach for Research	86
3.5	Growing Trend towards Medium and High Rise Residential Patterns	87
3.6	The Analytical Model	94
3.7	Types of Data and Methods of Data Collection	96

Figure	Title	Page
3.8	Stages of Data Analysis and Tools for Data Analysis	100
4.1	Study Units, Katra Dullo, Amritsar	108
4.2	Study Units, Ranjit Avenue, Amritsar	112
4.3	Typical Section(s), Katra Dullo, Amritsar	115-116
4.4	Typical Sections, Ranjit Avenue, Amritsar	116-117
4.5	Study Units, Sector-8, Chandigarh	127
4.6	Study Units, Sector-38 West, Chandigarh	127
4.7	Study Units, Marble Arch (Manimajra), Chandigarh	128
4.8	Study Units, Sector-20 (Panchkula), Chandigarh	128
4.9	Typical Sections, Sector 8 and Sector 38West, Chandigarh	133
4.10	Typical Sections, Marble Arch (Manimajra) and Sector 20 (Panchkula), Chandigarh	134
4.11	Study Units, World Spa, Gurugram	138
4.12	Study Units, Uniworld City, Gurugram	140
4.13	Typical Sections, Uniworld City, Gurugram	143
4.14	Residential Density versus BUA/Capita	146
4.15	Residential Density versus PGA/Capita	146
4.16	Residential Density versus PRL/Capita	147
4.17	Residential Density versus Mobilization Factor	147
4.18	Residential Density versus Activity Intensity	150
4.19	Wind Rose Diagrams	152
4.20	Wind Movement in neighbourhoods of Amritsar and Gurugram	153
4.21	Wind Movement in neighbourhoods of Chandigarh	154
4.22	H/W ratio versus Shade Rating and Temperature Variations	157
4.23	Residential Density versus Ventilation Score and Temperature Variation	159
4.24	FAR versus Ventilation Score and Temperature Variation	159
4.25	Distribution of Open Spaces versus Temperature Variation	159
4.26	Plot Coverage, Distribution of Roads & Open Spaces versus Noise Levels	162
4.27	Walkability indicators in different case study neighbourhoods	166
5.1	Environmental Quality Maps of Katra Dullo and Ranjit Avenue, Amritsar	180
5.2	Environmental Quality Maps of Sector-8 and Sector-38W, Chandigarh	181

Figure	Title	Page
5.3	Environmental Quality Maps of Marble Arch (Manimajra) and	182
5.4	Sector-20 (Panchkula), Chandigarh Environmental Quality Maps of World Spa and Uniworld City, Gurugram	183
5.5	EQP of Case Study Neighbourhoods, Amritsar	185
5.6	EQP of Case Study Neighbourhoods, Chandigarh and	186
5.7	Gurugram Histogram and Normal Q-Q Plot of ZAEQ	189
5.8	Variation in Environmental Quality with Population Density	192
5.9	Variation in Environmental Quality with Residential Density	192
5.10	Variation in Environmental Quality with Floor Area Ratio (FAR)	193
5.11	Variation in Environmental Quality with Plot Coverage	193
5.12	Variation in Environmental Quality with Height to Width Ratio	194
5.13	Variation in Environmental Quality with Distribution of Open Spaces	194
5.14	Variation in Environmental Quality with Distribution of Sidewalks	195
5.15	Variation in Environmental Quality with Streetlight Density	195
5.16	Variation in Environmental Quality with Coverage of Domestic Waste Collection System	196
5.17	Variation in Environmental Quality with Coverage of Stormwater Drainage	196
5.18	Variation in Environmental Quality with Coverage of Sewerage System	197
6.1	Results of the Multiple Hierarchical Regression Analysis	204
6.2	Histogram of Standardized Regression Residuals	205
6.3	Best-to-fit analysis of residential density and ZAEQ	206
6.4	Residential density values (Low & Medium) for favourable ZAEQ	207
6.5	Residential density values (Medium & High) for favourable ZAEQ	208
6.6	Best-to-fit analysis of FAR and ZAEQ	208
6.7	Best-to-fit analysis of Plot Coverage and ZAEQ	209
6.8	FAR for favourable ZAEQ	210
6.9	Plot Coverage (Low/Medium Rise) for favourable ZAEQ	211
6.10	Plot Coverage (High Rise Development) for favourable ZAEQ	211

Figure	Title	Page
6.11	Best-to-fit analysis of Height to Width Ratio and ZAEQ	212
6.12	Height to Width Ratio for favourable ZAEQ	214
6.13	Best-to-fit analysis of Sidewalks and ZAEQ	214
6.14	Best-to-fit analysis of Streetlight Density and ZAEQ	215

List of Maps

Мар	Title	Page
3.1	Urban India - 2011	77
4.1	Zones identified in Amritsar City	105
4.2	Location of Katra Dullo and Ranjit Avenue in Amritsar City	106
4.3	Land-use Map of Katra Dullo, Amritsar	109
4.4	Land-use Map of Ranjit Avenue, Amritsar	110
4.5	Phasing Plan of Chandigarh	118
4.6	Chandigarh Urban Complex (CUC)	119
4.7	Gross Population Density Plan of Chandigarh City	120
4.8	Map of Tri-City with Identified Neighbourhoods	121
4.9	Land-use Map of Sector-8, Chandigarh	123
4.10	Land-use Map of Sector-38W, Chandigarh	124
4.11	Land-use Map of Marble Arch (Manimajra), Chandigarh	125
4.12	Land-use Map of Sector-20 (Panchkula), Chandigarh	126
4.13	Master Plan of Gurgaon (now called Gurugram) – Manesar Urban Complex, 2031AD	136
4.14	Land-use map of World Spa, Sector – 30, Gurugram	139
4.15	Land-use map of Uniworld City, Sector – 30, Gurugram	141

List of Plates

Plate	Title	Page
2.1	Compact Built-form in Old City Areas of Shahjahanabad and Ahmedabad	31
2.2	Wide Avenues and Lush Green Open Spaces in Amritsar Cantonment	32
2.3	Haphazard Developments along Delhi-Chandigarh Highway	33
2.4	View of new upcoming residential projects along Bye-Pass, Amritsar	33
3.1	View of residential projects along NH-8, Gurugram	84
3.2	Residential Neighbourhoods in Case Study Cities	88
3.3	RH Temperature Data logger and Decibel Android Application	97
4.1	Poor housing condition, poor mass space relationship, mesh of wires and high intensity of development in walled city Amritsar	105
4.2	Planned housing areas in Green Avenue and Ranjit Avenue, Amritsar	106
4.3	Poor Condition of Buildings, Katra Dullo, Amritsar	111
4.4	Garbage Dumps, Open Drains, Congested Roads and Scanty Tree Cover, Katra Dullo, Amritsar	111
4.5	Plotted Development and View of Park, Ranjit Avenue, Amritsar	112
4.6	Types of Plots and Residential Buildings, Ranjit Avenue, Amritsar	113
4.7	Condition of Roads and Sidewalks, Ranjit Avenue, Amritsar	113
4.8	Level of Infrastructure and Services, Ranjit Avenue, Amritsar	114
4.9	Types of Commercial Establishments, Ranjit Avenue, Amritsar	114
4.10	Low Rise Structures, Old Sectors, Chandigarh	122
4.11	Medium Rise Structures, New Areas, Chandigarh Urban Complex	122
4.12	Roads and sidewalks, trees and open spaces in Sector-8, Chandigarh	130
4.13	Key Features of Sector-8, Chandigarh	131
4.14	Maintained parks, roads and greenery, Sector-38W, Chandigarh	131
4.15	Key Features of Sector-38W, Chandigarh	132
4.16	Aerial view, open spaces and facilities of Marble Arch (Manimajra), Chandigarh	132
4.17	Built Form & Hierarchy of Parks and Open Spaces, Sector-20 (Panchkula), Chandigarh	135

Plate	Title	Page
4.18	Types of Commercial Establishments, Sector-20 (Panchkula), Chandigarh	135
4.19	Roads and Sidewalks, Sector-20 (Panchkula), Chandigarh	135
4.20	High Rise Structures, World Spa and Unicity World, Gurugram	137
4.21	Open Spaces and Community Facilities, World Spa, Sector – 30, Gurugram	139
4.22	Open Spaces and Community Facilities, Uniworld City, Sector – 30, Gurugram	141

List of Tables

Table	Title	Page
2.1	Physical Density Variables	39
2.2	Status of Urban India in relation to the World	40
2.3	Increase and rationalization of density in Master Plans in the State of Punjab	41
2.4	Total Housing Shortage Projection	42
2.5	FAR norms and Building Regulations for Residential Buildings in Tier 1 Cities	45
2.6	FAR norms and Building Regulations for Residential Buildings in Tier 2 Cities	46
2.7	Layout and Density of Case Study Neighbourhoods	48
2.8	Literature Review Summary: Parameters/Indicators and Indexes of Environmental Quality	59
2.9	Literature Review Summary: Methods of Assessment	60
2.10	Literature Review Summary - Type and Nature of Impacts of Increasing Density	61-62
2.11	Indicators and Variables to Assess Neighbourhood Environmental Quality	65
3.1	Potential Cities that hold the key to future urbanisation in India	80
3.2	Population of Potential Case Study Cities	81
3.3	Population Growth in Case Study Cities	82
3.4	Identification of Case Study Cities	84
3.5	Case Study Neighbourhoods	85
3.6	Neighbourhoods grouped according to Height of residential buildings	87
3.7	Neighbourhoods grouped according to Gross Population Density	87
3.8	Neighbourhoods grouped according to Gross Residential Density	89
3.9	The Conceptual Framework	90
3.10	Descriptive Statistics of ZAEQ – Amritsar as part of Pilot Study	99
4.1	Key Features of Case Study Neighbourhoods, Amritsar	114-115
4.2	Key Features of Case Study Neighbourhoods, Chandigarh	129-130
4.3	Key features of Case Study Neighbourhoods, Gurugram	142
4.4	People Density, Building Density and Spatial Density; and Indicators of Crowding and Congestion	145

Table	Title	Page
4.5	Correlation between Density and Crowding and Congestion	148
4.6	People Density and Indicators of Nature and Use of Open Space	149
4.7	Correlation between Density and Nature and Use of Open Spaces	150
4.8	Shade Rating and Ventilation Score of Katra Dullo, Amritsar	155
4.9	Shade Rating and Ventilation Score of Ranjit Avenue, Amritsar	155
4.10	Mean temperature difference within and outside the neighbourhood, Amritsar	156
4.11	Density variables and Indicators of Shade, Ventilation and Temperature Variation	157
4.12	Correlation between Density and Shade, Ventilation and Temperature Variation	158
4.13	Sound Standards for different categories of areas for day time and night time	160
4.14	Density variables and Average Noise Level in Case Study Neighbourhoods	160
4.15	Correlation between Density and Noise Levels	161
4.16	Level of Services in Katra Dullo, Amritsar	163
4.17	Correlation between Density and Level of Cleanliness	164
4.18	Average Scores of Indicators of Walkability	165
4.19	Correlation between Density and Neighbourhood Walkability	167
4.20	Density variables and Indicators of Ambient Air Quality	168
4.21	Correlation between Density and Indicators of Air Quality	170
4.22	Summary of Correlation Analysis	174
5.1	EQ Indicators and List of parameters/variables/criteria to assess ZAEQ	177
5.2	Standardized Z Scores of Environmental Quality Parameters and Standardized Aggregated Environmental Quality Values (ZAEQ)	178
5.3	Environmental Quality Index (EQI)	179
5.4	ZAEQ of Study Units, ANEQ and Level of Environmental Quality as per EQI	179
5.5	ANEQ and average of z-scores of different indicators of environmental quality	184
5.6	Range of values and scores for indicators of environmental quality	185
5.7	Scores of ANEQ and different indicators of environmental quality	185
5.8	Descriptive Statistics of ZAEQ	188

Table	Title	Page
5.9	Tests of Normality – ZAEQ	188
5.10	Correlation between Density and ZAEQ	190
5.11	Range of Density Variables for favourable Environmental Quality	198
6.1	Model Summary of Multiple Hierarchical Regression Analysis	201
6.2	Analysis of Variance (ANOVA) of Standardized Aggregated Environmental Quality (ZAEQ)	202
6.3	Regression Coefficients (β –coefficients) of independent variables	203
6.4	Model Summary and ANOVA of ZAEQ and Residential Density	206
6.5	Model Summary and ANOVA of ZAEQ and FAR	209
6.6	Model Summary and ANOVA of ZAEQ and Plot Coverage	210
6.7	Model Summary and ANOVA of ZAEQ and Height to Width Ratio	212
6.8	Model Summary and ANOVA of ZAEQ and Sidewalks	213
6.9	Model Summary and ANOVA of ZAEQ and Streetlight Density	213
6.10	Values for different density variables of Case Study Neighbourhoods	216
6.11	Optimum Density Values for favourable Environmental Quality in different Residential Patterns	218

Chapter One

INTRODUCTION

The year 2008 was a milestone in the process of urbanisation that began several thousand years ago, but accelerated greatly in recent times. For the first time, there were as many people living in towns and cities as in rural areas. By 2050—when the world population is projected to reach over 9 billion—around 75% will be living in urban areas (AGS, 2009).

Urbanisation has many causes and many faces. In underdeveloped countries, already about one billion people live in slums without basic necessities such as clean water and sanitation, and lacking secure tenure of the land they occupy. In rapidly industrializing countries such as China and India, urban growth is fuelled by economic development outstripping the capacity of cities to provide basic infrastructure. The results are traffic congestion, environmental pollution, increasing stress levels and acute health problems. At the other extreme, in some of the richest countries, a demand for larger houses and gardens is seen to produce vast areas of urban sprawl, with people using an ever denser transport network to commute long distances to their place of work. Huge megapolitan regions emerge in the process consuming small towns as they grow and causing fundamental changes to local, regional and global environments. In this context, visions of how cities will develop in future are guite diverse. With the urban populations of Asia and Africa set to double between 2000 and 2030 (UNFPA, 2007), future urbanisation is predicted to be a largely developing world phenomenon¹. India, projected to be an urban majority country^{2,3} by 2040-45, is expected to be at the forefront of this massive socio-economic shift. It is believed that the manner in which the subcontinent responds to urbanisation over the next two to three decades shall define the social, economic and environmental future of not just the country, but given its size, also of the world.

¹ According to United Nations Department of Economic and Social Affairs / Population Division; World Urbanisation Prospects: The 2003 Revision Population Database: In developed countries, 75 per cent of the population already lives in cities, compared to 35 per cent in developing countries. But the rate of urbanisation in developing countries is much higher – 3 per cent compared to 0.5 per cent in developed countries. Estimates show that by 2030, about 84 per cent of the population of developing countries will be living in cities.

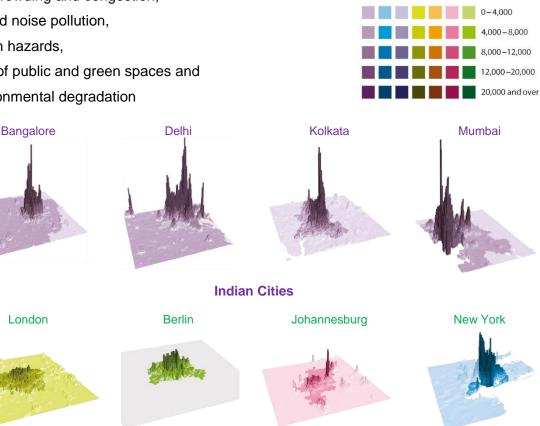
² United Nations Population Division, World Urbanisation Prospects: The 2007 Revision Population Database.

³ As per Census 2011, approximately 31 percent of India's total population or approximately 377 million people live in urban areas. Retrieved from <u>http://censusindia.gov.in/2011-prov-results/paper2/data_files/india/Rural_Urban_2011.pdf</u>

1.1 Background Study – Patterns of Urbanisation in Developing Countries

It is generally seen that current trends and patterns of urbanisation point towards an uncertain future. Therefore, cities need to manoeuvre themselves to a position where they can improve life for people who flock to them and be environmentally sustainable also. The different patterns of urbanisation found in developing countries are:

1.1.1 Peri-urbanisation or Suburban Sprawl and formation of City Regions: At present low- and middle-income countries are increasingly identified by the process of peri-urbanisation. In the peri-urban interface, the boundaries between the 'urban' and the 'rural' are continuously re-negotiated, and rather than being clearly defined are characterised by transition zones. These interfaces are affected by some of the most serious problems of urbanisation, including intense pressures on resources, slum formation, lack of adequate services such as water and sanitation, poor planning and degradation of farmlands. In most cases, planning regulations are weak or weakly enforced, and result in areas with complex patterns of land tenure and land use (McGregor et al. 2006, Tacoli 2006). Although these areas provide a variety of activities and services for urban centres, they are generally beyond the legal and administrative boundaries of the cities, with the result that the process of urbanisation in most cases is unplanned and informal with frequent struggles over land use. Some scholars refer to these emerging urban configurations as 'city regions' emphasizing the fact that cities are growing not just in terms of population size, they are also changing their economic character and spatial form.


1.1.2 Low Density Urbanism or Restrictive Residential Enclave: Low-density urbanism on the other hand is a model equated with what is considered the destructive selfishness of the gated community and the environmentally disastrous results of low-density car-orientated suburbs, which are highly unsustainable and do nothing to support the traditional energy and vitality of urban life.

1.1.3 Urban Compaction and High Density: This refers to the compact city model which is often proposed for the sustainable development of our cities. However, in developing countries, cities generally have high densities and are characterised by high proportions of informal development lacking the infrastructure and urban management structures required to make the system work. Most of the people live in deplorable conditions with extreme compromises made

Population density per km²

on the standard of living. Any attempt at further densifying / intensifying these cities aggravates a range of problems like:

- Infrastructure overload, ٠
- Housing shortage,
- Overcrowding and congestion,
- Air and noise pollution, •
- Health hazards. •
- Lack of public and green spaces and
- Environmental degradation

World Cities

Figure 1.1: Urban Densities and Spatial Structure of Indian Cities compared with some World Cities

Source: Urban Age India, 2008 and Bertaud, 2011

As figure 1.1 illustrates, generally Indian cities have high density patterns as compared to the relatively dispersed and flat density pattern found in London, Berlin or Johannesburg. Mumbai is a typical example where within the city limits, the average density surpasses the mark of 27,000 people per km² (270pph) - a figure that rises to well above 50,000 people per km² (500pph) taking only the built-up area into account, a level higher than even the highest density peaks in New York City's Manhattan area. Furthermore, it is not rare for the densest neighbourhoods of Mumbai to accommodate as many as 100,000 residents per km² (1000pph). Similarly Delhi – the capital city has a high average density of 9,340 people per km² (94pph approx.) inspite of its legacy of parks and other open spaces, as well as non-residential buildings and built forms that cannot be converted to residential uses.

1.2 Need of Study

The patterns mentioned above and the high rate of increase in the urban population creates many problems in our urban areas. Doubling and tripling of urban population practically in all major cities and towns and the consequent strain on the existing system gets manifested into an environmental chaos. Every major city of India faces the same proliferating problems of urban expansion, inadequate housing, poor transportation system, poor sewerage, erratic electric supply, insufficient drinking water supplies etc. An increasing number of trucks, buses, cars, three-wheelers and motorcycles – all spewing uncontrolled fumes, surging through haphazard city streets jammed with jaywalking pedestrians, rickshaw, cattle and goats are not an uncommon sight. The phenomena of accelerated urbanisation becomes the main culprit for bringing in problems like growth of dense and unplanned residential areas, increasing environmental pollution, non-availability of services and amenities, large amounts of solid waste generation and growth of slums (Rahman et al. 2011). These conditions lead to the deterioration of the urban environment so fast that the sustainability of the cities is threatened. In metro cities, land and environment are especially under stress due to the pressure of rapid urbanisation. Population growth and in-migration of people, industrial growth, inefficient and inadequate traffic corridors, poor environmental infrastructure, etc. are the main factors that deteriorate the overall quality of the city. As the cities expand and population increases, the resources, which are limited, are shared. Housing, water supply, roads, drainage, transport, education, health services, police and fire services, etc. are not able to keep pace with the prevailing urban growth rate that leads to further degradation of the urban environment.

While the more conventional challenges of providing adequate housing, public transportation and other civic amenities to urbanising societies are recognised to some extent, it is felt that the impact of India's urbanisation on the immediate environment of the human habitat has scope for further research and study. This view is corroborated by independent research, which confirms that issues focussing on maintaining urban environmental quality do not figure very high on the agenda of city planners and local / national development authorities in India.

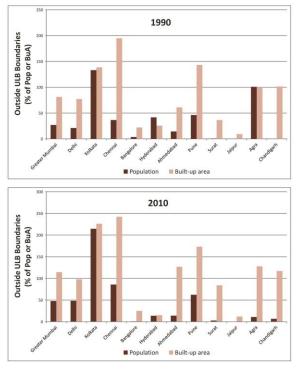
According to Urban Age, London School of Economics and Political Science (2008), 'Integrated City Making - Governance, Planning and Transport Detailed Report', only 12% of the respondents drawn from every level of Indian government and civil society point out environment as one of the three key challenges of urban India (as indicated in figure 1.2). The other key challenges include planning (47%), transport (41%), governance (32%), infrastructure (24%), migration (18%), housing (18%) and inequality (12%). Hence there arises a need to assess and maintain the environmental quality of our cities.

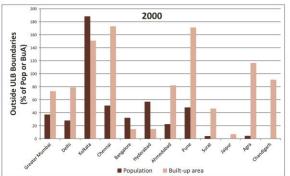
Planning (47%) Transport (41%) Governance (32%) Infrastructure (24%) Migration & Housing (18%) Inequality & Environment (12%)

Figure 1.2: Key Challenges of Urban India

Source: Author's elaboration from Integrated City Making – Governance, Planning and Transport Detailed Report (2008) by Urban Age, London School of Economics and Political Science, 2012

While India can, and should draw a variety of lessons from the developed world that has already urbanised, it should base its tomorrow on fresh thinking and original ideas relevant to the local context. Hence there is a need to challenge mind-sets and provide practical solutions for our common urban future – a future that is not only economically stable or socially equitable but most importantly, environmentally sustainable **(WWF, 2010)**.

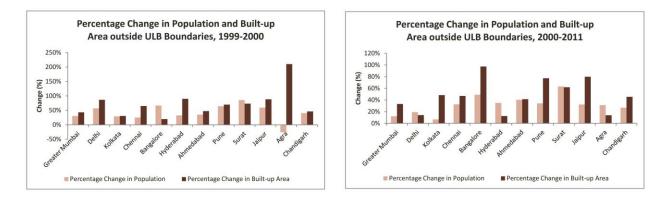

1.3 Area of Research


Land is one of the most contested and valuable of natural resources in urban areas. Change in land cover and modifications in land use account for one of the most significant changes in the environment due to human activity. At first glance, the issue of land and land use might appear superfluous to urbanisation as urban areas occupy less than 3% of the total land area globally **(Lambin, 2001)**, but the issue is extremely important for a number of reasons. It is well documented that the impacts of contemporary patterns of urbanisation on land and other resources far exceeds the actual extent of urban areas, as measured through ecological footprints and other tools. Moreover, there is already an indication that we may not be using land as efficiently as earlier, as the change in urban land use is faster than the rate of change in urban population **(Seto, 2011)**. Also, in almost all developing cities, the demand for urban land gets precedence over all other uses and results in loss of fertile croplands and ecologically sensitive areas **(Lambin, 2003)**.

While there are a few studies that measure land-use and land-cover changes for cities globally, there are only a handful of these for Indian cities. Generally, the patterns of urbanisation show that cities are sprawling. As they expand past their formal administrative boundaries, city densities lower over time as population growth rates lag behind the rate of the growth of built-up areas (as indicated in figure 1.3 and figure 1.4). This is hardly an unusual pattern when seen from a global perspective, but it does have obvious and possibly unfortunate consequences for urban governance, regional planning and the sustainability of our cities.


Most studies pertaining to causes and effects of urban expansion, nationally and internationally examine the issues at the citywide scale. They do not consider the issues at a smaller scale and understand the differences in patterns of urbanisation and its effect on the environment in different localities / neighbourhoods of a city. **Dowall and Monkkonen (2007)** examine urban densities in Chennai. The paper suggests that the city is growing both because of increasing density in inner city areas as well as expansion of city boundaries. Densities vary drastically from as low as 13 persons per hectare to more than 1000 persons per hectare in Chennai. Studying changes between 1971 and 2001 shows that the city has grown faster than predicted and density gradient of the city has flattened over the decades. The authors illustrating the case of Chennai point out that high density in central city is not because of high-rise buildings, but because of overcrowding. The above study points out that nature of density is also important

vis-à-vis the measure of density. Similarly, the study by **Patel (2011)** is an attempt to set a framework on understanding densities and its relation to other factors that contribute to desirable urban living. The paper studies the interrelationships of six parameters: built up area per capita, public ground per capita, plot factor, floor space index, gross densities and net densities. It aims to arrive for a range of desirable values for a combination of these parameters while designing and planning an area between 20 and 200 hectares of land. The data is analyzed by plotting characteristics of select localities in Mumbai and New York. While this paper misses most sustainability aspects, it is one of the first attempts to answer the question of optimal densities in Indian cities.



India's largest cities have a significant portion of both population and built-up areas outside ULB boundaries. In most cases, the proportion of built- up area outside ULB boundaries is greater than the proportion of population outside the administrative boundaries, implying relatively low-density sprawl. Comparison over time (highlighted in the next page) shows that this spatial expansion has accelerated between 2000 and 2010.

Thus, most studies conclude that urban areas have a tendency to expand, and then gradually fill in and become contiguous (as indicated in figure 1.5a & 1.5b). However, very few studies intend to understand the effect of the physical development on the city's environmental quality, or the effect of a particular pattern of development within a particular land use. Questions like what are the different types of urban patterns identifiable? What is the nature of physical density? What is

the distribution of people, buildings, open spaces etc. and resultant environmental quality are generally left unanswered.

Built-up area is growing faster than population in nearly all of the largest cities, especially between 2000-2011. In other words, lower-density sprawl is accelerating.

Figure 1.4: Urban Growth - Population versus Built-up Areas

Source: H.S.Sudhira et al. (2004) and IIHS Analysis, 2011

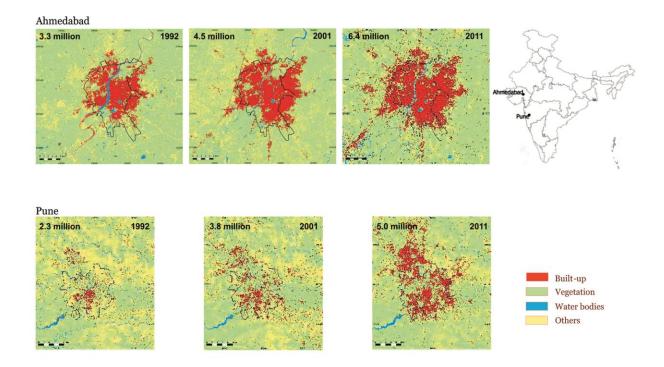


Figure 1.5(a): Change in Urban Built-up Area and Land Cover

Source: H.S.Sudhira et al. (2004) and IIHS Analysis, 2011

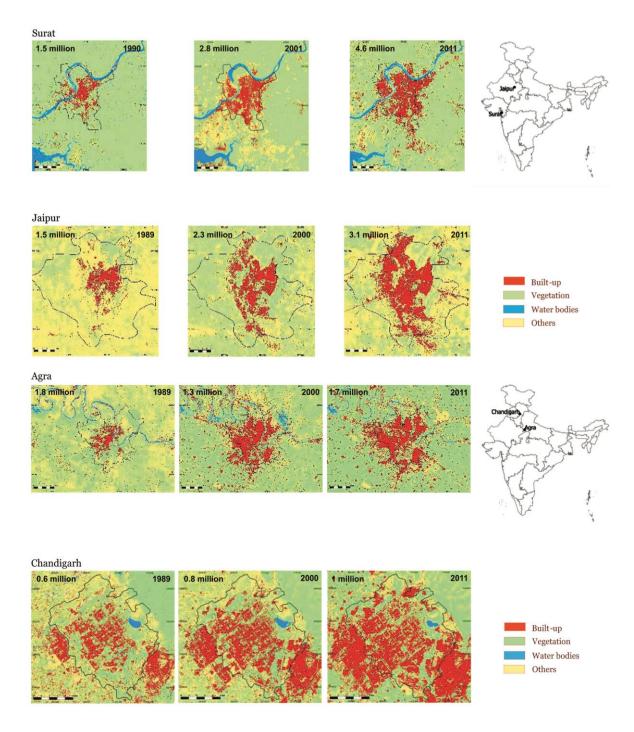


Figure 1.5(b): Change in Urban Built-up Area and Land Cover Source: H.S.Sudhira et al. (2004) and IIHS Analysis, 2011

One of the reasons, as **Cadenasso (2007)** points out is that most land cover and land change methods are not adequate, as they do not capture urban heterogeneity well enough. These studies and corresponding analyses capture urban expansion, but not urban granularity at the

block / neighbourhood level. Hence, a combination of tools may be required to answer the following questions:

- What are the environmental implications of different densities in different localities of a city, and?
- Can urban environment studies help in designing environmentally conducive neighbourhoods in our existing and upcoming cities?

Hence, a research on urban environmental quality with an objective analysis of the physical aspects of a residential locality can really prove useful in this regard. It can be used by residents to highlight and communicate concerns, wishes and positive aspects of their locality to fellow residents or decision makers (e.g. local authorities, planners, policy makers and organizations). The approach / method can also be used for the planning and design of new residential areas of the city.

1.4 The Research Hypothesis and Key Research Questions

Environmental Quality is an abstract concept resulting from both human and natural factors operating at different spatial scales. In urban areas the local scale is dominated by individual buildings, streets and trees, but regional scale influences may include the whole city and beyond (Nichol and Wong, 2005). Hence, urban environmental quality is both objective and subjective in nature and in other words, spatial and physical features in addition to socio-economic factors affect the environmental quality.

Simultaneously, a general study of the urban morphology of our cities reveals that different configuration and types of built form and related population distribution characterize the urban form across the geographical extent of the city. Alternatively, as per **Cheng's (2010)** definition it can be stated that density given by distribution of people or buildings (people density), their typology and geometry (building density), layout patterns, distribution / availability of open spaces, quality of infrastructure etc. (spatial density) varies from one locality to the other within the city. Thus, density gives rise to particular urban forms, land use and transit patterns in the city. Further, it is also understood from various studies that urban form and land-use, and the transport system of a city are critical factors affecting urban environmental quality. Thus, it can be hypothesised that sometimes as a cause and sometimes as an outcome of urbanisation: Density impacts Urban Environmental Quality.

The relationship between density and environmental quality is also found to be based on the concept of viable thresholds: at certain densities, the amount of development and number of people within a given area becomes sufficient to generate the interactions needed to make urban functions or activities viable without putting a stress on the environmental carrying capacity. In a wider sense, as **Carl, 2000** puts it, 'Sustainable Cities are a matter of Density'.

Hence, in order to provide a cleaner and sustainable environment to the city residents, it becomes pertinent to look at the urban environment at a micro scale, specifically the habitat of a neighbourhood / locality. The present study is concerned with understanding the impact of different intra-city residential patterns on the neighbourhood environmental quality and search of an alternative approach for future sustainable growth of our cities. Accordingly the research hypothesis is:

Density impacts Environmental Quality in Residential Neighbourhoods

And the key research questions are:

- 1. What are the different residential patterns identifiable in rapidly urbanising Indian cities?
- 2. How does People Density measured by Population Density and Residential Density impact environmental quality in different residential patterns?
- 3. How does Building Density measured by FAR and Plot Coverage impact environmental quality in different residential patterns?
- 4. How does Spatial Density impact environmental quality in different residential patterns?
- 5. What are the optimum ranges of density for neighbourhoods with different patterns to maintain favourable environmental quality?

1.5 Aim and Objectives of the Study

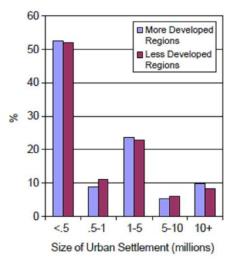
The present study aims to understand the impact of density on environmental quality with change in the residential pattern of the neighbourhood. Accordingly the objectives are:

- i. To identify different residential patterns and find representative neighbourhoods in the case-study cities.
- ii. To disaggregate density and ascertain objective indicators that will help assess environmental quality at the neighbourhood level.

- iii. To establish the association between density variables and indicators of environmental quality.
- iv. To identify optimum density ranges for existing and upcoming neighbourhoods.
- v. To arrive at guidelines to achieve environmentally conducive patterns of residential development for future sustainable cities.

1.6 Scope of the Study

One of the most enduring themes behind the search for more sustainable urban forms is that of the density of development. **Capello and Camagni, 2000** argue that "with the increase of residential density and the concentration of human activities within smaller built areas, it helps to exploit economies of scale for public services (e.g. schools, public buses and public utilities) and environmental resources (e.g. land, petrol and water). However, an excessive concentration of activities and proximity result in aggravated negative environmental externalities like traffic congestion, less privacy, poor access to natural agents (air, daylight, view, etc.) and overcrowding, which tend to outweigh the claimed benefits of urban compaction **(Burgess, 2000; Rudlin and Falk, 1999; Williams et al., 2000)**.

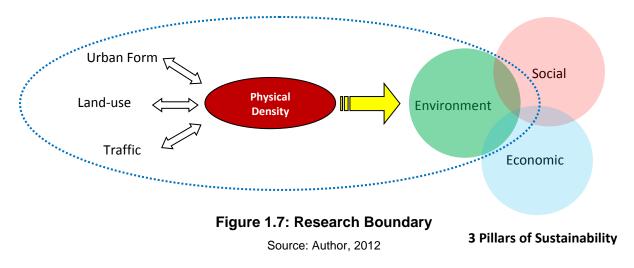

With this understanding, the present study tries to analyze the impact of different intra-city residential patterns on the neighbourhood environmental quality. The scope is limited to the objective analysis of the physical aspects of the different residential neighbourhoods. Accordingly, the study consists of reviewing, understanding, identifying and articulating the following aspects. Firstly, the patterns of urbanisation and its impact on the urban environment are reviewed followed by defining the two main aspects - Physical Density variables and indicators of Neighbourhood Environmental Quality and understanding the types and nature of impacts of Density on Environmental Quality. Next, eight neighbourhoods with different residential patterns are identified from the case study cities and coefficient correlation analysis is undertaken to assess the relationship between density and environmental quality. The study gives an opportunity to assess the aggregated neighbourhood environmental quality (ANEQ) using the multi-criteria approach and formulate the environmental quality index to generate environmental quality profiles that can serve as tools to identify commonalities and differences in the indicators of environmental quality for different neighbourhoods. Subsequently, the multiple hierarchical regression is used to test the research hypothesis and ascertain density values for optimum environmental quality using the best-to-fit analysis. Finally, the work helps in

formulating some guidelines for environmentally conducive development of existing and upcoming residential neighbourhoods for our cities.

1.7 Limitations

While much of the current sustainable cities debate focuses on the formidable problems of the world's largest urban agglomerations, it is predicted that in future majority of all urban dwellers will continue to reside in smaller urban settlements of fewer than 500,000 residents (as indicated in figure 1.6). Thus, for the foreseeable future metropolitan cities having population less than equal to half a million will hold the key to urbanisation **(Cohen, 2006)**.

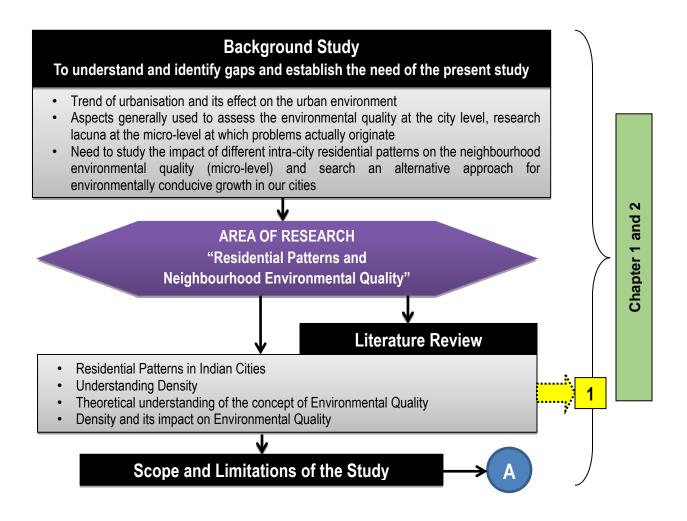
i. The research is limited to cities with 0.75 million ≤ population ≤ 1.5 million since it is known from literature and background study that there is dearth of comprehensive database of cities with population under 750,000 in a readily available format in India (WWF, 2010 and IIHS, 2011).

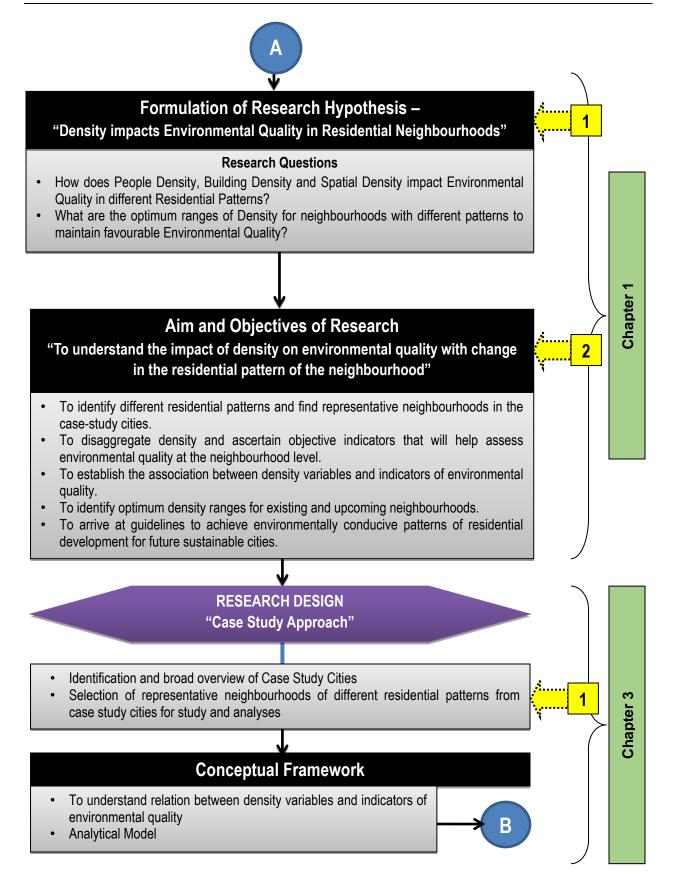


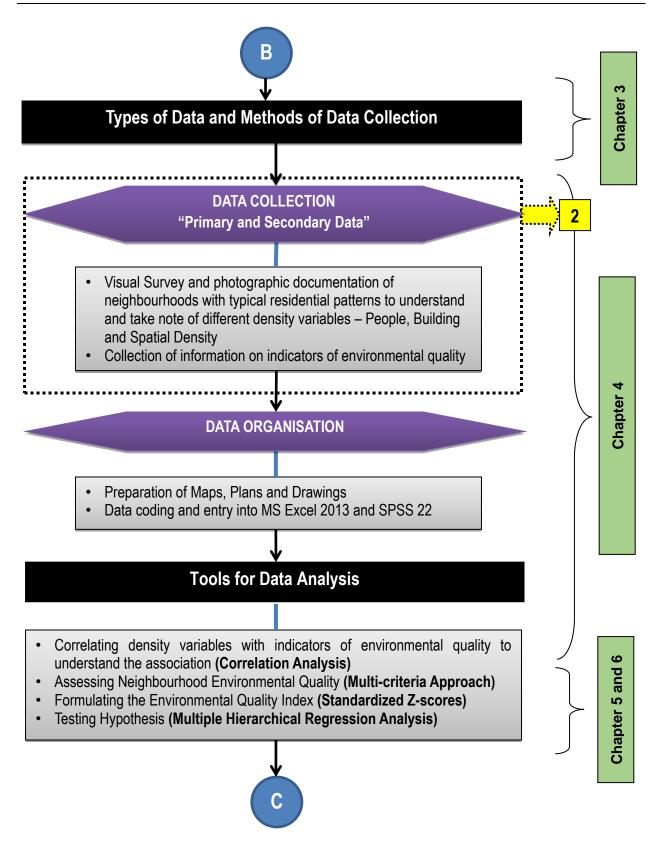
Source: World urbanisation prospects: the 2003 revision data tables and highlights. New York, United Nations, 2004

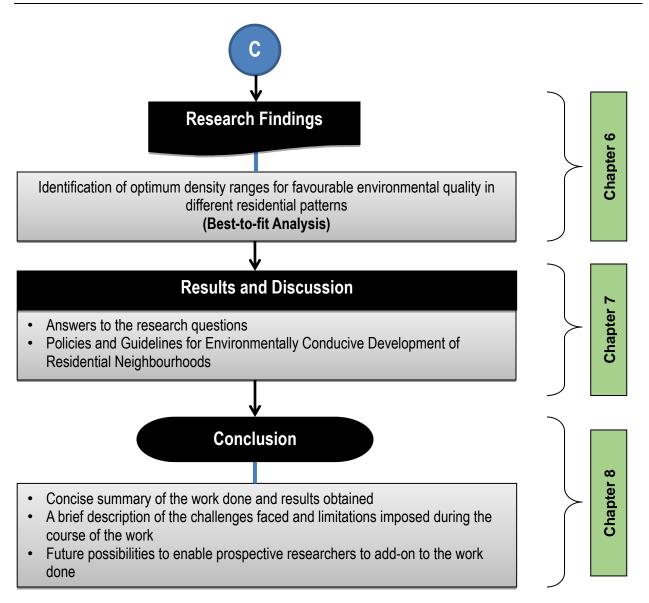
ii. Secondly, though the slum and squatter settlements pose a constant threat to the sustainable development of our cities, they are kept out of the scope of the present study. This is because of unavailability and paucity of data and poor physical conditions characterized by insecure land tenure, under serviced, unstructured and uncontrolled built environment rendering them unsuitable for taking measurements or carrying out field observations and visual surveys as an independent researcher.

- iii. Thirdly, the study is limited to the objective analysis of the physical aspects of the different residential neighbourhoods. The investigation of people's perception to check the subjective values of an objective situation is presently kept out of the scope of the study. This is based on the argument given by Alexander (1993) that though individual cognitive factors provide a wider thinking on density as a concept, what determines density that is perceived by people is the physical form. Acioly and Davidson (1996) also contend that the size of the plot, the amount of plot that can be built up (plot coverage) and height of the building, floor area ratio etc. give the most visible aspect of density: the amount of space that is built. This is what designers determine in the design phase, which officials can control in planning through various development controls and building permissions.
- iv. Fourthly, factors like the role of urban governance in the taxation and maintenance of municipal services and the resultant impact on environment quality and variations in socioeconomic status of people and its effect on the type of facilities and amenities in a residential neighbourhood are also kept for future study and analyses.


Thus, the present research is focused towards understanding and suggesting ways to achieve environmentally conducive neighbourhoods – one of the key considerations for achieving long term sustainability as indicated in figure 1.7.




1.8 Research Methodology


Urban planners generally have very outspoken visions on environmental quality that contribute to livability (e.g. Corbusier, 1935; Howard, 1898; Jacobs, 1961; Dantzig and Saaty, 1973).

Usually these visions are strongly conceptual, vary strongly in time (for an historic overview refer **Leidelmijer et al. 2002**), and can seldom be evaluated in practice. There is no coherent system to measure and evaluate aspects of, and trends in, environmental quality though concepts of urban environmental quality and related terms such as livability, quality of life and sustainability enjoy great public popularity and form a central issue in research programs, policy making and urban development (**Leidelmijer et al. 2002**). Hence, in order to gain a detailed insight into the spatial components that influence environmental quality, several physical aspects of the urban form need to be evaluated from a new perspective. Accordingly, the **research methodology** (as indicated in figure 1.8) for the present study is detailed out as per the following stages:

Figure 1.8: Research Methodology

Source: Author, 2012

1.9 Structure of the Report

This volume consists of eight chapters starting with an Introduction and finishing with Conclusion and Recommendations.

Chapter 1 – Introduction of the thesis begins with an over-view of the present trends of urbanisation and patterns of urbanisation in the developing countries and attempts to define the rationale of the present work and area of research. It subsequently defines environmental quality and its likely dependence on density and formulates the research hypothesis based on

certain research questions. The key research questions help outline the Aim and Objectives of the thesis which is followed by the Scope and Limitations and a detailed Methodology for the present work.

Chapter 2 - Literature Review as the name suggests discusses the diverse types of urban processes and related environmental problems in different types of cities. It brings forth the key issue concerning environmentally sustainable development of cities in the wake of rapid urbanisation and shows the way to identify cities that hold the key to future urbanisation in India. Studies reveal that world over smaller cities/towns are going to accommodate larger number of people in near future and be the engines of economic growth and development. Following this, a thorough study to ascertain intra-city residential density patterns is undertaken. It is perceived that in order to understand the relationship between residential patterns characterized by built forms, distribution of dwelling units, population distribution, etc. and environmental quality, it is quintessential to study the local environmental problems at the neighbourhood level associated with different patterns found in Indian cities. Next, the terms density and environmental quality are defined and common measures adopted to describe the different types of density and parameters/indicators to assess environmental quality are identified. The literature review reveals that studies taking into account physical aspects of the built environment and their impact on urban environmental quality are quite few especially in the Indian context and/or are sparsely reported, thus justifying the scope of the present work. The chapter concludes with the discussion of impacts of increasing density on environmental quality. Considering the significance of impacts, those responsible for poor environmental quality in residential neighbourhoods are acknowledged as the most urgent and greatest because of the immediate risk they present to their inhabitants' health and wellbeing. Finally, the chapter ends with the identification of a set of variables as emerging from the literature review to measure the impacts. These form basis of the density-environmental quality correlation matrix and analytical model for further work as part of the research design.

Chapter 3 – Research Design elucidates the study design for the present work and identifies representative neighbourhoods from three case study cities namely - Amritsar, Chandigarh and Gurugram based on certain criteria as explained in the chapter to explore and compare the residential patterns and neighbourhood environmental quality. Next, density is disaggregated and indicators of environmental quality at the neighbourhood level are reinstated. A conceptual

framework showing possible correlations between density variables and indicators of environmental quality is developed and an analytical model between the independent and dependent variables is proposed for the regression analysis. The chapter also gives a description of the types of data and methods of data collection to be adopted for the study and details out the various tools and stages of data analyses for subsequent work.

Chapter 4 – Study of Residential Neighbourhoods identifies eight neighbourhoods each representing a particular residential pattern from the three case study cities of Amritsar, Chandigarh and Gurugram and presents a detailed study of the same along with the study of the relationship between the different density variables and indicators of environmental quality. Traditionally formed Katra Dullo from walled city Amritsar is chosen as an example of low-rise high density neighbourhood whereas planned area Ranjit Avenue located outside the walled city is selected as an example of low rise medium density neighbourhood. Four neighbourhoods are selected from Chandigarh, namely, Sec-8, Sec-38W, Marble Arch, Manimajra and Sec-20, Panchkula. They are examples of low rise low density, low rise high density, medium rise medium density and medium rise high density neighbourhoods respectively. Finally, two gated communities are selected from Gurugram – World Spa and Uniworld City, both located in Sec-30 as examples of high rise low density and high rise high density neighbourhood. A detailed visual survey followed by organisation of primary and secondary data and study and analyses based on the conceptual framework and correlation coefficient analyses yield some valuable results.

Crowding and congestion increases with increase in people density. Also activity intensity increases with increase in people density and building density. Activity diversity shows an increasing trend with increasing residential density thus suggesting that more people engage in different activities and greater social interaction happens in high density neighbourhoods. Other aspects like presence and condition of sidewalks, streetlights, outdoor furniture, level of cleanliness, etc. determine peoples' desire to reside, walk and utilize spaces.

The arrangement of buildings and open spaces in a neighbourhood affect the radiation falling on the building surfaces, streets, roads etc. These in turn heat or cool the air temperature and have considerable effect on the micro-climate. The study also shows that there is significant association between building height to road width ratio and shade rating. Similarly, the presence of trees filter the sunlight, reduce air temperature by evaporation, protect smaller plants on the ground and reduce glare from bright overcast skies. Both shade and naturalness increase the outdoor comfort conditions for the residents especially during the summer months. The presence of vegetated open spaces also helps in ameliorating noise pollution in the neighbourhood.

It is also observed that proximity to daily needs, good condition of sidewalks and open spaces along with level of services helps in creating walkable neighbourhoods. As the cleanliness increases in the neighbourhood as a result of better services like efficient solid waste management, good storm water drains and proper sewerage system, people are encouraged to walk for their daily needs and short trips within and in the immediate surroundings of the neighbourhood.

Air quality is affected by the amount of roads, vehicles and congestion on roads, types of activities and appliances used, etc. More number of vehicles and smoke generating appliances imply more pollution and deterioration of air quality. Thus, the preliminary findings help to validate the conceptual framework and prompts to undertake the assessment of the aggregated neighbourhood environmental quality to formulate the environmental quality index for classification of the residential neighbourhoods.

Chapter 5 – Assessing Neighbourhood Environmental Quality details out the process of assessing the environmental quality at the micro-level using the multi-criteria approach. The multi-criteria approach helps to consider several density variables that can be controlled and modified during the planning and design phase to achieve better spatial quality of the designed space. The 'Environmental Quality Index' formulated serves as a tool to classify different neighbourhoods of the city according to the level of environmental quality. The illustrative maps are useful visual aids that help in bringing out heterogeneity at the block/neighbourhood level by identifying problems/issues at the micro-level. They represent and validate the conditions observed on site during the primary survey. The 'Environmental quality and justify the level of aggregated neighbourhood environmental quality (ANEQ) ascertained. The study also shows that significant relationships exist between density and neighbourhood environmental quality further propelling one to identify the most important density variables impacting environmental quality and test the research hypothesis for identifying optimum density values to maintain favourable environmental quality in neighbourhoods with different residential patterns.

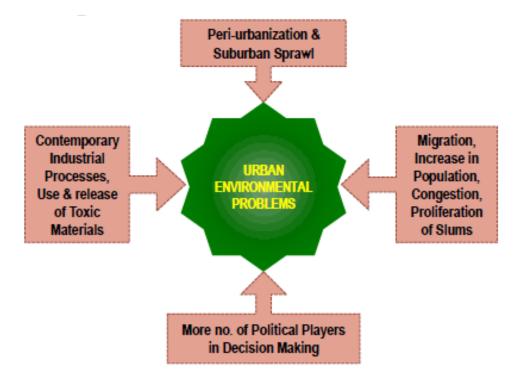
Chapter 6 – Impact of Density on Environmental Quality tests the research hypothesis with the help of the multiple hierarchical regression (MHR) approach and conclusively shows that different density variables in varying degrees impact environmental quality in residential neighbourhoods. It thus proves the research hypothesis – '*Density impacts Environmental Quality in Residential Neighbourhoods*'. The regression coefficients or β weights give the relative importance of each of the significant density variables affecting neighbourhood environmental quality. The best-to-fit analysis and optimization technique enables identification of optimum values of the density variables that can be used as measures to attain favourable environmental quality in neighbourhoods with different residential patterns. The study convincingly shows that all the measures of physical density (people density, building density and spatial density) have significant impact on neighbourhoods or retrofitting/revitalization of existing neighbourhoods in rapidly urbanizing Indian cities.

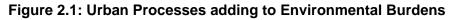
Chapter 7 – Summary, Findings and Recommendations presents a concise summary of the entire work with detailed discussion of each of the research questions. Based on the findings it is concluded that the neighbourhood is a valid level of aggregation for the assessment of environmental quality and certain recommendations are made for environmentally conducive development of residential neighbourhoods in rapidly urbanising present and future Indian cities. However, this is just a humble beginning and requires further studies and verification. Certain aspects are covered very briefly due to limitations in time, non-availability of proper/adequate data and integration mechanism.

The unresolved parts of the work are presented in **Chapter 8 – Avenues for Future Work** and it is expected that the future researchers would take up these partially-addressed challenges and supplement the work done in the course of this thesis.

References:

- Acioly, C. and Davidson, F. (1996) Density in Urban Development. *Building Issues*, 8 (3), Lund Centre for Habitat Studies, Lund University. [online] Available at: <u>http://www.hdm.lth.se/fileadmin/hdm/BI_Volume_08_3_1996_Density_in_Urban_Development.pdf</u> [Accessed 9 September 2012].
- 2. Alexander, E. (1993) Density Measures: A Review and Analysis. *Journal of Architectural and Planning Research*, 10 (3), 181-202.

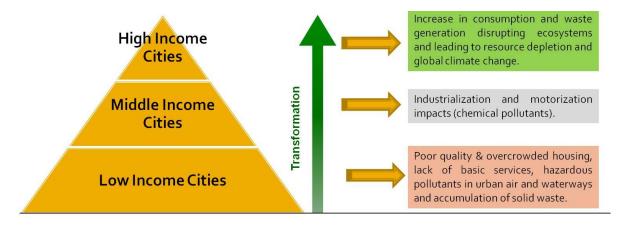

- Alliance for Global Sustainability (AGS) (2009) Urban Futures: The Challenge of Sustainability. *Annual Conference Report 2009*. [online] Available at: <u>http://theags.org/wp-</u> <u>content/uploads/ar_2009.pdf</u> [Accessed 9 January 2011].
- Bertaud, A. (2011) Metropolis: the spatial organisation of seven large cities. In: D. Watson, A. Plattus and R.G. Shibley (Eds.), *Time-Saver Standards for Urban Design* (pp. 1.2-1 to 1.2-14). New Delhi: Tata McGraw Hill Education Pvt. Ltd.
- 5. Burgess, R. (2000) The Compact City Debate: A Global Perspective. In: M. Jenks and R. Burgess, (Eds.), *Compact cities: Sustainable urban forms for developing countries* (pp. 9–24). E & FN Spon.
- 6. Cadenasso, M.L., Pickett, S.T. and Schwarz, K. (2007) Spatial Heterogeneity in Urban Ecosystems: Re-conceptualizing Land Cover and a Framework for Classification. *Front Ecol Environ*, 5 (2), 80-88.
- 7. Capello, R. and Camagni, R. (2000) Beyond Optimal City Size: An evaluation of alternative urban growth patterns. *Urban Studies*, 37 (9), 1479–1496.
- Carl, P. (2000) Urban Density and Block Metabolism. In: S. Koen and S. Yannas. (Eds.), Architecture, city, environment. Proceedings of PLEA 2000 (pp. 343-347). London: James & James.
- 9. Cheng, V. (2010) Understanding Density and High Density. In: Edward Ng. (Ed.), *Designing High Density Cities For Social and Environmental Sustainability* (pp. 3-17). New York: Earthscan.
- 10. Cohen, B. (2006) Urbanisation in Developing Countries: Current trends, future projections, and key challenges for sustainability. *Technology in Society*, 28, 63-80.
- 11. Corbusier, L. (1935) The Four Routes. Dennis Dobson Ltd.
- 12. Dantzig, G.B. and Saaty, T.L. (1973) Compact City. *A Plan for a Liveable Urban Environment*. Freeman, San Francisco.
- Dowall, D.E. and Monkkonen, P. (2007) *Dense and Expanding: Urban Development and Land Markets in Chennai, India* [online]. Institute of Urban and Regional Development, working paper 2007-18. University of California. Available at: <u>https://iurd.berkeley.edu/wp/2007-18.pdf</u> [Accessed 12 September 2012].
- 14. Howard, E. (1898) Tomorrow: A Peaceful Path to Real Reform, London.
- Indian Institute for Human Settlements (IIHS) (2011) Urban India 2011: Evidence. Report of India Urban Conference 2011: Evidence & Experience (IUC 2011). [online] Available at: <u>http://iihs.co.in/wp-content/uploads/2013/12/IUC-Book.pdf</u> [Accessed 6 March 2014].
- 16. Jacobs, J. (1961) The Death and Life of Great American Cities. New York: Vintage Books.
- 17. Lambin, E.F., Geist, H.J. and Lepers, E. (2003) Dynamics of Land-Use and Land-Cover Change in Tropical Regions. *Annu. Rev. Environ. Resource*, 28, 205-241.
- Lambin, E.F., Turner, B., Geist, H.J., Agbola, S.B., Angelsen, A., Bruce, J.W. (2001) The causes of land-use and land-cover change: moving beyond the myths. *Global Environmental Change*, 11, 261-269.


- 19. Leidelmijer, K., van Kamp, I. and Marsman, G. (2002) *Viability towards a conceptual framework and conceptual framing (RIGO, RIVM).* Report Number 81330.
- 20. McGregor D., Simon D. and Thompson D. (Eds.) (2006) *The Peri-Urban Interface: Approaches to Sustainable Natural and Human Resource* Use. London: Earthscan.
- 21. Nichol, J. and Wong, M.S. (2005) Modeling Urban Environment Quality in a tropical city. *Landscape and Urban Planning*, 73, 49–-58.
- 22. Patel, S.B. (2011) Analysing Urban Layouts Can high density be achieved with good living conditions? *Environment and Urbanisation*, 23 (2), 583-595.
- 23. Rahman, A., Kumar, Y., Fazal, S. and Bhaskaran, S. (2011) Urbanisation and Quality of Urban Environment using Remote Sensing and GIS Techniques in East Delhi, India. *Journal of Geographic Information System*, 3, 62-84.
- 24. Rudlin, D. and Falk, N. (1999) *Building the 21st Century Home the Sustainable Urban Neighbourhood.* Oxford: Architectural Press.
- 25. Seto, K.C., Fragkias, M., Guneralp, B. and Reilly, M.K. (2011) A Meta-Analysis of Global Urban Land Expansion. *PLoS ONE*, 6 (8), 1–9.
- Sudhira, H.S., Ramachandra, T.V. and Jagadish, K.S. (2004) Urban sprawl: metrics, dynamics and modelling using GIS. *International Journal of Applied Earth Observation and Geo-information*, 5 (1), 29–39.
- 27. Tacoli C. (Ed.) (2006) The Earthscan Reader in Rural-Urban Linkages. London: Earthscan.
- United Nations Population Fund (UNFPA). (2007) Unleashing the Potential of Urban Growth. State of World Population Report 2007. [online] Available at: <u>https://www.unfpa.org/sites/default/files/pub-</u> pdf/695_filename_sowp2007_eng.pdf [Accessed 9 January 2011].
- 29. Urban Age India (2008) Integrated City Making Detailed Report. London School of Economics and Political Science & Alfred Herrhausen Society, Germany. [online] Available at: http://downloads.lsecities.net/0_downloads/ICM_Detailed_Report.pdf [Accessed 2 April 2012].
- Williams, K., Burton, E. and Jenks, M. (2000) Achieving the compact city through intensification: An acceptable option? In: M. Jenks et al., (Eds.), *The compact city—a sustainable urban form* (pp. 83–96)? E & FN Spon.
- 31. World Wide Fund for Nature (WWF) (2010) Urbanisation and Sustainability in India: An Interdependent Agenda. *The Alternative Urban Futures Report 2010*. [online] Available at: <u>http://assets.wwfindia.org/downloads/urbanisation_report.pdf</u> [Accessed 12 January 2011].

LITERATURE REVIEW

2.1 Introduction

Several studies indicate that majority of the cities around the world present a very similar pattern of urban development. All major towns and cities are found to be witnessing an explosive increase in urban population that strains the existing system and finally manifests into an environmental chaos (as indicated in figure 2.1).



Source: Author's elaboration, 2013

It is often seen that low income or small cities with unplanned development have environmental problems that are localized, immediate and health threatening for the local residents because of the poor environmental quality within the city. The environmental problems in middle–income cities are somewhat city–wide or regional, while affluent or high income cities generally have fewer environmental problems and hence good environmental quality but because of their high rate of consumption and resource use pose a threat to environment and ecological sustainability

at the global level. Also as cities transform from one level to another, the type of environmental problems they have to deal with change (as indicated in figure 2.2).

CITYTYPE

Type of Environmental Burdens

Source: Author's elaboration from UNU/IAS Report – Urban Ecosystem Analysis: Identifying Tools and Methods (Piracha and Marcotullio, 2003)

The Indian scenario though somewhat similar for smaller cities is different in terms of the growth and development patterns and subsequent environmental problems faced especially by the larger cities. The low income (small and medium) towns continue to face local environmental problems as a result of lack of infrastructure and provision of basic services. The middle, upper middle and high income cities (larger cities and metropolises) on the other hand continue to grow undesirably in most cases accompanied by transformations and transgressions that adversely affect the city environment and its inhabitants⁴. As more and more people from small cities and rural areas migrate to these cities in hope of better jobs and comfortable lives, the city and its hinterland become an object to plunder for personal gains. The profiteering tendencies of the development authorities capped with political and bureaucratic jargon become responsible for the negative physical growth of the city. Zoning regulations and building byelaws are relaxed

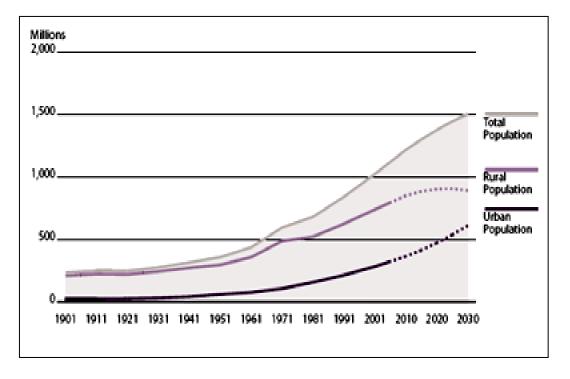
⁴ The poor live on \$2 or less daily, low income on \$2.01-10, middle income on \$10.1-20, upper middle income on \$20.1-50 and high income on more than \$50; figures expressed in purchasing power parities in 2011 prices. People are grouped by the daily per capita income or consumption of a four person household.

Source: Pew Research Centre analysis of data from the World Bank PovcalNet database (Centre for Global Development version available on the Harvard Dataverse Network) and the Luxembourg Income Study database, (Kochhar, 2015).

to enable the private players to produce development of their liking. Land use changes are allowed without giving a thought to the impact that would follow. Lung spaces disappear from the city and ironically the city has hardly any green space left with most of the parks converted to other land uses, primarily the commercial uses and for utilities. Land prices shoot up as a result of profit oriented privatised urban development and the poor are completely alienated from the development process. With no choice left, they are forced to grab the nearest available open patch of land. Thus starts the proliferation and growth of slums and squatter settlements in the urban landscape **(Sandhu and Gill, 2010)**.

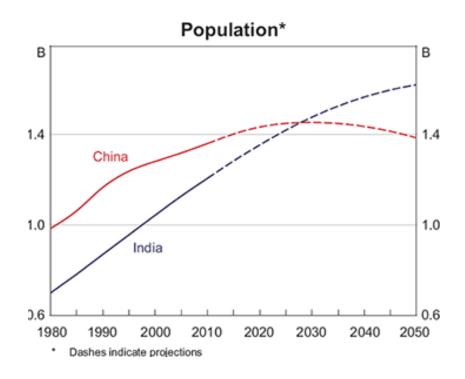
Away from the inner city, the periphery presents an equally dismal scene with the agricultural land fast converted to residential plots by both licensed and unlicensed private colonizers. The absence of appropriate periphery control and regulations result in unabated informal and chaotic developments on the fringe area leaving little scope for planned and orderly expansion in the future. Therefore, overall this type of unregulated growth and poor quality development results in bad water and air quality, unmanaged or mismanaged waste and increasing noise pollution because of increasing traffic especially in the already congested city. In several instances, controlling encroachment into public spaces and degradation of cultural and heritage sites also becomes a major problem. All these become a threat to the environment and people's lives and eventually cause deterioration of the urban environment. Therefore, it is important to note that growth and development patterns result in particular types of urban forms that have a definite impact on the urban environmental quality.

Thus, it is increasingly felt that the problems related to environmental quality in urban areas are very complex and require a systematic approach and careful analysis of all the relations between the parameters that are part of the urban environment. Several studies show that urban environmental problems have a local origin and should be addressed in cooperation with local stakeholders. Also, it is recognized that global environmental decay often manifests itself at a local level. This awareness has led to the formulation of the **Local Agenda 21** (1997)⁵, in


⁵ Agenda 21 is an action plan of the United Nations (UN) related to sustainable development. It was an outcome of the United Nations Conference on Environment and Development (UNCED) held in Rio de Janeiro, Brazil in 1992. It is a comprehensive blueprint of action to be taken globally, nationally and locally by organisations of the UN, governments and key groups in every area in which humans directly affect the environment. The implementation of Agenda 21 was intended to involve action at international, national, regional and local levels. Some national and state governments have legislated or advised that local authorities take steps to implement the plan locally, as recommended in Chapter 28 of the document. Such programs are known as 'Local Agenda 21' or 'LA21'.

which a plea is made for local dedicated actions to reduce environmental decay and improve local socio-economic conditions. Hence, in order to provide a cleaner and sustainable environment to the city residents, it becomes pertinent to look at the urban environment at a micro scale, specifically the habitat of a neighbourhood.

2.2 Urbanisation in India

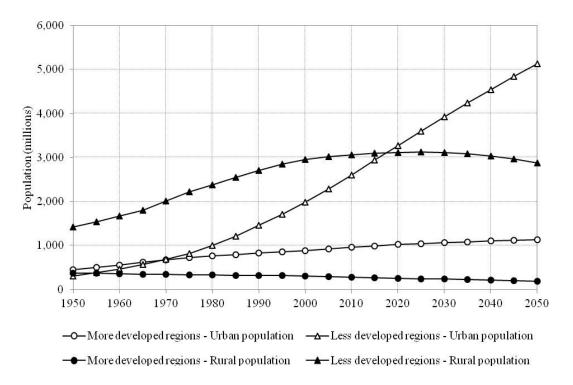

Urbanisation in India began to accelerate after independence, due to the country's adoption of a mixed economy, which gave rise to the development of the private sector. Population residing in urban areas in India, according to 1901 census, was 11.4%. This count increased to 28.53% according to 2001 census, and crossed 30% as per 2011 census, standing at 31.16%.

Presently with an urban population of **377mn – (approximately 30%) of 1.2billion as per Census 2011**, INDIA is about to embark on a period of rapid urbanisation with 60% urban population by 2030 as economic development shifts increasing numbers away from subsistence agriculture (as indicated in figure 2.3).

Figure 2.3: Population Growth in India

Source: United Nations Population Division, 2008

Source: United Nations Population Division, 2008


China and India account collectively for almost 40 per cent of the world's population, with populations of 1.3 billion and 1.2 billion, respectively. Over the past three decades, India's population has grown at a much faster rate than in China. Projections from the United Nations suggest that while India's population will continue to grow, albeit at a somewhat slower pace than in the past, China's population will increase more slowly and eventually begin to decline around 2030 when India's population is expected to surpass that of China (as indicated in figure 2.4).

India has emerged as the world's second fastest growing economy (after China) in the first decade of the 21st century. This has happened due to:

- The change from the post-independence socialist development model with strong rural bias to a more open and varied economy.
- Spread of primary education 51% in 1991 to projected 90% in 2020.
- Unprecedented shift of the small town middle class and rural population to the cities.
- Expected formation of around 13 Urban Agglomerations of more than 10 million people by 2025.

The explosive growth of Gurugram and Bangalore in the last ten years is only a foretaste of what we will witness in the next few decades. The key issue is then how does urban India deal with the influx of 343mn more people in an environmentally conducive way when it is already struggling with the existing population?

Also, it is important to note that most of India's urban centres are smaller towns. The 8000 urban centres identified in the 2011 census comprise of only 53 cities with a population of over 1 million. Out of the total urban population, only twenty percent live in million plus cities. Eighty percent of the urban population lives in cities and towns of population \leq 1 million. Correspondingly, as the trends in urban and rural population growth in figure 2.5 indicate that less developed regions will show a much higher growth in urban population than more developed regions, the most meaningful approach in our case would be to expect the rapid growth of Class I (0.1 – 1 million) cities and put them centrally on the development agenda. This does not however mean that mega cities and larger metropolises would be neglected as they will continue playing a significant role in absorbing future growth, but for the near future cities with 0.1 – 1 million population will hold the key to urbanisation in India.

Figure 2.5: Trends in Urban and Rural Population Growth

Source: United Nations Population Division, 2012

2.3 Intra-city Residential Patterns in Indian Cities

By and large it is seen that patterns of urbanisation within a city differ from one location to another depending on local topography, land use regulations, socio-economic and cultural preferences of people and political and historical developments. It is also understood that these varying patterns of urban development from one place to another result in differences in levels of population density, concentration and mixing of residential or commercial uses, amount of open spaces and amount of intervening land devoted to non-urban uses (Galster et al., 2001). This fact is best understood by carefully observing our Indian cities.

In most of the cases, the inner core or walled city in a traditional Indian city is found to be a compact city (low rise high density) largely designed for pedestrian use and cycle rickshaws supported by horse driven carts (Tongas) on certain marked routes. The entire built up mass is more or less a compact monolithic volume with small punctures for the purpose of light, ventilation and movement (as seen in plate 2.1). Domestic life revolves around an organically grown settlement pattern, closely knit to a physical density that permits the essential public open spaces in the form of streets and chowpals (public squares) and large courtyards. It is estimated that courtyards and pedestrian streets occupy nearly 30% of the area with the remaining area constituting the built up volume. The compact ground coverage of nearly 70% with ground plus two or three storey high buildings ensure that streets are shielded from the heat of the sun. Thus the pedestrian streets remain cool during hot summers and much cooling is also obtained by natural wind currents because of the particular orientation of the streets (**Kapadia**, **2010**).

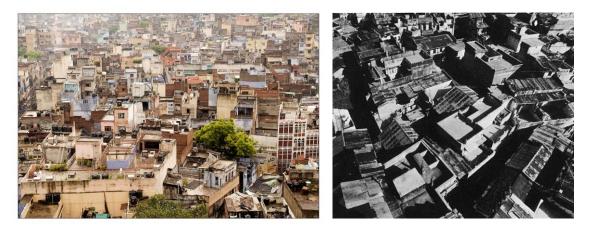


Plate 2.1: Compact Built-form in Old City Areas of Shahjahanabad and Ahmedabad Source: <u>www.google.com</u>, 2013

Old parts of Shahjahanabad (Delhi), Jaisalmer, Jaipur, Ahmedabad, Vadodara, Amritsar and many other cities exhibit these characteristics. Being predominantly pedestrian entities, the towns ensure an interactive social community and since social, cultural and religious customs play a huge role in peoples' lives, they are seen expressed in special architectural details and in use of space at the residential and neighbourhood level **(Kapadia, 2010)**.

The city outside the walled area is dominated by the British annexes (low rise low density) in quite a few cases. While the indigenous or traditional city that grew around or alongside a fortress, royal palace or holy place or emerged from a village is irregular and amorphous in composition; the annexes (cantonment, civil lines and railway colonies) though in varying degree, are found to be much more organised with regular settlements that are spacious and sanitary (as seen in plate 2.2) with buildings far more clearly distinguished and grouped according to their functions **(Smailes, 1986)**.

Plate 2.2: Wide Avenues and Lush Green Open Spaces in Amritsar Cantonment Source: Author, 2014

Leaving aside the British annexes, in most cases, newer parts of the city are found to have developed haphazardly around or along old areas as a result of accelerated industrialization and rapid urbanisation. High densities (medium rise high density or high rise high density) are found in and around commercial and industrial zones offering jobs to resident and migrant population, along transport corridors that promote easy accessibility to and from the place of work and so on and so forth (as seen in plate 2.3). The built forms are generally mid and high rise buildings, typically designed as heterogeneous and self-referential projects that rarely respond to their adjacencies, surrounding streets or their location within the city. The haphazard mushrooming of slabs and towers represent not only the denial of a coherent urban form and public realm, but the reduction of the very idea of city-making into an unchecked, rapacious capitalism in such cases (Bharne, 2011).

Plate 2.3: Haphazard Developments along Delhi-Chandigarh Highway Source: www.google.com, 2013

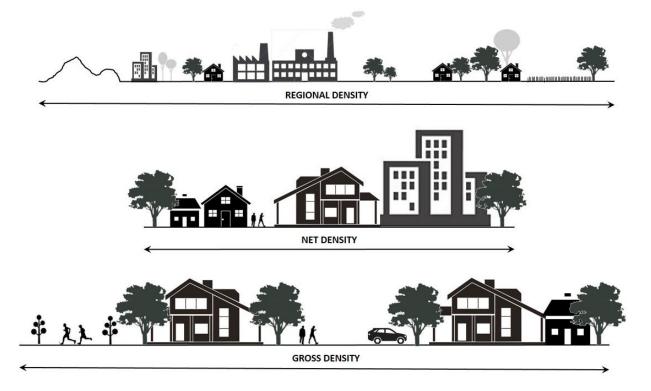
Lastly, the residential development seen in most city outskirts are the gated communities dominated by high rise apartment blocks, community open space and shared facilities and amenities (as seen in plate 2.4). Though these communities themselves might be high rise high density enclaves but at the scale of the city, lying on the fringes they are generally part of a low-density car-orientated suburb, which is highly unsustainable and does nothing to support the traditional energy and vitality of urban life.

Plate 2.4: View of new upcoming residential projects along Bye-Pass, Amritsar Source: Author, 2013

The urban form of the city is thus characterized by different configuration and types of built form and related population distribution across the geographical extent of the city. Alternatively, it can be stated that distribution of buildings, their typology and geometry, layout patterns, distribution / availability of open spaces, quality of infrastructure including links to the wider urban system etc. vary from one locality to the other within the city. So, in order to understand the relationship between residential patterns characterized by built forms, distribution of dwelling units, population distribution, etc. and environmental quality, it becomes quintessential to study the local environmental problems associated with different patterns in a city.

2.4 Understanding Density

Density has been studied extensively from many perspectives including – physical, psychological, social and environmental perspective (Breheny, 1992; Jelinek, 1992; Alexander, 1993; Churchman and Mitramy, undated; Acioly and Davidson; 1996; Rådberg, 1996 and Arenas-Gomez, 2002). In the field of planning, density has often been used to refer to the degree or intensity of development or occupancy. Conventionally, urban densities have been defined from two perspectives; of population and physical density. While population density has been referred to as the number of persons per unit ground area of development, physical density (sometimes referred to as objective density) has been examined as land use ratios. In housing and urban design, density has been measured in terms of floor area ratios or floor space index, plot coverage and dwelling units per specified area (Alexander, 1993).


2.4.1 Measuring Physical Density

According to **Cheng (2010)**, physical density is a numerical measure of the concentration of individuals or physical structures within a given geographical unit. Measurement of physical density is broadly divided into two categories: people density and building density. People density is expressed as the number of people or household per given area, while building density is defined as the ratio of building structures to an area unit. Common measures of people and building densities are outlined as follows.

2.4.1.1 Measures of People Density

- **Regional density** Regional density is the ratio of a population to the land area of a region. Regional density is often used as an indicator of population distribution in national planning policy.
- **Residential Density** Residential density is the ratio of a population to residential land area. This measure can be further classified in terms of net and gross residential densities based on the definition of the reference area. As per the **Model Building Byelaws 2016**

of the Town and Country Planning Organisation (TCPO), MoUD, Govt. of India, the residential density is expressed in terms of the number of dwelling units per hectare. Where such densities are expressed exclusive of community facilities and provision of open spaces and major roads (excluding incidental open spaces), these are considered as net residential densities. Where these densities are expressed taking into consideration the required open space provision and community facilities and major roads, these are gross residential densities at neighbourhood level, sector level or town level, as the case may be as indicated in figure 2.6. Incidental open spaces are mainly open spaces required to be left around and in between two buildings to provide lighting and ventilation.

Figure 2.6: Measures of People Density

Source: Author's elaboration from Cheng's (2010) Study

 Occupancy density – Occupancy density refers to the ratio of the number of occupants to the floor area of an individual habitable unit. Cheng (2010) states that Occupancy rate, which is the inverse measure of occupancy density (i.e. ratio of floor area of individual unit to number of occupants), is commonly used as an indicator of space available for individual occupants. Higher occupancy rate means larger habitable area for individual occupants. Regulation of minimum occupancy rate is often used in building design to safeguard the health and sanitary condition of habitable spaces and thus ensure quality. The present study also considers built-up area per capita (BUA/Capita) to assess crowding – an important indicator of environmental quality.

2.4.1.2 Measures of Building Density

- Plot Ratio (Floor Area Ratio) Plot ratio is the ratio of total gross floor area of a development to its site area. Site area refers to the total lot area of the development, which, in most cases, is precisely defined in the planning document. Since the definitions of both floor and site areas are relatively clear in the measurement, plot ratio is considered as one of the most unambiguous density measures. In planning practice, plot ratio is extensively adopted as a standard indicator for the regulation of land-use zoning and development control. Different plot ratios for different types of land uses are often specified in urban master plans as a provision of mixed land use. Furthermore, maximum plot ratio is often controlled in the master plan in order to govern the extent of build-up and prevent overdevelopment.
- Site/Plot Coverage Site/Plot coverage represents the ratio of the building footprint area to its site/plot area. Therefore, site coverage is a measure of the proportion of the site area covered by the building. Similar to plot ratio, site coverage of individual developments is often controlled in urban master planning in order to prevent over-build and to preserve areas for greenery and landscaping. The open space ratio, which is the inverse measure of site/plot coverage, indicates the amount of open space available on the development site. However, the term is sometimes also expressed as area of open space per person and this measure is used by the planning authority to safeguard a reasonable provision of outdoor space for the population.
- Building Density and Urban Morphology Building density has an intricate relationship with urban morphology; it plays an important role in the shaping of urban form. For instance, different combinations of plot ratio and site coverage manifest into a variety of different built forms. It describes the image of a residential area or in town row house area and helps in determining the patterns of land use and buildings (as illustrated in figure 2.7).

Here, **Cheng (2010)** explains that as the buildings transform from single-storey buildings to a multi-storey tower the proportion of site coverage decreases. In a similar vein, urban

developments of the same density can exhibit very different urban forms. Figure 2.7 shows three settlements with the same residential density of 75 dwellings per hectare, but in different urban forms: multi-storey tower, medium-rise buildings in central courtyard form, and parallel rows of single-storey houses. Intrinsically, the three layouts are different in many aspects; nevertheless, in terms of urban land use, the proportion and organisation of ground open space is of particular interest.

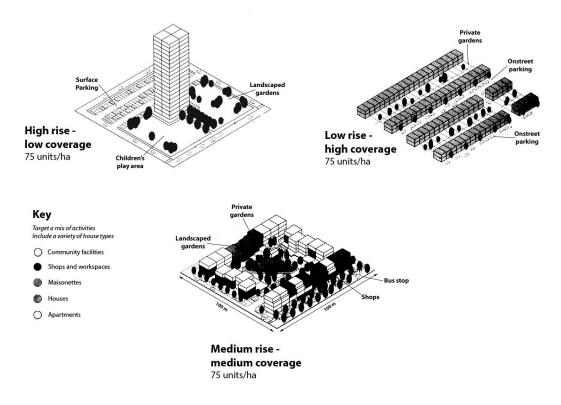


Figure 2.7: Relationship between density and urban form

Source: Moughtin, 2003

The high-rise layout creates large areas of open land that are suitable for expansive communal facilities, such as libraries, sports grounds and community centres. Nevertheless, without efficient land-use planning, these spaces can run the risk of being left over, not properly managed and end up producing problems. The proportion of open area resulted in the medium-rise courtyard form, although it is less than that of the high-rise layout. However, unlike the former, the courtyard space is enclosed and clearly defined. It can be shaped as the central stage of the community and, thus, encourages full use of space. The single-storey houses, on the other hand, divide open space into

tiny parcels for individual uses. In this arrangement, the area for communal facilities is limited; nevertheless, residents can enjoy their own private open space.

2.4.1.3 Measures of Perceived Density

Perceived density is defined as an individual's perception and estimate of the number of people present in a given area, the space available and its organisation (**Rapoport, 1975**). Furthermore, perceived density not only addresses the relative relationships between individual and space, but also between individuals in the space. In order to distinguish between these two different aspects of perceived density, the concept of spatial density and social density were introduced.

- **Spatial Density** Spatial density refers to the perception of density with respect to the relationship among spatial elements such as height to width ratio, spacing and juxtaposition. High spatial density is related to environmental qualities, such as high degree of enclosure, intricacy of spaces and high activity levels.
- Social Density Social density describes the interaction between people. It involves the various sensory modalities, the mechanisms for controlling interaction levels such as spacing, physical elements, territorial boundaries, hierarchy, the size and nature of the group involved, its homogeneity and rules for behavior, in which all of these qualities affect the rates of social interaction (Chan, 1999).

In the urban environment, the perception of density has been found to be associated with the built form and certain urban features. **Rapoport (1975)** outlined the importance of a list of environmental cues, which are thought to have effects on perceived density; these hypothesized factors include building height, building height to space ratio, space openness, the number of people, the number of street signs, traffic, light level, naturalness of the environment and the rhythm of activity. Similarly, **Bonnes et al. (1991), Zacharias and Stamps (2004)** point out that spatial features such as street width, building height, building size and balance between built-up and vacant spaces can affect people's perception of density. However, **Flachsbart's (1979)** and **Zacharias and Stamps' (2004)** empirical study show that street shape and slope, building block diversity, architectural details and landscaping do not have significant effect on perceived density.

Mitramy and **Churchman** argue that in many studies, density is referred to as "high" or "low", without a definition of what is high or what is low. **Gewirtzman, Burt and Tzamir**

(2003) argue, most times people see low perceived densities as one of the characteristics of a high quality environment. Also, it follows from this argument that perceived higher densities characterise low quality environments. However, these studies are not able to build up a sufficient body of knowledge or a comprehensive theory about the meaning of density and its effect on the urban environment (Mitramy and Churchman, undated). By and large, research to date indicates that the perception of density is related to certain environmental cues; however, it is important to keep in mind that besides physical characteristics, individual cognitive and socio-cultural factors are also prominent, especially with respect to the notion of high density. There is not an explicit definition of high density; it varies from culture to culture and from person to person (Cheng, 2010).

With this premise, the present study is limited to understanding the impact of the physical aspects of density – people density (population distribution and dwelling unit distribution), building density or built-form characteristics and spatial density on neighbourhood environmental quality. The various densities along with their measurement units are summarised as shown in table 2.1.

S.No	Type of Density	Measurement Units
1.	People Density	
(i)	Population Density	- Persons per hectare (pph)
(ii)	Residential Density	- Dwelling Units per hectare (DUs/ha)
2.	Building Density	
(iii)	FAR or FSI	- Ratio (expressed as 1, 1.5, 2, 3, etc.)
(iv)	Site/Plot Coverage	- Percentage (expressed as 30%, 40%, etc.)
3.	Spatial Density	
(v)	Height to Width Ratio	- Ratio (expressed as 1:1, 1:1.5, 2:1, etc.)
(vi)	Distribution of Open Spaces	- Percentage (expressed as 30%, 40%, etc.)
(vii)	Distribution of Roads and Sidewalks	 Road Length per hectare (m/ha) % of Sidewalks
(viii)	Distribution of Services (domestic waste, drainage, sewerage, streetlights, etc.)	 Road Length attended/covered by waste collection and drainage system No. of properties connected to the sewerage c/c spacing of streetlights

Table 2.1: Phy	sical Densit	y Variables
----------------	--------------	-------------

Source: Author, 2014

2.4.2 People Density in Indian Cities

Indian cities occupy 10% of the world's total urban area and house more than one tenth of the world's urban population as indicated in table 2.2 (**Demographia**, **2014**). The quality of life in already strained cities is likely to degrade further, and the tremendous rate of urbanisation will have a significant environmental impact. The development of self-capability is a challenge, while the opportunity is in creating growth which is socially inclusive and environment friendly (**CII**, **2010**).

Continent/Country	Average (Persons per Hectare)	% of World's Urban Area	% of World's Urban Population
World	43	100	100
Africa	70	11.2	10.3
North America	16	13.4	13.5
South America	57	7.7	8.5
Australia	14	0.7	0.7
Europe (EU)	28	9.3	7.4
Russia	32	4.2	2.6
Asia	70	51.3	56.0
India	120	10.1	10.6

Table 2.2: Status of Urban India in relation to the World

Source: Demographia, 2014

A study by **Pandit (2016)** on relationship between urban density and transit oriented development (TOD) shows that the average densities in the 33 smart cities announced in the first year of Indian Smart Cities Mission varies from values as low as 10pph (Dharamshala) to values as high as 265pph (Chennai). Analysis of densities in these 33 cities reveal that even the 75th percentile is only 87pph (Bhagalpur) and the average density is 59pph. In metropolitan cities of India such as Mumbai and Chennai, densities are high and sufficient for transit, therefore requiring interventions in other aspects so as to improve the quality of the urban space. The second highest density in the smart cities of first year amounts to only 133pph (Surat), which is considerably lower than the highest density (Chennai).

Even though average densities are low in most of the Indian cities, their core areas have sufficient densities which can generate a demand for public transit system. In areas in the cities where the densities are low, re-densification together with improvements in urban space (nonmotorized transport and pedestrian infrastructure, housing and urban design) become an important tool. TOD therefore is a tool to optimize densities to improve quality of life (Pushkarev and Zupan, 1982).

Similarly, **Ray's (2012)** study on Sustainable Urban Form for Indian Cities advocates several aspects like mixed land use, strong public transport access with focus on pedestrian and cycle movement, horizontal and vertical randomisation of buildings coupled with low coverage and high FAR, conical massing, adoption of green building techniques, etc. She proposes medium to high density neighbourhoods with urban blocks of 100-200 hectares having 4-7 storeyed buildings and 40-80pph at the neighbourhood level.

On the other hand, as per **Dash's (2011) Times of India - The Economic Times Report**, the Town and Country Planning (TCP) Department, New Delhi, India has increased the density of population in case of group housing societies in Gurugram to 300ppa or 750pph as against the earlier standard of 250ppa or 625pph. Though this is much less than other cities for e.g. in case of Faridabad, for group housing areas the density of population is 400ppa or 1000pph. Haryana has already prepared the city's development plan as per new guidelines in case of plotted areas. In those cases the population density has been revised to 120ppa or 300pph as compared to 100ppa or 250pph earlier. The increase in density is a welcome sign as there is high residential demand in Gurugram because of the employment opportunities. The developers building high-rises can add more flats that will not only help create more housing facilities, but also put a check on the sky-rocketing property prices.

In the same way, the **Department of Housing and Urban Development, Govt. of Punjab** formulated a policy in **March 2014** to cater to the housing shortage in the state with an increase and rationalisation of density in various zones of Master Plans in the state. In order to save the scarce agricultural land and to encourage the vertical development, the density for residential plotted development and group housing projects were rationalized as given in table 2.3.

S.No	Residential Pattern	Approved Density	Proposed Density
1.	Low Density Housing	125-250pph	- Plotted
2.	Medium Density Housing	upto 437.5pph	375-500pph
2	High Donoity Housing	>437.5pph & not	- Group Housing

exceeding 750pph

Table 2.3: Increase and rationalization of density in Master Plans in the State of Punjab

Source: Draft Policy for Housing and Urban Development - Punjab, 2014

625-1125pph

3.

High Density Housing

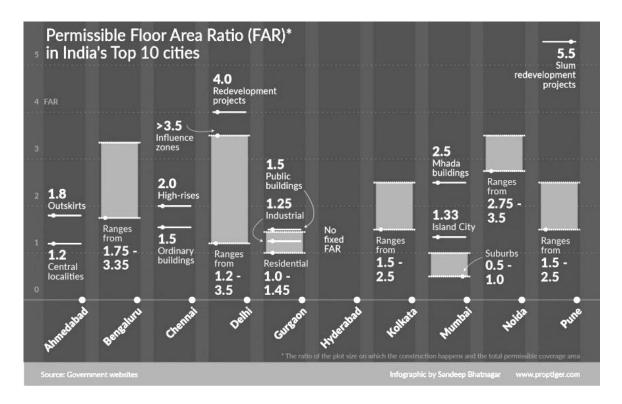
However, the proposed densities are not categorised as per the earlier residential patterns. They are just broadly divided into two groups – plotted and group housing. Also the density range of 500-625pph does not fall in either category thus creating a sense of ambiguity.

Delving further, studies indicate that the revised **Urban and Regional Development Plan Formulation and Implementation Guidelines (URDPFI) 2014** suggest 125-175pph as the developed area average densities for metropolitan cities of the country. However primary and secondary studies indicate much higher gross densities in the metro cities. Densities observed vary from as low as 95pph to as high as 798pph with an average density of 447pph across different case study cities.

Hence, the important question is – what is the basis of the suggested figures in the guidelines? Likewise, it is known that presently, urban India is home to 377 million people. It is expected to house 600 million people by 2031, an increase of 59% from 2011. India's urban housing shortage is around 19 million as indicated in table 2.4 (Cushman and Wakefield, 2014). Thus, the present research seeks to find out a way for providing sufficient urban housing at optimum densities in an environmentally conducive way.

Housing Shortage	Units in Million
Urban Shortage in 2012	18.78
Rural Shortage in 2012	43.67
Additional Demand due to population growth in 2012-2017	26.33
Total Demand	88.78

Table 2.4: Total Housing Shortage Projection


Source: Cushman and Wakefield, National Housing Board (NHB), Ministry of Housing and Urban Poverty Alleviation (MHUPA)

2.4.3 Building Density in Indian Cities

There is a strong pitch to increase building density measured by permissible Plot Ratio / Floor Area Ratio (FAR) / Floor Space Index (FSI) in Indian cities considering the space crunch in the city. Higher FSI brings in more supply into the market, creating more homes. But vertical growth must be planned. Without the required infrastructural upgradations, higher FSI results in extra load on the facilities and services and degrades the environmental quality. It must be noted that India lags behind in FSI norms compared to top cities of the world. Cities such as New York, Tokyo, Hong Kong and Shanghai offer FSI limits between 10 and 15. Comparatively in Mumbai, the permissible FSI ranges between 2.5 and 4 for redevelopment projects and between 1.33 and 4 for non-redevelopment projects.

Another important aspect to be understood is as (Patel, 2011) brings forth through his study is that higher FSI does not necessarily imply higher density. It actually depends on how much floor space each resident occupies or Built-up Area per Capita (BUA/Capita). In Mumbai a family averages about 5 people, living typically in an apartment of 25 sqm. That is 5 sqm per person. In Manhattan the apartment size is typically 1,000 sqft (about 90 sqm) and occupancy averages 1.7 persons. The average floor space there works out to 55 sqm per person. Each Manhattan resident occupies 11 times as much floor space as a Mumbai resident. So for the same plot area, FSI 11 will have 11 times the built-up floor area as FSI 1. But because of the space each family takes up, FSI 11 in Manhattan will have the same number of people as FSI 1 in Mumbai. Thus even though FSI values vary significantly, they do not imply the anticipated increased population density in case of Manhattan as compared to Mumbai. Rather it holds true otherwise. In addition, it is also important to understand that public ground area consisting of streets (carriageways and footpaths) and parks etc. available to each resident of the area or Public Ground Area per Capita (PGA/Capita) - also referred to as Open Space Ratio is also instrumental in establishing how good or bad the locality is. Increasing FSI and Site Coverage will bring in more people within the same area (until and unless there is considerable change in economic status and affordability and people can occupy larger flats) thus leading to increased impoverishment for all the older residents in respect of what each family enjoys by way of the infrastructure of schools, medical facilities, parks and playgrounds, as well as roads, water supply and sanitation (Patel, 2014).

Studying and comparing FAR and building regulations for residential buildings across different cities in India shows that most of the cities have their own set of rules and regulations as considered appropriate w.r.t the population distribution, mix of housing, type of infrastructure etc. and future development strategies. The FAR norms of some of the important cities are shown in figure 2.8.

The FAR norms and building regulations w.r.t residential buildings in different Indian cities are summed up in table 2.5 and table 2.6. It is seen that within the Class I cities (population > 1, 00,000), Tier I cities have FAR ranging from 1.2 to 3.25 with exception of Delhi and Mumbai where FAR – 4 is permitted in redevelopment projects and low FAR ranging from 0.5 to 1 is assigned to the suburbs of Mumbai. Tier II cities (the cities under consideration for the present study) on the other hand have FAR ranging from 1 to 2 generally⁶. Plot coverage in both cases vary from 35% - 70% generally with few exceptions of higher plot coverage. Additional FAR can be purchased in certain cities like Gurugram. The intent is not to increase the number of families on a single plot but to increase the average size of the units. But for building the additional floor space as a result of the purchased FAR, one would incur considerable cost and try to accommodate more people to recover the cost of construction.

⁶ Under the recommendation of the Sixth Central Pay Commission, the Compensatory City Allowance (CCA) classification was abolished in 2008. The earlier HRA classification of cities was changed from A-1 to X, A, B-1 and B-2 to Y and C and unclassified cities to Z. X, Y and Z are more commonly known as Tier-1, Tier-2 and Tier-3 cities respectively. Based on https://en.wikipedia.org/wiki/List_of_cities_in_India_by_population and https://en.wikipedia.org/wiki/Classification_of_India_cities, Tier 1 cities have generally population ≥ 4 million whereas Tier 2 cities have 0.75 million < population < 4 million. All other cities with population < 0.75 million are grouped as Tier 3 cities. [Accessed 18 September 2012].</p>

S.No	City	Criteria	Residential Pattern		Remarks
1.	Delhi	FAR norms are as per plot size and land use, not dependent on road width	 Plotted Development Plot Coverage – 40% to 90% Setbacks & height regulations Max. no. of DUs on site to regulate density Higher FAR permitted corridor (500m on both 		FAR decreases as plot size increases varying from 3.5 – 1.2 Max. FAR – 4 permitted in redevelopment projects in min. 4 hectares area
2.	Bengaluru	FAR norms are as per plot size, land use, road width and ground coverage	 Setbacks & height regulations No DU restriction on site to regulate density Integrated Townships with 40% residential land use Min. 40 hectares area FAR – 2.5 (18-24m road width) FAR – 3.25 (>30m road width) 150 m from the transit hub additional 0.5 FAR permitted along MRTS for plots abutting 60m or more on payment of fees 		FAR increases with increasing plot size varying from 1.75 – 3.25
3.	Kolkata	FAR norms are as per plot size, land use and road width	 Plot Coverage 60% upto plots of 200sqm 50% - plots of 500sqm or more Setbacks and height regulation No DU restriction on site to regulate density 		Plots till 1500sqm have FAR – 2.5 FAR decreases as plot size increases further varying from 2.5 - 1.5
4.	Mumbai	Zone-wise uniform FSI	 Max. no. of DUs on site to regulate density – 600DUs/ha and 267DUs for plots above 1 hectare Higher FSI for MHADA – 2.5 for vacant plots and 2.5 plus incentives for redevelopment 		FSI varies from 0.5-1 in the suburbs and 1.33 in the Island city
5.	Chennai	FAR norms are independent of plot size and location	 Plot coverage and plot frontage are stipulated Setback regulations as per abutting road widths 		FSI is 1.5 for ordinary buildings and 2 for high-rise buildings

Table 2.5: FAR norms and Building Regulations for Residential Buildings in Tier 1 Cities

Source: Government Websites, Guturu (2016), www.timesofindia.indiatimes.com, www.hindustantimes.com

S.No	City	Criteria	Residen	tial Pattern	Remarks
		FAR norms are as per	Plotted Development	Group Housing	FAR decreases as
1. Amritsar ⁷	Amritsar ⁷	plot size, land use, ground coverage and not dependent on road width	 Plot Coverage – 50% to 80% Setback regulations 	 Standard FAR of 2 allowed Site Coverage – 50% Height regulations 	plot size increases varying from 2 – 1.25
2.	Chandigarh ⁸	FAR norms are as per plot size, land use, ground coverage and not dependent on road width	 Plot Coverage – 35% to 70% Setbacks and height regulations 	 Max. FAR of 1.2 allowed Site Area – min. 1 acre Site Coverage – 40% Max. no. of DUs on site to regulate density Height regulations 	FAR decreases as plot size increases varying from 2 – 1
			 Outside Sectoral Grid – Integrated Housing on min. 25 acres with 40% Site Coverage and max. FAR – 2, Population Density – 625pph Height Regulations 		
3.	Gurugram ^{9,10}	FAR norms are as per plot size, land use, ground coverage and not dependent on road width	 Plot Coverage – 60% to 66% FAR – 1.8 to 1.98 Max. permissible height – G+4 	 FAR – 1.75 Max. no. of DUs on site to regulate density No height restriction 	Permissible FAR ranges between 1 and 1.65. Recently increased by 0.35 to 0.80. FAR decreases as plot size increases.

Source: Government Websites, www.timesofindia.indiatimes.com, www.hindustantimes.com

So, when FAR is increased, the load on the city's infrastructure increases with increase in population. Authorities charge extra for supporting the high population density and retrofitting of existing infrastructure. In an ideal condition, additional purchasable FAR is expected to raise

⁷ Important Building Rules, Amritsar Municipal Corporation. Available at: <u>http://amritsarcorp.com/inport.htm</u> [Accessed 20 January 2012].

⁸ Development Controls and Regulations, Chandigarh Master Plan-2031. Available at: <u>http://chandigarh.gov.in/cmp2031/dev-control.pdf</u> [Accessed 12 February 2015].

⁹ Haryana Building Code, 2016 of Haryana Government. Available at: <u>https://tcpharyana.gov.in/Policy/OfficeOrder/The_Haryana_Building_Code_2016.pdf</u> [Accessed 12 June 2017].

¹⁰ Policy regarding increase in FAR – 6.5.2016. Available at: <u>https://tcpharyana.gov.in/Policy/Policy_Regd._Increase_in_FAR-6.5.2016.pdf</u> [Accessed 12 June 2017].

additional capital for providing extra infrastructure. However, in real the situation is seldom so consequently leading to several problems and degraded urban environment (Ramnani, 2016). Therefore, there is a need to reexamine the suggested values and identify range of density values for different types of residential patterns in our Indian cities that can accommodate more people in a favorable way and reduce the gap between the demand and supply of shelters in the type of cities under consideration.

2.4.4 Spatial Density in Indian Cities

Density has two main dimensions as discussed earlier – Physical Density and Perceived Density (Cheng, 2010). The present study is primarily concerned with the physical aspects of density. However, it is known from empirical studies that perceptions of density sometimes affect the acceptable levels of physical density (Dave, 2010 and Churchman, 1999). Hence, certain important parameters of spatial density like building height to street width ratio, proximity to daily needs, distribution / amount of open spaces, distribution / amount of roads, streetlights and level of services are studied.

Raman (2010) states that whatever density measures one may use to control or regulate development, the way in which it is manifested on the ground through design and layout changes the perception and experience of density. According to Rapoport (1975), in order to understand how density is experienced by people, other physical characteristics of the built environment such as space between buildings, open space ratio, building height, and layout etc. need to be considered. For e.g. the empirical analysis of six neighbourhoods of south-east England by **Raman (2010)** indicates that characteristics of social networks change enormously depending on density and layout (as indicated in table 2.7 and figure 2.9). Low-density neighbourhoods (around 25-30 dwellings per hectare) in street form are characterized by high level informal contacts and interactions while high-density neighbourhoods (160-270 dwellings per hectare) with complex spatial layouts have smaller but stronger social networks. Even though people feel they know fewer people in higher-density neighbourhoods, density of social activities is more in these neighbourhoods. The level of social interaction in outdoor public spaces at ground floor level is highest in medium density neighbourhoods (51-100 dwellings per hectare) as they are physically and visually more integrated with the other neighbourhood spaces. Thus the social environment is directly linked to the layout and built form or the spatial and physical characteristics of the urban neighbourhoods.

S.No	Name of Neighbourhood	Layout Type	Residential Density (DUs/hectare)	Population Density (persons per hectare)
1.	New Marston, Oxford	Low rise, street form	25	68
2.	Thames Street, Oxford	Low and medium rise, street + Cul-de-sac	48	108
3.	Holy brook, Reading	Medium rise, street and courtyard form	108	176
4.	Parkview Estate, Thames mead			211
5.	Dalgarno Gardens, London	5 J		485
6.	World's End Estate, London	High rise, tower blocks with podium	271	577

Source: Raman, 2010

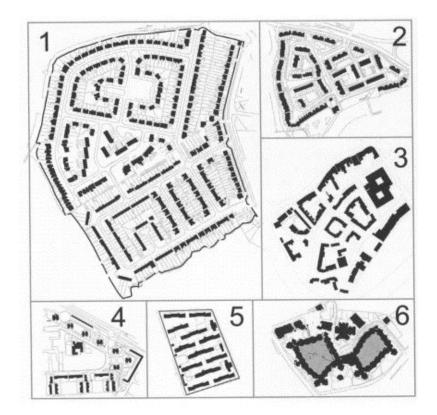


Figure 2.9: Figure ground drawings of six case study neighbourhoods Source: Raman, 2010

Dave (2010) shows through the study of 11 case study neighbourhoods of Mumbai that both physical and perceived density have significant impact on the social, economic and environmental sustainability of the neighbourhood. While dense neighbourhoods are associated with less residential living space, less satisfaction with the amount of open spaces and parks, less road infrastructure per household, higher feelings of insecurity and vandalism especially during the night time, higher traffic congestion, problems of pollution and poor air quality; they have higher sewage pipes per hectare and more walking to work and shopping trips and greater use of public transport because of the proximity of transport nodes.

As far as the different physical aspects of spatial density are concerned, there are standard regulations of building height and abutting road width as per the building regulations of different cities. However, there are no regulations for street orientation for favourable wind movements and ensuing shade and ventilation. Architectural research and implementation in various projects by Charles Correa and B.V. Doshi help to understand the micro-climatic benefits achieved as a result of such consideration (**Correa**, **1982 and Curtis**, **1988**).

The **URDPFI Guidelines 2014** recommend 1.2-1.4 hectares/1000 population or 12-14sqm/capita for community open spaces while it is seen that the open spaces have been constantly decreasing in metropolitan cities because of rapid urbanisation and increase in built-up areas. Mumbai has just 1.1 sqm of open space—gardens, parks, recreation grounds (RG) and playgrounds (PG)—per person **(Rajadhyaksha, 2012)**. In comparison London has 31.68 sqm per person while New York has 26.4 sqm per person. Chicago's 17.6 sqm per person also puts India's financial capital to shame. The poor green ratio in Mumbai translates into a terrible quality of life and poor environment. It also strikes a blow to Mumbai's reputation as a global hub.

Similarly, Jaipur has about 0.2 hectares/1000 population or 2 sqm of open space per person which is much less than the prescribed standards. According to the proposed Master Development Plan 2025, it is proposed to enhance the per capita open space to 8.80 sqm. For a population projected to grow to 6.5 million by the year 2025, even at the minimum scale, Jaipur will require to establish 58.50 sq.km of urban green space. From another perspective, overall, the people and planners will have to strive for regenerating at least one medium sized mature tree as desirable number per person in Jaipur, Rajasthan (Pandit et al., 2009).

Considering distribution of roads, India has less than 0.07 kilometers of highways per 1000 people, as of 2010. This is among the lowest road and highway densities in the world. In contrast, United States has 21 kilometers of roads per 1000 people, while France about 15 kilometers per 1000 people – predominantly paved and high quality in both cases. India has less than 3.8 kilometers of roads per 1000 people, including all its paved and unpaved roads¹¹. Lesser road length per capita implies higher traffic congestion, problems of pollution and poor air quality thus affecting the urban environment significantly.

Another important aspect related to roads, especially road safety are the provision of streetlights. The Handbook of Service Level Benchmarking, Ministry of Urban Development, Govt. of India lays down norms for number and spacing of streetlights to be adopted in the urban areas. In most cities, the street lights are installed and maintained by municipalities. Very little study or planning has gone into the illuminance required in different areas of streets, to address the needs of pedestrians and vehicular traffic alike. For instance, the lighting needs of vehicular traffic in high speed zones are different from low-speed high traffic zones. Likewise, lighting needs in road crossings are different from secondary roads. Then again, the lighting requirements of an area with vehicular traffic will vary from that of an area with high pedestrian traffic. A one-size-fits-all approach to street lighting results in inefficient deployment of power resources and ends up in wasteful use of electricity that could have been better utilized elsewhere. Street light planning is not just about luminosity but also the 'height' of the lighting mast, which in turn varies based on the requirements of that particular area. Due to a lack of 'area-wise' study, standard tenders are issued on a 'city-wise' basis, leading to high operational cost incurred on street lighting. Very often, one notices that the street lights stay on well past sunrise. This is because the lights are switched off based on a predecided time rather than lighting needs, which vary based on season and location of the city. There is a need for devising a well thought out way to prevent wastage of electricity. Perhaps, the government can think of implementing Automatic Street Light Control System using LDR (Light Dependent Resistor), which automatically switches off lights when sunlight fall on it. Poor maintenance of street lights is another problem faced by most citizens, leaving large areas without adequate lighting. The municipalities are hard pressed for funds and it is the citizens who have to face the brunt (Debu, 2015).

¹¹ Indian Road network. Available at: <u>https://en.wikipedia.org/wiki/Indian_road_network</u> [Accessed 10 May 2017].

As per the Handbook of Service Level Benchmarking, Ministry of Urban Development, Govt. of India and Report on Indian Urban Infrastructure and Services, HPEC Committee, March 2011; several indicators are developed to ascertain the level of services in Indian cities. For solid waste management, the cleanliness indicator¹² measures length of roads attended by cleanliness service divided by the total length of the roads of the area; the drainage indicator¹³ is given by total length of primary, secondary and tertiary drains (made of permanent material and covered) divided by total length of road network for managing storm water runoff while the sewage indicator¹⁴ measures total number of properties with direct connection to sewage network divided by the total number of properties in the service area. The handbook lays down 100% as the minimum standards for the above mentioned indicators. However, the situation is quite poor in most of our rapidly urbanizing cities.

It is suggested as per the National Action Plan on Solid Waste Management, 2015 by Central Pollution Control Board, New Delhi that in a congested or thickly populated area, 350 running meters of road length and the adjoining houses may be given to each sweeper, whereas in medium density areas 500 to 600 running meter of the road length with adjoining houses may be allotted to a sweeper depending upon the density of population in the given area and local conditions. In low density areas even 750 running meter of road length can be given. Normally 150 to 250 houses coupled with the above road lengths may be taken as a yard stick for allotment of work to an individual sweeper. Studies indicate that generally cities have adequate number of sweepers to collect the solid waste from the households. For e.g. in Chandigarh there are 277 sweepers per 100000 population. This works out to around 1 sweeper for around 72-80 households which is within the norms (Banerjea, 2005). The actual problem is of storing, transporting and disposing the solid waste that leads to insanitary conditions in our urban areas. Thus, efforts are required for adoption of advanced measures like sustainable urban drainage systems (SUDS), low impact development (LID) techniques, etc.

¹² Cleanliness Indicator = Road length attended by primary-secondary waste collection / Total road length of the area Here, as part of primary waste management, handcarts or wheel barrows are used for door to door collection of domestic waste and street sweeping (at least once a day) and for secondary stage waste collection container/community bins are installed at certain locations in a locality.

¹³ Drainage Indicator = Total length of primary, secondary and tertiary drains / Total length of road network Here, drains should be of pucca construction and covered and road should have ≥3.5m carriageway.

¹⁴ Sewage Indicator = Total no. of properties with direct connection to sewage network / Total no. of properties in the service area Source: Handbook of Service Level Benchmarking, Ministry of Urban Development, Government of India. Available at <u>http://moud.gov.in/pdf/57f1ef81d6caeHandbook06.pdf</u> [Accessed 10 March 2012].

Likewise, rapid urbanisation and urban sprawl in India is consuming the soft landscape, nature's absorbent for rainwater. And the man-made alternative, storm water drains along roads, face major deficits in urban locations. The ministry of urban development, for 2010-11, surveyed 13 states for various indicators in urban water and sanitation. One of these was storm water drainage. Here, coverage was defined in terms of the percentage of road length covered by the storm water drainage network; further, only those drains made of pucca (permanent) construction were considered. A total of 1,383 urban local bodies (ULBs) responded, of which 104 were municipal corporations in large cities. As many as 56 of these 104 large cities had coverage below 50% (a level termed by the ministry as needing "immediate action for improvement") and 93 had coverage below 75% ("caution for improvement") as indicated in figure 2.10.

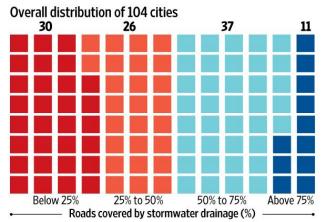


Figure 2.10: Percentage Distribution of Storm Water Drainage in Indian Cities Source: Livemint E Paper, 2016

As per census 2011, at country level, there is no sewage facility in 48.9% households, while 33% households have only open sewage system¹⁵. Nearly 80% of the sewage generated in India flows untreated into its rivers, lakes and ponds, turning the water sources too polluted to use. Indian cities produce nearly 40,000 million litres of sewage per day, enough to irrigate 9 million hectares and barely 20% of this is treated. Almost half of the urban Indian population still depends upon groundwater sources for drinking, cooking and bathing which puts them at direct risk from the polluted water **(Times of India, 2013)**.

¹⁵ Census of India 2011. Available at: <u>http://www.censusindia.gov.in/2011census/HIo-series/HH09.html</u> [Accessed 13 June 2013].

Thus, the poor conditions of most of the spatial density parameters suggests that evaluation of urban neighbourhoods should become an increasingly important issue for planners, urban designers, residents and decision makers. The justification of the same can further be established from studies by **Rådberg (1996)** where he contends that great confusion in the field of quality and sustainability in urban planning stem from the fact that the theories are formulated on a very general and abstract level. He points out to the need of empirical observations, theoretical framework and systematic descriptive classification of the urban structure at the micro level in order to be able to process the accumulated information on existing urban environments and pave the way for better planning practice on both micro and macro levels of the urban structure.

2.5 Neighbourhood Environmental Quality

The term "neighbourhood" represents an intermediate urban scale, larger than a single building and its immediate surroundings but smaller than an entire town or city. It usually includes dwellings, infrastructure and community services. It is a scale in which multiple disciplines are involved, including environmental, mobility, accessibility, and infrastructure studies and their goals for optimization (**Delsante, 2016**). The neighbourhood allows considering private and public spaces while the "home" and "city" mainly consider the former and latter, respectively (**Bonaiuto et al., 2003**). Thus, it enables a classification of the urban system at an intermediate level for holistic understanding and local interventions at which problems actually originate.

As mentioned in Chapter 1, the literature study outlines that Environmental Quality is an abstract concept resulting from both human and natural factors operating at different spatial scales. *In urban areas the local scale is dominated by individual buildings, streets and trees, but regional scale influences may include the whole city and beyond* (van Kamp et al., 2003; Pacione, 2003; Nichol and Wong, 2005). Thus, Environmental Quality is multi-dimensional, multi-faceted and multi-disciplinary in nature. Any assessment of the environment requires the integration and exploration of a variety of elements, thus one indicator alone cannot measure environmental quality. It is known that the concepts of urban environmental quality and related terms such as livability, quality of life and sustainability enjoy great public popularity and form a central issue in research programs, policy making and urban development (Leidelmijer et al., 2002). However, there is hardly any clear, coherent or consistent system in place to measure or evaluate environmental quality, though many studies have urged for an integrated approach to

the subject, incorporating both objective and subjective measures (van Kamp et al., 2003 and Marans et al., 2000).

Over time, several researches have been conducted on the relationship between urban residents and their environment. Bonaiuto et al. (1999) studied the relationship between inhabitants and their neighbourhoods of residence in the urban environment of Rome from the environmental psychological view, and proposed two distinctive instruments. These instruments consisted of 11 scales for measuring the perceived environmental qualities of the urban neighbourhoods, with one scale measuring neighbourhood attachment. Other studies have been done to understand the social environment and its effect on residential satisfaction. **Tognoli (1987)** stated social ties bind people to a neighbourhood, provide social interaction, activity and support. Social relationships can even compensate for poor physical conditions to an extent, especially in disadvantaged areas. Pacione (2003) also addressed urban environmental quality and human wellbeing from a social geographical perspective, and presented a five-dimensional model for study of the quality of life. He examined the major theoretical and methodological issues confronting quality of life research. Robin et al. (2007) conducted a study among Parisians. At the end, seven principal dimensions, that were inclusive of potentially aversive situations encountered in the daily lives of city-dwellers emerged: feelings of insecurity, inconveniences associated with using public transport, environmental annovances and concerns for global ecology, lack of control over time related to using cars, in civilities associated with sharing of the public spaces between different users, lack of efficiency resulting from the density of the population, and an insecure and run-down living environment.

Research on the physical environment has certainly confirmed the relationship between social class and the environmental quality of living environments (**Pacione, 2003**). In general, the higher socio-economic groups are more likely to experience residential satisfaction. This is directly related to the sharp linear increase in residential quality with increasing social position (**Fried, 1982**), and the mobility and choice available in residential environments. **Fobil et al.** (2010) assess the relationship between socio-economic conditions and neighbourhood environmental quality in Accra, Ghana. The results show wide variation in levels of association between the socio-economic variables and environmental conditions, with strong evidence of a real difference in environmental quality across the five socioeconomic classes with respect to (a) total waste generation, (b) waste collection rate, (c) sewer disposal rate, (d) non-sewer

disposal and (e) the proportion of households using public toilets. Socioeconomic conditions are therefore important drivers of change in environmental quality and urban environmental interventions aimed at infectious disease prevention and control if they should be effective could benefit from simultaneous implementation with other social interventions.

Similarly, **Shieh et al. (2011)** study residential satisfaction in two neighbourhoods of Tehran based on (1) satisfaction with neighbourhood in terms of litter, malodor, lack of facilities, safety, pollution, crowding and noise; (2) satisfaction with dwelling w.r.t size, upkeep, facilities and costs; and (3) types of neighbours. The study shows dwelling size as the most significant attribute of residential satisfaction and points out that in addition to psycho-social, economic and physical attributes, attributes of the built environment are relevant attributes of environmental quality. Another study by **Discoli et al. (2014)** explores the theoretical and conceptual aspects of urban life quality (ULQ) in La Plata, Argentina. A model considering the interactions between basic services, infrastructure and environmental aspects is synthesized to identify habitants' satisfaction or dissatisfaction with the above mentioned aspects. The methodology allows evaluating qualitatively and quantitatively the basic needs of the habitants. Incorporating a set of dimensions that constitute components of every day and future life of a city, it helps in considering the possible actions for present and future planning.

The study by **Delsante et al. (2014)** considers medium density neighbourhoods in Lodi and Genoa, Italy with population densities ranging from 25-75pph for evaluation of urban environmental quality. The assessment is based on a specific set of 74 indicators (**Delsante**, **2007**), described through quantitative and qualitative variables. The study establishes that different sets of indicators can be created according to specific research aims, such as targeting different densities like high-density neighbourhoods or urban sprawl. Moreover, the proposed methodology is a meaningful tool for concisely evaluating urban environment quality as it is expressed with numeric values. It reduces subjectivity in the evaluation process and, most importantly, can be related to other data (e.g., environmental, health and well-being related). The study further states that even though there are some meaningful sets of indicators corresponding to neighbourhoods, there remains substantial opportunity for further research and experimentation (**Damen, 2014**), especially in relation to various densities (**Lee and Chan, 2009**).

In the Asian context, Kimhi's (2005) work on urban environmental quality emphasizes on the guality of the intra-urban environment by considering physical parameters for the state of Israel. It tries to address the question of how to increase residential densities in Israel's cities and prevent suburbanisation while still maintaining the quality of life. The principal recommendations are in the following domains: transportation, noise, air quality, the relationship between population density and open spaces and the quality of life in residential neighbourhoods, esthetics within the city, and environmental evaluation systems for buildings and the urban area. Majumdar et al. (2007) study the residents' perception of the different environmental aspects of Chittagong Metropolitan City, Bangladesh and conclude that degree of satisfaction varies with income groups and is dependent on quality of infrastructure and their appropriate management. The research is also able to create urban environmental guality maps of 41 wards of the city to show the spatial pattern of urban environmental quality for Chittagong Metropolitan City. Using remote sensing and GIS techniques, Rahman et al. (2010) study the quality of urban environment in the East district of Delhi, India which is experiencing very high urban growth with 98.75% urban population in 2001. Eight parameters which affect the urban environmental quality are selected, namely built-up area, open spaces, household density, occupancy ratio, population density, accessibility to roads, noise and smell affected area. The study shows that the quality of environment has degraded over the years. Most of the East district was in a better state of environment in 1982, but in 2003 things have changed. It also emphasizes encouraging public participation and involvement in planning and decision making process thus enabling improvement in the urban environmental quality.

In another study, **Patel (2011)** tries to clarify the interrelationships between six fundamental urban design parameters that affect the quality and character of any urban layout. These parameters are:

- built-up area per capita (BUA);
- public ground area per capita which includes streets and parks (PGA);
- plot factor (PF) the ratio of land area given over to private development to land area available for public use;
- floor space index (FSI or FAR) ratio of built-up area to buildable plot area;
- net density (ND) population divided by the sum of all buildable plot areas;
- and, gross density (GD) population divided by total area.

Mapping these six parameters in a chart shows the complicated trade-offs between one desirable feature and another, including combinations that show that higher densities do not necessarily mean small accommodation and inadequate public space – but they do mean high-rise, and there are severe limits on how high densities can go as seen in figure 2.11.

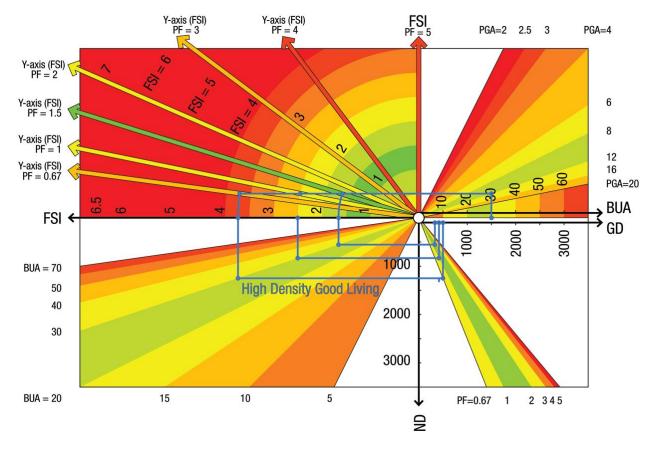


Figure 2.11: Net Density (ND) and Gross Density (GD) based on BUA, PGA, PF and FSI Source: Patel, 2011

In terms of the six parameters, all concerned with the local environment, it is first agreed upon what is meant by good living conditions. If a comfortable BUA, say 30 square metres per capita, and a comfortable PGA, say 12 square metres per capita is considered, then it is observed that the horizontal line in quadrant 1 is fairly low. This is extended to the left into quadrant 2 and it intersects the radial lines of PF = 1.5, PF = 1 and PF = 0.67 at three different points on the horizontal, at higher and higher levels of FSI. (These three plot factors are equivalent to 60 per cent, 50 per cent and 40 per cent, respectively, of the total land area to be set aside for plots for construction.) The relevant arcs are taken down to the horizontal and lines are dropped vertically down to the radial in quadrant 3, which represents BUA = 30. At these intersection

points, turning right to meet the net density vertical axis, net densities of 555, 833 and 1,250 persons/hectare respectively are achieved. Continuing into quadrant 4, and intersecting the inclined lines that correspond to the three different PFs, are turned up vertically to meet the gross density axis at values of 333, 417 and 500 persons/hectare. The FSIs for the three cases are 1.67, 2.5 and 3.75 respectively. So it is understood that in case we want good living conditions, one cannot go much beyond 500 persons per gross hectare.

The study also plots diagrams that show the values of these parameters for existing localities in New York, Mumbai (including Dharavi) and Delhi. Similarly other localities around the world can be represented as a diagram on this chart. Based on the net density and gross density values derived, favourable and unfavourable localities can be identified using this system and a detailed analysis may help in ascertaining preferred range of values for each of the parameters that can be adopted for future new developments or redevelopment of existing localities. The paper is one of the first attempts that tries to give objective values for the six parameters even though it misses out on many other aspects of environmental quality.

Thus, the literature review helps in understanding the various indicators/parameters¹⁶ that are important to be considered for the assessment of environmental quality – physical, social, economic, geographical, psychological, etc. Additionally, one is able to comprehend several types of quality indexes¹⁷ generated for classifying or ordering residential neighbourhoods based on livability or quality of life, quality of environment and/or people's perception of their residential environment (as indicated in table 2.8). It also helps in gaining knowledge about methods generally adopted for evaluating urban environmental quality at the neighbourhood level (as indicated in table 2.9). Finally, it also throws light on the fact that studies taking into account physical aspects of the built environment and psychological factors are sparsely reported and quite meagre in number thus justifying the scope of the present work.

¹⁶ An indicator is a parameter or value that is derived from other parameters **(OECD, 1993)**. It selects, provides information or describes a phenomenon, environment or area.

¹⁷ An "index" is defined as a number of indicators or parameters that are aggregated or weighted (Delsante, 2016).

Table 2.8: Literature Review Summary: Parameters/Indicators and Indexes of Environmental Quality

S.No.	Researcher	Premise of Study	Parameters/Indicators or Index
1.	Tognoli, 1987 (US)	Social Environment and Residential Satisfaction	 Social Interaction Activity Intensity Support Physical Condition of Neighbourhood
2.	Bonaiuto et al., 1999 (Italy)	Relationship between inhabitants and their neighbourhood from environmental psychological perspective	11 indexes measure perceived environmental quality + 1 index measures neighbourhood attachment
3.	Pacione, 2003 (Scotland)	Urban environmental quality and human well- being from social geographical perspective	Five dimensional model to study quality of life: Subjective & Objective Indicators and Social Groups at National, Regional and Local Levels
4.	Robin et al., 2007 (France)	Social and Physical Environment and Residents' Perception	 Feeling of insecurity Inconveniences with using public transport Environmental annoyances Time related to using cars Sharing of public spaces Lack of efficiency as a result of density of population Run-down living environment.
5.	Fried, 1982 (US) and Pacione, 2003		Residential Quality, Choice of Residence and Type of Mode of Transport
6.	Fobil et al., 2010 (Ghana)	Socio-economic Factors and Urban Environmental Quality	 Total waste generation Waste collection rate Sewer disposal rate Non-sewer disposal and Proportion of households using public toilets
7.	Shieh et al., 2011 (Iran)	Psycho-social, Economic, Physical and Built Environment Attributes and Residential Satisfaction	 Satisfaction with the Neighbourhood Satisfaction with the Dwelling Satisfaction with the Neighbours
8.	Patel, 2011 (US and India)	Densities for Good Living Condition	Interrelationships b/w six urban design parameters – BUA/Capita, PGA/Capita, FSI, Plot Factor, Net Density and Gross Density
9.	Discoli et al., 2014 (Argentina)	Qualitative and quantitative evaluation of the basic needs of the inhabitants for present and future planning	Basic services, infrastructure and environmental aspects are synthesized into a model to identify residents' satisfaction or dissatisfaction
10.	Delsante et al., 2014 (Italy)	Assessing environmental quality for different densities	Set of 74 indicators divided into 4 domains – Architecture & Urban Design, Use & Accessibility, Landscape & Environment and Social & Community

Table 2.9: Literature Review Summary:	Methods of Assessment
---------------------------------------	-----------------------

S.No.	Premise of Study	Methods Used for Assessment
1.	Bonaiuto et al., 1999 Relationship between inhabitants and their neighbourhood from environmental psychological perspective	In order to reduce no. of factors, Principal Component Analysis (PCA) is run on 12 scales to establish significant factors and eliminate items not represented. Factor structures and indicator number confirm previous research.
	Pacione, 2003	 CASE STUDY 1 – Geography of Quality of Life (QoL) in Glasgow (nature, intensity and incidence of multiple deprivation) Principal Component Analysis and Cartographic Analysis – Principal component was used to identify indicators of multiple deprivation and mapping scores revealed spatial expression of multiple deprivation in Glasgow.
2.	Urban environmental quality and human well-being from social geographical perspective	 CASE STUDY 2 – Landscapes of Fear in the City (To study the nature and extent of fear of crime in male and female residents of a social housing estate on the edge of Glasgow) Interview Procedure to rank neighbourhood problems, perceived risk from criminal activities and perceived dangerous spaces by gender. Respondents' Cognitive Maps of Fear to identify specific danger areas within the estate.
3.	Fobil et al., 2010 Improvement in urban environment for prevention of spread of Infectious Diseases	 In order to reduce no. of factors, Principal Component Analysis (PCA) is run on 39 variables to establish significant socio-economic factors affecting neighbourhood environmental quality and eliminate items not represented. 16 factors are considered after the PCA. Bivariate Analysis and Multiple Regression Techniques were used to assess the relationship between area-based socio-economic status and neighbourhood environmental conditions.
4.	Shieh et al., 2011 Psycho-social, Economic, Physical and Built Environment Attributes and Residential Satisfaction	 A Multi-attribute or Multi-criteria Approach is adopted to evaluate the environmental quality of residential neighbourhoods. Multiple Hierarchical Regression Approach – Analyze relationship between dependent and independent variables. Estimation of 'regression weights' and 'model fit' for analysis of the concept of environmental quality.
5.	Patel, 2011 Densities for Good Living Condition	Combination of 6 Urban design parameters - BUA/Capita, PGA/Capita, FSI, Plot Factor, Net Density and Gross Density plotted on Graphical Charts
6.	Rahman et al., 2011 Environmental Quality of East Delhi	Remote Sensing and GIS Techniques to assess urban environmental quality changes between 1982 and 2003 based on eight parameters like built-up area, open spaces, density, etc.
7.	Delsante et al., 2014 Environmental quality of medium density neighbourhoods	 Indicators are organized in a tree structure from single indicators to macro-indicators to indexes. All indicators assigned numerical values and weighted to generate the Environmental Quality Index. Indicators and macro-indicators are grouped into domains to differentiate them and avoid redundancy of information.

2.6 Density and its impact on Environmental Quality

As already mentioned in Chapter 1, the increase of residential density and the concentration of human activities within smaller built areas helps to exploit economies of scale for public services (e.g. schools, public buses and public utilities) and environmental resources like land, petrol and water (Capello and Camagni, 2000). However, an excessive concentration of activities and proximity results in aggravated negative environmental externalities like traffic congestion, less privacy, poor access to natural agents (air, daylight, view, etc.) and overcrowding, which tend to outweigh the claimed benefits of urban compaction (Burgess, 2000; Rudlin and Falk, 1999; Williams et al., 2000). In accordance with the research hypothesis and the key research questions it is therefore important to understand the types and nature of impacts density has on environmental quality. Table 2.10 lists down the types and nature of impacts increasing density (residential, building and spatial) has on the urban environment.

Type of Impact	Nature of Impacts					
	Positive Impacts	Negative Impacts				
	 Land occupation reduced Reduction of urban sprawl Reduction in travel distances Increased feasibility of public transport Reduced length of utility networks Reduced solar gain due to mutual shading of buildings 	 Exploitation of urban greens and open spaces Danger of exhaustion of water source Water Pollution Increase in Traffic Volume Increased Waste Generation Dense urban form reduces access to natural/day light and ventilation Reduced aesthetics due to overcrowding 				
ENVIRONMENTAL IMPACTS	 Reduced carbon footprint Reduced car dependence Reduced demand for fuel Less energy usage for infrastructure provision such as roads and pipelines 	 Reduced level of service and increased travel time Increase in Vehicular Pollution (Air and Noise) Land and water pollution as a result of increased waste generation and insufficient infrastructure Use of more energy intensive building materials for high rise construction Higher GHG Emissions due to more lighting, ventilation and cooling requirements of high rise buildings 				

Table 2.10: Literature Review Summary -Type and Nature of Impacts of Increasing Density

Type	of Impact	Nature of Impacts				
Type (of impact	Positive Impacts		Negative Impacts		
SOCIAL IMPACTS		 Social Service Provision such as schools, hospitals etc. becomes feasible Greater social interaction Public surveillance of streets Increased walkability 	-			
	NOMIC PACTS	 Reduction in transportation costs Reduction in construction costs in case of shared walls Lower rents observed in dense residential areas Service provision cheaper Reduction in cost of living 	IncreaseOvercrease	se development is cost intensive sed land prices owding and reduced aesthetics may own real estate value		
Direct Impacts				Indirect Impacts		

Table 2.10 (contd.): Literature Review Summary -Type and Nature of Impacts of Increasing Density

Source: Author, 2017

It is observed that impacts can be broadly segregated into three types namely environmental, social and economic impacts. It is understood that all these impacts are a result of increasing densities whether people (population or residential), building or spatial density. Further, there are positive and negative impacts in each of the categories. A deeper understanding also enables one to comprehend that certain impacts are direct and others are indirect that is they accrue as a result of the direct impacts. This is significantly observed in the case of the environmental impacts in table 2.10 above.

2.6.1 Significance of Impacts

Even though all the listed impacts are significant, those responsible for the poor environmental quality in residential neighbourhoods have been acknowledged as one of the most urgent and greatest problems of our cities because of the immediate risk they present to their inhabitants health. This has also led to the plea in **Agenda 21** as mentioned earlier for dedicated actions at the neighbourhood level to reduce environmental decay and improve local socio-economic conditions. Accordingly, crowding and congestion; decay of parks and open spaces; air and water pollution; increasing waste generation; decreasing levels of cleanliness and failure of sewerage and drainage systems (services); decreasing sense of safety; increasing noise

pollution; increasing temperature variations within and outside the locality; reduced natural light and ventilation are amongst the most significant impacts. This view can be further corroborated by several studies that directly show how these aspects of the environment affect child and family wellbeing (Moore and Fry, 2011). While crowded living conditions have adverse impact on several child outcomes, housing quality affects their socio-emotional development. Similarly, there is evidence of the importance of parks and green spaces for child development - contact with nature may be as important to children as good nutrition and adequate sleep. Polluted air, water, etc. affect both cognitive and socio-emotional development while chronic exposure to noise in the forms of transportation, music, and other people has adverse effects on people's cognitive development (reading levels, long-term memory), psychophysiology (blood pressure, hormone levels and associated stress), mental health and motivation (Evans, 2006; Huby & Bradshaw, 2006; Louv, 2005, 2011 and Wood, 2009).

Thus, as the present study tries to understand the impact of density on neighbourhood environmental quality it becomes necessary to take cue of the different ways of measuring the most significant impacts at the neighbourhood level as stated above so that environmental quality can be assessed with change in density.

2.6.2 Measurement of Impacts

All the impacts like crowding and congestion; air and water pollution; waste generation; levels of cleanliness and sewerage and drainage systems (services); noise pollution; temperature variations within and outside the locality; natural light and ventilation; etc. if carefully observed are measurable parameters. In fact they can be considered as indicators that can be measured and aggregated to give objective values of neighbourhood environmental quality. Thus, based on literature review, it is important to understand and identify the variables to measure these indicators so that they can be used for further study and analyses.

Population density is considered as the first attribute influencing the urban environment. More the number of people within a given area, the pressures on the environment are higher and the discomfort in the urban environment increases. The probability of increased degree of congestion also increases with higher population densities. In addition to population density, physical congestion can be measured through a number of variables like number of houses per unit area, number of vehicles plying on the road, concentration of activities etc. Hence, population density along with residential density, built-form characteristics like plot size, plot coverage, height, etc. and amount of open spaces help in determining built-up area per capita (BUA/Capita), public ground area per capita (PGA/Capita), paved road length per capita (PRL/Capita) and mobilization factor (M.F.)¹⁸. These parameters help in operationalizing and ascertaining the level of congestion or crowding (internal and external) – an important indicator of neighbourhood environmental quality.

Open spaces can be either in the form of parks and playgrounds, or some vacant spaces, or waste land or agricultural land and water bodies. In the residential neighbourhoods, parks and playgrounds provide lung space for the urban residents without which it is very difficult to live in a city with an environment affected by dust, pollution and other atmospheric hazards (Malini, **1987).** The trees and plants growing/grown in parks reduce the pollution amounts in the air, affect the micro-climate (cause temperature variations) by evaporative cooling and also serve as recreational sources for the locality. Similarly, the play-grounds besides providing sports opportunity for the residents also relieve congestion. The intention here is not only to classify and define open spaces, but rather to assess utilization levels and spatial qualities in these spaces. Specific variables include: the type of open space and its effect on the activity diversity and activity intensity of the space. While activity diversity refers to the number of different types of activities taking place in an open space, activity intensity refers to the number of users per square area (meters, hectares, etc.). Activity intensity as applied in this study implies the degree of utilization of space (Lupala, 2001). More the diversity and better the utilization, higher is its contribution to the quality of the place. Further, condition of the open spaces in terms of maintained or unattended, encroached and percentage tree cover evaluate the environmental quality of the space.

Ventilation and presence of shade from plants is of vital importance to improve the microclimate and enhance comfort living in cities with composite or semi-arid type of climate – one of the main climatic zones found in the Indian subcontinent. The outdoor environmental quality is primarily dictated by the degree of exposure to cross ventilation and shade from trees to buildings and outdoor spaces. Too compactly laid down houses have poor qualities in terms of facilitating cross ventilation. With regard to significance of shade trees, **Kyhn (1984)** notes that:

¹⁸ Defined as the number of exits from the area divided by total number of vias through the area. Source: Sarmento, R., Zorzal, F.M.B., Serafim, A.J. and Allmenroedr, L.B. (2000) Urban Environmental Quality Indicators. In: C.A. Brebbia, A. Ferrante, M. Rodiguez & B.Terra (Eds.), *The Sustainable City*. United Kingdom: WIT Press.

Shade trees filter the sunlight, reduce air temperature by evaporation, protect smaller plants on the ground and reduce glare from bright overcast skies. Thus, variables like street orientation, building height to road width ratio and percentage tree cover can aid in assessing ventilation, shade and temperature variations, if any.

As the densities increase in urban areas, the prevalent technology becomes incapable of catering to concentrated demands. Thus, slowly deterioration in the quality of services takes place or in other words the existing facilities and services fail to cater to the population pressure. The environmental quality can be evaluated with respect to the existence of certain specific services like sewerage and drainage, disposal of domestic waste, presence of street lights, condition of roads and sidewalks, types of open spaces etc. The assumptions in such cases is that each of the localities or census wards are closed units of study – the services considered are largely of local neighbourhood use and relevance; and inter-ward use of services is negligible. Big schools, hospitals, etc. are not considered because they are higher order services that are not tenable at the neighbourhood level. The condition of sidewalks and adequacy of streetlights and distance to daily needs is considered to ascertain the quality requirements for walking. These are important indicators of walkable neighbourhoods in present times and overall environment in the context of the present study.

Indicator	Measurement Variables					
Crowding and Congestion	(Built-up Area per (P		GA/Capita blic Ground a per Capita)	PRL/Capita (Paved Road Length per Capita)		Mobilization Factor
Nature and Use of Open Spaces	Type & Condition of Open Space Tree Cover		Activity Intensity		Activity Diversity	
Shade and Ventilation	Shade Rating - No. of hours of Shade in the Neighbourhood			Ventilation Score w.r.t. Orientation of Streets		
Temperature Variations	Mean Temperature Difference within and outside the Neighbourhood					ghbourhood
Average Noise Levels	At Entry Points Inside the Locality On M		n Main Roads			
Cleanliness	Level of Cleanliness					
Neighbourhood Walkability	Proximity to Daily Needs	Daily Condition of Sidewalks				Type & Condition of Open Space
Air Quality	NO _x SO ₂ R		RSPM ₁₀			

Table 2.11: Indicators and Variables to Assess Neighbourhood Environmental Quality

Source: Synthesis of Milbrath and UNESCO, 1978; Rahman et al., 2011 and Literature Review

Air quality is the only indicator that is measured using NO_x, SO₂ and RSPM₁₀ values dependent on other variables like type and area of open space, percentage tree cover, vehicles on road, etc. and compared with national standards. These three pollutants among others are primarily considered as they are most noticeable sources of air pollution in residential areas **(CPCB, 2014)**. Similarly, noise levels are also compared with national standards as laid down for residential areas.

The indicators (as seen in table 2.11 above) examine the environmental quality in relation to inherent spatial qualities given by the density variables. Spatial quality as applied to this study refers to the basic pre-requisites for effective use of spaces. It refers to the necessary preconditions to evaluate utilizations of outdoor spaces and environmental quality within identified and selected urban types or residential patterns. The argument here is that irrespective of the context, there are basic planning and design requirements that facilitate environmentally conducive growth and utilization of spaces. If such requirements are missing, then utilization of spaces becomes poor or environmentally unfavourable.

2.7 Concluding Remarks

The chapter begins with a detailed description of the types of urban processes and related environmental problems in different types of cities. The literature review brings forth the key issue concerning environmentally sustainable development of cities in the wake of rapid urbanisation and shows the way to identify cities that hold the key to future urbanisation in India. Studies reveal that smaller cities / towns are going to accommodate larger number of people in near future and be the engines of economic growth and development.

The nature of the research problem and the need for understanding and classifying residential patterns and seeing its effect on environmental quality indicates that the approach in carrying out this study is both exploratory and causational. Keeping this in mind, a thorough study to understand and ascertain intra-city residential patterns is undertaken. Certain specific patterns are observed and it is concluded that in order to understand the relationship between residential patterns characterized by built forms, distribution of dwelling units, population distribution, etc. and environmental quality, it is quintessential to study the local environmental problems associated with different residential patterns found in different cities.

The chapter progresses to understand the term density and the common measures adopted to define the various types of density like people density, building density and perceived density. It also tries to understand the relationship of building density with urban morphology as it plays an important role in shaping the urban form. Population density in the context of Indian cities is studied thoroughly and it is found that though average densities are low in most of the cities, the core areas have high and sufficient densities that can generate a demand for public transit systems followed by other interventions so as to improve the quality of the urban space. Probing further it is seen that several efforts have been made by the town and country planning department and other government bodies of different states of the country to increase the density of population in case of plotted and group housing developments in an attempt to meet the challenges of providing quality housing in India's urban areas.

Moving further, FAR – an important measure of building density along with other building regulations like height, plot coverage, etc. are compared across different cities, both national and international. It is seen that most of the cities have their own set of rules and regulations as considered appropriate w.r.t. the population distribution, mix of housing, type of infrastructure and future development strategies. It is also understood that higher FAR/FSI does not necessarily imply high density. Density depends on the floor space occupied by each resident. However, it definitely implies high rise but there are several other factors to be considered as to the maximum height that can be built taking into account different residential patterns, needs and mindset of the people.

Next, the term spatial density is defined. Raman's (2010) and Dave's (2010) study indicate that the social environment is directly linked to the layout and built form or the spatial and physical characteristics of the urban neighbourhood. Information from different websites is gathered and several government documents and reports like URDPFI 2014, Handbook of Service Level Benchmarking of MoUD, Govt. of India, etc. are studied to find out the norms vis-à-vis the actual condition of the various parameters like amount/distribution of open spaces, distribution of roads, streetlights, sewerage and drainage services etc. that measure spatial density. It is observed that the standard of most of the parameters is below the suggested norms resulting in poor environmental quality in our rapidly urbanizing cities.

Following this, the term environmental quality is defined and the justification of studying it at the neighbourhood level is established. Subsequently, the various indicators/parameters and

methods considered for the assessment of environmental quality are identified from the works of Tognoli (1987), Bonaiuto et al. (1999), Pacione (2003), Fobil et al. (2010), Shieh et al. (2011), Patel (2011), Rahman et al. (2011), Delsante et al. (2014) among many others. The literature review reveals that studies taking into account physical aspects of the built environment and their impact on urban environmental quality are quite few especially in the Indian context and/or are sparsely reported, thus justifying the scope of the present work.

The chapter concludes with the discussion of impacts of increasing density on environmental quality. Several impacts are identified based on the background studies and all of them are broadly categorized into three types – environmental, social and economic impacts. Further they are classified as positive and negative, and direct and indirect impacts. Indirect refers to the impacts that are caused as a result or accrue as a byproduct of the direct impacts. Considering the significance of impacts, those responsible for poor environmental quality in residential neighbourhoods are acknowledged as the most urgent and greatest because of the immediate risk they present to their inhabitants' health and wellbeing. Accordingly, crowding and congestion; decay of parks and open spaces; air and water pollution; increasing waste generation; decreasing levels of cleanliness and failure of sewerage and drainage systems (services); decreasing sense of safety; increasing noise pollution; increasing temperature variations within and outside the locality; reduced natural light and ventilation are identified as the most significant impacts.

Finally, the chapter ends with the identification of a set of indicators and variables that have all been sourced from the literature review to measure the neighbourhood environmental quality. These form the basis of the conceptual framework and analytical model for further work as part of the research design.

References:

- Acioly, C. and Davidson, F. (1996) Density in Urban Development. *Building Issues*, 8 (3), Lund Centre for Habitat Studies, Lund University. [online] Available at: <u>http://www.hdm.lth.se/fileadmin/hdm/BI_Volume_08_3_1996_Density_in_Urban_Development.pdf</u> [Accessed 9 September 2012].
- 2. Alexander, E. (1993) Density Measures: A Review and Analysis. *Journal of Architectural and Planning Research*, 10 (3), 181-202.

- 3. Banerjea, D. (2005) *Criminal Justice India Series Volume XVII Chandigarh, Part I.* Kolkata: Allied Publishers Private Limited and National University of Juridical Sciences.
- 4. Bhandari, L. (2006) *The Diversity of the Top 100 cities of India*. Indicus Analytics an Economic Research Firm. [online] Available at: <u>http://www.indicus.net</u> [Accessed 7 October 2012].
- Bharne, V. (2011) Enabling Responsible Urban Form. *The Urban Vision Posted in Opinion and Blogs on 9 April 2011*. [online] Available at: <u>http://www.theurbanvision.com/blogs/?p=717</u> [Accessed 10 July 2011].
- 6. Bonaiuto, M., Aiello, A., Perugini, M., Bonnes, M. and Ercolani, A. P. (1999) Multidimensional perception of residential environment quality and neighbourhood attachment in the urban environment. *Journal of Environmental Psychology*, 19, 331-352.
- Bonaiuto, M., Fornara, F. and Bonnes, M. (2003) Indexes of perceived residential environmental quality and neighbourhood attachment in urban environments: A confirmation study on the city of Rome. *Landscape and Urban Planning*, 65, 41-52.
- 8. Bonnes, M., Bonaiuto, M. and Ercolani, A. P. (1991) Crowding and residential satisfaction in the urban environment: A contextual approach. *Environment and Behaviour*, 23 (5), 531–552.
- 9. Breheny, M. (1992) Sustainable Development and Urban Form. London: Pion Limited.
- Burgess, R. (2000) The Compact City Debate: A Global Perspective. In: M. Jenks and R. Burgess, (Eds.), *Compact cities: Sustainable urban forms for developing countries* (pp. 9–24). E & FN Spon.
- 11. Capello, R. and Camagni, R. (2000) Beyond Optimal City Size: An evaluation of alternative urban growth patterns. *Urban Studies*, 37 (9), 1479–1496.
- Central Pollution Control Board (CPCB) (2014) National Ambient Air Quality Monitoring Status and Trends 2014-15. New Delhi: Ministry of Environment and Forests (MoEF). [online] Available at: <u>https://www.cpcb.nic.in/</u> [Accessed 20 June 2015].
- Central Pollution Control Board (CPCB) (2015) National Action Plan for Municipal Solid Waste Management. [online] Available at: <u>http://cpcb.nic.in/wast/municipalwast/Action_plan.pdf</u> [Accessed 17 July 2016].
- 14. Chan, Y. K. (1999) Density, crowding and factors intervening in their relationship: Evidence from a hyperdense metropolis. *Social Indicators Research*, 48, 103–124.
- Cheng, V. (2010) Understanding Density and High Density. In: Edward Ng. (Ed.), *Designing High Density Cities For Social and Environmental Sustainability* (pp. 3-17). New York: Earthscan.
- Churchman, A. (1999) Disentangling the concept of density. *Journal of Planning Literature*, 13, 389-411.
- Confederation of Indian Industries (CII) (2010) A Report on Intelligent Urbanisation Roadmap for India. New Delhi: Booz and Company Inc. and CISCO. [online] Available at: <u>https://www.slideshare.net/itsgowri/cii-booz-report-on-intelligent-urbanisation-india-2010-4053314</u> [Accessed 10 October 2014].

- 18. Correa, C. (1982) Architecture in a warm climate. MIMAR Architecture in Development, 5, 31-35.
- 19. Curtis, William J. R. (1988) Balkrishna Doshi: An Architecture for India. New York: Rizzoli.
- 20. Cushman and Wakefield (2014) *Challenges and Opportunities for the Housing Sector in Urban India*. Mumbai: Office of Cushman and Wakefield Research Publication.
- Damen, R. G. (2014) Evaluating Urban Quality and Sustainability: presentation of a framework for the development of indicator assessment methods, by which the existing urban environment may be evaluated on quality and sustainability performance on a neighbourhood scale. Master's Thesis, University of Twente, Enschede, Netherlands.
- Dash D.K. (2011) Population density of group housing societies raised to 300 persons per acre. *The Economic Times, Times of India 30 May 2011*. [online] Available at: http://timesofindia.indiatimes.com/city/Gurugram/ [Accessed 20 April 2013].
- 23. Dave, S. (2010) High Urban Densities in Developing Countries: A Sustainable Solution? *Built Environment* (1978-), 36 (1), 9-27.
- Debu, C. (2015) Feb 26. Street Lighting in India and Need for Energy-efficient Solutions. MapsofIndia.com – Posted on 26 Feb 2015. [online] Available at: <u>http://www.mapsofindia.com/my-india/government/street-lighting-in-india-and-need-for-energy-efficient-solutions</u> [Accessed 12 June 2017].
- 25. Delsante, I. (2007) Identità e Promozione Della Salute. In: Rinnovo Urbano (Editore), *Santarcangelo di*. Romagna: Maggioli.
- Delsante, I. (2014) Indicators for Urban Quality Evaluation at Neighbourhood Scale and Relationships with Health and Wellness Perception. In: *Proceedings of WORLD SUSTAINABLE BUILDING CONFERENCE*, 28-30 October 2014, Barcelona.
- Delsante, I. (2016) Urban Environment Quality Assessment using a Methodology and Set of Indicators for Medium-Density Neighbourhoods: a comparative case study of Lodi and Genoa. *Ambiente Construído, Porto Alegre*, 16 (3), 7-22.
- 28. Demographia (2014) Demographia World Urban Areas (Built-up Urban Areas or World Agglomerations) 10th Annual Edition: March 2014. [online] Available at: <u>http://cdn.plataformaurbana.cl/wp-</u> <u>content/uploads/2014/04/1398448369_demographia_world_urban_areas_report.pdf</u> [Accessed 12]

April 2014].
29. Department of Housing and Urban Development, Government of Punjab. (2014) Draft Policy for Housing and Urban Development – Punjab, March 2014. [online] Available at:

http://puda.nic.in/img/annualreport_files/housing_policy.pdf [Accessed 10 June 2016].

 Discoli, C., Martini, I., San Juan, G., Barbero, D., Dicroce, L., Ferreyro, C. and Esparza, J. (2014) Methodology aimed at evaluating urban life quality levels. *Sustainable Cities and Society*, 10, 140-148.

- 31. Evans, G.W. (2006) Child development and the physical environment. *Annual Review of Psychology*, 57, 423-451.
- 32. Flachsbart, P. G. (1979) Residential site planning and perceived densities. *Journal of the Urban Planning and Development Division*, 105 (2), 103–117.
- Fobil, J., May, J. and Kraemer, A. (2010) Assessing the Relationship between Socioeconomic Conditions and Urban Environmental Quality in Accra, Ghana. *International Journal of Environmental Research and Public Health*, 7, 125-145.
- 34. Fried, M. (1982) Residential Satisfaction: Sources of residential and community satisfaction. *Journal of Social Issues*, 38 (3), 107-119.
- 35. Galster, G., Hanson, R., Wolman, H., Coleman, S. and Freihage, J. (2001) Wrestling Sprawl to the Ground: Defining and Measuring an Elusive Concept. *Housing Policy Debate*, 12, (4), 681-717.
- Gewirtzman D., Burt M. and Tzamir Y. (2003) Systematic Approach to Urban Density Measurement as a Basis for Environmental Quality Evaluation. *Environment and Planning B: Planning and Design*, 30, 575-587.
- Gómez Arenas A. (2002) Analysis of Infrastructure Provision in Low-income Settlements, Port Elizabeth South Africa. Master's Thesis, EESI Programme, Royal Institute of Technology, Stockholm.
- Guturu, K. (2016) FSI as a Development Control Tool in Indian Cities Analyzing the Case of Vijayawada, India. *International Journal of Chemical, Environmental & Biological Sciences (IJCEBS)*, 4 (2), 124-129.
- 39. Handbook of Service Level Benchmarking (2011), Ministry of Urban Development, Government of India. [online] Available at:

http://www.wsp.org/sites/wsp.org/files/publications/service_benchmarking_india.pdf [Accessed 13 June 2014].

- Huby, M. and Bradshaw, J. (2006) A review of the environmental dimension of children and young people's wellbeing (Vol. I). York, UK: University of York. [online] Available at: <u>http://www.sd-</u> <u>commission.org.uk/publications/downloads/York-SDC-Wellbeing-report.pdf</u> [Accessed 10 November 2015].
- 41. Jelinek G. (1992) Aspects of Density in Urban and Residential Planning for Jabotabek. *Trialog*, Berlin, 32, 8-14.
- 42. Kapadia, K. (2010) The Sustainable Indian Cities An oxymoron. *Context: Journal of the Development and Research Organisation for Nature, Arts and Heritage*, 7 (2), 41–-47.
- 43. Kimhi, I. (2005) (Ed.) *Urban Environmental Quality*. The Centre for Environmental Policy, Jerusalem Institute for Israel Studies, Jerusalem.

- Kochhar R. (2015) A Global Middle Class is more Promise than Reality. [online] Global Attitudes and Trends – Pew Research Centre. Available at: <u>http://www.pewglobal.org/2015/07/08/a-global-middleclass-is-more-promise-than-reality/</u> [Accessed 5 October 2017].
- 45. Kyhn B. (1984) Single Storey Housing in Tanzania. Copenhagen: FSD Publication.
- 46. Lee, G. K. L. and Chan, E. H. W. (2009) Indicators for Evaluating Environmental Performance of the Hong Kong Urban Renewal Projects. *Facilities*, 27 (13/14), 515–530.
- 47. Leidelmijer, K., van Kamp, I. and Marsman, G. (2002) *Viability towards a conceptual framework and conceptual framing (RIGO, RIVM).* Report Number 81330.
- Livemint E Paper (2016) The alarming deficit in stormwater drainage in urban India, 3 August 2016.
 [online] Available at: <u>http://www.livemint.com/Politics/pL6qalnBUQmulQZRuorELP/The-alarming-deficit-in-stormwater-drainage-in-urban-India.html</u> [Accessed 25 June 2017].
- 49. Louv, R. (2005) *Last Child in the Woods: Saving Our Children from Nature-Deficit Disorder*. Chapel, North Carolina: Algonquin Books of Chapel Hill.
- 50. Louv, R. (2011) *The Nature Principle: Human Restoration and the End of Nature-Deficit Disorder.* Chapel, North Carolina: Algonquin Books of Chapel Hill.
- 51. Lupala, J.M. (2001) *Peri-Urban Land Management in the Rapidly Growing Cities The Case of Dares-Salaam.* PhD. Dissertation, University of Dortmund.
- 52. Majumdar, A. K., Hossain, M. E., Islam, M. N. and Sarwar, M. I. (2007) Urban Environmental Quality Mapping: A Perception Study on Chittagong Metropolitan City. *Kathmandu University Journal of Science, Engineering and Technology*, 1 (4), 1-14.
- 53. Malini, R.S. (1987) *Residential Densities and Living Conditions in a Metropolis A Case Study.* PhD. Dissertation, Institute for Social and Economic Change, Bangalore.
- 54. Marans, R. W. and Couper, M. (2000) Measuring the quality of community life: a program for longitudinal and comparative international research. In: *Proceedings of the Second International Conference on Quality of Life in Cities: 21 Century QOL*, 8-10 March 2000, Singapore.
- 55. Milbrath, L.W. (1978) Indicators of environmental quality in UNESCO. Indicators of environmental quality and quality of life Reports and Papers. *Social Sciences*, 38, 3-56.
- Mishra, S. (2016) At a Glance: FSI in 10 Cities of India. [online] Available at: <u>https://www.proptiger.com/guide/post/fsi-in-10-cities-of-india</u> [Accessed 27 May 2017].
- 57. Mitramy, M. and Churchman, A. (Undated) The Conceptual Framework for Housing Density Research. *Unpublished Paper*, Faculty of Architecture and Town Planning, Technion Haifa, Israel.
- 58. Moore, T.G. and Fry, R. (2011) *Place-based Services: A Literature Review*. Parkville, Victoria: Centre for Community Child Health.
- Moughtin, C. (2003) Sustainable Urban Form. In: *Urban Design: Street and Square*, 3rd Edition (pp. 189-208). London: Architectural Press.

- 60. Nichol, J. and Wong, M.S. (2005) Modeling Urban Environment Quality in a Tropical City. *Landscape and Urban Planning*, 73, 49-58.
- 61. Organisation for Economic Cooperation and Development (OECD) (1993) OECD CORE SET OF INDICATORS FOR ENVIRONMENTAL PERFORMANCE REVIEWS - A synthesis report by the Group on the State of the Environment. Paris: OECD 1993. [online] Available at: <u>http://enrin.grida.no/htmls/armenia/soe2000/eng/oecdind.pdf</u> [Accessed 6 August 2012].
- Pacione, M. (2003) Urban Environmental Quality and Human Wellbeing A Social Geographical Perspective. *Landscape and Urban Planning*, 65, 19-30.
- Pandit, M., Bhardwaj, V. and Pareek, N. (2009) Urbanisation impact on hydrogeological regime in Jaipur Urban Block: a rapidly growing urban center in NW India. *The Environmentalist*, 29 (4), 341-347.
- 64. Pandit, S. (2016) Urban Density. [online] Available at: <u>https://cidco-smartcity.niua.org/urban-density/</u> [Accessed 25 May 2017].
- Piracha A.L. and Marcotullio P.J. (2003) Urban Ecosystem Analysis Identifying Tools and Methods. UNU/IAS Report. [online] Available at: <u>https://www.researchgate.net/publication/289097957_Urban_Ecosystem_Analysis_Identifying_Tools_and_Methods</u> [Accessed 10 March 2013].
- 66. Patel, S.B. (2011) Analysing Urban Layouts Can high density be achieved with good living conditions? *Environment and Urbanisation*, 23 (2), 583-595.
- 67. Patel, S.B. (2014) *Housing, FSI, Crowding and Densities Handbook Vol. I.* Mumbai: Praja Foundation.
- Pushkarev, B.S. and Zupan J.M. (1982) Where Transit works: Urban Densities for Public Transportation. In: H.S. Levinson and R.A. Weant (Eds.), *Urban Transportation: Perspectives and Prospects*. Westport, CT: Eno Foundation.
- Rådberg, J. (1996) Towards a Theory of Sustainability and Urban Quality: A New Method for Typological Urban Classification. In: M. Gray (Ed.) *Evolving Environmental Ideals: Changing Ways of Life, Values and Design Practice, Book of Proceedings for the 14th Conference of the International Association for People-Environment Studies*, Stockholm, Sweden: Royal Institute of Technology 1996 (pp. 384-392).
- 70. Rahman, A., Kumar, Y., Fazal, S. and Bhaskaran, S. (2011) Urbanisation and Quality of Urban Environment using Remote Sensing and GIS Techniques in East Delhi, India. *Journal of Geographic Information System*, 3, 62-84.
- Rajadhyaksha, M. (2012) You have just 1.1 square meters of open space. *The Economic Times, Times of India*, 28 May 2012. [online] Available at: <u>http://timesofindia.indiatimes.com/city/mumbai/</u> [Accessed 10 June 2017].

- 72. Raman, S. (2010) Designing a Liveable Compact City: Physical Forms of City and Social Life in Urban Neighbourhoods. *Built Environment* (1978-), 36 (1), 63-80.
- Ramnani, V. (2016) Purchasable FAR will create more problems for Gurugram. *The Hindustan Times*, 6 Aug 2016. [online] Available at: <u>http://www.hindustantimes.com/real-estate/</u> [Accessed 4 June 2017].
- 74. Rapoport, A., 1975. Toward a redefinition of density. *Environment and Behavior*, 7 (2), 133–158.
- Ray, S. (2012) Sustainable Urban Form for Indian Cities. [online] Available at: <u>http://www.city-form.org/india/pdf/Cityform%20Conference%209th%20Jan-%20Satmohini.pdf</u> [Accessed 25 May 2017].
- 76. Report on Indian Urban Infrastructure and Services by High Powered Expert Committee (HPEC), (March 2011), Ministry of Urban Development, Government of India. [online] Available at: <u>http://icrier.org/pdf/FinalReport-hpec.pdf</u> [Accessed 13 June 2014].
- 77. Robin, M., Matheau-Police, A. and Couty, C. (2007) Development of a scale of perceived environmental annoyances in urban settings. *Journal of Environmental Psychology*, 27, 55-68.
- 78. Rudlin, D. and Falk, N. (1999) *Building the 21st Century Home the Sustainable Urban Neighbourhood.* Oxford: Architectural Press.
- 79. Sandhu, K. and Gill, G.S. (2010) Impact of Urban Paraphernalia on Amritsar City: Of Transformations and Transgressions. *Sri Lankan Journal of Real Estate*, 4, 1–-17.
- Sarmento, R., Zorzal, F.M.B., Serafim, A.J. and Allmenroedr, L.B. (2000) Urban Environmental Quality Indicators. In: C.A. Brebbia, A. Ferrante, M. Rodiguez & B.Terra (Eds.), *The Sustainable City*. United Kingdom: WIT Press.
- Shieh, E., Sharifi, A. and Rafieian, M. (2011) Identification of factors that assure quality of residential environments, using environmental assessment indices: a comparative study of Two of Tehran's neighbourhoods (Zafaranieh & Khaniabad). *International Journal of Architectural Engineering and Urban Planning*, 21 (2), 119-132.
- Smailes, A.E. (1986) The Indian City: A Descriptive Model. In: V.K. Tewari, J.A. Weinstein and V.L.S. Prakasa Rao (Eds.), Indian Cities Ecological Perspectives (pp. 35-54). New Delhi: Concept Publishing Company.
- Times of India (2013) Around 80% of sewage in Indian cities flows into water systems, 5 March 2013. Available at: <u>http://timesofindia.indiatimes.com/home/environment/pollution/Around-80-of-sewage-in-Indian-cities-flows-into-water-systems/articleshow/18804660.cms</u> [Accessed 10 May 2017].
- Tognoli, J. (1987) Residential environments. In: Stokols, D., Altman, I. (Eds.), Handbook of Environmental Psychology, Vol. 1 (pp. 655-690). New York: John Wiley & Sons, Inc.
- 85. Town and Country Planning Organisation (TCPO) (2014) *Urban and Regional Development Plans* Formulation and Implementation (URDPFI) Guidelines, Ministry of Urban Development, Government

of India. [online] Available at:

http://moud.gov.in/upload/uploadfiles/files/URDPFI%20Guidelines%20Vol%20I.pdf [Accessed 30 November 2015].

- 86. van Kamp, I., Leidelmijer, K., Marsman, G. and de Hollander, A. (2003) Urban environmental quality and human well-being Towards a conceptual framework and demarcation of concepts; a literature study. *Landscape and Urban Planning*, 65, 5-18.
- 87. Williams, K., Burton, E. and Jenks, M. (2000) Achieving the compact city through intensification: An acceptable option? In: M. Jenks et al., (Eds.), *The compact city—a sustainable urban form* (pp. 83–96)? E & FN Spon.
- Wood, L. (2009) Parks and open space: for the health and wellbeing of children and young people.
 Woden, ACT: Australian Research Alliance for Children and Youth.
- 89. Zacharias, J. and Stamps, A. (2004) Perceived building density as a function of layout. *Perceptual and Motor Skills*, 98, 777–784.

RESEARCH DESIGN

3.1 Introduction

A detailed plan of how a research is to be completed is called a research design. It consists of the research approach, method of operationalizing the variables so that they can be measured, selecting a sample to study, collecting data for testing hypothesis and interpreting the results. Research design is needed because it facilitates the smooth sailing of the various research operations, thereby making research as efficient as possible and yielding desired research output by optimising resources. Research design also stands for advance planning of the methods to be adopted for collecting the relevant data and the techniques to be used in their analyses, keeping in view the objective of the research and the availability of staff, time and money. Research design, in fact, has a great bearing on the reliability of the results arrived at and as such constitutes the firm foundation of the entire edifice of the research work (Kothari, 2004). The Research Design for the present study is as under:

- i. Establishing the Research Approach The Case Study Approach
- ii. Disaggregating Density
- iii. Reinstating Indicators to assess Neighbourhood Environmental Quality
- iv. Developing a Conceptual Framework showing possible correlations between Density and Environmental Quality
- v. Constructing the Analytical Model to understand the impact of Density on Neighbourhood Environmental Quality
- vi. Determining Types of Data required and Methods of Data Collection to be adopted
- vii. Ascertaining the Tool(s) to be used for Data Analyses

3.2 The Case Study Approach

The **Case Study Approach** is based on the assumption that the cities being considered are typical of cases of certain type so that, through intensive analyses, generalizations may be made that can be applicable to other rapidly urbanizing cities in the Indian context. This research employs a multiple case design. One of the advantages of multiple case designs is the fact that they are more compelling and considered robust than single case designs **(Yin, 1994)**. Yin points out further that multiple case studies have been considered when a comparative

study among cases is envisaged. Since one of the aims of this study is to explore and compare the residential patterns and the associated environmental quality, a multiple case study design is considered as an appropriate strategy to explore in detail variations in environmental quality with variations in densities.

3.3 Identifying Cities for Assessing Neighbourhood Environmental Quality

India is well endowed with cities spread evenly across the country. Historically, cities in India have been located in areas with adequate water and on popular trade routes. Like other countries, cities have had bulk of the economic wealth and have been 24-hour market places. The high concentration of people living in the cities has brought variety of resources, products and services to our cities (**Bhandari, 2006**).

In 2011, there were 3 cities with population greater than 10 million and 53 cities with population greater than 1 million. Over 833 million Indians lived in 0.64 million villages but 377 million lived in about 8,000 urban centres.

Cities Size Class by Population 0 - 0.1 million 0.1 - 1 million 1 - 5 million 5 - 10 million 10 - 30 million

Map 3.1: Urban India – 2011 Source: IIHS Analysis¹⁹ of Census data, 2011. (Satellite Map, Google Inc.)

¹⁹ Urban India 2011: Evidence – A book produced by Indian Institute of Human Settlements (IIHS) for the India Urban Conference Evidence and Experience (IUC 2011) comprising of a series of events designed to raise the salience of urban challenges and opportunities in the on-going debate on India's development.

Over the years the megacities have occupied significant mind, media and policy space in terms of urbanisation in India. Post-Independence also urbanisation in India has been dominated by the largest cities. However, with time, these cities have grown in size but quality of life has been severely compromised. The fact, however, is that most of India's urban centres are smaller towns. The 8000 urban centres / townships identified in the 2011 census comprise of only 53 cities with a population of over 1 million. Out of the total urban population, only twenty percent live in cities of 10 million or more. Eighty percent of the urban population lives in cities and towns of population ≤ 1 million (as shown in map 3.1). Hence, the most meaningful approach in our case is to anticipate the rapid growth of these cities and put the Class I (0.1 – 1 million) cities centrally on the development agenda. The graph in figure 3.1 below also shows this fact that in the 20th century the rapid growth of the largest metropolitan cities has slowed down, whereas the smaller cities are expanding.

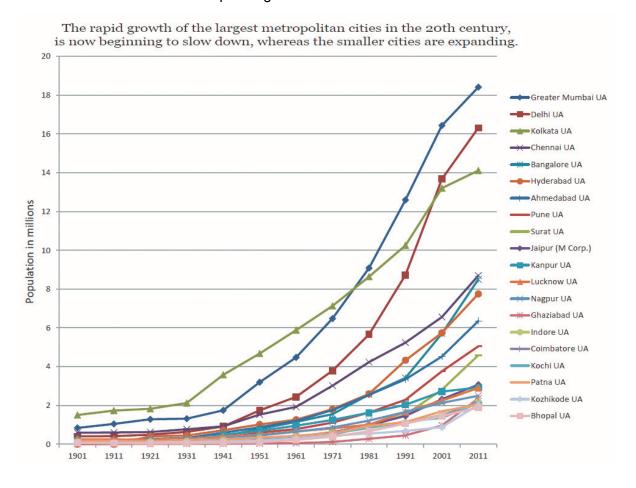
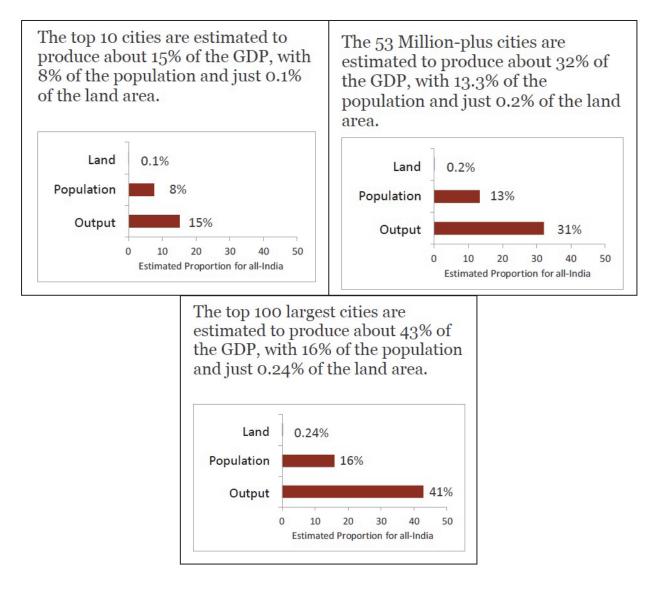



Figure 3.1: Largest 20 Urban Agglomerations by Population – 2011

Source: IIHS Analysis¹⁹ based on Census of India, 2011

Further considering the contribution to the Gross Domestic Product (GDP) or output of the country, it is seen as indicated in figure 3.2 that while the top 10 and 53 million plus cities account for 15% and 31% of the GDP; and hold 8% and 13% of the population respectively, the top 100 cities with 16% of the population and having approximately 47 cities in the 0.1 - 1 million population range contribute 41%-43% to the GDP thus additionally justifying their potential as key cities for future urbanisation in India.

Figure 3.2: Estimates of Land Covered, Distribution of Population and Economic Output across cities of various sizes

Source: IIHS Analysis¹⁹ based on Census of India, 2011

In order to gain a detailed insight into the components that influence environmental quality and develop a methodology that can assess, monitor and potentially forecast developments of environmental quality in our cities, it is necessary to first identify some cities that hold the key to future urbanisation in India. As per literature review, the main criteria for selecting the cities are:

- 1. The cities should be emerging centres of economic activity.
- 2. They should be located between other urban centres and well connected.
- 3. In near future, these cities should create better opportunities for citizens living in and around them.
- 4. Some out of them should be cities that are budding and have the potential to turn into much larger centres.
- 5. They should be steadily gaining the necessary scales in terms of population and market size.

Based on the criteria listed and a study by an economic research firm, Indicus Analytics, all potential cities are divided into three categories as shown in table 3.1.

Sibling Cities	Upcoming Cities	Budding Cities
A collection of smaller cities clustered around each other and highly dependent on the mother city.	Cities that in the recent past have come onto their own as important regional and economic centres.	Cities that have the potential to turn into much larger centres in the near future.
 Centres that are siblings of larger cities such as Gurgaon and Noida (Delhi), Panchkula and Mohali (Chandigarh). Kolkata's siblings in North 24 Parganas such as Baranagar, Barasat, Dum Dum, Kamarhati, Panihati and Salt Lake City. Mumbai's siblings in Thane district such as Dombivli, Bhayandar, Navi Mumbai, Thane, Ulhasnagar and Virar. Chennai's siblings in Thiruvallur district such as Ambattur, Avadi and Tiruvottiyur. 	 Goa, Vijayawada and Thiruvananthapuram These cities have become important regional or state centres of economic activity. As they progress, they will create opportunities for citizens living in them and their surrounding areas. 	 Capitals of states and UTs, such as Chandigarh, Gandhinagar, Srinagar and Shillong. Industrial centres such as Durg- Bhilai and Bokaro. Historically important cities such as Udaipur and Mysore. Religious cities such as Amritsar,

Table 3.1: Potential Cities that hold the key to future urbanisation in India

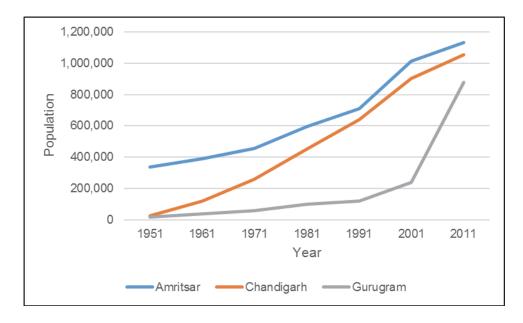
Source: Author's elaboration from – The Diversity of top 100 cities of India by Indicus Analytics, An Economic Research Firm, 2006

All the above-mentioned cities are grouped into three population categories as shown in table 3.2. It should be noted that some cities with just over 1 million population are included since they feature as potential cities according to table 3.1 above.

		Shillong – 0.14 million
		Gandhinagar – 0.2 million
		Chandigarh's Siblings: Mohali – 0.15 million, Panchkula – 0.2 million
	0.1 <i>–</i> 0.49	Kolkata's Siblings: Salt Lake – 0.22 million, Baranagar – 0.25 million, Barasat – 0.3 million, Kamarhati – 0.34 million, Panihati – 0.38 million and Dumdum – 0.4 million
	million	Chennai's Siblings: Tiruvottiyur – 0.25 million, Avadi – 0.3 million and Ambattur – 0.47 million
		Durg – 0.27 million
		Bokaro – 0.4 million
		Udaipur – 0.45 million
		Mumbai's Siblings: <u>Ulhasnagar</u> – 0.5 million
	0.5 – 0.74	Ajmer – 0.54 million
Population	million	Bhilai – 0.6 million
		Delhi's Siblings: Noida – 0.65 million
		Thiruvananthapuram – 0.75 million
		Mysore – 0.88 million
		Vijayawada – 1.05 million
		Chandigarh – 1.05 million
		Amritsar – 1.13 million
	0.75 – 1.5	Srinagar – 1.2 million
	million	Varanasi – 1.2 million
		Goa – 1.4 million
		Delhi's Siblings: Gurugram – 0.88 million
		Mumbai's Siblings: Bhayandar – 0.8 million, Navi Mumbai – 1.1 million, Vasai Virar – 1.22 million, Kalyan Dombivli – 1.25 million and Thane – 1.8 million

Table 3.2: Population of Potential Case Study Cities

Source: List of most populous cities in India according to Census 2011 - Wikipedia, the free encyclopedia


Three cities namely **Amritsar**, **Chandigarh** and **Gurugram** are selected for the study purpose out of the several cities listed in Table 3.2 above. It is observed that all the three cities have

been growing constantly as indicated in table 3.3. The average decadal growth rate has been 2.3%, 11.4% and 10.24% respectively. The steep rise as seen in figure 3.3 in comparison to figure 3.1 further establishes the fact that these cities are expanding rapidly and hold the key to future urbanisation in India.

Name of City	1951	1961	1971	1981	1991	2001	2011
Amritsar	336,114	390,055	454,805	594,844	708,835	1,011,327	1,133,000
Chandigarh	24,261	119,881	257,251	451,610	642,015	900,635	1,054,686
Gurugram	18,613	37,868	57,151	100,877	121,486	239,684	876824

 Table 3.3: Population Growth in Case Study Cities

Source: District Gazetteers and Census of India 1971, 1981, 1991, 2001 and 2011

Figure 3.3: Growth of Case Study Cities by Population

Source: District Gazetteers and Census of India 1971, 1981, 1991, 2001 and 2011

The city of **Amritsar** situated in north-western part of the state of Punjab is recognized as one of the budding cities of India. It is a *historic city* that has attained the status of a global city due to it being a major pilgrimage/tourist destination and has also emerged as one of the youngest metropolitan cities of India. The present population of the city is 1.13 million (as per census 2011). Amritsar has imprints of all types of settlement patterns and associated densities. There are important differences between the older habitations in the core of the city – walled city of

Amritsar (1665 – 1849) with post-colonial (1947 onwards) settlements outside the walled city and in and around the periphery of the city.

Chandigarh is a city and a union territory in the northern part of India that serves as the capital of the states of Punjab and Haryana. The city of Chandigarh was the first planned city in India **post-independence** in 1947 and is known internationally for its architecture and urban design.²⁰ The master plan of the city was prepared by Swiss-French architect Le Corbusier. Most of the government buildings and housing in the city were designed by the Chandigarh Capital Project Team headed by Pierre Jeanneret, Jane Drew and Maxwell Fry. The city was reported to be the cleanest in India in 2010, based on a national government study²¹ and the territory also headed the list of Indian states and territories according to Human Development Index (Meghalaya Human Development Report 2008 and Chhabra, 2010). The present population of the city is 1.05 million (as per census 2011). The metropolitan of Chandigarh-Mohali-Panchkula collectively forms a Tri-city, with a combined population of over 2 million.²² This is the first smoke-free city in India (WHO, 2011). The roads in Chandigarh are lined by trees and it has the third highest forest cover in India at 8.51% following Lakshadweep and Goa (Walk through India, 2016 and Thakur, 2014).

Gurugram is a leading financial and industrial city of India, situated in the National Capital Region near the Indian capital New Delhi in the state of Haryana. Located 32kms south-west of New Delhi, Gurugram has a population of 876,824 (as per Census 2011). Witnessing rapid urbanization, Gurugram has become the city with the third highest per capita income in India (Julka, 2011). Historically known as *Guru Gram*, the city's economic growth story started when the leading Indian automobile manufacturer Maruti Suzuki India Limited established a manufacturing plant in Gurugram in the 1970s (Kumar and Mishra, 2012). Today, Gurugram is center for more than 250 Fortune 500 companies²³. The housing type in the city consists largely of attached housing, though a large number of multi-dwelling units, like apartments, condominiums and high rise residential towers are getting popular as seen in plate 3.1. Some inhabitants in the city live in slums in shanty houses lacking proper sanitation, safe water

²⁰ [Online] Available at: <u>https://en.wikipedia.org/wiki/Chandigarh</u> [Accessed 12 March 2015].

²¹ India's cleanest: Where does your city stand? Rediff.com News, 13 May 2010. [online] Available at: http://www.rediff.com/news/slide-show/slide-show-1-chandigarh-cleanest-of-all/20100511.htm [Accessed 26 July 2012].

²² [Online] Available at: <u>https://en.wikipedia.org/wiki/Panchkula</u> [Accessed 12 March 2015].

²³ [Online] Available at: <u>https://en.wikipedia.org/wiki/Gurugram</u> [Accessed 20 May 2015].

supply, electricity, hygienic streets or other basic human necessities. Gurugram has a complex park system managed by Haryana Urban Development Authority but most parks are small and ill-maintained.

Plate 3.1: View of residential projects along NH-8, Gurugram

Source: www.google.com, 2013

The **Table 3.4** sums up the important criteria considered for selecting the case study cities. In addition ease of accessibility to the three cities (within 1-5hrs as author is based in Panchkula – Chandigarh's satellite town) has been an important decisive factor.

Criteria	Amritsar	Chandigarh	Gurugram		
1. Category	Budding City	Upcoming City	Sibling City		
2. Population	1.13 million	1.05 million	0.88 million		
2. 1 optilation	All have population in the	e range 0.75 million – 1.5 millio	on (as per census 2011)		
	Historic City	First Planned City	Millennium City		
3. Typology	Being from different time periods, several residential patterns and their associated environmental quality can be evaluated and compared to arrive generalized and meaningful conclusions.				
4. Climate	Composite Composite Composite				
Zone	Same climate zone will ensure consistency and comparability of the physical aspects of the built environment for environmental quality assessment.				

Table 3.4: Identification of Case Study Cities

3.4 Identifying Case Study Neighbourhoods

Amritsar, Chandigarh and Gurugram are selected as the case study cities since they are from different time periods and have imprints of all types of urban patterns and associated densities. There are important differences between the older habitations in the historic city of Amritsar with newer settlements in Amritsar, post independent planned interventions in Chandigarh and modern residential areas in the millennium city of Gurugram.

For detailed investigation, to begin with a matrix based on two critical factors namely building height and gross population density is generated and eight neighbourhoods are identified from the three case study cities as indicated in table 3.5 and figure 3.4. Each neighbourhood represents a particular type of residential pattern commonly found in Indian cities with 0.75 million \leq population \leq 1.5 million. The common patterns found are low rise low density (LRLD), low rise medium density (LRMD), low rise high density (LRHD), medium rise medium density (MRMD), medium rise high density (MRHD), high rise low density (HRLD) and high rise high density (HRHD).

DENSITY HEIGHT			HIGH	
LOW	Sector 8,	Ranjit Avenue,	Sector 38W, Chandigarh (Planned)	
	Chandigarh	Amritsar	Katra Dullo, Amritsar (Organic)	
MEDIUM	No Identifiable Neighbourhood	Marble Arch (Manimajra), Chandigarh	Sector 20 (Panchkula), Chandigarh	
HIGH	World Spa, Sector- 30, Gurugram	No Identifiable Neighbourhood	Uniworld City, Sector-30, Gurugram	

Table 3.5: Case Study	Neighbourhoods
-----------------------	-----------------------

Generally, G+3 storied structures that do not require elevators are considered low-rise. The International Building Code (IBC 2000) and the Building Construction and Safety Code, NFPA 5000TM-2002, Paragraph 3.3.28.7 of the Life Safety Code®, 2006 edition, define high-rise

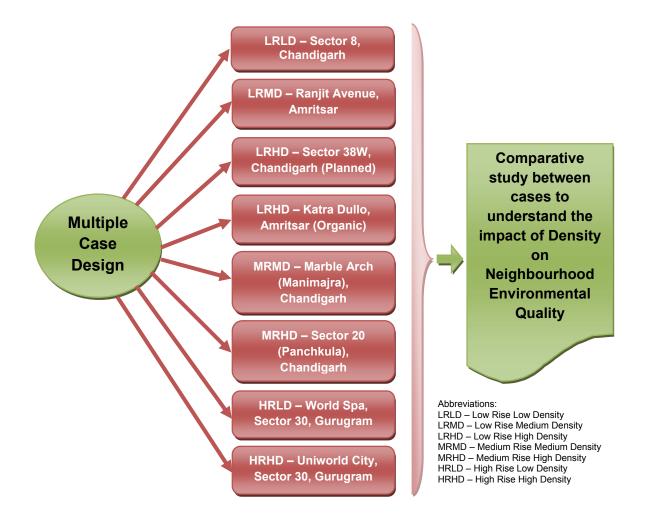
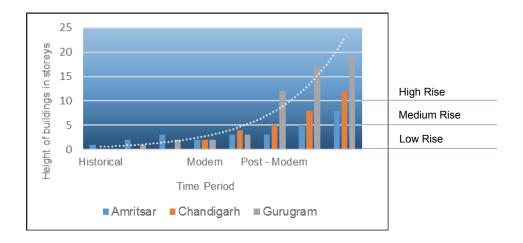


Figure 3.4: The Case Study Approach for Research


buildings as buildings 75 feet (23m approximately) or greater in height measured from the lowest level of fire department vehicle access to the floor of the highest occupiable storey. Also buildings with more than 8 stories or 24m in height with mandatory provision of diesel generators in case of an electricity failure are considered high rise as per the National Building Code 2005 Fire Safety and Fire Protection Norms. Therefore, from the above two definitions, buildings having 5-8 stories are considered as medium rise structures for the present study as seen in table 3.6 and plate 3.2.

Another aspect that is worth noticing is that over the years (from historical to modern to postmodern times) the residential patterns show a changing trend from low rise low/medium/high density to medium and high rise medium/high density. This is also the case for the three case study cities under consideration as seen in figure 3.5.

Neighbourhood	No. of Storeys	Range	Rise	
Sector 8, Chandigarh	G, G+1, G+2			
Ranjit Avenue, Amritsar	G, G+1, G+2	C 12 storaus	Low	
Sector 38W, Chandigarh	G+2	≤G+3 storeys	Low	
Katra Dullo, Amritsar	G, G+1, G+2, G+3			
Marble Arch (Manimajra), Chandigarh	G+4	E O staraura	Maaliuma	
Sector 20 (Panchkula), Chandigarh	G+5, G+6, G+7	5-8 storeys	Medium	
World Spa, Gurugram	G+12, G+16	> 0 atarava		
Uniworld City, Gurugram	G+12, G+13	>8 storeys	High	

Table 3.6: Neighbourhoods grouped according to Height of residential buildings

Source: Primary Survey, Author, 2012

Figure 3.5: Growing Trend towards Medium and High Rise Residential Patterns

The population density is categorised as low density with <200pph, medium density with 200 to<400pph, high density with 400 to<600pph and very high density with \geq 600pph as listed in table 3.7. This is based on the gross population densities observed in different neighbourhoods.

Neighbourhood	Gross Population Density (pph)	Range	Level	
Sector 8, Chandigarh	95	<200pph	Low	
World Spa, Gurugram	178	<200ppn	LOW	
Ranjit Avenue, Amritsar	256	200 to <100pph	Medium	
Marble Arch (Manimajra), Chandigarh	345	200 to <400pph	weatum	
Sector 38W, Chandigarh	441	400 to <600pph	High	
Sector 20 (Panchkula), Chandigarh	540	400 to <000pp1		
Katra Dullo, Amritsar	641	>600pph	Von High	
Uniworld City, Gurugram	735	≥600pph	Very High	

Source: Primary and Secondary Data, 2012

Katra Dullo, Amritsar

Ranjit Avenue, Amritsar

World Spa, Gurugram

Uniworld City, Gurugram

Sector-38W, Chandigarh

Marble Arch, Manimajra

Sector-20, Panchkula

Plate 3.2: Residential Neighbourhoods in Case Study Cities

Further, the study considers gross residential densities because of the paucity of net density values and comparability issues with gross values generally given in different government documents, reports etc. in our scenario. Also in case of old/core areas of the city, it becomes a challenge to calculate net densities as the boundaries are not clear. Since the streets are irregular and other spaces (excluding incidental spaces) are not well-defined, it becomes still more difficult to calculate net density values that are conventionally biased to formal settings with well-defined streets and spaces (Lupala, 2001).

Additionally it is found that urban planning controls are sometimes focused on the net density of a particular site. Yet such measures are of little use in understanding how cities work because they do not include the public space of streets and parks. The gross density is always lower than net density and it is the one that matters in debates over urban density. While people might be packed in on a particular site, the street network of a car-based city tends to keep them apart. Hence, net density is not always considered an effective measure of urban density (**Dovey, 2016**). Here, the residential density is categorised as low density with <50DUs/ha, medium density with 50 to<100DUs/ha, high density with >100DUs/ha as indicated in table 3.8. This is based on the gross residential densities calculated for the different neighbourhoods.

Neighbourhood	Gross Residential Density (DUs/hectare)	Range	Level	
Sector 8, Chandigarh	17			
Ranjit Avenue, Amritsar	36 <50DUs/hectare		Low	
World Spa, Gurugram	44			
Marble Arch (Manimajra), Chandigarh	65		Medium	
Sector 38W, Chandigarh	76	50-100 DUs/hectare		
Sector 20 (Panchkula), Chandigarh	98			
Uniworld City, Gurugram	147	>100DUs/hectare	Llink	
Katra Dullo, Amritsar	149	> TOODOS/Nectare	High	

Table 3.8: Neighbourhoods grouped according to Gross Residential Density

Source: Primary and Secondary Data, 2012

3.5 Disaggregating Density

The next stage consists of disaggregating density and constructing the conceptual framework to show possible correlations between the density variables and indicators of environmental quality. The central question is how density can be disaggregated into a number of independent variables that affect environmental quality and hence test the hypothesis – Density impacts Environmental Quality in Residential Neighbourhoods.

'Density' is broadly disaggregated into eight attributes under three heads to point out all significant physical aspects of the neighbourhood. The three heads and eight attributes based on the literature review (Cheng, 2010) are namely:

- 1. People Density
 - i. Distribution of People or Population Density, and
 - ii. Distribution of Buildings or Residential Density
- 2. Building Density (Built-form Characteristics)
 - iii. Floor Area Ratio (FAR), and
 - iv. Site/Plot Coverage
- 3. Spatial Density
 - v. Height to Width Ratio,
 - vi. Distribution of Open Spaces,
 - vii. Distribution of Roads, Sidewalks etc., and
 - viii. Distribution of Services

As per the hypothesis 'Environmental Quality' is the dependent variable that is assumed to differ significantly with change in residential pattern. The indicators of environmental quality that are expected to vary are identified on the basis of discussion in Chapter 2, 2.6 Density and its Impact on Environmental Quality, page no. 61 as follows:

- i. Crowding and Congestion
- ii. Nature and Use of Open Spaces
- iii. Shade and Ventilation
- iv. Temperature Variations
- v. Average Noise Levels
- vi. Level of Cleanliness
- vii. Neighbourhood Walkability, and
- viii. Air Quality

3.6 The Conceptual Framework

After this, a conceptual framework showing possible correlations between density variables and indicators of environmental quality is devised as shown in table 3.9. The conceptual framework basically tries to indicate the probable correlations between the density variables and indicators of neighbourhood environmental quality. While the black dots represent assumed significant associations between the independent and dependent variables, the gray dots represent associations that may or may not be significant between the two set of variables. The assumptions are based on the literature review and the pilot study conducted on two neighbourhoods of Amritsar. The same is validated during further case study analyses. The basis of the different assumptions (A1 to A8) can be summarized as follows:

- A1. Population density is considered as one of the first attributes influencing environmental quality. The probability of crowding and congestion both internal and external increases with higher population densities. Population density along with residential density, built-form characteristics like FAR, plot coverage, height, etc. and amount of open spaces help in determining built-up area per capita (BUA/Capita), public ground area per capita (PGA/Capita), paved road length per capita (PRL/Capita) and mobilization factor (M.F.) that are instrumental in ascertaining the level of crowding and congestion.
- A2. Research has found naturalness (vegetation) and openness as a principal component of neighborhood attachment (Bonaiuto, Fornara and Bonnes, 2003) and as a factor

affecting use of space, sense of safety, and informal social contact among neighbors (**Kuo and Sullivan, 1998**). Though the present study does not include residents' perception or social characteristics of the neighborhood as it is more concerned with understanding the association between physical characteristics with neighbourhood environmental quality, it proposes to verify the associations between population density, residential density, built-form characteristics and distribution/amount of open spaces with nature and use of open spaces. It is believed that there is a positive correlation between people density and use of open spaces. Also FAR, plot coverage etc. are bound to have an association with the nature of open spaces – private/public and their intensity of use at the neighbourhood level. Level of cleanliness especially in terms of solid waste storage and disposal will also have an impact on the nature of open spaces.

Density	Environmental Quality Indicators							
Variables	Crowding & Congestion	Nature and use of Open Spaces	Shade & Ventilation	Temp. Variations	Noise Levels	Level of Cleanliness	Neighbourhocd Walkability	Air Quality
Population Density	•	•			٥	•		٠
Residential Density	٠	•	•	٠	0	•		٠
FAR, Plot Coverage	•	•	•	•	0			
Height to Width Ratio			٠	0			٥	
Distribution of Open Spaces	•	•	•	•	•		۲	0
Distribution of Roads and Sidewalks	•				•		•	•
Distribution of Services		0				•	•	0
	Assumed S	trong Correlation	Assume	d Weak Corre	elation	Empty Cel	lls – No Apparen: Co	rrelation

Table 3.9: The Conceptual Framework

A3. The outdoor environmental quality is primarily dictated by the degree of exposure to cross ventilation and shade to buildings and outdoor spaces. Climate is discussed in much architectural research advocating the compact built forms (Correa, 1982 and Turner, 2003). Densely developed places in hot-arid and composite climates consume less energy

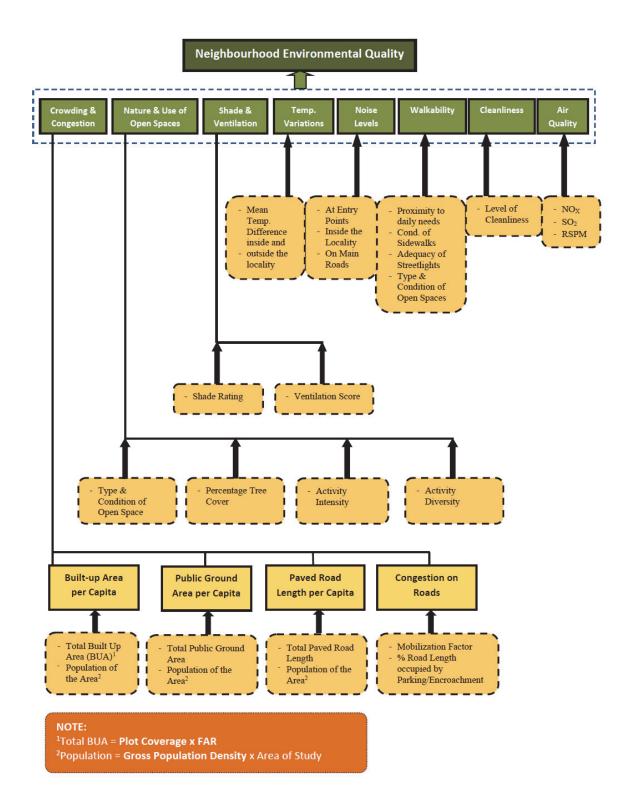
Source: Author's elaboration based on Literature Review and Pilot Study

for cooling by blocking out strong sunshine and providing shade to adjoining buildings, streets and public places (**Correa**, **1982**). With this understanding it is assumed that residential density, built-form characteristics and amount of open spaces will have direct association with shade and ventilation in the neighbourhood.

- A4. Shaded and well ventilated neighbourhoods will have some temperature differences within and outside the locality. Therefore, the same shall be verified with respect to residential density, built-form characteristics, height to width ratio and amount of open spaces.
- A5. Noise is regarded as a pollutant under the Air (Prevention and Control of Pollution) Act, 1981. It has been defined as unwanted sound. There are two major settings where noise occurs, viz., community noise and industrial noise. Major sources of community noise are automobiles, construction work, loudspeakers, recreational activities, fireworks, etc. In the present study, outdoor noise levels are assumed will vary with the amount of roads and type of traffic in different parts of the neighbourhood. It is also understood that indirectly noise will be affected by people density, built-form characteristics and amount of open spaces. More people and dwelling units will imply more vehicle population thus generally causing more noise. On the other hand more open spaces with vegetation and greenery will absorb sound and decrease the noise levels.
- A6. Services and facilities generally deteriorate with increasing population and residential density. This will have an impact on cleanliness in the neighbourhood. Thus people density and distribution of services will have direct association with level of cleanliness.
- A7. The condition of sidewalks, provision of streetlights (in terms of spacing and condition, other parameters being assumed constant) ensuring safety even during late evening hours and distance to daily needs is considered to ascertain the quality requirements for walking. In addition, sometimes good open spaces like parks and gardens are also helpful in encouraging people to walk. Thus, distribution of sidewalks, services and number of open spaces (occasionally) and height to street width ratio affecting shade and ventilation are expected to show positive correlation with walkability.
- A8. Finally, air quality (parameters considered as per NAAQM Status and Trends 2014-15) is assumed will vary with the distribution of roads negatively and positively with open spaces and naturalness. It might show some association with level of cleanliness because of foul smell from littered garbage and open drains, household and street dust, etc.

3.7 The Analytical Model for Assessing Environmental Quality

Based on the conceptual framework and the research hypothesis, a bottom-up model is proposed to understand the impact of density on neighbourhood environmental quality. The model shows the top-level attribute environment quality of a neighbourhood represented by i) Crowding and Congestion, ii) Nature and Use of Open Spaces, iii) Shade and Ventilation, iv) Temperature Variations v) Noise Levels, vi) Quality requirements for Walking, vii) Level of Cleanliness and viii) Air Quality. Each of these is further disaggregated into a series of variables that can be objectively measured. The bunched/grouped variables help to understand and see at a glance the particular type and number of variables affecting each of the indicators of environmental quality as shown in figure 3.6.


This study is further designed on the basis of a **multiple hierarchical regression (MHR) approach**. The multiple regression analysis is generally used for prediction. It is a statistical technique to understand the impact of two or more predictor or independent variables (i.e., lower-level attributes) on a single criterion or dependent variable (i.e., higher-level attribute). Normally, it is used to assess the extent to which the observed variance in the dependent variable is explained by the observed variance in the independent variables, also referred to as the **'model fit'**. These specific properties of multiple regression analysis, estimation of the 'regression weights' and assessing the 'model fit' shall be used for the analysis of the concept of environmental quality (Van Poll, 1997).

The variables that characterize density and are assumed to have an impact on the neighbourhood environmental quality as per the model can be put as:

 $EQ_{i} = f(PD_{i}, RD_{i}, FAR_{i}, PC_{i}, HW_{i}, OS_{i}, RSW_{i}, S_{i}) \qquad (1)$

Assuming that a linear function exists between the variables, the equation can be written as: $EQ_i = \beta_0 + \beta_1 PD_i + \beta_2 RD_i + \beta_3 FAR_i + \beta_4 PCi + \beta_5 HWi + \beta_6 OSi + \beta_7 RSW_i + \beta_8 Si + \epsilon_i$(2) Where:

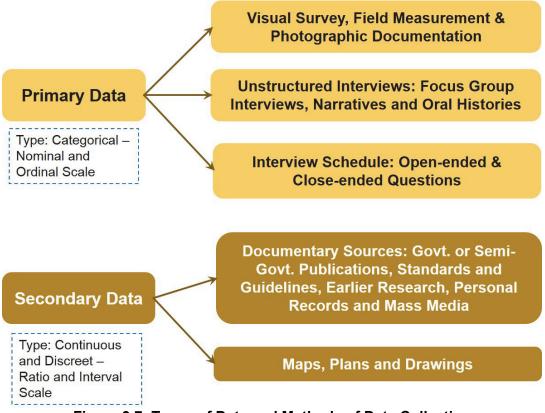
- EQ_i = is the environmental quality of neighbourhood i
- PD_i = refers to the population density of neighbourhood i
- RD_i = refers to the residential density of neighbourhood i
- FAR_i = refers to the floor area ratio of neighbourhood i

Figure 3.6: The Analytical Model

Source: Author's Elaboration, 2014

PC_i	=	refers to the plot coverage of neighbourhood i
HW_{i}	=	refers to the height to width ratio of neighbourhood i
OSi	=	refers to the distribution of open spaces in neighbourhood i
RSW_{i}	=	refers to the distribution of roads and sidewalks in neighbourhood i
Si	=	refers to the distribution of services in the neighbourhood i
β_0	=	refers to the constant
β_i	=	refers to the standardized regression weights to be estimated and
3	=	refers to the error term

The multiple regression approach shall also be used to assess the so called 'standardized regression weights' (β 's). In the present study, this is a very important property, since the ' β - coefficient' will be used to indicate the relative importance of a lower-level attribute and help in assessing which variable of density significantly impacts the environmental quality. In addition, the comparative analysis of the environmental quality of different neighbourhoods having varying densities will help in identifying desirable density ranges to maintain favourable environmental quality and arrive at guidelines to achieve environmentally conducive patterns of residential development in our cities.


3.8 Types of Data and Methods of Data Collection

There are two approaches to gathering information about a situation, person, problem or phenomenon. Sometimes, information required is already available and need only be extracted. However, there are times when the information must be collected. Based upon these broad approaches to information gathering, data are categorized as:

- Secondary data and
- Primary data.

Information gathered using the first approach is said to be collected from **secondary sources**, whereas the sources used in the second approach are called **primary sources**.

For the present study, data is gathered from both primary and secondary sources as indicated in figure 3.7. Primary sources included detailed field studies, visual surveys and photographic documentation of the case study localities with the help of base maps prepared from Google Earth images. Observation is employed as a primary method to study house forms, plot sizes, configuration and plot characteristics, types of roads, sidewalks and open spaces and their uses, etc. Additionally, unstructured interviewing through focus group interviews, narratives and oral histories is also resorted to, to extract information. Data collection through unstructured interviewing is extremely useful in situations where either in-depth information is needed or little is known about the area. The flexibility allows eliciting extremely rich information. Information about certain aspects of the neighbourhood is also gathered through an interview schedule consisting of close-ended and open ended questions as listed in Annexure 1. Close-ended questions produce factual information whereas open-ended questions help in seeking general opinions, attitudes and perceptions.

Figure 3.7: Types of Data and Methods of Data Collection

Source: Author's Elaboration, 2014

Certain mechanical instruments like the Temperature and Humidity Data logger and Smartphone Android Applications like deciBel as shown in plate 3.3 are used to record Ambient Temperatures and Noise Levels in different places within and in immediate surroundings of the neighbourhood. The ambient temperatures are measured in different places of the neighbourhood at 1.5m (5'-0") street level and terrace level approximately.

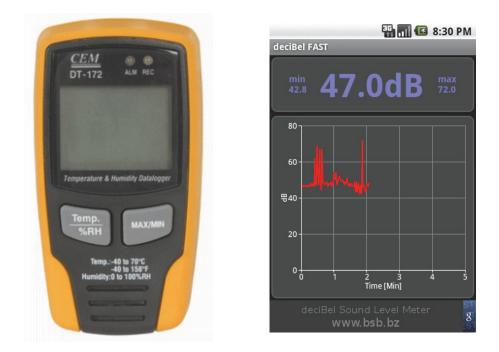


Plate 3.3: RH Temperature Data logger and DeciBel Android Application Source: Author, 2013

The secondary data consisting of general information about the city of Amritsar, historical significance, growth and evolution of the city, land-use, gross population density across the wards, housing condition, environment, level of infrastructure, etc., is gathered from several documentary sources like the Draft Master Plan Amritsar 2010-2031, City Development Plan Amritsar 2025, The State of Cities in North-Western India: A Case of Selected JNNURM Cities - Study Focus City: Amritsar (Sandhu and Teotia, 2013) and earlier research done by post graduate students of Guru Nanak Dev University (GNDU), Amritsar, Maps, plans and drawings in the form of blueprints from the Municipal Town Planning Department, Amritsar; Amritsar Improvement Trust help in validating the visual surveys and observations made during the primary data collection and preparation of the final maps of the neighbourhoods under consideration. Several other reports available on the internet and articles from journals give firsthand information on several aspects of the city like Status of Sewerage Project (MCA, 2007) to Tourism Potential and Tourist Infrastructure (Singh and Singh, 2007) to Analysis of Historical Areas, Lifestyle, Values and Culture in Amritsar (Singh, 2011). Similarly for Chandigarh and Gurugram in addition to site visits and primary data collection, documents like Chandigarh Master Plan (CMP) 2031, Alternative Urban Future Report – Urbanisation and Sustainability in India: An Interdependent Agenda (WWF, 2010), books like Documenting Chandigarh: The

Indian Architecture of Pierre Jeanneret, Edwin Maxwell Fry, and Jane Beverly Drew, Vol. 1 (Joshi, 1999), newspaper articles (Polanki, 2012), websites etc. are referred for secondary data.

3.8.1 Calculation of Sample Size

Another important aspect of empirical studies and in particular for cause and effect studies is to calculate the sample size for data collection to derive statistically significant and meaningful estimates. The formula (from statistics) for determining the sample size is as follows:

η= (Zσ/E)²(3)

Where,

 η = sample size

Z = z-boundary of interval probability

 σ = standard deviation

E = standard error of mean

In this case Z is taken as ± 1.96 considering 95% confidence interval and σ and E are taken from the pilot study conducted for two neighbourhoods of Amritsar as indicated in table 3.10. The values are: σ =0.349 and E=0.071. Substituting the values in equation 3,

$$n = [(1.96 \times 0.349)/0.071]^2 = 92.8 \approx 93$$

Therefore, n = 93 or 93 samples atleast should be considered for the study. In the present study, each neighbourhood is divided into a number of study units to determine the impact of density on environmental quality. On an average 5 households per study unit from amongst total 64 study units are surveyed for primary data collection. Thus the total sample size equals 64 x 5 = 320 households which is more than the minimum sample size required and hence adequate for carrying out different statistical analyses.

After the data collection, based on the detailed visual survey land-use maps of all the neighbourhoods are prepared. Also, the study units as mentioned above are drawn on the maps of each neighbourhood. Simultaneously the raw data is sorted and tabulated in Excel Sheets as given in Annexure 2 for further study and analyses.

Statistics				
ZAEQ - Katra Dullo & Ranjit Avenue, Amritsar				
N	Valid	120		
	Missing	0		
Mean		.0000		
Std. Error of Mean .0712				
Median		0556		
Std. Deviatio	n	.34894		
Variance		.122		
Skewness		102		
Std. Error of Skewness		.472		
Kurtosis		-1.591		
Std. Error of	Kurtosis	.918		

Table 3.10: Descriptive Statistics of ZAEQ – Amritsar as part of Pilot Study

Source: Author, 2015

3.9 Tools for Data Analysis

Analysis means the computation of certain indices or measures along with searching for patterns of relationship that exist among the data groups. Analysis, particularly in case of survey or experimental data, involves estimating the values of unknown parameters of the population and testing of hypotheses for drawing inferences. Analysis may, therefore, be categorized as descriptive analysis and inferential analysis. Inferential analysis is often known as statistical analysis. While descriptive analysis is largely the study of distributions of one variable, inferential analysis consists of correlation analysis that studies the joint variation of two or more variables for determining the amount of correlation between two or more variables or causal analysis which is concerned with the study of how one or more variables affect changes in another variable. It is thus a study of functional relationships existing between two or more variables. This analysis is also termed as regression analysis.

In modern times, with the availability of computer facilities, there has been a rapid development of multivariate analysis which may be defined as "all statistical methods which simultaneously analyze more than two variables on a sample of observations" (Sheth, 1971). The most common analysis in this category is the multiple regression analysis. This analysis is adopted when one dependent variable is presumed to be a function of two or more independent variables. The objective of this analysis is to make a prediction about the dependent variable based on its covariance with all the concerned independent variables. Thus, inferential analysis is concerned with the various tests of significance for testing hypotheses in order to determine with what validity data can be said to indicate some conclusion or conclusions. It is also concerned with the estimation of population values. It is mainly on the basis of inferential analysis that the task of interpretation (i.e., the task of drawing inferences and conclusions) is performed.

With this understanding the forthcoming work is suitably divided into three stages of analyses and subsequent derivation of results and conclusions as shown in figure 3.8. The first stage consists of collection and assimilation of primary and secondary data and preliminary findings based on comparison with threshold values. The second stage consists of ascertaining the standardized aggregated environmental quality (ZAEQ) of the neighbourhoods and formulation of the environmental quality index. The third and final stage envisages carrying out multiple hierarchical regression analysis to ascertain the significant density variables affecting neighbourhood environmental quality followed by testing of hypothesis and best-to-fit analysis to identify desirable density ranges to maintain optimum environmental quality in different residential neighbourhoods.

STAGE 1	 Data organization in Microsoft Excel Comparison with Threshold Values Graphical Representation Variations in Environmental Quality Indicators with variation in Density Variables
STAGE 2	 Data Input in SPSS Environmental Quality Index from Standardized "z-score" of each neighbourhood Correlation Coefficient Analysis b/w Density Variables and ZAEQ
STAGE 3	 Multiple Hierarchical Regression Approach: Identification of Significant Density Variables affecting Environmental Quality Best-to-Fit Analysis b/w ZAEQ & Density to find range of density for optimum Environmental Quality in different residential neighbourhoods

Figure 3.8: Stages of Data Analysis and Tools for Data Analysis

Source: Author's Elaboration, 2015

3.10 Concluding Remarks

The present chapter explains the research design for the present work and identifies several representative neighbourhoods from the three case study cities to explore and compare the residential pattern and neighbourhood environmental quality. The multiple case design is selected as the appropriate research strategy for the present study. Next, density is disaggregated and indicators of environmental quality at the neighbourhood level are identified. A conceptual framework showing possible correlations between density variables and indicators of environmental quality is devised and an analytical model based on the assumption that a linear function exists between the dependent and independent variables is proposed for the regression analysis. The chapter also gives a description of the types of data and methods of data collection to be adopted for the study and details out the various tools and stages of data analyses for subsequent work. Three stages are identified beginning with the organisation of data, followed by assessment of neighbourhood environmental quality and formulation of the environmental quality index and culminating with the testing of hypothesis and best-to-fit analysis to identify desirable density ranges to maintain favourable environmental quality in different residential neighbourhoods of our cities.

References:

- Bonaiuto, M., Fornara, F. and Bonnes, M. (2003) Indexes of perceived residential environmental quality and neighbourhood attachment in urban environments: A confirmation study on the city of Rome. *Landscape and Urban Planning*, 65, 41-52.
- Chandigarh Master Plan (CMP) 2031. [online] Available at: <u>http://chandigarh.gov.in/cmp_2031.htm</u> [Accessed 12 July 2014].
- 3. Cheng, V. (2010) Understanding Density and High Density. In: Edward Ng. (Ed.), *Designing High Density Cities For Social and Environmental Sustainability* (pp. 3-17). New York: Earthscan.
- Chhabra, A. (2010). Chandigarh tops in HDI, GDI. *India Today, 31 March 2010*. [online] Available at: <u>https://www.indiatoday.in/latest-headlines/story/chandigarh-tops-in-hdi-gdi-70639-2010-03-31</u> [Accessed 25 October 2018].
- 5. City Development Plan Amritsar 2025. [online] Available at: <u>http://jnnurm.nic.in/wp-content/uploads/2013/08/CDP-AMRITSAR.pdf</u> [Accessed 10 June 2011].
- 6. Correa, C. (1982) Architecture in a warm climate. *MIMAR Architecture in Development*, 5, 31-35.
- Dovey, K. (2016) Urban Density Matters But what does it mean? *The Conversation Blog posted* on 20 May 2016. [online] Available at: <u>http://theconversation.com/urban-density-matters-but-what-</u> <u>does-it-mean-58977</u> [Accessed 25 May 2017].

- Draft Master Plan Amritsar 2010-2031. [online] Available at: <u>http://www.indiaenvironmentportal.org.in/files/plan%20report%20new.pdf</u> [Accessed 10 June 2011].
- 9. Government of Meghalaya, Shillong (2008) Meghalaya Human Development Report 2008, p. 23.
 [online] Available at: http://www.in.undp.org/content/dam/india/docs/human development report meghalaya 2008 full r

eport.pdf [Accessed on 14 February 2012].

- 10. Joshi, K. (1999) *Documenting Chandigarh: The Indian Architecture of Pierre Jeanneret, Edwin Maxwell Fry and Jane Beverly Drew, Vol. 1*. India: Mapin Publishing.
- Julka, H. (2011). IT firms looking beyond Gurugram, Noida, and Greater Noida to other cities in North India. *The Economic Times, ET Bureau, 30 September 2011*. [online] Available at: <u>https://economictimes.indiatimes.com/realty-trends/it-firms-looking-beyond-Gurugram-noida-to-othercities-in-north-india/articleshow/10182117.cms?intenttarget=no</u> [Accessed 2 October 2013].
- 12. Kothari, C.R. (2004) *Research Methodology Methods and Techniques, Revised Second Edition*. New Delhi: New Age International (P) Limited.
- Kumar, K.P.N. and Mishra, U. (2012) Gurugram: How not to build a City. *Forbes India, 2 August 2012.* [online] Available at: <u>http://www.forbesindia.com/article/real-issue/Gurugram-how-not-to-build-a-city/33444/1</u> [Accessed 2 October 2013].
- 14. Kuo, F. E. and Sullivan, W. C. (1998) Fertile ground for community: inner-city neighborhood common spaces. *American Journal of Community Psychology*, 26 (6), 823–851.
- 15. Lupala, J.M. (2001) *Peri-Urban Land Management in the Rapidly Growing Cities The Case of Dar es Salaam.* PhD. Dissertation, University of Dortmund.
- Municipal Corporation of Amritsar (MCA) (2007) Report on Status of Sewerage Project in Amritsar. Japan International Cooperation Agency (JICA), 2007. [online] Available at: <u>http://amritsarcorp.com/JICA.pdf</u> [Accessed 11 July 2014].
- Polanki, P. (2012) The great Gurugram experiment: Has it failed? *Firstpost*, 20 December 2014.
 [online] Available at: <u>http://www.firstpost.com/business/the-great-Gurugram-experiment-has-it-failed-286582.html</u> [Accessed 25 August 2015].
- Rahman, A., Kumar, Y., Fazal, S. and Bhaskaran, S. (2011) Urbanisation and Quality of Urban Environment using Remote Sensing and GIS Techniques in East Delhi, India. *Journal of Geographic Information System*, 3, 62-84.
- Sandhu, R.S. and Teotia, M.K. (2013) The State of Cities in North-Western India: A Case of Selected JNNURM Cities (Study Focus City: Amritsar). Study conducted under HUDCO Chair by Centre for Research in Rural and Industrial Development (CRRID), Chandigarh. [online] Available at: <u>http://hudco.org/WRITEREADDATA/Amritsar%20Study.pdf</u> [Accessed 19 July 2014].
- 20. Sheth, J.N. (1971) The Multivariate Revolution in Marketing Research. *Journal of Marketing*, 35 (1), 13–19.

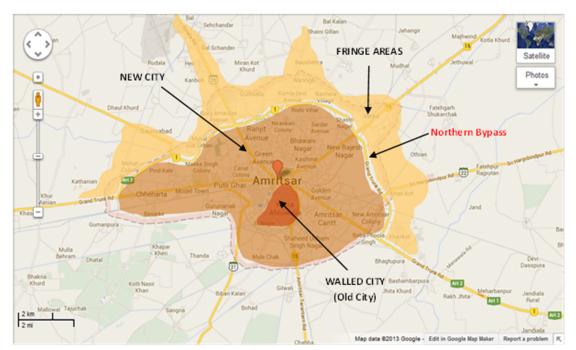
- 21. Singh, B. (2011) Analysis of Historical Areas, Structures, Lifestyles and Values: A Case of Amritsar. *Journal of Institute of Town Planners of India*, 8, 67-75.
- 22. Singh, K. and Singh, R.S.J. (2007) Tourism Potential and Tourist Infrastructure in Amritsar. *Journal of Institute of Town Planners of India*, 4 (1), 58-66.
- Thakur, B.S. (2014) Chandigarh has third-highest tree cover in India. *Hindustan Times*, 21 July 2014. [online] Available at: <u>http://www.hindustantimes.com/chandigarh/chandigarh-has-third-highest-tree-cover-in-india/story-WS9QsTBjCuRTJhqo4AFDBN.html</u> [Accessed 12 March 2015].
- 24. Turner, L. (2003) *Climate and Architecture*. Report for Honor's Section 8 of MET1010 Introduction to the Atmosphere, Florida State University.
- 25. Van Poll, R. (1997) *The Perceived Quality of the Urban Residential Environment: A Multi-attribute Evaluation*. PhD Thesis, Centre for Energy and Environmental Studies (IVEM), University of Groningen (RuG), The Netherlands.
- 26. Walk Through India (2016) *Top 10 Green Cities of India*. [online] Available at: <u>http://www.walkthroughindia.com/lifestyle/top-10-green-cities-of-india/</u> [Accessed 21 April 2016].
- 27. Williams, K., Burton, E. and Jenks, M. (2000) Achieving the compact city through intensification: An acceptable option? In: M. Jenks et al., (Eds.), *The compact city—a sustainable urban form* (pp. 83–96)? E & FN Spon.
- World Health Organisation (WHO) (2011) WHO smoke-free city case study. Experience of Chandigarh as a smoke-free city. [online] Available at: <u>http://www.who.int/kobe_centre/interventions/smoke_free/chandigarh_web_final.pdf?ua=1</u> [Accessed 13 March 2015].
- World Wide Fund for Nature (WWF) (2010) Urbanisation and Sustainability in India: An Interdependent Agenda. *The Alternative Urban Futures Report 2010*. [online] Available at: <u>http://assets.wwfindia.org/downloads/urbanisation_report.pdf</u> [Accessed 12 January 2011].
- 30. Yin R. (1994) Case Study Research Design and Methods. London: SAGE Publications.

Chapter Four

STUDY OF RESIDENTIAL NEIGHBOURHOODS

4.1 Introduction

The assessment of environmental quality at the neighbourhood level with respect to the density variables is the most important part of the present research. As per the case study approach several localities from the three cities namely – Amritsar, Chandigarh and Gurugram are identified to assess and compare the neighbourhood environmental quality with change in residential patterns. Before assessing the neighbourhood environmental quality, the detailed study of each of the neighbourhoods is taken up. The detailed study includes:

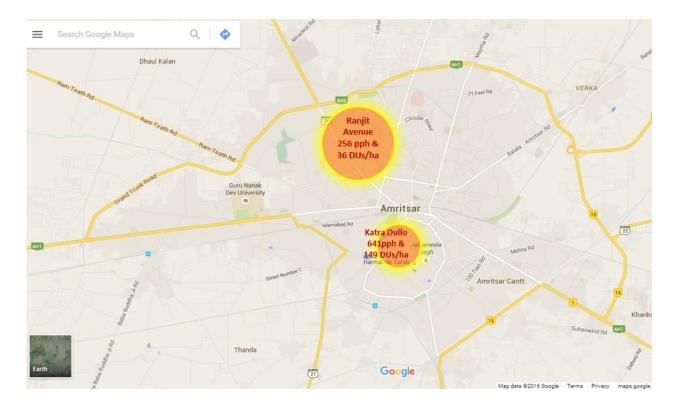

- i. Brief overview of Amritsar
 - Choice of Residential Neighbourhoods
 - Detailed Study of the Neighbourhoods
- ii. Brief overview of Chandigarh
 - Choice of Residential Neighbourhoods
 - Detailed Study of the Neighbourhoods
- iii. Brief overview of Gurugram
 - Choice of Residential Neighbourhoods
 - Detailed Study of the Neighbourhoods
- iv. Data Organization
- v. Comparative Analysis and Preliminary Findings
- vi. Concluding Remarks

4.2 Brief overview of Amritsar

To begin with, the city of Amritsar is divided into three zones as indicated in map 4.1 and subsequently two neighbourhoods are considered for the study as indicated in map 4.2. The three zones are as described below:

- a) Walled city forming the core of the city,
- b) New and more cosmopolitan areas beyond the walled city and up to the northern bypass, and
- c) Fringe areas comprising of newly developed and developing areas beyond the bypass as shown in the map of Amritsar.

Based on the reconnaissance survey, it is observed that the housing existing in the walled city area of Amritsar is in dilapidated or poor condition. It is characterized by age-old buildings with an average building height of G+3, 100% ground coverage with no setbacks and narrow access roads with poor mass space relationship. These areas have high intensity of development as seen in plate 4.1 (Master Plan Amritsar 2010-2031 and Malhotra, 2013).


Map 4.1: Zones identified in Amritsar City

Source: www.google.com, 2013

Plate 4.1: Poor housing condition, poor mass space relationship, mesh of wires and high intensity of development in walled city Amritsar

Source: Master Plan Amritsar 2010-2031

Map 4.2: Location of Katra Dullo and Ranjit Avenue in Amritsar City Source: www.google.com, 2013

On the contrary, the area outside the walled city and within the northern by-pass is characterized as medium density built up area with medium to good housing condition as seen in plate 4.2. The houses have 60% - 80% ground coverage depending on the plot size with mainly front and side setbacks and average building height is G+1.

Plate 4.2: Planned housing areas in Green Avenue and Ranjit Avenue, Amritsar Source: Master Plan Amritsar 2010-2031

The peri-urban area that is outside the northern bye pass is characterized by low-density development with new approved housing colonies coming up. Increasing concentration of

planned housing efforts are observed in the north of the city which has further aggravated the difference in quality of life and urban environment between the northern and southern half of the city (Master Plan Amritsar 2010-2031).

4.2.1 Choice of Residential Neighbourhoods

The area of the chosen localities varies from 6 hectares to more than 100 hectares. They are selected in a way such that they are walkable and one can see and feel their distinguishing character as one moves in and around them. Also they are big enough for their particular type so as to reveal meaningful averages for comparative analysis. In Amritsar, no neighbourhood is selected from the fringe areas (as indicated in Map 4.1) identified in the city as the housing colonies are still under construction and hence uninhabited. The similar residential density patterns are considered later while studying the city of Gurugram. It is worth mentioning here that Amritsar is part of the National Heritage City Development and Augmentation Yojana (HRIDAY) scheme of Ministry of Housing and Urban Affairs, Government of India launched in 2015 to preserve and revitalise the heritage city's soul and reflect its unique character by encouraging aesthetically appealing, accessible, informative and secure environment. The scheme supports development of core heritage infrastructure projects which include revitalization of urban infrastructure for areas around heritage assets identified / approved by the Ministry of Culture, Government of India and State Governments. These initiatives also include development of water supply, sanitation, drainage, waste management, approach roads, footpaths, street lights, tourist conveniences, electricity wiring, landscaping and such citizen services. It is also part of Atal Mission for Rejuvenation and Urban Transformation (AMRUT, 2015) by the same ministry and having thrust on aspects mentioned above in all parts of the city in addition to heritage precincts/areas. In line with the above, the present study looks at almost all of the above mentioned aspects to assess neighbourhood environmental quality and pave the way for future sustainable development in Class-I Indian cities.

4.2.1.1 Brief Background of the Case Study Neighbourhoods of Amritsar

Katra Dullo, Ward No. 5 is selected as a representative locality within the walled city. It lies
in the north-western part of the walled city. The locality is marked predominantly by
residential land use, narrow and organic streets/lanes, and dilapidated structures with low
light and ventilation. It has one of the highest gross population density of 641 persons per
hectare within the walled city. The 'KATRA' or the neighbourhood consisting of several

clusters of houses around a cul-de-sac forms the basic module of all the wards in the walled city as seen in map 4.3.

Ranjit Avenue, Ward No. 43 near the northern bypass is selected from the new city for the study purpose. It is defined by the Grand Trunk or northern bypass on the north, Circular Road on the eastern and southern side and Ajnala Road on the western side as seen in Key Plan in map 4.2. The grid iron pattern in the ward is representative of a typical planned neighbourhood with approximately 256 persons per hectare gross density. It is characterized by straight avenues and plotted development of row houses on either side interspersed with neighbourhood parks, playground, market place and other public facilities and amenities as seen in map 4.4.

4.2.2 Detailed study of the Neighbourhoods

4.2.2.1 Katra Dullo, Amritsar – Low Rise High Density Neighbourhood (LRHD)

Katra Dullo, a low rise high density neighbourhood is divided into 12 units for study and analyses as indicated in figure 4.1. Poor housing condition; poor built to open space relationship and high intensity of development with 149DUs/hectare characterize Katra Dullo. Most of the buildings are in bad condition and require immediate maintenance as seen in plate 4.3. Most buildings are G+2 storeyed and have 100% plot coverage. There are no open spaces for the community or playgrounds for the children except for the squares which are meagre in number and

unmaintained. Greenery is almost absent. Roads are narrow and congested. They are so narrow (1.2-1.5m) that vehicular traffic is restricted in the inner parts. Additionally, garbage dumps, absence of sidewalks, on-street parking of two-wheelers make walking an unpleasant experience.

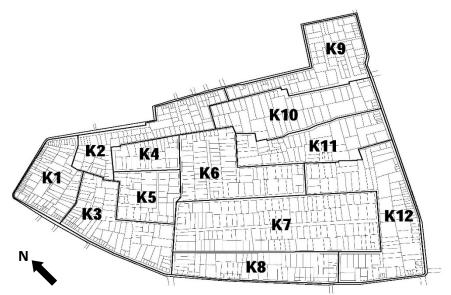


Figure 4.1: Study Units, Katra Dullo, Amritsar

Source: Author, 2013

Residential

- Katra Dullo occupies a total area of 15.5 acres out of which 64% of the area is occupied by residential land use which shows that the area is mainly residential in nature.
- The plots are of irregular sizes varying from 24 sq.yds. (20 sqm.) to 80 sq.yds (67 sqm.). All the houses are arranged in back to back manner having problem of light and ventilation.

Mixed Use

Public / Semi Public

• Only 0.3 acre of area come under this use which consists of one homeopathic dispensary and three temples.

 One of the temple named Nein-Sukh Mandir is more than 150 years old having old architectural features which are being modified with new ones resulting in change of the character of temple.

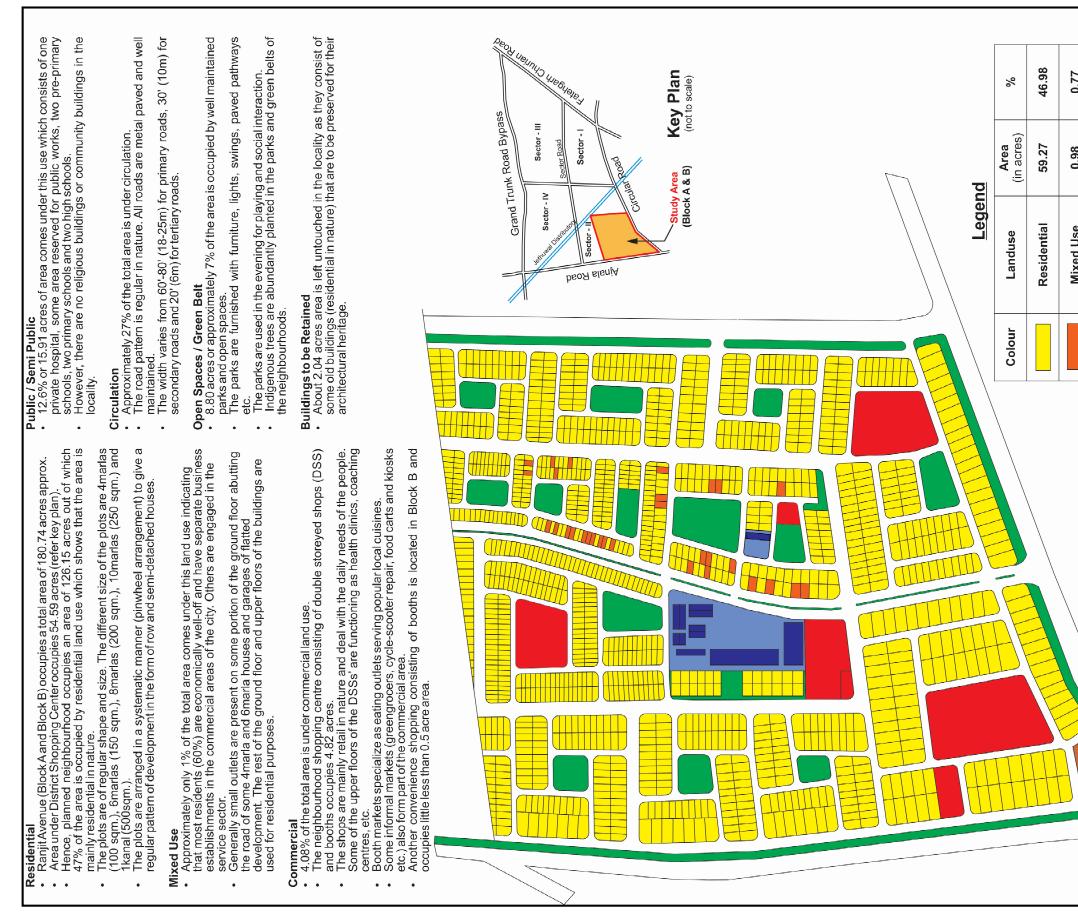
• There are five wells in the area which are being converted into temples.

Map 4.3: Land-use Map of Katra Dullo, Amritsar

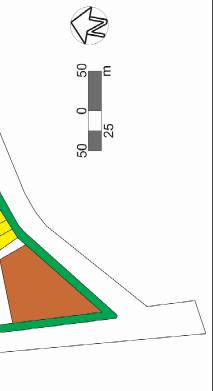
Legend					
LandUse Ar	%				
Residential 10	64.00 %				
Mixed Use 2	.6 16.11 %				
Commercial 0.	.8 5.16 %				
Public / Semi Public	.3 1.93 %				
Circulation 1	.3 8.38 %				
/acant / Open Space 0	.1 0.64 %				
TOTAL 15	i.5 100				

Circulation

Colour


• Approximately 8% of the total area is under circulation.

Well


- The street pattern is irregular in nature.
- The streets are narrow and zig-zag in nature varying from 1m to 5m in width.
- There are 32 dead ends in the area which do not allow for smooth flow of traffic.

Vacant / Open Spaces

- Only 0.1 acre land comes under this land use.
- There is only one open space along Bazar Dullo, acting as a market square.

Mixed Use 0.98 0.77 Commercial 5.15 4.08 Commercial 5.15 4.08 Public / Semi Public 15.91 12.6 Circulation 34.00 26.9 Open Space/ Green Belt 8.80 6.97 Buildings to be Retained 2.04 1.61 TOTAL 126.15 100							
	0.77	4.08	12.6	26.9	6.97	1.61	100
Mixed Use Commercial Commercial Semi Public Circulation Circulation Buildings to be Retained TOTAL TOTAL	0.98	5.15	15.91	34.00	8.80	2.04	126.15
	Mixed Use	Commercial	Public / Semi Public	Circulation	Open Space/ Green Belt	Buildings to be Retained	TOTAL

Map 4.4: Land-use Map of Ranjit Avenue, Amritsar

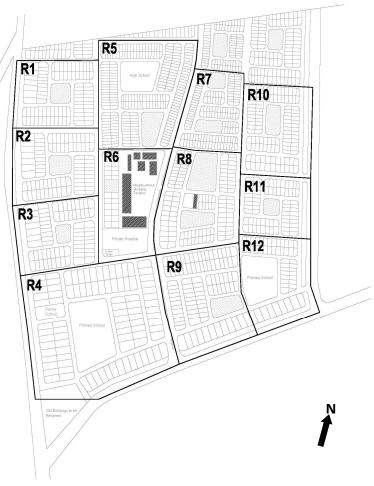
Neighbourhood Study

Plate 4.3: Poor Condition of Buildings, Katra Dullo, Amritsar Source: Author, 2014

The level of services is also poor. Domestic waste is disposed on the roads and inspite of door to door collection filthy conditions prevail. Only 30% dwelling units are connected to the underground sewerage system. Open storm water drains run on both sides of the streets. Most drains are choked with solid waste leading to water logging and insanitary conditions in certain areas as seen in plate 4.4. The neighbourhood however has low average noise levels of 50dB because of the absence of vehicles. Shops catering to daily requirements are in close proximity for the residents of the locality.

Plate 4.4: Garbage Dumps, Open Drains, Congested Roads and Scanty Tree Cover, Katra Dullo, Amritsar

Source: Author, 2014


4.2.2.2 Ranjit Avenue, Amritsar – Low Rise Medium Density Neighbourhood (LRMD)

Ranjit Avenue is also divided into 12 units for detailed study as indicated in figure 4.2. This is an example of a low rise medium density planned neighbourhood found in many modern Indian cities as seen in plate 4.5. The neighbourhood consists of different sizes of plots arranged in a pin-

wheel arrangement around a central open space as seen in map 4.4. The residential density is around 36DUs/hectare. Roads are wide, well maintained and shaded as seen in plate 4.7. Trees are also found in abundance (tree cover=49%) in the open spaces of the neighbourhood.

Plate 4.5: Plotted Development and View of Park, Ranjit Avenue, Amritsar Source: Author, 2014

Most (75%) of the buildings are G+1 storeyed on varying plot sizes (1Kanal=500sqm, 10Marla=250sqm, 8Marla=200sqm and 6Marla=150sqm approximately) except for the flatted developments restricted to two pockets that are G+2 and G+3 storeyed high (constituting 13% and 2% of the building stock) as seen in plate 4.6. The level of infrastructure and services is fairly well. Door to door collection of domestic waste and sweeping of the roads is done on a daily basis. Garbage disposal points are located at suitable distances along boundary walls of the plots for collecting street garbage as seen in plate 4.8.

Plate 4.6: Types of Plots and Residential Buildings, Ranjit Avenue, Amritsar

Plate 4.7: Condition of Roads and Sidewalks, Ranjit Avenue, Amritsar Source: Author, 2014

The formal and informal markets within a radius of 0.5km serve the daily needs of the residents as seen in plate 4.9. The noise levels in the locality are somewhat high (average – 65dB). Onstreet parking causes some congestion in the internal streets. Overall, Ranjit Avenue has good facilities. Certain study units have higher air pollution and noise levels due to use of DG sets, air conditioning units and traffic especially coming to the commercial areas. The key features of both the neighbourhoods are summarised in table 4.1, figure 4.3 and figure 4.4.

Plate 4.8: Level of Infrastructure and Services, Ranjit Avenue, Amritsar Source: Author, 2014

Plate 4.9: Types of Commercial Establishments, Ranjit Avenue, Amritsar

Source: Author, 2014

Table 4.1: Key Features of Case Study Neighbourhoods, Amritsar

Brief Description of the Neighbourhoods		
Katra Dullo	Ranjit Avenue	
The neighbourhood covers an area of about 6 hectares. Organic form, poor housing condition, poor built to open space relationship and high intensity of development characterize Katra Dullo.	It covers an area of about 50 hectares. It is a planned neighbourhood located in the new part of the city outside the walled area. It is characterized by straight avenues and plotted development of row houses.	
Population Density		
641pph	256pph	
Residential Density		
149DUs/ha	36DUs/ha	

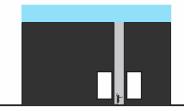
Table 4.1 (contd.): Key Features of Case Study Neighbourhoods, Amritsar

Katra Dullo	Ranjit Avenue	
Residential Pattern		
LRHD	LRMD	
Most buildings are G+2 storeyed and have 100% plot coverage. Many of them are in a dilapidated condition.	Most of the buildings are G+1 storeyed on varying plot sizes except for the flatted developments restricted to two pockets that are G+2 and G+3 storeyed.	
Plot Sizes		
The plots are irregular in shape and size varying from 20sqm to 67sqm approximately. All the houses are arranged in back to back manner having problem of light and ventilation.	It is a planned neighbourhood that consists of different sizes of plots (1Kanal=500sqm, 10Marla=250sqm, 8Marla=200sqm and 6Marla=150sqm) arranged in a pin-wheel arrangement around a central open space.	
Open Spaces		
There are no open spaces for the community or playgrounds for the children except for the small and unmaintained squares. Greenery is almost absent.	Parks and playgrounds are maintained. Trees like neem, jamun, devil tree are found in the open spaces of the neighbourhood.	
Roads and Sidewalks		
Roads are narrow (1.2-1.5m in the inner parts) and congested. Additionally, garbage dumps, absence of sidewalks, on-street parking of two-wheelers make walking an unpleasant experience.	Roads are wide, well maintained and shaded. However sidewalks are discontinuous or absent in some places. On-street parking causes congestion.	
Level of Services		
The level of services is also poor. Domestic waste is disposed on the roads. Choked open drains create insanitary conditions. Only 30% DUs are connected to sewerage system.	The level of infrastructure and services is fairly well. Door to door collection of waste and road sweeping is done on daily basis.	
Miscellaneous		
Shops catering to daily requirements are in close proximity for the residents of the locality. Overall condition of infrastructure and services is quite poor in Katra Dullo.	All daily need items are available in near proximity within a radius of 0.5km. Ranjit avenue has overall good facilities.	

Source: Author, 2014

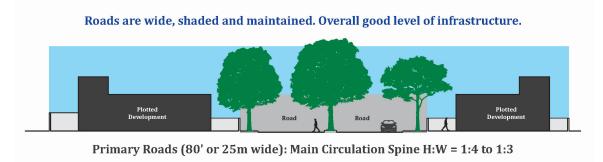
Roads are narrow and mutually shaded from buildings. However they are poorly maintained. Overall poor level of infrastructure.

Primary Roads (10'-15' or 3m-5m wide) H:W = 2:1


Figure 4.3: Typical Section, Katra Dullo, Amritsar

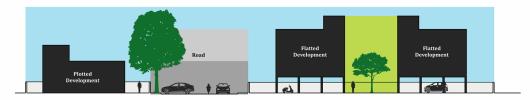
Due to narrow widths and dead ends, inner roads are devoid of vehicular traffic (cars). Hence, inner areas have low noise levels and are quiet areas.

Secondary Roads (6' or 2m wide) H:W = 5:1

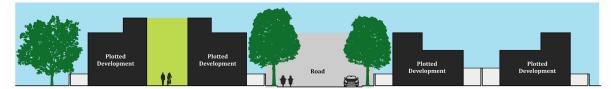

Absence of parks, play grounds or community spaces. Narrow streets with open drains and littered domestic waste make walking an unpleasant experience. Poor light and ventilation due to very compact built form and poor built to open space relationship.

Tertiary Roads (3'-5' or 1m-1.5m wide) H:W = 7.5:1

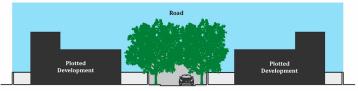
Figure 4.3 (contd.): Typical Sections, Katra Dullo, Amritsar


Source: Author, 2013

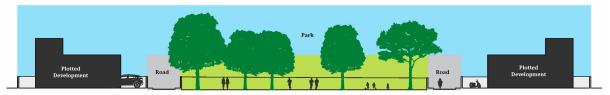
Primary Roads (80' or 25m wide): In-between blocks H:W = 1:4



Flatted development in few pockets is G+2 & G+3 storeyed. On-street parking causes congestion in internal roads,


Secondary Roads (60' or 20m wide): In-between two clusters H:W = 1:3 to 1:1.5

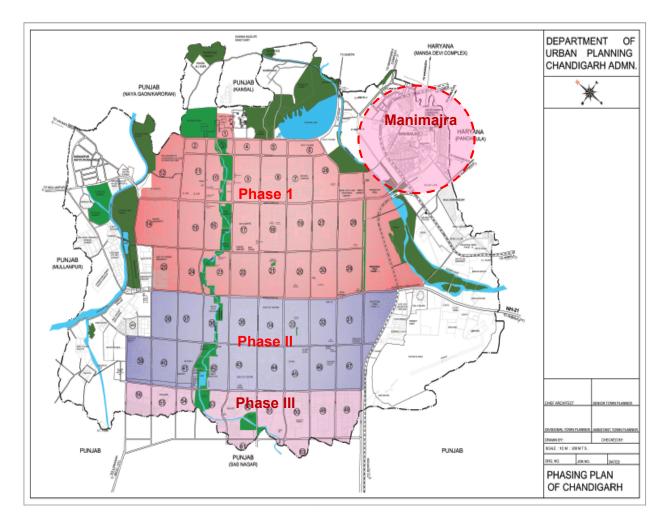
H:W between buildings vary from 1:1 to 1:4 thus permitting natural light into the buildings.


Secondary Roads (60' or 20m wide): In-between two clusters H:W = 1:2

Tertiary roads are shady thus providing comfortable environment for users. However sidewalks are discontinuous and occupied by street hawkers and littered garbage occasionally.

Tertiary Roads (30' or 10m wide): In-between two clusters H:W = 1:1.6

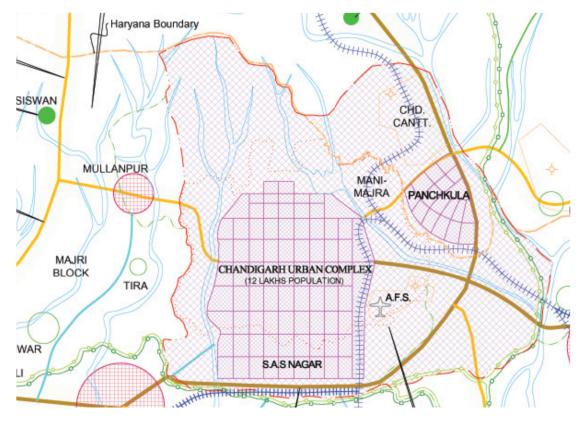
Parks and playgrounds are maintained and used for playing and social interaction. Shady trees like neem, jamun, devil tree are found in the open spaces of the neighbourhood. They regulate the micro-climate, absorb air pollutants and reduce noise levels.



Tertiary Roads (20' or 6m wide): Within a cluster with a central open space (H:W = 1:1)

Figure 4.4 (contd.): Typical Sections, Ranjit Avenue, Amritsar

4.3 Brief overview of Chandigarh

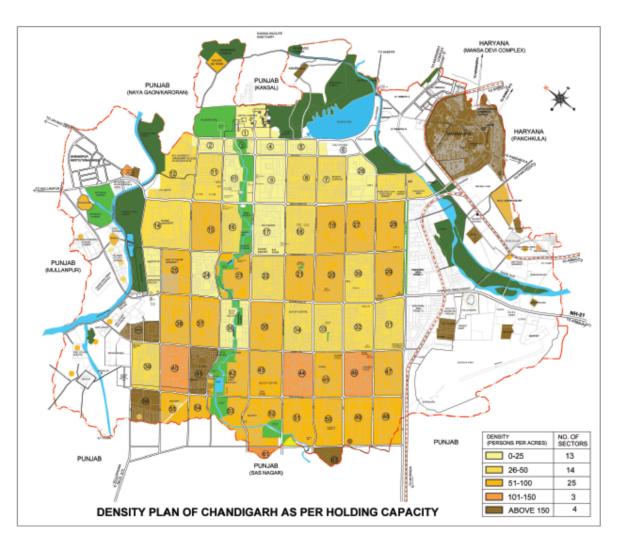

The union territory of Chandigarh was initially planned for a population of 500,000 spread out over an area of 70 sq. km. The first phase (sectors 1-30) of the city had low density low rise houses with residential plots ranging from 5 Marla (125 sqm) to 8 Kanals (4000 sqm). The second phase (sectors 31-47) had much higher density with three to four storey flats and largest plot size being 2 Kanals (1000 sqm). As the population went on increasing, to augment the housing stock additional residential sectors in the third phase and Manimajra (land falling between Chandigarh Kalka Road and the interstate boundary with Panchkula) was planned for construction of residential cum commercial areas as seen in map 4.5.

Map 4.5: Phasing Plan of Chandigarh

Source: Chandigarh Master Plan - 2031

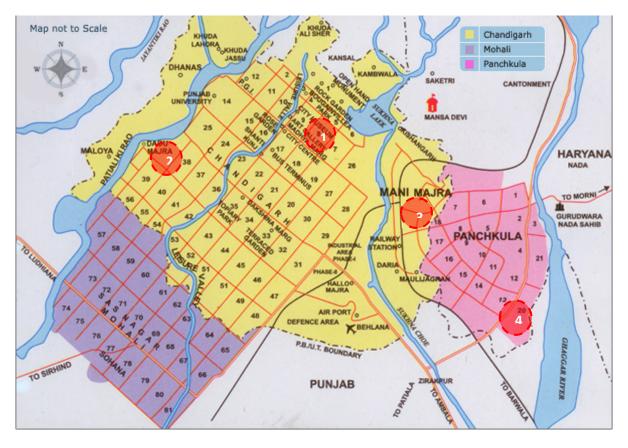
However, Chandigarh with an area of 114 sq. km offered very limited land for future development. Due to limited scope for horizontal growth, it became obvious that to accommodate the future requirement, the development required to be vertical. However, keeping in view the overall architectural ambience of the city, it was also essential to prepare the Master Plan to not only accommodate future requirements but also strike a balance between the built and natural environment. Hence, considering the inevitable in-migration to the city and large scale developments in the peripheral areas and satellite towns, the Chandigarh Master Plan 2031 was formulated. It intrinsically linked the development of Chandigarh with the periphery and the satellite towns of Panchkula and Mohali or SAS Nagar (TCPO, 2011). The entire area subsequently came to be known as the Chandigarh Urban Complex or CUC as shown in map $4.6.^{24}$

Map 4.6: Chandigarh Urban Complex (CUC)


Source: Chandigarh Master Plan - 2031

²⁴ Annexures, Chandigarh Master Plan – 2031. [online] Available at: <u>http://chandigarh.gov.in/cmp2031/mp-area.pdf</u> [Accessed 14 June 2012].

4.3.1 Choice of Residential Neighbourhoods


For the present study, as per the Phasing Plan (map 4.5), Density Plan (map 4.7) and Map of Tri-City, four residential localities with different density patterns as compared to Amritsar are identified for detailed study and analyses as seen in map 4.8. The neighbourhoods are as follows:

- 1. Low Rise Low Density (LRLD) Sector 8, Chandigarh
- 2. Low Rise High Density (LRHD), Planned Sector 38 West, Chandigarh
- 3. Medium Rise Medium Density (MRMD) Marble Arch Apartments, Manimajra
- 4. Medium Rise High Density (MRHD) Group Housing, Sector-20, Panchkula

Map 4.7: Gross Population Density Plan of Chandigarh City

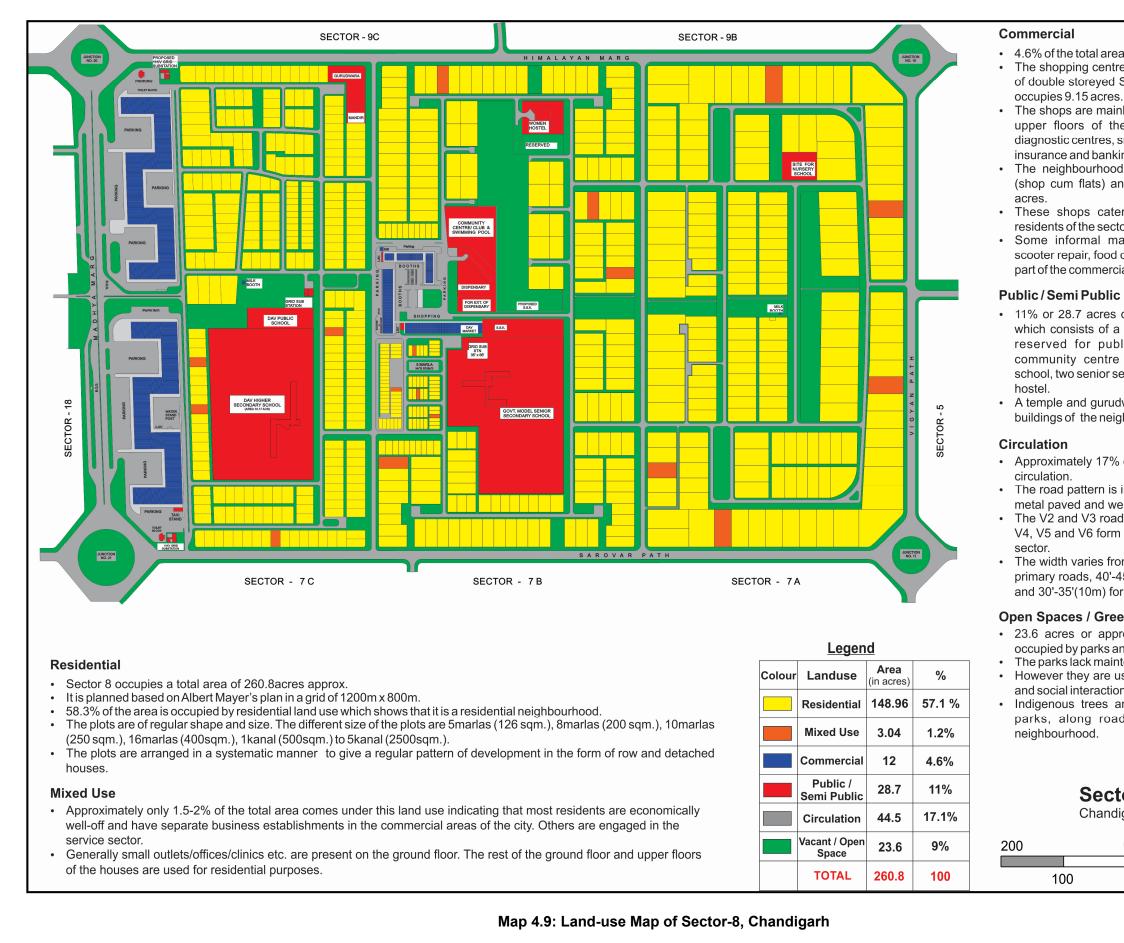
Source: Chandigarh Master Plan - 2031

Map 4.8: Map of Tri-City with Identified Neighbourhoods

Source: http://carsonkolbergindia.blogspot.in/2011/06/about-chandigarh-and-tri-city.html

4.3.2 Detailed study of the Neighbourhoods

The reconnaissance survey shows that sectors of Chandigarh are planned according to the neighbourhood concept and as per the V7 system of roads laid down by French Architect Le Corbusier. The area of the chosen localities varies from 35 hectares to 105 hectares. They generally have low rise structures varying from single storey to G+3 buildings with metalled roads, neighbourhood parks, open spaces, greenery and overall services as seen in plate 4.10. On the other hand, the newly developing peripheral areas like Manimajra and satellite cities like Panchkula and Mohali constituting the Chandigarh Urban Complex (CUC) in addition to the low rise structures have medium and high rise structures coming up in recent years. These gated communities and group housing societies range from 2 hectares to 130 hectares – the latter forming whole sectors in some places and are characterised by apartment blocks, community open spaces, shared facilities and amenities as seen in plate 4.11. The Chandigarh/Panchkula Municipal Corporation looks after the sectors whereas inside the gated communities residents' welfare associations are responsible for upkeep and maintenance.


Plate 4.10: Low Rise Structures, Old Sectors, Chandigarh

Source: Author, 2015

Plate 4.11: Medium Rise Structures, New Areas, Chandigarh Urban Complex Source: Author, 2015

The land-use maps 4.9, 4.10, 4.11 and 4.12 in the following pages give a snap shot of the typical features of the different neighbourhoods. The four neighbourhoods are divided into smaller units for detailed survey and analyses as indicated in figures 4.5, 4.6, 4.7 and 4.8.

• 4.6% of the total area is under commercial land use. · The shopping centre along Madhya Marg consists of double storeyed SCOs (Shop cum Offices) and

• The shops are mainly retail in nature. Some of the upper floors of the SCOs' are functioning as diagnostic centres, smart offices, coaching centres, insurance and banking activity, etc.

• The neighbourhood shopping consists of SCFs (shop cum flats) and covers an area of about 3

· These shops cater to the daily needs of the residents of the sector.

· Some informal markets (greengrocers, cyclescooter repair, food carts and kiosks etc.) also form part of the commercial area.

• 11% or 28.7 acres of area comes under this use which consists of a Govt. Dispensary, some area reserved for public works, grid substation, community centre and club, one pre-primary school, two senior secondary schools and womens'

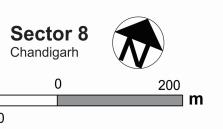
· A temple and gurudwara form important landmark buildings of the neighbourhood.

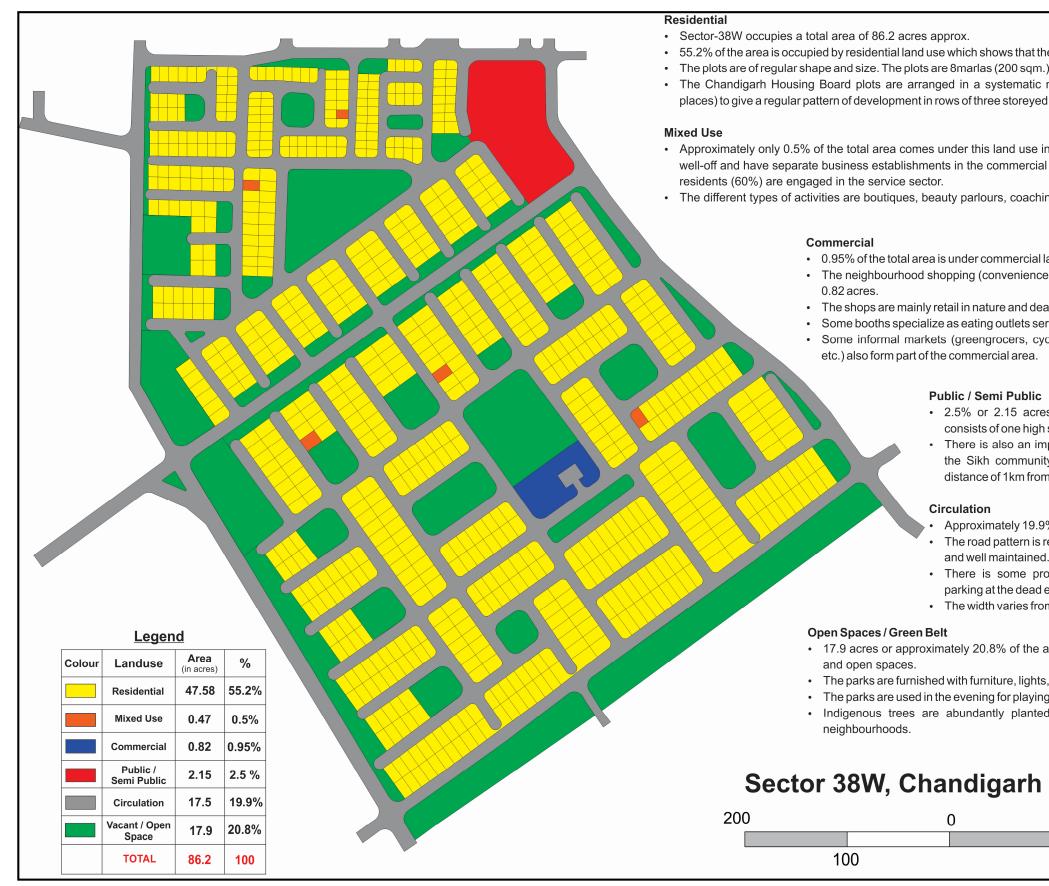
• Approximately 17% of the total area is under

• The road pattern is in a grid form. All roads are metal paved and well maintained.

• The V2 and V3 roads define the sector while the V4, V5 and V6 form the internal roads of the

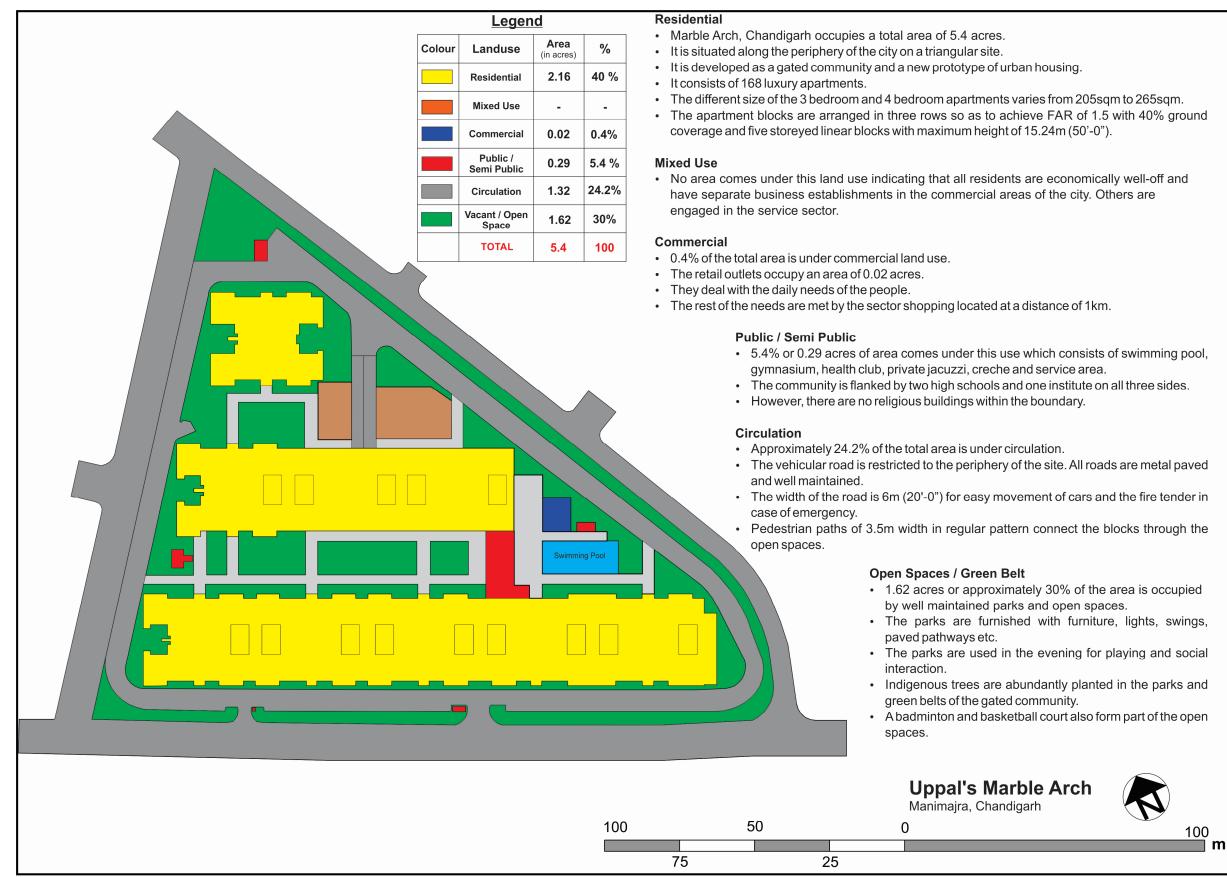
• The width varies from 60'-80' (18-25m) for primary roads, 40'-45' (13m) for secondary roads and 30'-35'(10m) for tertiary roads.

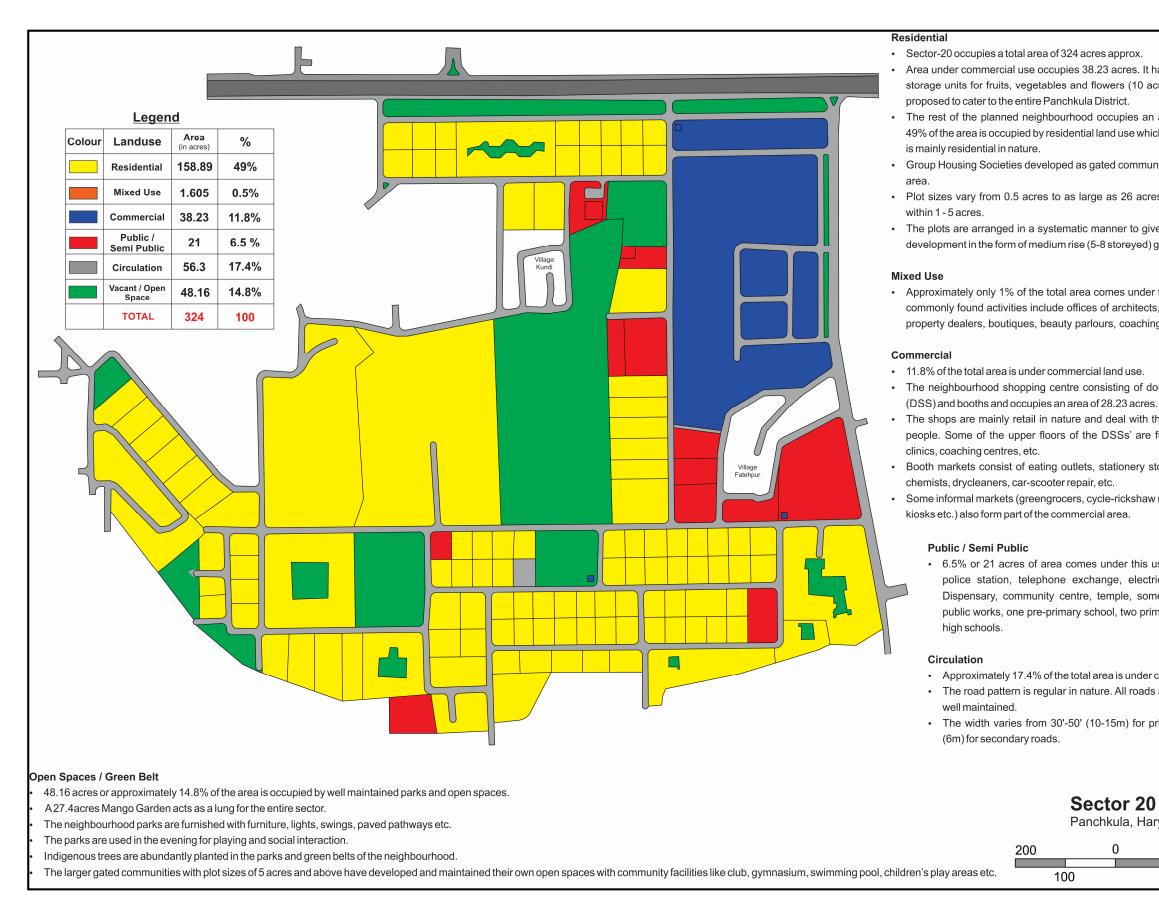

Open Spaces / Green Belt


• 23.6 acres or approximately 9% of the area is occupied by parks and open spaces.

The parks lack maintenance.

• However they are used to some extent for playing and social interaction.


· Indigenous trees are abundantly planted in the parks, along roads and green belts of the



Map 4.10: Land-use Map of Sector-38W, Chandigarh

ne area is mainly residential in nature. .) and 10marlas (250 sqm.) in size. manner (pinwheel arrangement at some d apartments.
ndicating that residents are economically I areas of the city. Most of the other
ing centers etc.
land use. e shopping) consisting of booths occupies
al with the daily needs of the people. erving popular local cuisines. rcle-scooter repair, food carts and kiosks
es of area comes under this use which a school. hportant Gurudwara - religious building of ty and oil filling station located within a m the neighbourhood.
9% of the total area is under circulation. regular in nature. All roads are metal paved d. oblem of congestion due to haphazard ends.
um 10m - 15m (33' - 50').
area is occupied by well maintained parks s, swings, paved pathways etc.
g and social interaction. d in the parks and green belts of the
200 m

Map 4.11: Land-use Map of Marble Arch (Manimajra), Chandigarh

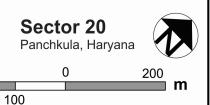
Map 4.12: Land-use Map of Sector-20 (Panchkula), Chandigarh

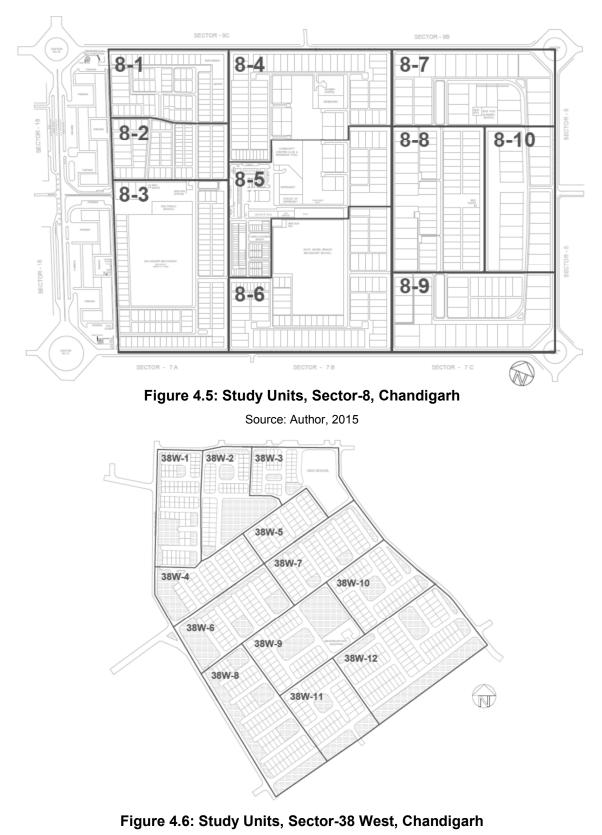
- Area under commercial use occupies 38.23 acres. It has grain market, cold storage units for fruits, vegetables and flowers (10 acres approx.) that are
- The rest of the planned neighbourhood occupies an area of 286.4 acres. 49% of the area is occupied by residential land use which shows that the area

• Group Housing Societies developed as gated communities characterize the

• Plot sizes vary from 0.5 acres to as large as 26 acres. Most common are

· The plots are arranged in a systematic manner to give a regular pattern of development in the form of medium rise (5-8 storeyed) gated communities.


• Approximately only 1% of the total area comes under this land use. The commonly found activities include offices of architects, advocates, property dealers, boutiques, beauty parlours, coaching centres, etc.


- The neighbourhood shopping centre consisting of double storeyed shops
- · The shops are mainly retail in nature and deal with the daily needs of the people. Some of the upper floors of the DSSs' are functioning as health
- Booth markets consist of eating outlets, stationery stores, general store,
- Some informal markets (greengrocers, cycle-rickshaw repair, food carts and

• 6.5% or 21 acres of area comes under this use which consists of police station, telephone exchange, electric substation, Govt. Dispensary, community centre, temple, some area reserved for public works, one pre-primary school, two primary schools and two

• Approximately 17.4% of the total area is under circulation. • The road pattern is regular in nature. All roads are metal paved and

• The width varies from 30'-50' (10-15m) for primary roads and 20'

Source: Author, 2015

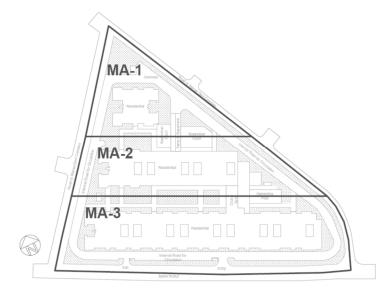
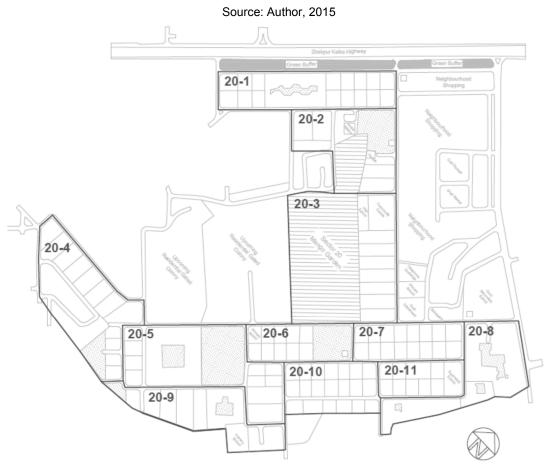
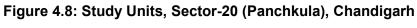




Figure 4.7: Study Units, Marble Arch (Manimajra), Chandigarh

Source: Author, 2015

4.3.2.1 Key Features of the Case Study Neighbourhoods of Chandigarh

The key features of the four neighbourhoods are presented in a tabular format in table 4.2 and the plates and typical sections as given in the following pages:

	Brief Description of the Neighbourhoods					
Sector 8	Sector 38 West	Marble Arch, Manimajra	Sector 20, Panchkula			
The neighbourhood covers an area of about 104 hectares. It is laid out in the grid iron system. V2 & V3 roads define the sector whereas V5 (neighbourhood streets) and V6 (access roads) form the road network within the locality. Two V4 (shopping streets) divide the sector into three parts.	The neighbourhood covers an area of about 32.2 hectares. It is wedge shaped in plan. It is an extension of the main 38 sector and lies to its west, hence the name Sector-38 West.	The neighbourhood is a gated community spread in an area of 2 hectares approximately. The site is triangular in shape and located in Manimajra lying 200m north of the Chandigarh-Kalka Highway. It is a pedestrian friendly neighbourhood with vehicular roads restricted to the periphery.	The neighbourhood covers an area of about 130 hectares. It is irregular in shape. It lies along the Zirakpur- Kalka Highway and is one of the densest residential neighbourhoods			
Population Density	Population Density					
95pph	441pph	345pph	540pph			
Residential Density						
17DUs/ha	76DUs/ha	65DUs/ha	98DUs/ha			
Residential Pattern						
LRLD	LRHD	MRMD	MRHD			
G, G+1 and occasionally G+2 plotted development characterize the area. It is one of the earliest planned sectors of Chandigarh by Albert Mayer. It abounds in large plots with bungalow type houses in addition to plotted row house development.	Compactly placed G+2 flatted apartment style residential blocks in a pin-wheel and row house arrangement signify the area.	G+4 storeyed apartment blocks interspersed with community open space and shared facilities and amenities identify this locality.	Group Housing Societies developed as gated communities characterize the area. The plots are arranged in a systematic manner with medium rise (5-8 storeyed) buildings.			
Plot Sizes						
The sizes of the plots are 5marlas, 8marlas, 10marlas, 16marlas, 1 Kanal–5 Kanals. ²⁵	The sizes of the plots are 8marlas and 10marlas.	Consists of three rows of apartment blocks. Size of DUs varies from 205- 265sqm.	Plot sizes vary from 0.5-26acres. Most common sizes are between 1-5acres.			

Table 4.2: Key Features of Case Study Neighbourhoods, Chandigarh

²⁵ 1Marla = 25.293sqm, 1Kanal = 505.857sqm and 1Kanal = 20Marlas – All these are traditional Indian units of land area especially used in northern India. Its use in India is in decline with urban land measurements standardizing the use of square meters.

Table 4.2 (contd.): Key Features of Case Study Neighbourhoods, Chandigarh

Sector 8	Sector 38 West	Marble Arch, Manimajra	Sector 20, Panchkula		
Open Spaces					
There are abundant open spaces and trees in the neighbourhood. However there is lack of maintenance. Some spaces are used for playing and social interaction. People are more inclined towards using private gardens.	Parks and open spaces are maintained and used by the children and residents. Level of infrastructure is good.	Well maintained parks and open spaces with paved pathways and good infrastructure. Used for gatherings and social interaction. A badminton and basketball court form part of the open spaces.	There are sector level parks as well as parks/open spaces in all of the gated communities. A large mangrove acts as lungs for the high density neighbourhood.		
Roads and Sidewalks					
The road pattern is in a grid form. All roads are metaled. However sidewalks are discontinuous or absent in some places.	The road pattern is regular with dead end roads. On-street parking causes congestion in the neighbourhood.The vehicular road is restricted to the periphery. Sidewalks and pedestrian pathways through the open spaces connect the blocks.		There are ample roads in the neighbourhood. However, due to heavy traffic because of high density, there is congestion on the roads.		
Level of Services					
sewerage and drainage system a some neighbourhoods is the pro causing filthy conditions, growth	Overall level of services is good in all neighbourhoods in Chandigarh with 100% houses connected to the sewerage and drainage system and regular door-to-door collection of domestic waste. The problem observed in some neighbourhoods is the provision of adequate nos. of community bins or littered garbage near the bins causing filthy conditions, growth of insects and pathogens (flies and mosquitos), clogging of storm-water drains and foul smell thus affecting the environmental quality.				
Miscellaneous					
The sector shopping, temple, gurudwara, etc. serve the daily needs of the people. However discontinuity of sidewalks discourages people to walk.	The on-street parking and congestion renders roads unsafe for children and elderly.	People walk freely inside the gated community. However they have to use vehicles for daily needs.	Some people come to the neighbourhood parks, shopping etc. on their vehicles while some walk on the sidewalks.		

Source: Author, 2015

Plate 4.12: Roads and sidewalks, trees and open spaces in Sector-8, Chandigarh

Plate 4.13: Key Features of Sector-8, Chandigarh

Plate 4.14: Maintained parks, roads and greenery, Sector-38W, Chandigarh

Plate 4.15: Key Features of Sector-38W, Chandigarh

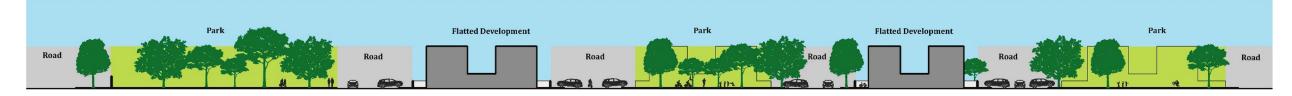
Plate 4.16: Aerial view, open spaces and facilities of Marble Arch (Manimajra), Chandigarh

Study units near the commercial belt have higher noise levels and poor air quality due to vehicular traffic, air-conditioning units and DG Sets. They also lack open spaces and thus less PGA/Capita.

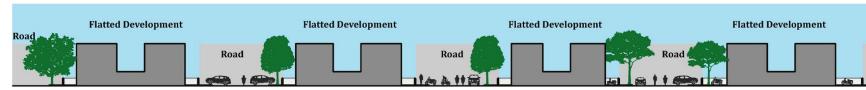
Sector-8 Study Units near the Commercial Stretch with relatively higher residential density

(Primary Roads - 60'- 80' or 18-25 m, Secondary Roads = 40'- 45' or 13 m, Tertiary Roads = 30'- 35' or 10 m)

H:W = 1:2, 1:3


Inner study units have better open spaces, larger plot sizes, comparatively lesser population density with higher BUA/Capita and PGA/Capita. More trees and shaded sidewalks are seen here that add to the overall environmental quality.

Sector-8 Inner Study Units with low rise low residential density


(Primary Roads = 60'- 80' or 18-25 m, Secondary Roads = 40'- 45' or 13 m, Tertiary Roads = 30'- 35' or 10 m) H:W = 1:1, 1:3

Certain blocks fare well because of comparatively lower population and residential density and better open spaces for promoting different types of activities with higher intensity of activities.

Sector-38 West Study Units with low rise high residential density interspersed with Parks (30'- 50' or 10-15 m wide roads) H:W = 1:1.2

Some pockets (38W-1, 38W-4, and 38W-5) have low PGA/Capita, low PRL/Capita and high M.F. as a result of congestion due to on-street parking and lots of dead ends in the road network. The tree cover is also less.

Sector-38West Study Units with low rise high residential density devoid of Parks (30'- 50' or 10-15 m wide roads) H:W = 1:1.2

Figure 4.9: Typical Sections, Sector 8 and Sector 38 West, Chandigarh

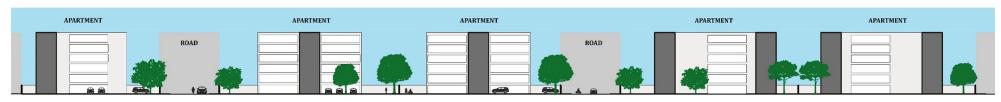
Source: Author, 2015

Marble Arch, Manimajra (20' or 6 m wide internal roads) H:W = 1:1.5

Gated communities towards the road have higher noise levels and more air pollution due to heavy vehicular traffic.

Sector 20 (Panchkula) Study Unit near Zirakpur Kalka National Highway (Primary Roads - 30'-50' or 10-15 m, Secondary Roads - 20' or 6 m) H:W = 1:1, 1.2:1,1.4:1, 3:1

Gated communities with comparatively better open spaces and proximity to amenities and facilities.


Sector 20 (Panchkula) Inner Study Unit near Park, School and Temple (Primary Roads - 30'-50' or 10-15 m, Secondary Roads - 20' or 6 m) H:W = 1:1, 1.2:1,1.4:1

Gated communities with very high residential and population density and low PGA/capita and BUA/Capita. Heavy congestion on main sector spine leading to noise and air pollution.

Sector 20 (Panchkula) Central Study Unit opposite Main Neighbourhood Shopping (Primary Roads - 30'-50' or 10-15 m, Secondary Roads - 20' or 6 m) H:W = 1:1, 1.2:1,1.4:1

Gated communities away from daily needs shops and other facilities (>1km) and lacking public open spaces like parks, playgrounds etc. in near vicinity.

Sector 20 (Panchkula) Study Units away from Main Neighbourhood Shopping and Central Facilities (Primary Roads - 30'-50' or 10-15 m, Secondary Roads - 20' or 6 m)z H:W = 1:1, 1.4:1

Figure 4.10: Typical Sections, Marble Arch (Manimajra) and Sector 20 (Panchkula), Chandigarh

Source: Author, 2015

Plate 4.17: Built Form & Hierarchy of Parks and Open Spaces, Sector-20 (Panchkula), Chandigarh

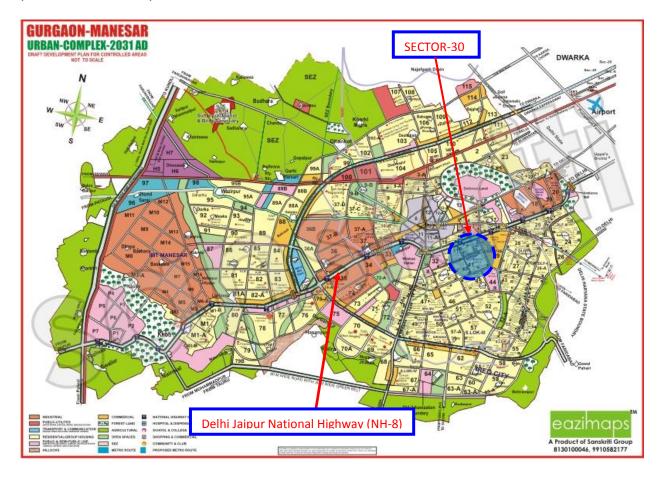

Plate 4.18: Types of Commercial Establishments, Sector-20 (Panchkula), Chandigarh

Plate 4.19: Roads and Sidewalks, Sector-20 (Panchkula), Chandigarh

4.4 Brief overview of Gurugram

As mentioned earlier in Chapter 3, Gurugram – more popularly known as 'Gurgaon' was a village that transformed into a financial and industrial city after leading Indian automobile manufacturer Maruti Suzuki India Limited established a manufacturing plant in Gurgaon in the 1970s. It emerged as a flashy boom-town with shopping-malls, condominiums and swanky office towers at the turn of the millennium. The urban form generally consists of glass and concrete high-rise structures scattered here and there. The overall urban form of Gurugram was envisioned as a road-based suburbia with the national highway (NH-8) bisecting the city into two parts as seen in map 4.13.

Map 4.13: Master Plan of Gurgaon (now called Gurugram) – Manesar Urban Complex, 2031AD

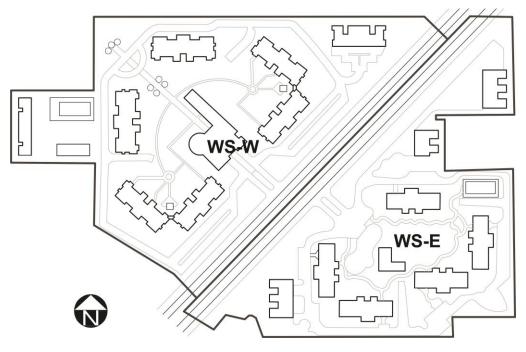
Source: http://stayinGurugram.com/Gurugram-maps#prettyPhoto[6761]/1/

The city consists of office blocks, shopping malls and gated communities. There are very few public spaces of any kind. At the city level, the few green areas are in form of private golf courses – hardly conducive for creating a vibrant urban community. There are very few places for generalized social interaction such as public parks, sports complexes, temples, art hubs etc. Very recently, there has been a belated effort to remedy the situation. The Delhi Metro has been extended to Gurugram. A new municipal governance structure has also been developed.

4.4.1 Choice of Residential Neighbourhoods

For the present study, two residential neighbourhoods – gated communities located in Sector-30 as seen in map 4.13 and plate 4.20 along the National Highway NH-8 with different density patterns as compared to Amritsar and Chandigarh are identified for detailed study and analyses. The neighbourhoods are as follows:

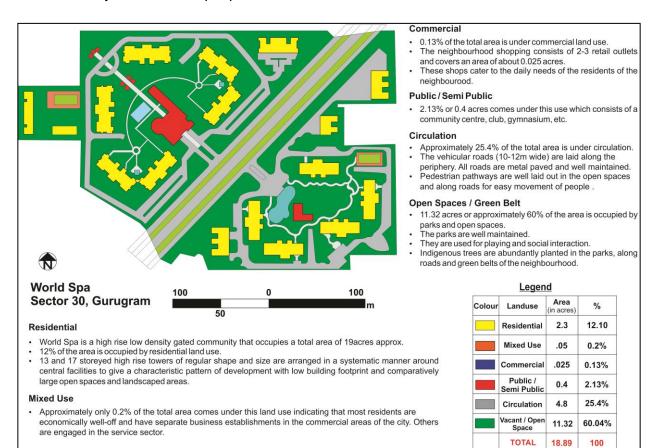
- 1. High Rise Low Density (HRLD) World Spa, Sector-30, Gurugram
- 2. High Rise High Density (HRHD) Uniworld City, Sector-30, Gurugram


Plate 4.20: High Rise Structures, World Spa and Uniworld City, Gurugram Source: Author, 2016

Both the neighbourhoods are built and managed by private developers and are examples of the very common type of residential pattern being adopted in all the cities so as to accommodate relatively more people on a piece of land and provide them with all amenities and facilities like parks, open spaces to interact and socialise, play areas, gym, pool, retail outlets catering to daily requirements, etc. within the boundary of the locality or the gated community. However, even though these communities have high quality physical infrastructure, there is a need to integrate the neighbourhoods by providing 'urban software' at the city level – a main thrust area of **AMRUT (2015)** that can have a positive impact on the urban environmental quality.

4.4.2 Detailed Study of the Neighbourhoods

4.4.2.1 World Spa, Gurugram – High Rise Low Density Neighbourhood (HRLD)


World Spa, a high rise low density neighbourhood is divided into two parts World Spa – East (WS-E) and World Spa – West (WS-W) for detailed study and analyses as shown in figure 4.11. It covers an area of about 7.5 hectares. Two distinct but compatible architectural vocabularies differentiate the designs of both the parts. The project comprises of townhouses (208sqm), 4/5 bedroom apartments (381-462sqm) and penthouses (618-731sqm) spread over 11 towers (6 towers in WS-W and 5 towers in WS-E). Most of the towers are 17 storeyed except for two towers in WS-E that are 13 storeyed. The town houses are G+2 storeyed and constitute just 7.5% of the total dwelling units. The gross population density is 178pph and the residential density is 44DUs/ha.

The high rise towers are of regular shape and are arranged in a systematic manner around central facilities to give a characteristic pattern of development with low building footprint and comparatively large open spaces and landscaped areas as seen in map 4.14. 60% of the area is occupied by open spaces with well-maintained parks and abundant greenery. The vehicular roads are restricted to the periphery with provision of open parking lots along them. Rest of the

parking is in the basement. Pedestrian pathways are well laid out in the open spaces and along roads for easy movement of people.

Map 4.14: Land-use map of World Spa, Sector – 30, Gurugram

Source: Author, 2016

Plate 4.21: Open Spaces and Community Facilities, World Spa, Sector – 30, Gurugram

4.4.2.2 Uniworld City, Gurugram – High Rise High Density Neighbourhood (HRHD)

Uniworld City, a high rise high density neighbourhood is divided into two parts Uniworld – East (UW-E) and Uniworld – West (UW-W) for detailed study and analyses as shown in figure 4.12. It covers an area of about 4 hectares. Here also two distinct but compatible architectural vocabularies differentiate the designs of both the parts. The project comprises of 3/4 bedroom apartments and penthouses ranging from 236-375sqm spread over 11 towers (8 towers in UW-W and 3 towers in UW-E). All the towers are 13-14 storeyed with 2 flats per floor in UW-E and 4 flats in UW-W. The town houses are G+2 storeyed and constitute just 3.7% of the total dwelling units. The gross population density is 735pph and the residential density is 147DUs/ha.

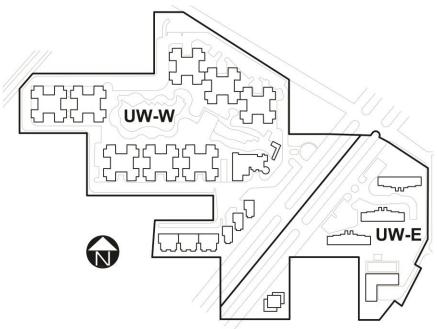
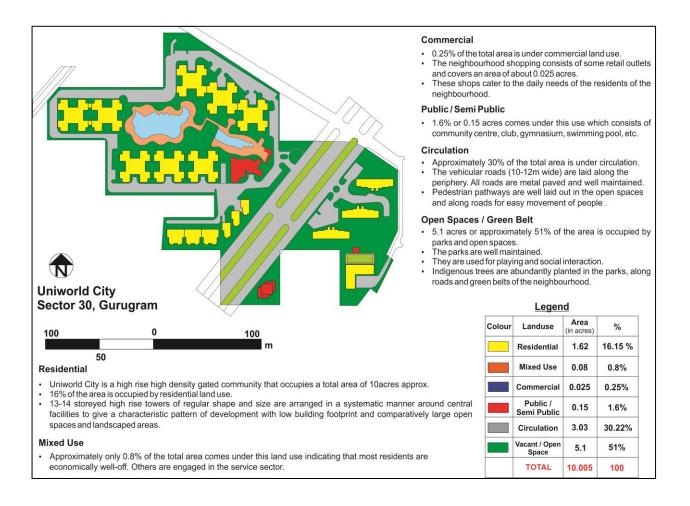
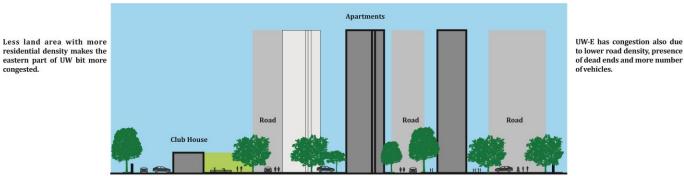



Figure 4.12: Study Units, Uniworld City, Gurugram Source: Author, 2016

The same principles are seen here as far as the planning of the gated community is concerned with central amenities and facilities laid out amongst lush green lawns and abundantly planted landscaped areas as seen in map 4.15 and plate 4.22. However, as the land area is less and the number of dwelling units are more leading to higher gross residential and population density, the eastern part UW-E seems bit congested. However, in terms of intensity of use of spaces, more people are seen to engage in different types of activities in the different spaces provided.

Map 4.15: Land-use map of Uniworld City, Sector – 30, Gurugram

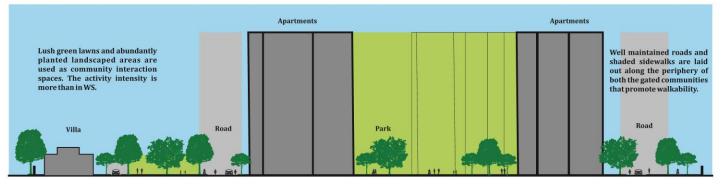
Source: Author, 2016


Plate 4.22: Open Spaces and Community Facilities, Uniworld City, Sector - 30, Gurugram

The key features of both the gated communities are summarised in table 4.3 and figure 4.13.

Table 4.3 Key features of Case Study Neighbourhoods, Gurugram

Brief Description	of the Locality				
World Spa	Uniworld City				
A high rise low density gated community located in Sector-30 along the National Highway NH-8.	A high rise high density gated community located in Sector-30 along the National Highway NH-8.				
Population Density					
178pph	735pph				
Residential Density					
44DUs/ha	147DUs/ha				
Residential Pattern					
HRLD	HRHD				
The project comprises of apartments primarily spread over 11 towers (6 towers in World Spa West and 5 towers in World Spa East). Most of the towers are 17 storeyed except for two towers in World Spa East that are 13 storeyed. The town houses are G+2 storeyed and constitute just 7.5% of the total dwelling units.	The project comprises of 11 towers (8 towers in Uniworld City West and 3 towers in Uniworld City East). The eastern part is more congested than the western part. All the towers are 13-14 storeyed while the town houses are G+2 storeyed and constitute just 3.7% of the total dwelling units.				
Apartment Sizes					
The project comprises of townhouses (208sqm), 4/5 bedroom apartments (381-462sqm) and penthouses (618-731sqm).	The community consists of apartment blocks with 3/4 bedroom apartments and penthouses. Size of DUs varies from 236-375sqm.				
Open Spaces					
Lush green lawns and abundantly planted landscaped areas with shared amenities and facilities covering 60% of the area are used for playing and social interaction.	Lush green lawns and abundantly planted landscaped areas covering 51% of the area are used as community interaction spaces.				
Roads and Sidewalks					
Well maintained roads and sidewalks covering almost 25% area with provision of open parking lots are laid out along the periphery of the gated community.	Well maintained roads and sidewalks covering almost 30% area are laid out along the periphery of the gated community.				
Level of Services					
The level of services is very good with chutes for domestic waste collection, 100% stormwater and sewerage system in operation.					
Miscellaneous					
Both the neighbourhoods are examples of the very commo cities so as to accommodate relatively more people on a pir facilities.					


Source: Author, 2016

Both World Spa (WS) and Uniworld City (UW), Gurugram have favourable environmental quality with similar built environment. UW scores less because of comparatively low BUA/Capita, PGA/Capita and PRL/Capita due to high population and residential density.

Uniworld City East (30'-36' or 10-12 m wide roads) H:W = 1:1 (villas), 4:1 and 5:1 (high rise apartment blocks)

In both the high rise gated communities, towers range from 13-17 storeys while the town houses are G+2 storeyed. Town houses or villas constitute very less percentage of the total dwelling units. Air pollution due to proximity to NH-8 is one of the reasons for lowering the environmental quality.

Uniworld City West (30'-36' or 10-12 m wide roads) H:W = 1:1 (villas) and 5:1 (high rise apartment blocks)

Figure 4.13: Typical Sections, Uniworld City, Gurugram

Source: Author, 2016

4.5 Data Organisation

This stage consists of organising the primary and secondary data in excel sheets using MS Excel 2013 and comparing the same with threshold values from different Standards/Guidelines, Government or Semi Government Documents and Reports like URDPFI 2014; Handbook of Service Level Benchmarking, MoUD, Govt. of India and suggested norms by Government Bodies like Central Pollution Control Board (CPCB), etc. All the data is suitably arranged in four categories of excel sheets namely (i) Crowding and Congestion, (ii) Nature and Use of Open Spaces (iii) Shade-Ventilation, Temperature Variations and Noise Levels; and (iv) Walkability and Level of Cleanliness as indicated in Annexure 2.

4.6 Comparative Analysis and Preliminary Findings

The comparative analyses of the data of the eight neighbourhoods reveal some important associations and trends that are presented in the following pages.

4.6.1 Crowding and Congestion

As stated in Chapter 3, population density is considered as one of the first attributes influencing environmental quality. The probability of crowding and congestion both internal and external increases with higher population densities. Population density along with residential density, built-form characteristics like FAR, plot coverage, etc. and distribution of open spaces, roads etc. help in determining built-up area per capita (BUA/Capita), public ground area per capita (PGA/Capita), paved road length per capita (PRL/Capita) and mobilization factor (M.F.) that are instrumental in ascertaining the level of crowding and congestion in the neighbourhood. The present study tries to understand the relationship between the various density variables (people, building and spatial density) and indicators of neighbourhood crowding and congestion by a comparative and correlation analysis of the varying parameters with changing residential patterns found in the rapidly urbanising case study cities.

The indicators of crowding and congestion are tabulated with population and residential density (people density), FAR and plot coverage (building density) and distribution of open spaces and roads (spatial density) as indicated in table 4.4. The primary values are compared against the threshold values from published sources (as indicated in table 4.4) to ascertain the level of crowding and congestion in the case study neighbourhoods.

Neighbourhood	Population Density (persons/ha)	Residential Density (DUs/ha)	FAR	Plot Coverage (%)	Dist. of Open Spaces (%)	Dist. of Roads (m/ha)	Average BUA/Capita (sqm/person)	Average PGA/Capita (sqm/person)	Average PRL/Capita (m/person)	Average Mobilization Factor (M.F.)
Sector 8, Chandigarh	95	17	1.00	49%	37%	189	94.84	48.99	1.78	1.26
Ranjit Avenue, Amritsar	256	36	1.00	30%	55%	354.38	23.14	20.30	0.99	0.41
World Spa, Gurugram	178	44	2.00	11%	89%	422	88.53	50.56	2.01	0.50
Marble Arch, Manimajra	345	65	1.57	31%	68%	232.79	44.93	23.65	0.67	1.00
Sector 38W, Chandigarh	441	76	2.00	70%	30%	403	28.45	10.36	0.68	1.36
Sector 20, Panchkula	540	98	2.00	35%	65%	179	22.23	19.36	0.33	0.85
Uniworld City, Gurugram	735	147	2.03	15%	85%	192	27.97	7.56	0.57	0.75
Katra Dullo, Amritsar	641	149	3.00	85%	15%	737	47.62	2.43	0.56	1.96
						Threshold Values	20-30	12	0.91	≤1
						Source of Information	Analyzing Urban Layouts - SB Patel 2011	URDPFI 2014	Amritsar Master Plan 2010-2031	Environment Quality Indicators- WIT Press 2000

Table 4.4: People Density, Building Density and Spatial Density; and Indicators of Crowding and Congestion*

Legend:

Less than threshold value	Within range or equal to threshold value	More than threshold value	

* Refer Annexure 2, Data Sheet 1 - Data Sheet 7

The data indicates that generally the built-up area per capita (BUA/Capita), public ground area per capita (PGA/Capita) and paved road length per capita (PRL/Capita) decrease with increasing people density (population density and residential density) as seen in figure 4.14, 4.15 and 4.16. The association is strongest and statistically significant between residential density and public ground area per capita (PGA/Capita) with p<0.05. Since the study finds similar relationships of residential densities and population densities, therefore findings mainly describe residential densities in dwelling units per hectare (DUs/ha).

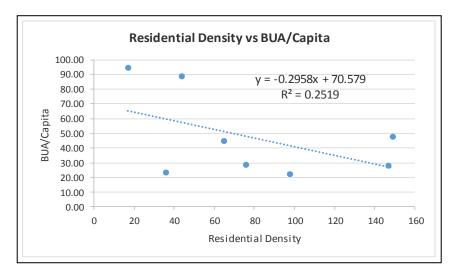


Figure 4.14: Residential Density versus BUA/Capita

Figure 4.15: Residential Density versus PGA/Capita

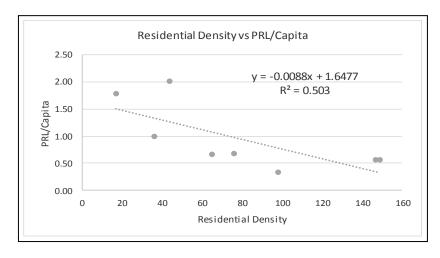
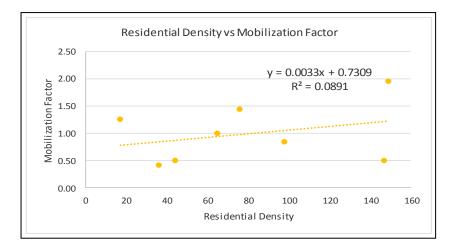



Figure 4.16: Residential Density versus PRL/Capita

The study also indicates that there is generally no internal crowding as the average built-up area per capita (BUA/Capita) values either are within the range (20-30sqm/person) or are well above the required norms. However, there is external crowding particularly in Katra Dullo, Amritsar – LRHD neighbourhood because of very low public ground area per capita (PGA/Capita) of 2.43sqm/person and low paved road per length per capita (PRL/Capita) of 0.56m/person. Congestion on roads is also observed in Uniworld City, Gurugram – HRHD and Sector-20, Panchkula – MRHD neighbourhood with paved road length per capita (PRL/Capita) of 0.57m/person and 0.33m/person respectively. Even though there is significantly less association between residential density and mobilization factor as indicated in figure 4.17, increasing on-street parking causes congestion in the internal streets as denoted by the higher mobilization factor in Sector-8 (1.26) and Sector-38W (1.36), Chandigarh and Katra Dullo (1.96), Amritsar.

		Environmental Quality Indicators					
			BUA per Capita	PGA per Capita	PRL per Capita	Mobilization Factor	
	Population	Pearson Correlation	480**	752**	718**	.179	
ple	Density	Sig. (2-tailed)	.000	.000	.000	.156	
People Density	Residential	Pearson Correlation	312 [*]	695**	633**	.280 [*]	
	Density	Sig. (2-tailed)	.012	.000	.000	.025	
5	FAR	Pearson Correlation	060	585**	487**	.455**	
Building Density	FAR	Sig. (2-tailed)	.640	.000	.000	.000	
Suil	Plot	Pearson Correlation	.015	464**	265*	.448**	
	Coverage	Sig. (2-tailed)	.904	.000	.034	.000	
	Dist. of Open	Pearson Correlation	287*	.336**	047	472**	
	Spaces	Sig. (2-tailed)	.022	.007	.713	.000	
>	Dist. of	Pearson Correlation	109	474**	151	.181	
Density	Roads	Sig. (2-tailed)	.392	.000	.234	.153	
Dei	Domestic	Pearson Correlation	068	.410**	.235	387**	
<u>a</u>	Waste	Sig. (2-tailed)	.594	.001	.062	.002	
Spatial	Stormwater	Pearson Correlation	064	.413**	.238	390**	
S	Drainage	Sig. (2-tailed)	.616	.001	.059	.001	
	Sowerage	Pearson Correlation	071	.417**	.243	401**	
	Sewerage	Sig. (2-tailed)	.578	.001	.053	.001	

Table 4.5: Correlation between Density and Crowding and Congestion

Note: Significant correlations (p<0.01 and p<0.05) are highlighted, positive in green and negative in red

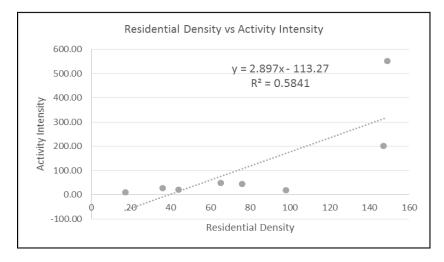
**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

The building density in terms of FAR and plot coverage show significant negative correlation with public ground area per capita (PGA/Capita) and paved road length per capita (PRL/Capita) whereas positive correlation with mobilization factor as indicated in table 4.5. This implies that as FAR and plot coverage increase the PGA/Capita and PRL/Capita tend to decrease while the congestion on the roads tends to increase with higher mobilization factor.

The spatial density variables indicate that as the distribution of open spaces and roads increases, the public ground area per capita (PGA/Capita) varies accordingly. The increase in open spaces also reduces congestion as more people walk within the neighbourhood using the sidewalks and pedestrian pathways. This is particularly noticed in the gated communities. Good level of services ensures neat and clean roads and open spaces thus reducing congestion as shown by the negative correlation with mobilization factor and more PGA/Capita indicated by the positive correlation.

4.6.2 Nature and Use of Open Space


The nature and use of open space is measured using a score that signifies the type (park, playground, square, etc.) and condition of the space in terms of maintained, unattended or encroached; percentage tree cover, activity intensity and activity diversity as explained in the literature review and as indicated in table 4.6. It is seen that generally the gated communities have better condition of open spaces and tree cover as compared to other neighbourhoods. The activity intensity is highest in Katra Dullo, Amritsar and Uniworld City, Gurugram both having high population and high residential density thus indicating a positive correlation between people density and activity intensity as seen in figure 4.18. The similar results are also observed for values of activity diversity thus suggesting that more people engage in different activities and greater social interaction happens in high density neighbourhoods.

Neighbourhood	Population Density (persons/ha)	Residential Density (DUs/hectare)	Type & Condition of Open Space (score)	Tree Cover (%)	Activity Intensity (persons/ha)	Activity Diversity (score)
Sector 8, Chandigarh	95	17	0.24	28%	11	0.04
Ranjit Avenue, Amritsar	256	36	0.30	49%	28	0.05
World Spa, Gurugram	178	44	0.52	41%	20	0.10
Marble Arch, Manimajra	345	65	0.44	35%	48	0.14
Sector 38W, Chandigarh	441	76	0.36	23%	45	0.03
Sector 20, Panchkula	540	98	0.31	25%	19	0.03
Uniworld City, Gurugram	735	147	0.52	41%	201	0.15
Katra Dullo, Amritsar	641	149	0.20	3%	552	0.12

Table 4.6: People Density and Indicators of Nature and Use of Open Space*

* Refer Annexure 2, Data Sheet 8 - Data Sheet 14

The correlation analysis between density variables and indicators of nature and use of open space as indicated in table 4.7 shows the above mentioned associations and hence indicates that nature and use of open spaces varies with residential patterns. Activity intensity increases with increase in population density, residential density, FAR and plot coverage as expected. Activity diversity also shows an increasing trend with increasing residential density. However, both show negative correlation with better distribution of services as a result of higher PGA/Capita in the cleaner and maintained neighbourhoods. The condition of open spaces is best in the gated communities with higher distribution of open spaces and tends to decrease with increasing plot coverage. The tree cover decreases with increasing population density,

residential density, FAR and plot coverage but increases with the amount/distribution of open spaces, shaded sidewalks and maintained open spaces as a result of good services.

Figure 4.18: Residential Density versus Activity Intensity

Table 4.7: Correlation between Density and Nature and Use of Open Spaces

Note: Significant correlations (p<0.01 and p<0.05) are highlighted, positive in green and negative in red

			Envir	onmental C	Juality Indicat	tors
			Type & Cond. of Open Space	Tree Cover	Activity Intensity	Activity Diversity
	Population Density	Pearson Correlation	078	532**	.445**	.145
ople nsity	Population Density	Sig. (2-tailed)	.540	.000	.000	.253
People Density		Pearson Correlation	112	626**	.577**	.277*
	Residential Density	Sig. (2-tailed)	.378	.000	.000	.027
9	FAR	Pearson Correlation	160	581**	.515**	.213
Building Density	FAN	Sig. (2-tailed)	.207	.000	.000	.092
Build	Plot Coverage	Pearson Correlation	295*	635**	.549**	.118
	FIOL COVERAGE	Sig. (2-tailed)	.018	.000	.000	.352
2	Dist. Of Open Spaces	Pearson Correlation	.484**	.520**	506**	154
Density	Dist. Of Open Spaces	Sig. (2-tailed)	.000	.000	.000	.225
De	Sidewalks	Pearson Correlation	007	.434**	325**	004
tial	Sidewalks	Sig. (2-tailed)	.953	.000	.009	.972
Spatial	Domestic Waste	Pearson Correlation	.302*	.550**	738**	474**
S	Domestic Waste	Sig. (2-tailed)	.015	.000	.000	.000

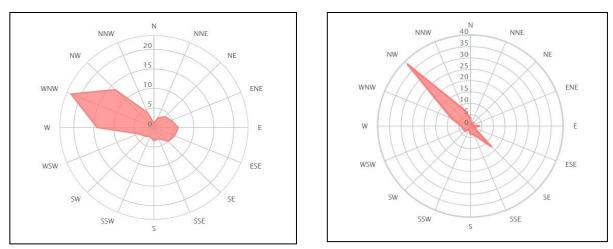
**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

4.6.3 Shade and Ventilation

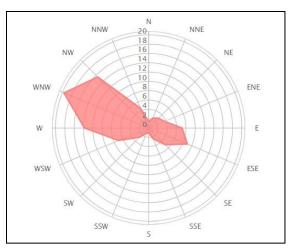
The study also endeavours to take note of the variables like building height to road width ratio and street orientation in the representative neighbourhoods to assess shade, ventilation and temperature variations. The amount of direct radiation received by a building and the street in an urban area is determined by the street width and its orientation. The buildings on one side of the street tend to cast a shadow on the street and on the opposite building, by blocking the sun's radiation. Thus the width of the street can be relatively narrow or wide depending upon whether the solar radiation is desirable or not. For instance in walled city Amritsar where Katra Dullo (a traditional neighbourhood) is located most of the streets are narrow with buildings shading each other as seen in map 4.3 that reduce the solar radiation, street temperature and heat gain of the buildings. This is however not the case in Ranjit Avenue as seen in map 4.4 and many of the other neighbourhoods that are laid out in a regular/grid form or in the gated communities where each block is considerable distance away from the other block and mutual shading of buildings or shading of neighbourhood streets is minimal. For the present study, onsite observations are undertaken and the shade is objectively measured in terms of shade rating and ventilation is measured as a score as given below:

• **Shade Rating** is based on number of hours of shade provided by trees and buildings in a study unit. Average of all the units gives shade rating for the locality.


(Source:	https://www.student.cs.uwaterloo.ca/~cs132/Pro	ject/200501/Shade.html)

No. of	hours of shade	Shade Rating
< 2	Sunny	1
2-5	Partially Shady	3
≥6	Shady	5

• Ventilation Score is based on orientation of street network. It is crucial because the potential for a comfortable outdoor life and passive climatic response in the built form follows from it. (Source: Koenigsberger et.al. 1973)

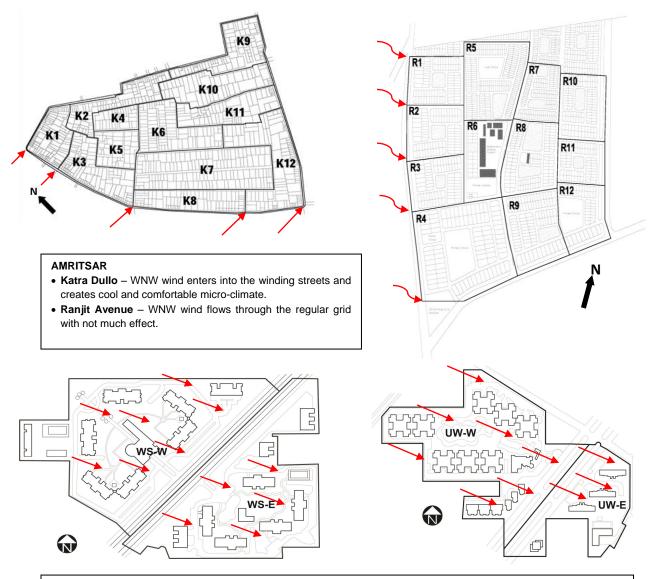

Street Type	Score	Criteria	
⊥ or // Grid	1	Maximum radiation and minimum shade that negates the effect of wind.	
		Minimum radiation, reduces effect of stormy winds, establishes shadow space throughout the day that provides a cool and comfortable micro-climate.	
Diagonal Grid5Less radiation and better shade enhancing the micro climationdynamic movement of air and hence outdoor ventilation.		Less radiation and better shade enhancing the micro climate. Supports dynamic movement of air and hence outdoor ventilation.	

The wind rose diagrams of Amritsar²⁶, Chandigarh²⁷ and Gurugram²⁸ as shown in figure 4.19 are taken into consideration to ascertain the predominant wind direction especially in the hot and humid weather (June-September) and relate it with the orientation of the roads/streets of the study neighbourhoods to aid in the calculation of the ventilation score.

Predominant Wind Direction, Amritsar

Predominant Wind Direction, Chandigarh

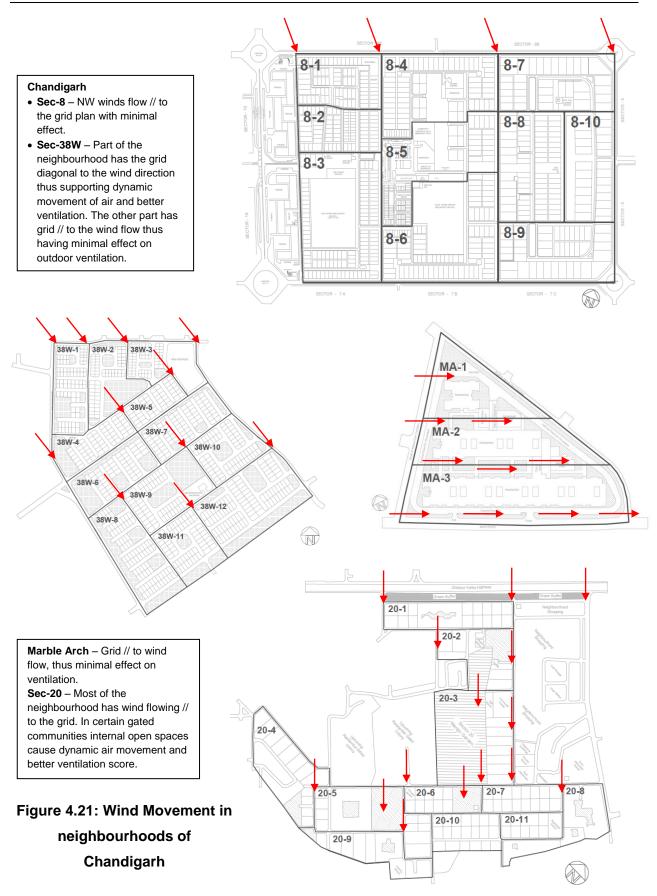
Predominant Wind Direction, Gurugram


Figure 4.19: Wind Rose Diagrams

²⁶ Retrieved from <u>https://www.windfinder.com/windstatistics/amritsar_airport</u> on 21 June 2017

²⁷ Retrieved from <u>https://www.windfinder.com/windstatistics/chandigarh</u> on 21 June 2017

²⁸ Retrieved from <u>https://www.windfinder.com/windstatistics/delhi_indira_gandhi_airport</u> on 21 June 2017


It is observed from the wind rose diagrams that in Amritsar and Gurugram, the predominant wing direction is from West North West to East South East. In case of Chandigarh, the predominant direction is from North West to South East. Now superimposing the predominant wind direction on the neighbourhood map and considering no major obstructions around, the following conclusions can be drawn as indicated in figure 4.20 and 4.21:

Gurugram

- World Spa Dynamic air movement created in the western part because of obstruction to the flow of wind as a result of the tall towers. The effect is less in the eastern part.
- Uniworld City Wind flows past the tall towers in the western part. The height and placement enhances the wind especially in the eastern part.

Figure 4.20: Wind Movement in neighbourhoods of Amritsar and Gurugram

Two tables (table 4.8 and table 4.9) are shown below to illustrate the calculation of Shade Rating and Ventilation Score of Katra Dullo and Ranjit Avenue, Amritsar. Similar tables are also generated for the other neighbourhoods as indicated in Annexure 2.

	KATRA DULLO, AMRITSAR						
UNIT OF STUDY		Ventilation					
	Building Ht. to Street Width Ratio (H/W)	No. of hours of Shade	SHADE RATING	SCORE			
1	2:1, 5:1, 7.5:1	5	3	3			
2	2:1, 5:1, 7.5:1	5	3	3			
3	2:1, 5:1, 7.5:1	5	3	3			
4	5:1, 7.5:1	6	5	3			
5	5:1, 7.5:1	6	5	3			
6	5:1, 7.5:1	6	5	3			
7	5:1, 7.5:1	6	5	3			
8	2:1, 5:1, 7.5:1	5	3	3			
9	2:1, 5:1, 7.5:1	5	3	3			
10	2:1, 5:1, 7.5:1	5	3	3			
11	2:1, 5:1, 7.5:1	5	3	3			
12	2:1, 5:1, 7.5:1	5	3	3			
		MEAN	4	3			

 Table 4.8: Shade Rating and Ventilation Score of Katra Dullo, Amritsar

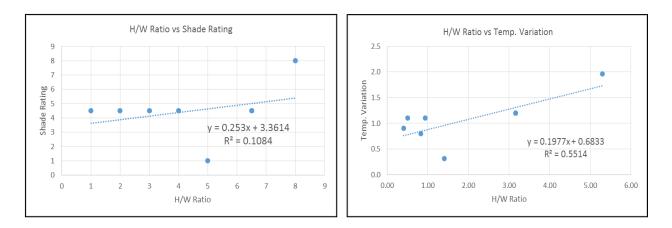
UNIT OF STUDY	TYPE OF PLOTS	RANJIT AVENUE, AMRITSAR					
			Ventilation				
		Building Ht. to Road Width Ratio (H/W)	No. of hours of Shade	SHADE RATING	SCORE		
R4	1K	1:1.5	2-5hrs	3	1		
R1	1K/10M	1:1	2-5hrs	3	1		
R2	1K/10M	1:1	2-5hrs	3	1		
R3	1K/10M	1:1	2-5hrs	3	1		
R9	1K/10M	1:1.5, 1:1	2-5hrs	3	1		
R8	10M	1:1	2-5hrs	3	1		
R12	1K/8M	1:1	2-5hrs	3	1		
R10	8M	1:1	2-5hrs	3	1		
R11	8M	1:1	2-5hrs	3	1		
R5	6M	1:1	2-5hrs	3	1		
R6	Flatted	1:1.5	2-5hrs	3	1		
R7	10/4M	1:1	2-5hrs	3	1		
			MEAN	3	1		

4.6.4 Temperature variations within and outside the neighbourhood

The arrangement of buildings and open spaces in a neighbourhood affect the radiation falling on the building surfaces, streets, roads etc. These in turn heat or cool the air temperature and have considerable effect on the micro-climate. The same principle works in case of the study neighbourhoods. For example, in Katra Dullo, Amritsar it is observed that as a result of higher shade rating, ambient temperatures measured with the RH Temperature Data Logger at street level in July 2014 within the neighbourhood are almost 2 degrees lower than surrounding areas. Similarly, the presence of trees filter the sunlight, reduce air temperature by evaporation, protect smaller plants on the ground and reduce glare from bright overcast skies. In most of the other neighbourhoods, because of the presence of parks, playgrounds and trees, the temperatures are about 1 degree lower than the surrounding areas as seen in table 4.10. Overall it is noted that the ambient temperatures in Ranjit Avenue, Sector-8, Sector-38W, Marble Arch, World Spa and Uniworld City are lesser because of presence of trees in these neighbourhoods. Thus, both shade and naturalness increase the outdoor comfort conditions for the residents especially during the summer months. The table 4.10 shows the temperature values for Katra Dullo and Ranjit Avenue, Amritsar.

Katra Dullo			Ranjit Avenue			
UNIT OF STUDY	Within Neighbourhood	Outside Neighbourhood	UNIT OF STUDY	TYPE OF PLOTS	Within Neighbourhood	Outside Neighbourhood
	Observations	Observations at 4-5 random locations			Observations	Observations at 6-7 random locations
1			R4	1K	27.2°C	
2	28.1°C	30.1°C	R1	1K/10M	31.3°C	31.6°C
3	28.1°C	30.0°C	R2	1K/10M	31.3°C	
4			R3	1K/10M	29.9°C	31.6°C
5	28.0°C		R9	1K/10M	32.6°C	33.1°C
6			R8	10M	32.6°C	33.1°C
7	27.8°C	30.0°C	R12	1K/8M	32.1°C	
8			R10	8M	31.6°C	
9	27.8°C	29.7°C	R11	8M	32.1°C	32.1°C
10			R5	6M	31.3°C	
11	28.1°C	29.9°C	R6	Flatted	31.6°C	31.6°C
12			R7	10/4M	31.2°C	33.1°C
Average Temp. =	27.98°C	29.94°C		Average Temp. =	31.2°C	32.3°C
Mean Temperature Difference		1.96°C		Mean Temperature Difference		1.1°C

Table 4.10: Mean temperature difference within and outside the neighbourhood, Amritsar


The average shade rating and ventilation scores w.r.t. the density variables is tabulated for all the neighbourhoods as shown in table 4.11 below:

Neighbourhood	Residential Density (DUs/ha)	FAR	Plot Coverage (%)	Building Height to Road Width (Ratio)	Dist. Of Open Spaces (%)	Tree Cover (%)	Shade Rating	Ventilation Score	Temp. Variation (°C)
Sector 8, Chandigarh	17	1.00	49%	0.40	37%	28%	3.00	1.00	0.9
Ranjit Avenue, Amritsar	36	1.00	30%	0.93	55%	49%	3.00	1.00	1.1
World Spa, Gurugram	44	2.00	11%	3.17	89%	41%	3.00	4.00	1.2
Marble Arch, Manimajra	65	1.57	31%	0.50	68%	35%	3.00	1.00	1.1
Sector 38W, Chandigarh	76	2.00	70%	0.83	30%	23%	3.00	2.00	0.8
Sector 20, Panchkula	98	2.00	35%	1.40	65%	25%	1.00	1.00	0.3
Uniworld City, Gurugram	147	2.03	15%	3.17	85%	41%	3.00	3.00	1.2
Katra Dullo, Amritsar	149	3.00	85%	5.30	15%	3%	4.00	3.00	2.0

Table 4.11: Density variables and Indicators of Shade, Ventilation andTemperature Variation*

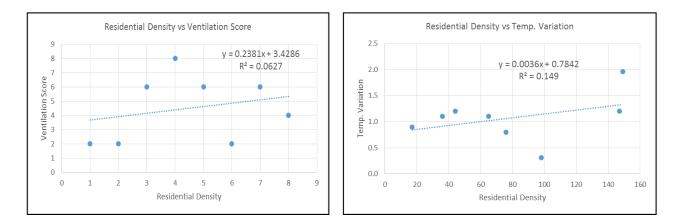
* Refer Annexure 2, Data Sheet 8 - Data Sheet 21

This is followed by a correlation analysis to ascertain the association between the density variables and indicators of environmental quality. The correlation analysis (as indicated in table 4.12) shows that there is significant association between building height to road width ratio and shade rating. This means that as the height to width ratio increases, the shade also increases in the neighbourhood as seen in figure 4.22. This is particularly observed in case of Katra Dullo, Amritsar, World Spa and Uniworld City, Gurugram.

Table 4.12: Correlation between Density and Shade, Ventilation and

Temperature Variation

Note: Significant correlations (p<0.01 and p<0.05) are highlighted, positive in green and negative in red


			Environmental Quality Indicators					
			Shade Rating (Spearman's rho)	Ventilation Score (Spearman's rho)	Temperature Variation (Pearson Correlation)			
le ity		Correlation Coeff.	.050	.446**	.410**			
People Density	Residential Density	Sig. (2-tailed)	.410	.000	.001			
	FAR	Correlation Coeff.	.105	.351**	.569**			
Building Density	FAR	Sig. (2-tailed)	.079	.000	.000			
Build	Plot Coverage	Correlation Coeff.	.055	.199**	.516**			
	Flot Coverage	Sig. (2-tailed)	.359	.001	.000			
sity	Height to Width	Correlation Coeff.	.477**	.735**	.781**			
Den	Ratio	Sig. (2-tailed)	.000	.000	.000			
Spatial Density	Dist. of Open	Correlation Coeff.	229**	.226**	617**			
Spa	Spaces	Sig. (2-tailed)	.000	.000	.000			
Quality Indicator	Tree Cover	Correlation Coeff.	.061	.036	320**			
Qu Indi		Sig. (2-tailed)	.307	.547	.010			

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

The correlation matrix also substantiates the above findings by showing significant positive correlation between residential density, FAR, height to width ratio and ventilation and temperature variations as seen in figure 4.23 and figure 4.24. This happens because as the built-form becomes more compact with narrow street widths, the wind speeds increase as a result of the tunnel effect. Also because of the considerably higher shade hours, the temperature variations within and outside the neighbourhood are enhanced.

The negative correlation between the distribution of open spaces, tree cover and temperature variations seen in figure 4.25 validate the point that presence of naturalness and greenery regulates the temperatures, reduces fluctuations and helps in creating a comfortable microclimate.

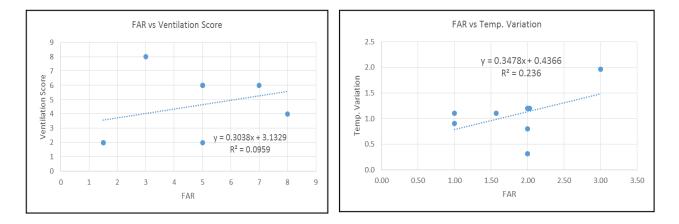


Figure 4.24: FAR versus Ventilation Score and Temperature Variation

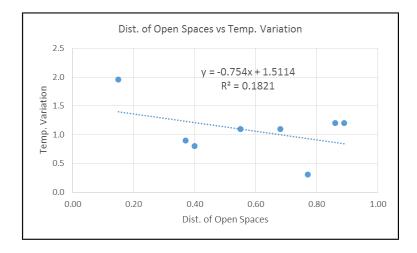


Figure 4.25: Distribution of Open Spaces versus Temperature Variation

4.6.5 Noise Levels

To control the generation of noise by various sources in the environment, the Central Pollution Control Board (CPCB), under the Ministry of Environment and Forests, Government of India, has set sound standards for different categories of areas (residential, commercial, industrial and silence zones), separately for day-time and at night as indicated in table 4.13.

Table 4.13: Sound Standards for different categories of areas for day time and night time

Area code	Category of area/zone	Limits in dB(A) leq*			
		Day time	Night time		
(A)	Industrial area	75	70		
(B)	Commercial area	65	55		
(C)	Residential area	55	45		
(D)	Silence zones	50	40		

*dB(A) Leq denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Source: Central Pollution Control Board, India

Source: Central Pollution Control Board, Govt. of India.

The present study uses the Smartphone DeciBel Android Application to record the noise at entry / exit points, inner areas and peripheral roads of all the neighbourhoods. From the recorded values, the average noise level of each of the neighbourhoods is calculated and tabulated as in table 4.14:

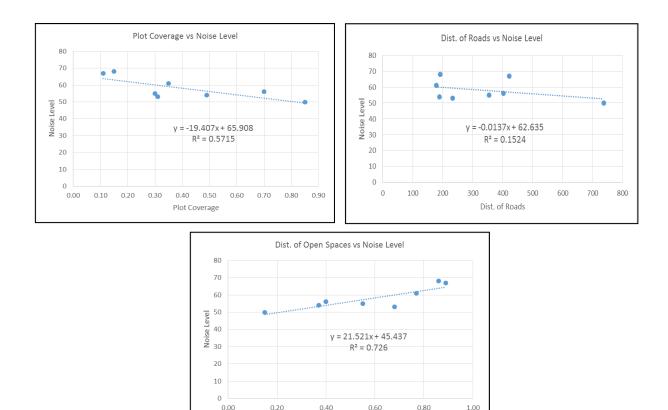
Neighbourhood	Population Density (persons/ha)	Residential Density (DUs/hectare)	FAR	Plot Coverage (%)	Dist. of Open Spaces (%)	Dist. of Roads (m/ha)	Average Noise Level (dB)
Sector 8, Chandigarh	95	17	1.00	49%	37%	189	54
Ranjit Avenue, Amritsar	256	36	1.00	30%	55%	354.38	65
World Spa, Gurugram	178	44	2.00	11%	89%	422	67
Marble Arch, Manimajra	345	65	1.57	31%	68%	232.79	53
Sector 38W, Chandigarh	441	76	2.00	70%	30%	403	56
Sector 20, Panchkula	540	98	2.00	35%	65%	179	61
Uniworld City, Gurugram	735	147	2.03	15%	85%	192	68
Katra Dullo, Amritsar	641	149	3.00	85%	15%	737	50

* Refer Annexure 2, Data Sheet 15 - Data Sheet 21

As per the conceptual framework (table 3.9, Chapter 3), sound is expected to vary mainly with distribution of roads and open spaces. It is also expected to have an association with people and building density based on the assumption that more people or dwelling units will imply more traffic in the neighbourhood and hence more noise. Higher FAR and plot coverage is also expected will have the same impact.

Table 4.15: Correlation between Density and Noise Levels

Note: Significant correlations (p<0.01) are highlighted, positive in green and negative in red


			Environmental Quality Indicator
			Noise Level
	Population Density	Pearson Correlation	048
ple isity	Population Density	Sig. (2-tailed)	.706
People Density	Pagidantial Danaity	Pearson Correlation	129
	Residential Density	Sig. (2-tailed)	.311
)	FAR	Pearson Correlation	233
dinç isity	FAR	Sig. (2-tailed)	.063
Building Density	Plot Coverage	Pearson Correlation	526**
	Plot Coverage	Sig. (2-tailed)	.000
	Diet of Open Space	Pearson Correlation	.642**
atial Isity	Dist. of Open Spaces	Sig. (2-tailed)	.000
Spatial Density	Dist. of Roads	Pearson Correlation	458**
		Sig. (2-tailed)	.000

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

However, the correlation matrix as indicated in table 4.15 shows some unexpected associations. While there is no significant association between people density, FAR and noise levels; there is significant association of plot coverage, distribution of open spaces and roads with noise level as indicated in figure 4.26. It is found that noise level tends to decrease with increase in plot coverage and distribution of roads and increase with distribution of open spaces, both situations contrary to the assumptions. This may be because in compact neighbourhoods with high plot coverage, people tend to generally walk for their daily needs and short trips. Even the presence of more road length per hectare, does not prompt them to use their motorized vehicles thus lowering the noise levels. This is particularly observed in Katra Dullo, Amritsar and Sec-38W, Chandigarh. On the other hand, noise levels show positive correlation with distribution of open spaces because the following neighbourhoods: Sec-20, Panchkula; World Spa and Uniworld

City, Gurugram even though have considerable parks and open spaces are situated along major roads where noise levels are high (>60dB). Thus, location of the neighbourhood in the city becomes an important factor for average noise levels irrespective of the distribution of open spaces. It is also observed that many of the neighbourhoods have lower noise levels (46-55dB) inside the locality. The lower level may be due to the presence of trees and vegetation that also contribute to the decrease (Naturvardsverket, 1996). Soft ground and vegetation also decrease the noise levels. Because of the presence of parks and playgrounds, this is particularly experienced in the inner areas of Ranjit Avenue, Amritsar and Sec-8 and Marble Arch, Chandigarh with average day time noise levels of 48dB inspite of vehicular traffic. Vegetation also contributes by shielding the visual intrusion of traffic and thus making it less disturbing (Bolund and Hunhammar, 1999). Evergreen trees like Indian Devil Tree, Mango, Jamun, Ashok, Peepal, etc. found abundantly in these neighbourhoods help in this regard.

Dist. of Open Spaces

4.6.6 Level of Cleanliness

The level of cleanliness is assessed on the basis of three factors namely domestic waste management, provision of storm water drainage and sewage network. As per the Handbook of Service Level Benchmarking of the Ministry of Urban Development, Govt. of India; 100% of the road length should be attended by primary/secondary solid waste collection service and covered by storm water drainage; and all properties should be connected to the sewage network to achieve and maintain cleanliness in the locality. The study showed that the situation in Katra Dullo, Amritsar is especially bad with the average values of the cleanliness indicator, drainage indicator and sewage indicator being 59%, 53% and 35% respectively as indicated in table 4.16. Open drains are a common sight in Katra Dullo. Only 30-35% houses are connected to the underground sewage system laid by the municipal corporation. Storm water drains are choked with solid waste that lead to water-logging in central areas of Katra Dullo. Inspite of door to door collection of solid waste, foul and filthy conditions prevail in most parts as people dispose the waste near door fronts, junctions and community spaces which are further littered by stray dogs and cattle.

a . 1	Domestic V	Naste Mgmt.	Storm-w	vater Drainage	Sewage Network			
Study Unit	Road length attended	Cleanliness Indicator	Road length covered	Drainage Indicator	Total no. of properties	No. of properties connected	Sewage Indicator	
K1	140	0.70	120	0.60	97	39	0.40	
K2	98	0.70	56	0.40	78	31	0.40	
K3	154	0.70	88	0.40	77	31	0.40	
K4	82.5	0.50	66	0.40	30	8	0.25	
K5	75	0.50	75	0.50	33	8	0.25	
K6	115	0.50	138	0.60	79	20	0.25	
K7	321	0.50	321	0.50	90	27	0.30	
K8	205.8	0.60	172	0.50	71	28	0.40	
K9	258	0.60	258	0.60	65	26	0.40	
K10	166.2	0.60	166	0.60	45	18	0.40	
K11	181.2	0.60	181	0.60	50	20	0.40	
K12	261.6	0.60	262	0.60	60	24	0.40	
	Avg. Value =	59%	Avg. Value =	53%	775	Avg. Value =	35%	
		100%		100%			100%	
	Threshold Value	Handbook of Service Level Benchmarking, MoUD, GOI		Handbook of Service Level Benchmarking, MoUD, GOI			Handbook of Service Level Benchmarking, MoUD, GOI	

Table 4.16: Level of Services in Katra Dullo, Amritsar

The rest of the neighbourhoods have good quality services with average values of the cleanliness indicator, drainage indicator and sewage indicator all being 100% as shown in Annexure 2. The services cater to the existing population and generally provide a neat and clean environment for the people to stay. Occasionally, solid waste and garden waste is seen littered near the community bins and along sidewalks that create filthy conditions and have a negative impact on the neighbourhood environmental quality. This situation is observed in certain parts of Ranjit Avenue, Amritsar; Sec-8 and Sec-38W, Chandigarh; and Sec-20, Panchkula, Chandigarh.

Table 4.17: Correlation between Density and Level of Cleanliness

Note: Significant correlations (p<0.01 and p<0.05) are highlighted, positive in green and negative in red

			Environmental Quality Indicator
			Level of Cleanliness
	Population	Pearson Correlation	278 [*]
ple sity	Density	Sig. (2-tailed)	.026
People Density	Residential	Pearson Correlation	385**
	Density	Sig. (2-tailed)	.002
y	Domestic Waste	Pearson Correlation	.675**
nsit		Sig. (2-tailed)	.000
Spatial Density	Stormwater	Pearson Correlation	.655**
atial	Drainage	Sig. (2-tailed)	.000
Spa	Soworogo	Pearson Correlation	.677**
	Sewerage	Sig. (2-tailed)	.000

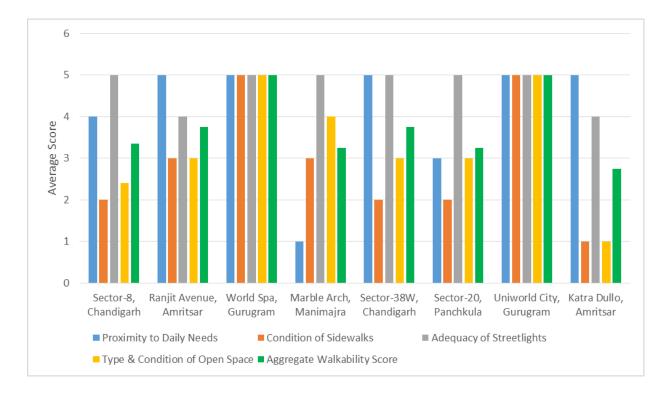
**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

The correlation matrix clearly indicates that with rise in population and residential density and poor distribution of services or inadequate services as in Katra Dullo, Amritsar; the level of cleanliness is low as indicated by the negative correlation. On the other hand good distribution of services and regular maintenance and upkeep of the neighbourhood ensure higher level of cleanliness as indicated by the positive correlation. Therefore, there is significant correlation between density and neighbourhood environmental quality based on level and adequacy of services as seen in table 4.17.

4.6.7 Walkability

Physical environment is associated with physical activity in the form of walking/cycling for transport. Approaches to urban design termed Smart Growth and New Urbanism have emerged in response to the need to improve air quality, solve traffic congestion and promote better overall quality of life (Frank, 2000; Jackson et al., 2002 and Chen, 2000). Various studies have demonstrated associations between physical variables of the built environment such as density, connectivity, proximity, land use mix and walkability. Other potential environmental correlates of non-motorized transport that have shown a significant effect on neighbourhood walkability are presence and quality of sidewalks/bicycle lanes/trails; park characteristics, tree canopy and topography; cost, location and availability of parking (lots); weather and crime.


Based on the above understanding, the walkability of all the neighbourhoods is assessed in terms of proximity to daily needs, condition of sidewalks, adequacy of streetlights and type and condition of open spaces. Average scores for each of the variables is calculated as Very Good =5, Good =4, Average =3, Bad =2 and Poor =1. The observations are tabulated in table 4.18 and are plotted as a bar chart as shown in figure 4.27.

Indicators of Walkability										
		Average Score								
Neighbourhood	Proximity to Daily Needs	Condition of Sidewalks	Adequacy of Streetlights	Type & Condition of Open Space	Aggregate Walkability Score					
Sector-8, Chandigarh	4	2	5	2	3					
Ranjit Avenue, Amritsar	5	3	4	3	4					
World Spa, Gurugram	5	5	5	5	5					
Marble Arch, Manimajra	1	3	5	4	3					
Sector-38W, Chandigarh	5	2	5	4	4					
Sector-20, Panchkula	3	2	5	3	3					
Uniworld City, Gurugram	5	5	5	5	5					
Katra Dullo, Amritsar	5	1	4	2	3					

Table 4.18: Average Scores of Indicators of Walkability*

* Refer Annexure 2, Data Sheet 22 – Data Sheet 28

The bar chart clearly indicates that average walkability score or neighbourhoods that are more walkable are those that have better proximity to daily needs, good condition of sidewalks and open spaces.

Figure 4.27: Walkability indicators in different case study neighbourhoods

It also shows that neighbourhoods where daily needs are within 1/2km distance encourage people to walk. However, Katra Dullo, Amritsar fares badly as there are no sidewalks along the wider roads on the periphery and inner streets are narrow and congested because of rickshaws, cycles and scooters; on-street parking; and garbage dumps creating filthy conditions for people to walk. Most of the street lights are not in working condition thus rendering it unsafe to walk after sunset. The poor quality/nature of spaces and absence of parks etc. is also a major hindrance to the creation of a walkable neighbourhood. On the other hand, though Ranjit Avenue, Amritsar and Sec-8, Chandigarh have tree lined shaded avenues that inspire people to walk, the absence of continuous sidewalks hampers the experience and curbs peoples' wish to walk. Also wider roads promote fast traffic jeopardizing the safety of the pedestrians. Marble Arch (Manimajra), Chandigarh scores less because of the distance to daily needs and Sec-20 (Panchkula), Chandigarh has average score because of the bad and discontinuous sidewalks. In Sec-38W, Chandigarh; World Spa and Uniworld City, Gurugram; proximity to daily needs and parks and open spaces encourage people to walk, jog, relax and interact within these spaces thus adding to the overall environmental quality. The comparatively high height to width ratio (3.17) in World Spa and Uniworld City, Gurugram also adds to the aggregate walkability score.

The correlation matrix as indicated in table 4.19 shows that there are significant positive associations between height to width ratio, distribution of open spaces and sidewalks, streetlight density, distribution of services and neighbourhood walkability. However, there is significant negative correlation between distribution of roads and neighbourhood walkability. Therefore, as the shade due to higher H/W ratio, naturalness due to open spaces, amount of sidewalks, safety due to streetlights and cleanliness increases in the neighbourhood as a result of better services like efficient solid waste management, good storm water drains and proper sewerage system, people are encouraged to walk and generally adopt walking for their daily needs and short trips within and in the immediate surroundings of their neighbourhood.

Table 4.19: Correlation between Density and Neighbourhood Walkability

Note: Significant correlations (p<0.01 and p<0.05) are highlighted, positive in green and negative in red

			Environmental Quality Indicator
			Aggregate Walkability Score
	Height to Width Ratio	Pearson Correlation	.145*
		Sig. (2-tailed)	.015
	Dist of Open Space	Pearson Correlation	.447**
	Dist. of Open Spaces	Sig. (2-tailed)	.000
	Dist. of Roads	Pearson Correlation	139 [*]
Density	Dist. Of Roads	Sig. (2-tailed)	.020
SU6	Sidewalks	Pearson Correlation	.751**
	Sidewalks	Sig. (2-tailed)	.000
patial	Streetlight Density	Pearson Correlation	.197**
oat		Sig. (2-tailed)	.001
S	Domestic Waste	Pearson Correlation	.353**
	Domestic Waste	Sig. (2-tailed)	.000
	Stormwater Drainage	Pearson Correlation	.340**
		Sig. (2-tailed)	.000
	Sewerage	Pearson Correlation	.347**
	Cewerage	Sig. (2-tailed)	.000

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

4.6.8 Air Quality

Central Pollution Control Board (CPCB), New Delhi has been monitoring ambient air quality in 224 cities/towns in 26 states and 5 union territories under National Ambient Air Quality Monitoring Programme (NAAQMP) through 544 ambient air quality monitoring stations. These stations have been set up for primarily monitoring Respirable Suspended Particulate Matter (RSPM), Sulphur dioxide (SO₂) and oxides of Nitrogen (NO_x).

One of the major areas of environmental concern in cities is that of rising air pollution levels as a result of increasing personalized modes of transport and intermediate modes of transport such as auto rickshaws in the absence of efficient public transportation system. For example, in Amritsar 60% of goods vehicles are auto rickshaws (2.43% of total registered vehicles). Most of these vehicles use kerosene as the fuel thus creating air pollution. The personalized vehicles are also responsible for creating congestion and pollution on roads. Apart from automobile pollution, the other major source of air pollution in the city is industrial emission of gases. The various industrial units like rice shellers, and other scattered industries in the cities release intensive air pollutants into the atmosphere, which even affect the environment of the surrounding residential areas. In addition another major source of air pollution in the city consists of pollution from developmental activities, handling and burning of municipal and domestic waste and from agriculture waste burning etc. With a view to clearly assess and monitor the status and quality of ambient air in Indian cities, several monitoring stations in different parts of the city i.e. industrial, residential and commercial zones are established and managed by Central Pollution Control Board and its zonal offices (CPCB), State Pollution Control Board (SPCB) and Pollution Control Committees (PPC). The data collected from these monitoring stations with respect to RSPM₁₀, SO₂ and NO_x reflects much higher RSPM₁₀ levels in the air in both residential and commercial areas against the permissible limit of 60µg/m³ indicating poor quality of air in these areas. With regard to the level of SO₂ and NO_x, it has been found that the observed values are generally below the prescribed standards in all the areas as indicated in table 4.20.

Neighbourhood	Population Density (persons/ha)	Residential Density (DUs/ha)	Dist. of Open Spaces (%)	Dist. of Roads (m/ha)	Level of Services (Score)	SO ₂ (μg/m ³⁾	NO _x (µg/m ³)	RSPM ₁₀ (µg/m ³)	Source
Sector 8, Chandigarh	95	17	37%	189	2.7	2	20	101	NAAQM Report 2012
Ranjit Avenue, Amritsar	256	36	55%	354.38	2.33	15	40	210	NAAQM Report 2012
World Spa, Gurugram	178	44	89%	422	3	6.73	15.67	112.71	HSPCB 2015-17
Marble Arch, Manimajra	345	65	68%	232.79	3	2	19	110	NAAQM Report 2012
Sector 38W, Chandigarh	441	76	30%	403	2.67	2	18	103	NAAQM Report 2012
Sector 20, Panchkula	540	98	65%	179	2.55	6.42	23.68	53.93	HSPCB 2015-17
Uniw orld City, Gurugram	735	147	85%	192	3	6.73	15.67	112.71	HSPCB 2015-17
Katra Dullo, Amritsar	641	149	15%	737	1.42	8.24	32.59	81.22	CPCB 2017
				Threshold Value		50	40	60	

Table 4.20: Density variables and Indicators of Ambient Air Quality

The present study considers monitoring stations lying in the airshed²⁹ at a distance of 1-3kms from the study neighbourhoods. In case of absence of a nearby monitoring station, the annual average values of SO₂, NO_x and RSPM₁₀ for the city are considered. For Amritsar, Vinod Milk Chilling Station is considered as the monitoring station for Katra Dullo lying in the airshed at a distance of approximately 1.5km. For Ranjit Avenue, observations at A-One Platers about 1km away are considered. Similarly, in case of Chandigarh, Institute of Microbial Technology (IMTECH), Sector-39 is considered for Sector-38W and Sector-17 lying across Madhya Marg is considered for Sector-20, Panchkula is assigned values obtained from Haryana State Pollution Control Board's (HSPCB) monitoring station in Sector-6, Panchkula. For the neighbourhoods of Gurugram – World Spa and Uniworld City, Sector-30, HSPCB's IIFCO Chowk (junction) monitoring station at a distance of 2.44km is considered.

It is observed that SO₂ levels are well within permissible limits in all the neighbourhoods due to various measures taken such as reduction of sulphur in diesel etc. and use of LPG as domestic fuel. Also, conversion of diesel vehicles to CNG may have contributed to reduction in ambient SO₂ levels. However, Ranjit Avenue has higher SO₂ levels because of use of diesel generators by commercial establishments and more number of vehicular traffic in the neighbourhood.

The NO_x levels though on the higher side are within permissible limits in all the neighbourhoods. There is no significant difference between the neighbourhoods due to various measures taken for vehicular pollution control such as stricter vehicular emission norms etc.

RSPM₁₀ levels are much higher than the permissible limits in almost all the neighbourhoods. The reasons for high particulate matter levels in most of the neighbourhoods are increasing private vehicles, re-suspension of traffic dust and dust from road sweeping, construction activities, use of generators in commercial establishments and residences, etc.

The correlation matrix as indicated in table 4.21 restates that with increase in population density and residential density or compact neighbourhoods with less dependence on vehicular traffic; air quality improves as shown by the negative correlation or decreasing values of RSPM₁₀. The

²⁹ An airshed is a part of the atmosphere that behaves in a coherent way with respect to the dispersion of emissions. It typically forms an analytical or management unit. Also: A geographic boundary for air quality standards. Source: <u>https://en.wikipedia.org/wiki/Airshed</u>

increase in road distribution (m/ha) suggests more vehicles on the roads per unit area which in turn increases NO_x values as shown by the positive correlation. Increase in NO_x deteriorates the air quality and subsequently the overall environmental quality of the place.

The level of services also show significant association with indicators of air quality. As the level of services increases with better solid waste collection, the values of the indicators decrease as shown by the negative correlation. This further implies better air quality. In this context, poor level of services causing foul smell from littered garbage, smoke from 'bhattis'³⁰ of sweet shops, household and street dust, etc. especially trapped within the narrow streets of Katra Dullo, Amritsar affect the quality of air and deteriorate the environmental quality.

Table 4.21: Correlation between Density and Indicators of Air Quality

Note: Significant correlations (p<0.01 and p<0.05) are highlighted, positive in red and negative in green

			Environmental Quality Indicators			
			SO ₂	NOx	RSPM ₁₀	
sity	Population Density	Pearson Correlation	.069	.066	399**	
Dens	Population Density	Sig. (2-tailed)	.585	.603	.001	
People Density	Posidential Density	Pearson Correlation	.015	.052	490**	
Pe	Residential Density	Sig. (2-tailed)	.906	.685	.000	
	Dist. of Open	Pearson Correlation	.081	207	.040	
sity	Spaces	Sig. (2-tailed)	.527	.101	.753	
Dens	Dist of Boods	Pearson Correlation	.209	.355**	020	
Spatial Density	Dist. of Roads	Sig. (2-tailed)	.098	.004	.877	
Sp	Domostia Wasta	Pearson Correlation	158	362**	.277*	
	Domestic Waste	Sig. (2-tailed)	.212	.003	.027	

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

³⁰ Tandoor and Bhatti are not used for indoor cooking at homes. Tandoor is a community clay oven used for fee in the neighborhoods. Bhatti is a large stove made with bricks and clay to cook foods in bulk. Bhatti is used by professional cook (Halwai - confectioners and sweet makers) for large gatherings such as wedding. Most of the cooking over Bhatti is done in very large Karahi (A bowl-shaped frying pan with two handles used in Indian cookery). Wood and charcoal are used for fuel. Most of the restaurants use a combination of Tandoor and Bhatti.

4.7 Concluding Remarks

The present chapter identifies eight neighbourhoods based on height of buildings and population density from the three case study cities of Amritsar, Chandigarh and Gurugram and presents a detailed study of the same along with the study of the relationship between the different density variables and indicators of neighbourhood environmental quality. The size of the neighbourhoods vary from 4 to 105 hectares approximately.

Traditionally formed Katra Dullo from walled city Amritsar is chosen as an example of low-rise high density neighbourhood whereas planned area Ranjit Avenue located outside the walled city is selected as an example of low rise medium density neighbourhood. Four neighbourhoods are selected from Chandigarh, namely, Sec-8, Sec-38W, Marble Arch, Manimajra and Sec-20, Panchkula. They are examples of low rise low density, low rise high density, medium rise medium density and medium rise high density neighbourhoods respectively. Finally, two gated communities are selected from Gurugram – World Spa and Uniworld City, both located in Sec-30 as examples of high rise low density and high rise high density neighbourhood.

A detailed visual survey followed by organisation of primary and secondary data and study and analyses based on the conceptual framework as indicated in table 3.9, Chapter 3 and correlation coefficient analyses yield the following results:

- a) The correlation coefficient analyses show that significant relationships (both positive and negative) exist between the density variables and indicators of neighbourhood environmental quality.
- b) Crowding and congestion increase with increase in people density. Higher FARs and plot coverage reduce the public ground area per capita (PGA/Capita) and paved road length per capita (PRL/Capita) and aggravate congestion on roads as indicated by the increase in mobilization factor. In the present study, it is seen that as the residential density increases from 20DUs/hectare to 150 DUs/hectare approximately, FAR from 1 to 3 and plot coverage from 15% to 80-85%, the PGA/Capita falls from 35sqm/person to less than 10sqm/person. Similarly, the PRL/Capita reduces from over 2m/person to less than 0.55m/person thus indicating increasing crowding and congestion and deteriorating environmental quality.
- c) People engage in community activities and group interaction because of the type and condition of the open spaces. Activity intensity increases from 11persons/hectare to

more than 500persons/hectare with increase in people density and building density. Activity diversity also shows an increasing trend (0.03 to 0.15) with increasing residential density from 50DUs/hectare to 150DUs/hectare with a few exceptions thus suggesting that more people engage in different activities and greater social interaction happens in high density neighbourhoods.

- d) Other aspects like presence and condition of sidewalks, streetlights, outdoor furniture, level of cleanliness, etc. determine peoples' desire to reside, walk and utilize spaces.
- e) The arrangement of buildings and open spaces in a neighbourhood affect the radiation falling on the building surfaces, streets, roads etc. These in turn heat or cool the air temperature and have considerable effect on the micro-climate. The compact and organically woven urban form of the old city in Amritsar especially as compared to the grid iron or regular plan of the new areas is more comfortable for the residents during the summer months because of the higher shade rating (average value=4 on a scale of 1-5) and lower temperatures (almost 2°C) within the neighbourhood as compared to the surroundings. The study also shows that there is significant association between building height to road width ratio and shade rating. This means that as the height to width ratio increases, the shade also increases in the neighbourhood. This is particularly observed in case of Katra Dullo, Amritsar, World Spa and Uniworld City, Gurugram with building height to road width ratio≥3 and shade rating=3 and in some cases≈4.
- f) Similarly, the presence of trees filter the sunlight, reduce air temperature by evaporation, protect smaller plants on the ground and reduce glare from bright overcast skies. In most of the neighbourhoods, because of the presence of parks and playgrounds (55%-90%); and trees (varying from 30%-50%), the temperatures are about 1 degree lower than the surrounding areas. The negative correlation between the distribution of open spaces, tree cover and temperature variations validate the point that presence of naturalness and greenery regulates the temperatures, reduces fluctuations and helps in creating a comfortable microclimate. Thus, both shade and naturalness increase the outdoor comfort conditions for the residents especially during the summer months.
- g) It is observed that noise levels tend to be in the prescribed range (50-55dB) for residential areas with increase in plot coverage (30%-85%) and distribution of roads (180-750m/hectare), both situations contrary to the assumptions. This may be because in compact neighbourhoods with high plot coverage, people tend to generally walk for

their daily needs and short trips. Even the presence of more road length per hectare, does not prompt them to use their motorized vehicles thus lowering the noise levels. The presence of vegetated open spaces also helps in ameliorating noise pollution in the neighbourhood.

- h) Good level of services and regular maintenance and upkeep of the neighbourhood ensure higher level of cleanliness as seen in most the case study neighbourhoods.
- i) Proximity to daily needs, good condition of sidewalks and open spaces helps in creating walkable neighbourhoods. It is seen that there is significant positive correlation between level of services and neighbourhood walkability. Neighbourhoods with score≥3 for the level of services and other indicators on a 5 point scale are more walkable and hence sustainable. Therefore, as the cleanliness increases in the neighbourhood as a result of better services like efficient solid waste management, good storm water drains and proper sewerage system, people are encouraged to walk for their daily needs and short trips within and in the immediate surroundings of the neighbourhood.
- j) Air quality is affected by the amount of roads, vehicles and congestion on roads, types of activities and appliances used, etc. More number of vehicles and smoke generating appliances imply more pollution and deterioration of air quality. The increase in people density or in compact neighbourhoods with less dependence on vehicular traffic; air quality improves as shown by the decreasing values of RSPM₁₀ in Katra Dullo, Amritsar. The increase in road distribution (m/ha) suggests more vehicles on the roads per unit area which in turn increases NO_x values as found in Ranjit Avenue, Amritsar. Increase in NO_x deteriorates the air quality and subsequently the overall environmental quality of the place. In this context, efforts are required to further develop a tool and monitoring methods/equipment for residential neighbourhoods, mixed-use localities, etc. similar to the Comprehensive Environmental Pollution Index (CEPI) for industrial clusters (CPCB, 2009) to gauge the impact on people and the neighbourhood environment in addition to assessing the environmental pollution levels (air, surface water and land).
- k) Level of services also have an impact on air quality. As the level of services increases with better solid waste collection, the values of NO_x and SO₂ decrease. This further implies better air quality. Certain smells like foul smell from littered garbage, household and street dust, dust from development activities, etc. also affect the quality of air and deteriorate the environmental quality.

Thus, it can be concluded that most of the neighbourhood environmental quality indicators have significant correlations with the density variables as indicated in table 4.22 below. This validates the conceptual framework (table 3.9, Chapter 3) between the two types of variables and points assertively towards the research hypothesis that density impacts environmental quality in residential neighbourhoods.

Density	Environmental Quality Indicators											
Density Variables	Crowding & Congestion	Nature and use of Open Spaces	Shade & Ventilation	Temp. Variations	Noise Levels	Level of Cleanliness	Neighbourhood Walkability	Air Quality				
Population Density	Negative (65%)	Positive (44.5%)				Negative (27.8%)		Positive (39.9%)				
Residential Density	Negative (54.66%)	Positive (57.7%)	Positive (44.6%)	Positive (41%)		Negative (38.5%)		Positive (49%)				
FAR, Plot Coverage	Negative (20.56%)	Positive (53.2%)	Positive (27.5%)	Positive (54.25%)	Negative (52.6%)							
Height to Width Ratio			Positive (60.6%)	Positive (78.1%)			Positive (14.5%)					
Distribution of Open Spaces	Positive (33.6%)	Negative (50.6%)		Negative (61.7%)	Positive (64.2%)		Positive (44.7%)					
Distribution of Roads and	Negative				Negative		Negative (13.9%)	Negative				
Sidewalks	(47.4%)				(45.8%)		Positive (75.1%)	(35.5%)				
Distribution of Services	Positive (41.33%)	Negative (60.6%)				Positive (66.9%)	Positive (30.92%)	Positive (36.2%)				
Stron	ng Correlation	(>40%)	Wea	ak Correlatio	n (≤40%)	Empty Cells	– No Apparent C	orrelation				

Table 4.22: Summary of Correlation Analysis

References:

- Atal Mission for Rejuvenation and Urban Transformation (AMRUT) (2015), Ministry of Housing and Urban Affairs, Government of India. [online] Available at: <u>http://amrut.gov.in/</u> [Accessed 6 November 2016].
- Bolund, P. and Hunhammar, S. (1999) Ecosystem services in urban areas. *Ecological Economics*, 29, 293-301.
- 3. Central Pollution Control Board (CPCB) (2009) *Comprehensive Environmental Assessment of Industrial Clusters*. New Delhi: Ministry of Environment and Forests (MoEF). [online] Available at:

http://cpcb.nic.in/divisionsofheadoffice/ess/NewItem_152_Final-Book_2.pdf [Accessed 20 June 2015].

- 4. Chen, D.D.T. (2000) The science of smart growth. *Scientific American*, 283, 60–67.
- 5. Frank, L.D. (2000) Land use and transportation interaction: Implications on public health and quality of life. *Journal of Planning Education and Research*, 20, 6–22.
- Heritage City Development and Augmentation Yojana (HRIDAY) (2015), Ministry of Housing and Urban Affairs, Government of India. [online] Available at: http://moud.gov.in/upload/uploadfiles/files/Guidelines%20HRIDAY.pdf [Accessed 6 November 2016].
- Jackson, R.J., and Kochtitzky, C. (2002) Creating a Healthy Environment: The Impact of the Built Environment on Public Health. *Centre for Disease Control and Prevention, Sprawl Watch Clearinghouse Monograph Series*. [online] Available at: <u>http://www.sprawlwatch.org/health.pdf</u> [Accessed 15 April 2015].
- 8. Koenigsberger, O., Ingersoll, T. G., Mayhew, A. and Szokolay, S.V. (1973) *Manual of tropical housing and building Climatic design*. Hyderabad: Universities Press (India) Private Limited.
- 9. Kuo, F.E., and Sullivan, W.C. (1998) Fertile Ground for Community: inner-city neighbourhood common spaces. *American Journal of Community Psychology*, 26 (6), 823–851.
- 10. Lansing, J.B., and Marans, R.W. (1969) Planner's notebook: evaluation of neighbourhood quality. *Journal of the American Institute of Planners (AIP Journal)*, May, 195–199.
- Malini, R.S. (1987) Residential Densities and Living Conditions in a Metropolis A Case Study. PhD. Dissertation, Institute for Social and Economic Change, Bangalore.
- 12. Malhotra, M. (2013) Imageability of Walled Cities Case Study of the Walled City of Amritsar. *Report of Principles of Urban Design*. M.Arch, Chitkara University, Punjab.
- Nasar, J. L. (1988) Perception and evaluation of residential street scenes. In J. L. Nasar (Ed.), *Environmental aesthetics: Theory, research and applications* (pp. 275–289). NY: Cambridge University Press.
- 14. Naturevardsverket, (1996) Vagtrafikbuller. Nordiska berakningsmodeller (Roadnoise Nordik calculation models). *Report 4653,* Stockholm, p.110 (in Swedish).
- 15. Singh, K. and Singh, R.S.J. (2007) Tourism Potential and Tourist Infrastructure in Amritsar. *ITPI Journal*, 4 (1), 58-66.
- Town and Country Planning Organization (TCPO), Government of India, Ministry of Urban Development (MoUD) (2011) Concept Note on Chandigarh and its Region, October 2011. [online] Available at: <u>http://tcpomud.gov.in/Divisions/MUTP/Concept_Note_Chandigarh.pdf</u> [Accessed 13 June 2012].
- World Wide Fund for Nature (WWF) (2010) Urbanisation and Sustainability in India: An Interdependent Agenda. *The Alternative Urban Futures Report 2010*. [online] Available at: <u>http://assets.wwfindia.org/downloads/urbanisation_report.pdf</u> [Accessed 12 January 2011].

Chapter Five

ASSESSING NEIGHBOURHOOD ENVIRONMENTAL QUALITY

5.1 Introduction

This chapter details out the process of objectively assessing the (aggregated) neighbourhood environmental quality of each of the case study neighbourhoods using the multi-criteria approach and henceforth formulating the environmental quality index (EQI) for classifying the neighbourhoods based on the level of environmental quality. The environmental quality index is further used to generate illustrative maps for each of the neighbourhoods showing sections with extremely favourable, very favourable, quite favourable, favourable, average, unfavourable, quite unfavourable, very unfavourable and extremely unfavourable environmental quality. Any number of neighbourhoods can be analysed to generate the environmental quality scores and the process can be applied to entire cities thus enabling the identification of areas with good, average and poor environmental quality at the city level. It can further help in conducting cross-case comparisons and help rank cities based on the environmental quality in the residential neighbourhoods.

The chapter also consists of generating environmental quality profiles of the case study neighbourhoods. Environmental Quality Profile (EQP) is an effective way of graphically representing the different attributes of the concept (neighbourhood environmental quality, in this case) and communicating them easily using a polar/radar chart **(Khattab, 1993)**.

The final section of the chapter consists of correlating the people density, building density and spatial density **(Cheng, 2010)** with (aggregated) neighbourhood environmental quality so as to identify the associations between the two and understand the variation in environmental quality with change in residential pattern.

5.2 The Multi-criteria Approach for assessing Environmental Quality and Formulation of the Environmental Quality Index (EQI)

All the variables identified in table 2.11, Chapter 2 and as given below in table 5.1, are converted into Standardized Z-scores using IBM SPSS Statistics 22 (Statistical Package for Social Sciences). They are then merged together (averaged) to get the ZAEQ (Standardized Aggregated Environmental Quality) values for each of the study units of a neighbourhood as

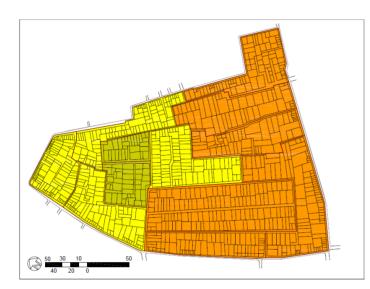
indicated in table 5.2). The average of the ZAEQ values of the different study units of a neighbourhood gives the Aggregated Neighbourhood Environmental Quality (ANEQ) value. The aggregated neighbourhood environmental quality (ANEQ) values derived from standardized z-scores lie between -1 and +1 as seen in table 5.4. The range from -1 to +1 is suitably divided into nine equal intervals starting from extremely favourable to extremely unfavourable with ±0.00 as the mid-point. This helps in generating the Environmental Quality Index (EQI) as indicated in table 5.3. Based on the EQI, the study units as well as the overall neighbourhood can be classified as having extremely favourable, very favourable, quite favourable, favourable, average, unfavourable, quite unfavourable, very unfavourable or extremely unfavourable environmental quality. Thus, the Aggregated Neighbourhood Environmental Quality (ANEQ) values consider all the parameters/variables/criteria to give objective values of environmental quality. Hence, the approach is referred to as the multi-criteria approach for assessing environmental quality.

		1	Built-up Area per Capita (BUA/Capita)		
		2	Public Ground Area per Capita (PGA/Capita)		
1.	Crowding and Congestion	3	Paved Road Length per Capita (PRL/Capita)		
		4	Mobilization Factor (M.F.)		
		5	Type & Condition of Open Space		
2	Nature and Use of Open Spaces	6	Tree Cover		
2.	Nature and Use of Open Spaces	7	Activity Intensity		
		8	Activity Diversity		
3.	Shade and Ventilation	9	Shade Rating		
з.	Shade and ventilation	10	Ventilation Score		
4.	Temperature Variations	11	Mean Temperature Difference		
5.	Noise Level	12	Average Noise Levels		
6.	Cleanliness	13	Level of Cleanliness		
		14	Proximity to Daily Needs		
7.	Walkability	15	Condition of Sidewalks		
1.	Walkability	16	Adequacy of Streetlights		
		17	Type & Condition of Open Space		
		18	NO _x		
8.	Air Quality	19	SO ₂		
		20	RSPM ₁₀		
	Therefore, ZAEQ =	Sum of Standardized Z-scores of Criteria 1-20			

Table 5.1: EQ Indicators and List of parameters/variables/criteria to assess ZAEQ

bit definition bit definition	58365 .16 58365 .03	
9.792 9.1959 1.9999 1.9274 2.2978 7.909 3.002 1.0483 7.7076 5.9877 4.9455 5.9171 5.9479 5.9473 5.9493 3.330 7.6248 1.0554 1.5595 1.5597 1.5597 1.9485 1.5797 5.9577 4.9455 5.9577 4.9455 3.3300 7.6248 1.0554 .82704 .66999 1.29704 3.2704 3.2704 3.2704 3.2704 3.2704 3.2704		
1924 -0.9011 -7.9393 1.13707 -2.2034 1.43709 3.002 1.13797 2.0289 1.13709 4.0439 4.9350 -9.9473 3.3380 7.7244 1.41701 -5.0953 -5.4543 -1.13707 -4.2094 1.13707 1.2024 1.13709 2.22738 1.04633 1.7978 2.00464 1.9749 4.0455 -9.9439 3.3380 7.7244 1.3964 -3.7916 3.8912 -9.6913 1.3724 1.3724 1.3724 1.04633 1.7978 2.00464 1.9749 4.0455 -9.6433 3.3380 7.7244 1.3924 -8.9570 -1.6433 1.3724 1.3724 1.3724 3.002 1.04633 1.7978 -1.0708 -5.6477 4.0455 -9.69370 -9.4433 3.3380 7.7244 20202 -6.96949 1.69939 -6.0904 3.3724 -5.7374 4.0455 -5.9577 4.0455 -5.9570 -9.4433 3.3380 7.7244 21044 -5.8472 -5.9644		
47-01 -0.0553 -55433 -1.1370 -0.0113 7000 10621 122069 2.2778 10.4583 17.1787 -2.0844 -1.17409 4.4465 -9.370 -9.4499 3330 77244 1.3764 88338 1.98959 -1.5320 1.37204 15307 -41129 2.2778 1.0458 1.77877 -2.08444 1.47409 44955 5.9517 4.4955 5.9517 -44045 5.9517 -44045 5.9517 -44439 3.3300 77624 20200 85556 01014 -1.53204 1.53204 1.5300 1.1249 3.0822 1.0458 1.75976 -1.12476 -55477 4.4955 -9.3570 -9.4439 3.3300 77624 2.3144 48470 06998 1.99590 26261 1.07170 1.59877 -1.17499 4.49455 -2.27332 -9.4439 3.3300 77624 3.1824 47204 .67393 .3012 47174 1.05481 1.75767 -1.5799 -1.17499	58365 .02	
13964	58365 .28	
17774	58365 .28	
92000	58365 .06	
10054 97420 -00954 38812 -4.7303 4.3724 32833 4.3970 5.0927 -1.1275 -5.5477 4.4455 -9.3570 -9.4439 33800 77248 21144 -4.8457 -65086 -1.5724 -0.0357 -5.9479 -1.57087 -1.57087 -1.9749 A4455 -2.7253 -9.4439 33300 77248 32278 00568 65758 1.99599 65070 -1.9749 A4455 -2.7253 -9.4439 33300 77248 82907 .06672 07588 83762 27461 1.6614 43256 41129 30082 62750 1.0719 14486 .65647 .44455 .5.9570 .68915 1.7545 1.62647 77740 .30052 52750 1.0719 .14486 .5.5477 .44455 .4.27532 .68915 1.7545 1.62647 5017 .42255 .116255 .52547 .4.2455 .8111 .68615 .75455 .5.6477 .444	5836509	
1144 64870 66899 1.99999 20021 -1.37204 0.9102 01493 1.75876 -1.50867 -1.97499 4.4945 9.439 33380 776246 33278 .68044 47553 3.8812 36079 -1.37204 .07531 .43370 .50082 1.04583 1.75878 9.3280 .4.1479 .44455 .85191 9.4439 .33360 .76246 8207 .06672 07568 8.5762 27461 1.66114 .43235 .41129 .30082 .6.2750 .10719 .14466 .85474 .44655 .2.7332 .68915 1.76346 1.6247 .77479 .40001 .30412 .83762 .27461 1.6614 .46534 .5082 .10719 .02899 .8544 .49455 .2.7332 .68915 1.76346 1.62647 .250517 .43675 .9114 .545649 .50814 .00082 .62750 .10719 .05862 .55477 .49455 .55191 .75246 <	5836512 5836505	
33278 .80946 .46528 1.95690 .65000 .413724 .67134 .112949 .30022 .1.04633 .1.7978 .1.9789 .4.9455 .2.7232 .9.4439 .33300 .772248 .18265	5836524	
0.9872 0.9672 0.9758 -8.3762 -2.7461 1.6014 -4.3225 -4.1129 30082 -6.270 1.0719 -1.6496 86544 4.9455 -2.9732 6.8915 1.78345 1.62047 -7.7739 4.0001 3.0412 -3.3762 -2.7461 1.06114 -4.5514 3.0082 -6.2750 1.0719 0.2059 3.8544 4.9455 2.72332 6.6915 1.76345 1.52647 -5.5507 -4.2255 1.16228 -3.27441 1.5614 -4.2469 -0.7089 3.0082 -6.2750 1.0719 0.2699 3.8544 4.9455 8.5191 6.8915 1.76345 1.52647 -5.5015 -4.3764 -4.0575 3.1014 -4.1129 3.0082 -6.2750 1.0719 2.18547 4.9455 8.5191 6.8915 1.76345 1.52647 -5.5015 -4.3764 -4.0575 3.1052 -7.7141 1.5651 -4.7263 .71719 2.18562 -5.5477 4.9455 8.5191 6.89151 1.76345 <td>5836524</td>	5836524	
-7.7480 20062 1.1903 -8.3762 -2.7461 1.00316 -4.479 3.0082 -6.2750 1.0719 .16466 -5.5477 4.9455 2.72332 6.8915 1.76345 1.62847 9739 .40601 .30412 -8.3762 -2.7461 1.6614 -4.6499 -0.0769 30082 -6.2750 1.0719 .02699 .86544 .49455 2.7332 .68915 1.76345 1.62847 50517 -3.2384 .555247 4.0575 .91194 -2.7461 .16584 .39810 .41129 .30082 -62750 .10719 .35892 .55477 .49455 .85191 .68915 1.76345 1.62847 56414 .435033 .7335 -97382 .27461 .9084 .35832 .24109 .30082 .62750 .10719 .56477 .49455 .85191 .68915 1.76345 1.62847 63931 .07613 .19114 .97382 .27461 .16503 .44753 .27169 .30082 .627	5836509	
-79739 40801 30412 -83762 -27761 16141 -46849 -56149 30082 -62750 10719 0.2689 86544 49455 -27232 68915 1.76345 1.82847 -25505 .45284 .53524 -1.0052 .67719 .59853 .30101 .41129 .30082 .62750 .10719 .32862 .55477 .49455 .85191 .68915 1.76345 1.62647 .50515 43764 40057 .91194 .27461 .15561 .2815 .07089 .30082 .62750 .10719 .21852 .55477 .49455 .85191 .68915 .176345 1.82647 .56614 30303 .73335 .97332 .27461 .56537 .10719 .16496 .55477 .49455 .85191 .68915 .176345 1.82647 .69031 07613 19144 97332 .27461 .15601 47533 26170 .10719 .16496 .86544 .49455 39570	1.9261820	
-25505 .45265 1.16288 92144 .58450 .98540 .42469 .07089 .30082 .62750 .10719 .02899 .86544 .49455 .85191 .68915 1.76345 1.62647 50617 32384 .53524 .100525 .67719 .59833 39101 41129 .30082 62750 .10719 56477 .49455 .85191 .68915 1.76345 1.62647 56414 35033 73335 97382 27461 90034 35332 24109 .30082 62750 .10719 56477 .49455 .85191 .68915 1.76345 1.62647 .68031 07613 .10114 97382 27461 45533 41129 .30082 62750 .10719 .16496 65447 .49455 93570 .68915 1.76345 1.62647 80210 57675 02765 93778 27461 .116503 42533 7169 62750 .10719 .16496 </td <td>1.9261837</td>	1.9261837	
50617 32384 .53524 -1.00525 .67719 .59933 39101 .4.1129 .30082 .62750 .10719 36692 55477 49455 .85191 68915 .1.76345 1.62647 50515 43764 40575 91194 27461 02215 07089 0002 62750 .10719 16895 55477 49455 .85191 9439 1.76345 1.62647 69391 07613 19114 97332 27461 0033 42553 41129 .30082 62750 .10719 16496 55477 49455 85191 68915 1.76345 1.62647 69391 07613 19114 97382 27461 1.1561 47523 75169 0022 62750 .10719 16496 68544 94455 3570 68915 .1.76345 1.62647 79064 01854 23809 83762 27461 1.66114 45588 58149	1.9261827	
-50515 43764 40575 .91194 27461 1.15561 28215 07089 .30082 62750 .10719 .21895 56477 .49455 .85191 94339 1.76345 1.62647 66144 36033 .7.335 97382 27461 .90284 36822 27409 .30082 62750 .10719 16496 55477 .49455 .85191 .68915 1.76345 1.62647 60210 .57675 02005 .92144 27461 1.1561 47523 75169 .30082 62750 .10719 .16496 .86544 .49455 .93370 .68915 1.75345 1.62647 75087 28313 .20765 .97382 27461 1.66114 .45358 58149 .30082 .62750 .10719 .16496 .55477 .49455 .8191 .94391 1.76345 1.62647 .75087 .49854 .49055 61750 .10719 .16496 55477 .49455	1.9261805	
56414 35033 7.73355 97382 27461 .90284 .35832 24109 .30082 62750 .10719 35692 55477 .49455 .85191 .68915 1.76345 1.62647 69391 07613 19114 97382 27461 .7063 42553 41129 .30082 62750 .10719 16496 55477 .49455 .85191 .68915 1.76345 1.62647 60701 57675 20765 97382 27461 1.5601 47533 20765 97382 27461 1.6014 45588 62750 .10719 16496 65477 .49455 2322 94439 1.76345 1.62647 70064 .01854 23809 83762 27461 1.6114 45588 58149 .30082 62750 .10719 16496 55477 .49455 85191 94139 .176345 1.62647 75037 1601 38667 38762 <	1.9261809 1.9261840	
69391 07613 19114 97382 27461 .70063 42553 41129 .30082 62750 .10719 16496 .55477 .49455 .85191 .68915 1.76345 1.62647 80210 .57675 02605 92144 27461 1.15601 47523 75169 .30082 62750 .10719 16496 .86544 .49455 93570 .68915 1.76345 1.62647 75087 28313 20765 97382 27461 1.66014 45358 .58149 .30082 62750 .10719 16496 .86544 .49455 .23191 .68915 1.76345 1.62647 75904 .01654 .23809 83762 27461 1.66114 45358 .5419 .30082 62750 .10719 .16496 .55477 .49455 .85191 94439 .162647 75930 16011 .38667 83762 56450 .34676 22046 .95029 .3008	1.9261816	
80210 57675 02605 92144 27461 1.15561 47523 75169 30082 62750 10719 16496 86544 49455 93370 68915 1.76345 1.62647 75087 28313 20765 97382 27461 1.56003 40588 41129 .30082 62750 .10719 16496 86544 49455 27332 94439 1.76345 1.62647 75087 16001 83667 83762 27461 1.66114 45358 58149 30082 62750 .10719 16496 56477 49455 27332 94439 1.76345 1.62647 75930 16001 38667 83762 58450 46167 58149 30082 62750 27713 .21895 55477 49455 04190 94391 76345 99544 92404 94796 7119 71485 66176 39526 39477 .3	1.9261823	
75087 28313 20765 97382 2741 1.56003 40568 41129 .30082 62750 1.0719 16496 .86544 .49455 -2.72322 94439 1.76345 1.62647 79064 .01854 .23809 83762 27461 1.66114 45358 58149 .30082 62750 .10719 16496 55477 .49455 .85191 68915 1.76345 1.62647 75930 16001 .38667 37286 58450 .34676 22046 .95029 .30082 62750 .10719 2699 94955 6110 94439 94439 94262 62675 99544 39526 46622 5149 30082 27713 .21895 55477 49455 04190 94439 98626 70549 66478 27087 22158 56622 15303 05766 39526 94241 27713 .21895 65477 94455	1.9261821	
75930 16001 .38667 83762 .58450 .34676 22046 .95029 .30082 .62750 .10719 .02699 .1.97499 .4.9455 .85191 .94439 .1.76345 .1.62647 .99544 39526 46921 73286 67719 71485 46167 58149 .30082 62750 27713 .21895 55477 49455 04190 94393 98626 70549 .66478 27087 22158 56622 .1.53630 05766 39526 39427 .30082 62750 27713 .21895 65444 49455 04190 94393 98626 70549 .96241 .92404 .94796 71191 27461 47316 47937 .30082 27713 .21895 86544 49455 04190 94439 98626 70549 .1.84955 1.81482 70033 46047 47937 30082 62750 27713 21895	1.9261839	
99544 .39526 .46921 .73286 .67719 .71485 .46167 .58149 .3002 .27713 .21895 .55477 .49455 .04190 .94439 .98262 .70549 .66478 .27087 .22158 .56622 .153630 .05766 .39526 .39427 .30082 .62750 .27713 .21895 .55477 .49455 .04190 .94439 .98626 .70549 .96241 .92404 .94796 .71191 .27461 .04344 .46442 .42831 .71246 .62750 .27713 .21895 .86544 .49455 .04190 .94439 .98626 .70549 1.84955 1.24238 .88193 1.95959 .27461 .10821 .47937 .30082 .62750 .27713 .21895 .86544 .49455 .04190 .94439 .98626 .70549 .05248 1.81482 .70033 .46047 .18877 .47033 .25811 .30082 .62750 .27713 .12495	1.9261818	
6.6478 27087 .22158 .56622 .1.53630 05766 39526 39427 .30082 27713 .21895 55477 49455 04190 94439 98626 70549 .96241 .92404 .94796 71191 27411 .0.4344 46442 42831 71246 27713 .21895 86544 49455 04190 94439 98626 70549 1.84955 1.24238 88193 1.95959 27410 47033 47033 25811 71246 27713 21895 86544 49455 04190 94439 98626 70549 62784 1.81482 70033 46047 27713 21895 86544 49455 04190 94439 98626 70549 5807 41635 58477 1.95959 54870 47033 25811 30082 27713 16496 55477 .49455 04190 86915 98626 70549	1.9261835	
	19815 .11	
1.84955 1.24238 .88193 1.95959 27641 10821 4736 47937 30082 27713 20699 86544 49455 04190 94439 98626 70549 05248 1.81482 70033 46047 27610 15877 47033 25811 71246 27713 21895 86544 49455 04190 94439 98626 70549 1.58024 41635 58477 1.95959 58450 54897 3082 62750 27713 16496 55477 49455 04190 94439 98626 70549 3.22038 3.10292 2.91251 31380 27610 39731 48856 54745 .30082 27713 93280 86544 94140 04190 68915 98626 70549 3.22038 3.10292 2.91251 31380 27610 39781 49639 90820 27713 12475 .86544	1981519	
05248 1.81482 70033 46047 2761 15877 47033 25811 71246 27713 21895 86544 49455 04190 94439 98626 70549 1.58024 41635 58477 1.95959 58450 54870 4684 25811 30082 27713 16496 55477 49455 04190 68915 98626 70549 3.22038 3.10292 2.91251 31380 27610 39731 30082 62750 27713 93280 65444 94190 68915 98626 70549 2.33357 52132 2.46677 .12621 27983 49639 30082 62750 27713 12475 86544 94144 04190 68915 98626 70549 2.33357 52132 2.46677 1261 29835 49639 30082 62750 27713 .1.12475 86544 94144 04190	19815 .13 19815 .10	
1.58024 41635 58477 1.95959 58450 54870 43684 25811 30082 27713 16496 55477 49455 04190 68915 98626 70549 3.22038 3.10292 2.91251 31380 27610 39731 48856 54745 .30082 27713 93280 86544 94140 61900 68915 98626 70549 2.33357 52132 2.46677 .12621 27981 49639 30082 62750 27713 12475 86544 94140 60190 68915 98626 70549	19815 .10	
3.22038 3.10292 2.91251 31380 27461 .39731 48856 54745 .30082 62750 27713 93280 .86544 94140 64950 89826 70549 2.33357 5.2132 2.46677 .12621 27461 25987 49639 30082 62750 27713 1.12475 .86544 94140 68915 98626 70549	19815 .07	
	19815 .56	
	19815 .32	
2.99623 1.71279 2.10358 31380 27461 .54897 46377 13897 .30082 62750 27713 74084 .86544 94140 04190 .68915 98626 70549	19815 .46	
2.92848 4.30518 3.82049 65953 27461 00711 49274 58149 .30082 62750 27713 1.12475 .86544 94140 68915 98626 70549	19815 .65	
577287128276895 4.05488 .67719 .599533087061383 -1.72574 2.7191546929 .2189555477 .49455 .85191944399862693869	1591814	
57728 51711 15812 26142 .67719 .14455 28069 15599 172574 2.71915 46929 .02699 55477 .49455 .85191 94439 98626 93869 63526 41851 27368 13570 .67719 48958 48958 172574 2.71915 46929 .02699 55477 .49455 .85191 94439 98626 93869	15918 .12 15918 .06	
432016358127368 .2100227461310433477960361 .300826275046929 .21895 .86544 .49455 .85191944399862693869	1591805	
-43201891374222607383 -1.536305631909286583193008262750469292669986544 .4945585191944399862693869	1591817	
432010324714161 .07383 .67719 .397313889411344 .30082627504692916496 .86544 .49455 .85191 .689159862693869	15918 .25	
432016176630670 .0424027461462094047376530 .300826275046929 .21895 .85544 .49455 .85191 .689159862693869	15918 .02	
635262002338925 .16812746110821108214191349809 .30082627504692916496 .86544 .49455 .85191 .689159862693869	15918 .07	
432012772427368 .04240 .677190071132882 .01591 .30826275046929 .2189555477 .49455 .85191 .689159862693869	15918 .13	
4320179425323217223827461815963400881125 .30082627504692954888 .86544 .49455 .85191 .689159862693869	15918 .07	
43201 48620 19114 26142 27461 46209 11765 .30082 62750 46929 .21895 .86544 .49455 .85191 .68915 98626 93869 43201 15756 12511 32428 27461 15877 44446 65467 .30082 62750 46929 .02699 .86544 .49455 .85191 .68915 98626 93869	15918 .05 15918 .10	
43201 15756 12510 32428 27461 15877 44446 65467 .30082 62750 46929 .02699 .86544 .49455 .85191 .68915 98626 93869 14517 1.04323 .41968 13570 .67719 .65008 21184 4.20654 .30082 62750 .10719 -1.12475 .86544 -2.38282 .85191 .68915 98626 82209	15918 .10 02275 .51	
-1.4317 1.04323 41900 1370 .0779 .03000 21104 4.2004 .30002 02700 .1079 112473 .00044 -2.30202 .03131 .00013 30020 02209 .02369 27136 85149 13570 .67719 .14455 32185 .07062 .30082 62750 .10719 74084 .86544 -2.38282 .85191 .68915 98626 82209	02275 .13	
.12100 .12100 <th .12100<<="" td=""><td>02275 .00</td></th>	<td>02275 .00</td>	02275 .00
6521146609917536595367719 -1.0687246435904867124620917 -1.41088 1.94657554774945504190944390513627641	-1.1155230	
59110 1.2698532321 9.1194 2.89068 7.006344235 1.15036 -1.7257462750 -1.41088 2.1385355477 .4945504190944390513627641	-1.11552 .01	
71346 1.39444 -1.0991265953 .67719 2.924964741246235 -1.7257462750 -1.41088 1.5626655477 .4945504190 .689150513627641	-1.11552 .01	
713464175398356 .91194 2.89068 -1.068724459680275 .30082 .20917 -1.41088 .4109155477 -2.3828204190944390513627641	-1.1155217	
8361535622 -1.0165831380 2.89068613744692990486 -1.7257462750 -1.41088 .60287 .86544 -2.3828204190944390513627641	-1.1155218	
71346 40575 65953 6719 44787 43971 32619 72574 62750 141088 79483 86544 94414 04190 68915 05136 27641 71346 46070 93403 39761 -1.3204 32107 22407 -1.72574 62750 -1.41088 60287 86544 49455 04190 68915 05136 27641	-1.1155208 -1.1155238	
7134646070934039761 -1.53830 -1.57243174422407 -1.7257462750 -1.41088 .00267 .00544 .4945504190 .089150513627641 37640307169670565953 2.89068259874678787082 -1.7257462750 -1.41088 .79483554779441404190944390513627641	-1.1155238	
7134639153 -1.0661031380 .67719 1.307274522881976 -1.7257462750 -1.41088 .21895 .86544 -2.3828204190944390513627641	-1.1155228	
8361559510 -1.1156352333 -1.53630866514011273467 -1.7257462750 -1.41088 .41091 .86544 -2.3828204190 .689150513627641	-1.1155254	
83615419499505486905 -1.53630 -1.372043528132619 -1.7257462750 -1.41088 .41091 .86544 -2.3828204190 .689150513627641	-1.1155250	
2.11819 1.36501 1.9219865953 .67719 .751194509807089 .30082 2.71915 .29935 2.13853 .86544 .4945504190 2.32268 .01421 -1.21036	.03007 .68	
.95196 1.62205 1.8559565953 .67719 .6500840086 1.12049 .30082 1.04583 .29935 2.13853 .86544 .4945504190 2.32268 .01421 -1.21036	.03007 .61	
50246714798019665953 .67719 .75119 .12187 .30695 .30082 1.04583 .29935 2.13853 .86544 .4945504190 2.32268 .01421 -1.21036	.03007 .27	
50987516131911413570 .67719 .65008 .41097 2.45314 .30082 1.04583 .29935 2.33049 .86544 .4945504190 2.32268 .01421 -1.21036	.03007 .40	

Table 5.2: Standardized Z Scores of Environmental Quality Parameters and Standardized Aggregated Environmental Quality Value


lues	(ZAEQ)	
------	--------	--

Colour Code	Value Range	Rank	Level of Environmental Quality			
	0.75 to 1.00	1	Extremely Favourable			
	0.5 to 0.74	2	Very Favourable			
	0.25 to 0.49	3	Quite Favourable			
	0.001 to 0.24	4	Favourable			
	±0.00	5	Average			
	-0.24 to -0.001	6	Unfavourable			
	-0.49 to -0.25	7	Quite Unfavourable			
	-0.74 to -0.5	8	Very Unfavourable			
	-1.00 to -0.75	9	Extremely Unfavourable			

Table 5.4: ZAEQ of Study Units,	ANEQ and Level of Environmental Quality as per EQI

Study	AMRI	TSAR		CHAN		GURUGRAM		
Units	Katra Dullo	Ranjit Avenue	Sec-8	Sec-38W	Marble Arch	Sec-20, Panchkula	World Spa	Uniworld City
1.	0.16	-0.2	0.11	-0.14	0.51	-0.3	0.68	0.27
2.	0.03	-0.37	-0.19	0.12	0.13	0.01	0.61	0.4
3.	0.02	-0.27	0.13	0.06	0.00	0.01		
4.	0.28	-0.05	0.1	-0.05		-0.17		
5.	0.28	-0.09	0.1	-0.17		-0.18		
6.	0.06	-0.4	0.07	0.25		-0.08		
7.	-0.09	-0.16	0.56	0.02		-0.38		
8.	-0.12	-0.23	0.32	0.07		-0.12		
9.	-0.05	-0.21	0.46	0.13		-0.28		
10.	-0.24	-0.39	0.65	0.07		-0.54		
11.	-0.24	-0.18		0.05		-0.5		
12.	-0.09	-0.35		0.1				
ANEQ	0.000	-0.242	0.231	0.043	0.213	-0.230	0.645	0.335
Level of EQ	Average	Unfavourable	Favourable	Favourable	Favourable	Unfavourable	Very Favourable	Quite Favourable
Rank	5	6	4	4	4	6	2	3

Based on the ZAEQ values of the study units as seen in table 5.4, illustrative maps for each of the neighbourhoods showing sections with very favourable, quite favourable, favourable, average, unfavourable, quite unfavourable, very unfavourable and extremely unfavourable environmental quality are generated as indicated in figures 5.1, 5.2, 5.3 and 5.4.

Ranjit Avenue, Amritsar has overall unfavourable environmental quality with most areas having unfavourable and some areas having quite unfavourable environmental quality. Those areas that are better have open spaces, less congestion on roads and better level of services in terms of cleanliness observed.

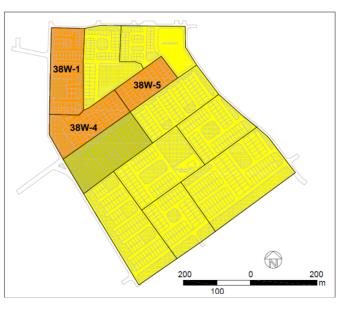
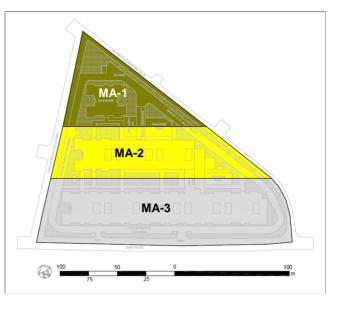
R2, R3 and R6 especially have poorer environmental quality because of higher air pollution and higher noise levels due to the neighbourhood shopping centre (in R6) that employs the use of DG Sets on a large scale, bigger air conditioning units and has a lot of traffic coming into the neighbourhood during daytime.

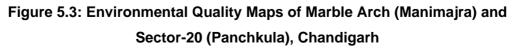
Two other blocks (R10 and R12) also score less because of the comparative nearness to the main road, poor quality of open spaces, low PGA/Capita and poor condition of streetlights. Katra Dullo, Amritsar shows three distinct parts as far as environmental quality is concerned. While northern parts have favourable and quite favourable environmental quality, the southern parts have comparatively unfavourable quality. central Northern and parts have better accessibility from wider peripheral roads and better levels of cleanliness. Southern parts score less because of increased congestion, lack of open spaces, poor level of services and insanitary conditions created due to water logging as a result of choked drains. The distance of community open space is also farther than from northern parts.

Figure 5.1: Environmental Quality Maps of Katra Dullo and Ranjit Avenue, Amritsar

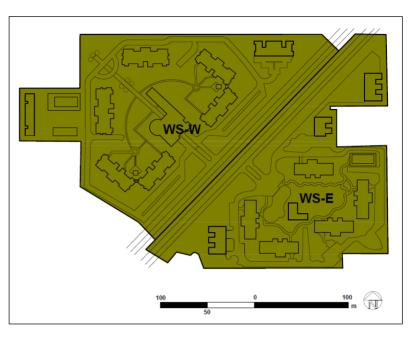
In **Sector-8, Chandigarh**, it is seen that block (8-1, 8-2, 8-3) that are close to the main commercial belt and 8-5 that has highest population and residential density and neighbourhood shopping have just favourable or unfavourable environmental quality. This is primarily because of less BUA/Capita and PGA/Capita, higher congestion on roads due to on-street parking, less open spaces, less tree cover, higher noise levels and poor condition of sidewalks. The other blocks have favourable environmental quality mainly because of lower people densities with larger plot sizes, lesser congestion, better open spaces, shaded walkways that keep on becoming better as one moves from 8-7 to 8-10.

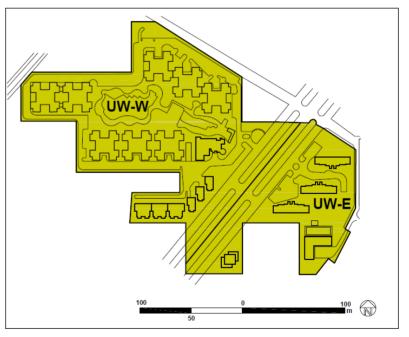
Sector-38W, Chandigarh overall has an favourable environmental quality as indicated in table 5.4. It mainly scores less in some pockets (38W-1, 38W-4, and 38W-5) because of low PGA/Capita, low PRL/Capita and high M.F. as a result of congestion due to on-street parking and lots of dead ends in the road network. The tree cover is also less in some of the pockets with quite unfavourable environmental quality (38W-5). Blocks that fare well have comparatively lower population and residential density and better open spaces for promoting different types of activities and higher intensity of activities.


Figure 5.2: Environmental Quality Maps of Sector-8 and Sector-38W, Chandigarh

Marble Arch (Manimajra), Chandigarh has three distinct parts having quite favourable, favourable and average environmental quality. The top and middle part (MA-1 and MA-2) score more because of higher PGA/Capita and PRL/Capita, better open spaces, higher activity intensities and lower noise levels being away from the main road.


Sector-20 (Panchkula), Chandigarh has overall unfavourable environmental quality because of increased noise levels, higher air pollution and congestion on roads because of high population and residential density and proximity to Kalka-Zirakpur Highway (20-1). Also certain pockets are far from daily need shops and lack open spaces thus reducing the environmental quality further (20-10 and 20-11).



World Spa, Gurugram - a high rise low density neighbourhood scores highest and has very favourable environmental quality. It has most of the desirable qualities for an environmentally conducive neighbourhood. It has ample PGA/Capita BUA/Capita, and PRL/Capita with good parking provision and almost no congestion on roads. This is also shown by the low M.F as indicated in Annexure 2. There are well maintained open spaces and shared facilities and amenities. The distance to daily needs is also within 1km. The pedestrian pathways are shaded and well connected. There is good ventilation

in the neighbourhood because of the particular orientation of the building blocks. The only demerits are its location along main road that leads to higher noise levels and the higher RSPM values because of nearby construction activities that deteriorate the quality of air of the neighbourhood.

Uniworld City, Gurugram - a high rise high density neighbourhood follows close behind and has quite favourable environmental quality. has lt well high maintained open spaces with activity intensity and shared facilities and amenities. The distance to daily needs is also within 1km. The pedestrian pathways are shaded and well connected. However, it scores less because of comparatively low PGA/Capita BUA/Capita, and PRL/Capita due to high population and residential density. Also UW-E has congestion due to lower road density and more number of vehicles. The ventilation

score is also less. The locational aspect leading to higher noise levels and increased RSPM levels in air are similar to World Spa discussed above.

Figure 5.4: Environmental Quality Maps of World Spa and Uniworld City, Gurugram

The maps thus, help in bringing out heterogeneity in environmental quality at the block/neighbourhood level and identify problem/issues at the micro-level. This approach creates the possibility of taking up case-specific local actions by the residents and urban local bodies to improve the environmental quality in existing neighbourhoods as well as control and modify different built-form characteristics during the planning and design phase (by architects, planners and urban designers) to achieve better spatial quality in the upcoming neighbourhoods. The illustrative maps also prove to be useful visual aids that represent and validate the conditions observed on site during the primary survey.

5.3 Environmental Quality Profile of Case Study Neighbourhoods

In the Environmental Quality Profile (EQP), the multivariate data consisting of the different environmental quality indicators - crowding and congestion (CC); nature and use of open spaces (NUOS); shade and ventilation; temperature variations; noise levels; level of cleanliness (LoC); walkability and air quality are represented on different axes. The averages of the z-scores of each of the indicators are assigned scores as per a defined range in table 5.5, table 5.6 and table 5.7 and plotted on the radar chart. Thus, a radar/polar chart as suggested by **Friendly, 1991** is generated for each of the case study neighbourhoods to identify commonalities and differences in the indicators of environmental quality as seen in figure 5.5 and 5.6 and justify the level of aggregated neighbourhood environmental quality (ANEQ).

Neighbourhoods	ANEQ	СС	NUOS	Shade	Ventilation	Temp. Variations	Noise Levels	LoC	Walkability	Air Quality
Sector 8, Chandigarh	0.231	1.13	-0.30	0.10	-0.63	-0.28	-0.32	0.44	-0.15	-0.63
Ranjit Avenue, Amritsar	-0.242	0.08	0.05	0.30	-0.63	0.11	-0.12	-0.08	0.05	1.77
World Spa, Gurugram	0.645	1.39	0.37	0.30	1.88	0.30	2.14	0.87	0.86	-0.39
Marble Arch, Manimajra	0.213	0.01	0.44	0.30	-0.63	0.11	-0.48	0.87	-0.12	-0.61
Sector 38W, Chandigarh	0.043	-0.38	-0.25	-0.21	0.21	-0.47	0.03	0.39	0.34	-0.69
Sector 20, Panchkula	-0.23	-0.33	-0.06	-1.45	-0.48	-1.41	0.90	0.22	-0.11	-0.48
Uniworld City, Gurugram	0.335	-0.31	0.76	0.30	1.05	0.30	2.23	0.87	0.86	-0.39
Katra Dullo, Amritsar	0.00	-0.52	0.21	0.98	1.05	1.76	-1.08	-1.38	-0.42	0.17
		^	^	٨	٨	٨	v	^	٨	v
	Legend	۸	in	indicates positive impact on EQ with increasing value					iegative impact o	

Table 5.5: ANEQ and average of z-scores of different indicators of environmental quality

Bongo of voluos	Score					
Range of values	Positive impact on EQ	Negative impact on EQ				
greater than 2.00	9	1				
1.321 to 2.00	8	2				
0.661 to 1.32	7	3				
0.001 to 0.66	6	4				
±0.00	5	5				
-0.66 to -0.001	4	6				
-1.32 to -0.661	3	7				
-2.00 to -1.321	2	8				
less than -2.00	1	9				

Table 5.6: Range of values and scores for indicators of environmental quality

Table 5.7: Scores of ANEQ and different indicators of environmental quality

Neighbourhoods	ANEQ	СС	NUOS	Shade	Ventilation	Temp. Variations	Noise Levels	LoC	Walkability	Air Quality
Sector 8, Chandigarh	6	7	4	6	4	4	6	6	4	6
Ranjit Avenue, Amritsar	4	6	6	6	4	6	6	4	6	2
World Spa, Gurugram	8	8	6	6	7	6	1	7	7	6
Marble Arch, Manimajra	6	6	6	6	4	6	6	7	4	6
Sector 38W, Chandigarh	6	4	4	4	6	4	4	6	6	7
Sector 20, Panchkula	4	4	4	2	4	2	3	6	4	6
Uniworld City, Gurugram	7	4	7	6	7	6	1	7	7	6
Katra Dullo, Amritsar	5	4	6	7	7	8	7	2	4	4
	As per EQI		As per positive and negative scores in Table 5.6							

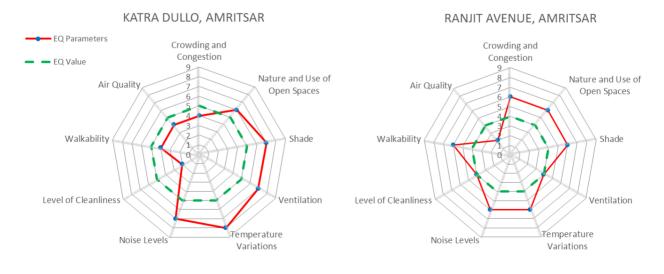


Figure 5.5: EQP of Case Study Neighbourhoods of Amritsar

Figure 5.6: EQP of Case Study Neighbourhoods of Chandigarh and Gurugram

A careful study of the EQPs of the different case study neighbourhoods reveal the following points:

- 1. Two neighbourhoods namely Ranjit Avenue, Amritsar and Sector-20 (Panchkula), Chandigarh have quite unfavourable environmental quality (score=4) due to poor air quality and less ventilation in the former and poor shade and low temperature variations along with high noise levels in the latter.
- 2. Katra Dullo, Amritsar is slightly better with average score=5. It scores more as a result of better activity intensity in public spaces (streets and squares), good shade and ventilation as a result of compact built-form creating comfortable micro-climate and low noise levels because of absence of vehicular traffic (four wheelers, especially) within the neighbourhood. It loses points because of the poor level of cleanliness.
- 3. Next, there are three neighbourhoods of Chandigarh that have favourable environmental quality with score=6. They are Sector-8, Sector-38W and Marble Arch (Manimajra). While Sector-8 and Marble Arch (Manimajra) both have less crowding and congestion, low noise levels and good cleanliness; they lose out on the nature and use of open spaces in Sector-8 and less ventilation and walkability in both cases. In case of Sector-38W, higher crowding and congestion, poor nature of open spaces in quite a few study units with less shade and comparatively higher noise levels affect the environmental quality.
- 4. Lastly the two neighbourhoods of Gurugram, World Spa and Uniworld City score 8 and 7
 the highest points respectively. They have very favourable and quite favourable environmental quality. All parameters except noise are above average in case of World Spa while Uniworld City in addition has more crowding and congestion that reduces the score by one point in comparison to World Spa.

Thus, it is observed that crowding and congestion, nature and use of open spaces, shade and ventilation and associated temperature variations, noise levels, level of cleanliness, walkability and air quality - all have a key role in ascertaining the level of environmental quality in residential neighbourhoods. However, since the study intends to understand the impact of density on environmental quality, it becomes imperative to analyse the association of density with standardized aggregated environmental quality (ZAEQ) before proceeding further. As stated previously, it is important to understand the association between the independent density variables - people density, building density and spatial density and dependent environmental quality variable (ZAEQ) before undertaking a multiple hierarchical regression analysis to ascertain significant density variables impacting environmental quality and subsequently test the research hypothesis as stated in Chapter 1. However, such parametric statistical tests including analysis of variance, discriminant analysis, correlation, f-tests and t-tests require that the dependent variable is approximately normally distributed. The following numerical and visual outputs are investigated as part of the test of normality:

- Skewness and Kurtosis z-values should be somewhere in the span of -1.96 to +1.96
- The Shapiro-Wilk test p-value should be above 0.05
- Histogram and Normal Q-Q plots should visually indicate that the values are normally distributed

	-		Statistic	Std. Error
ZAEQ	Mean		.0000	.03436
	95% Confidence Interval	Lower Bound	0687	
	for Mean	Upper Bound	.0687	
	5% Trimmed Mean		0094	
	Median		.0035	
	Variance		.076	
	Std. Deviation		.27489	
	Minimum		54	
	Maximum		.68	
	Range		1.22	
	Interquartile Range		.32	
	Skewness		.550	.299
	Kurtosis		.174	.590

Table 5.8: Descriptive Statistics of ZAEQ

Table 5.9: T	ests of Norm	nality – ZAEQ
--------------	--------------	---------------

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
ZAEQ	.111	64	.048	.968	64	.094

a. Lilliefors Significance Correction

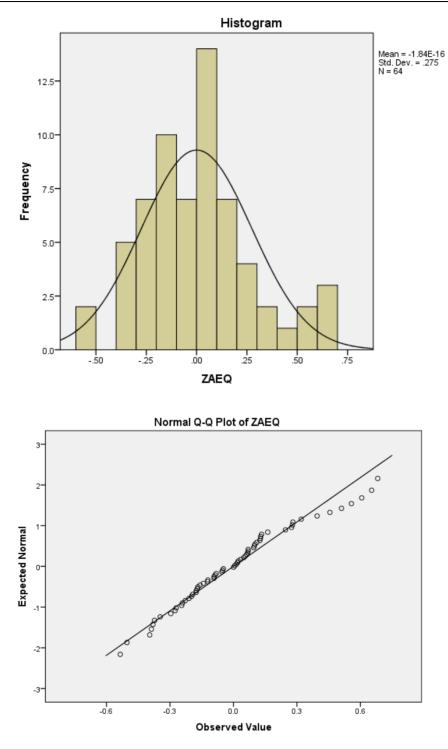


Figure 5.7: Histogram and Normal Q-Q Plot of ZAEQ

A Shapiro-Wilk's test with p>0.05 as seen in table 5.9 (Shapiro and Wilk, 1965; Razali and Wah, 2011) and a visual inspection of the histogram and normal q-q plot as seen in figure 5.7 show that the ZAEQ values are approximately normally distributed with a skewness of 0.55 (S.E.

= 0.299) and kurtosis of 0.174 (S.E = 0.590) as indicated in table 5.8 (Cramer, 1998; Cramer and Howitt, 2004; Doane and Seward, 2011).

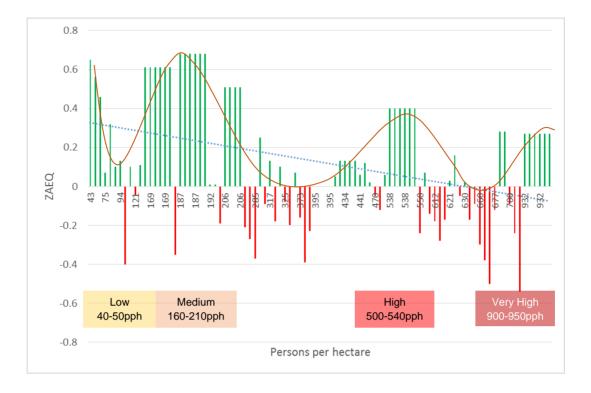
5.4 Relationship between Density and Environmental Quality

To understand the relationship between Density and Neighbourhood Environmental Quality, a correlation analysis is done by taking the density variables like population density measured by persons per hectare, residential density measured by dwelling units per hectare, FAR, plot coverage, etc. and standardized aggregated environmental quality (ZAEQ) of all the study units. Significant correlations at 95% and 99% confidence level are seen between many density variables and neighbourhood environmental quality as indicated in table 5.10.

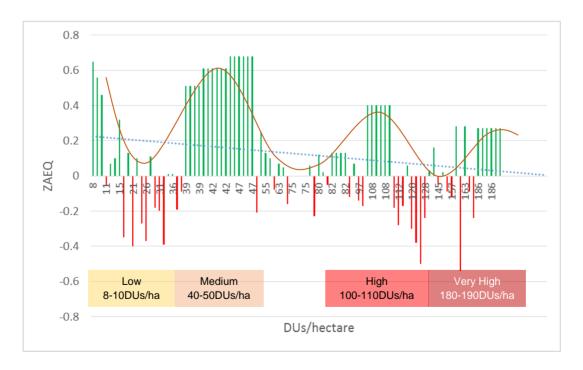
Density Variables ZAEQ Pearson Correlation -.317 Population Density Sig. (2-tailed) .000 PEOPLE DENSITY Pearson Correlation -.183" **Residential Density** Sig. (2-tailed) .002 Pearson Correlation -.194** FAR Sig. (2-tailed) .001 BUILDING DENSITY Pearson Correlation -.429* Plot Coverage Sig. (2-tailed) .000 Pearson Correlation .216" Height to width ratio Sig. (2-tailed) .000 Pearson Correlation .421** Dist. of Open Spaces Sig. (2-tailed) .000 Pearson Correlation -.047 Dist. of Roads Sig. (2-tailed) .433 Pearson Correlation .649" Sidewalks Sig. (2-tailed) .000 SPATIAL DENSITY Pearson Correlation .242* Streetlight Density Sig. (2-tailed) .000 Pearson Correlation .142* Domestic Waste Sig. (2-tailed) .018 Pearson Correlation .134* Stormwater Drainage Sig. (2-tailed) .025 Pearson Correlation .138* Sewerage Sig. (2-tailed) .021

Table 5.10: Correlation between Density and ZAEQ

Note: Significant correlations (p<0.01 and p<0.05) are highlighted, positive in green and negative in red


**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).


It is observed that while environmental quality varies negatively with population density, residential density, FAR and plot coverage; it shows positive correlation with height, distribution of open spaces, sidewalks and streetlight density as seen in table 5.10. In other words, this means that as population density, residential density, etc. goes on increasing the environmental quality deteriorates whereas with increase in height of buildings, open spaces, sidewalks and streetlights permitting walkable and safe neighbourhoods, the environmental quality starts improving. It is also seen that spatial density of domestic waste collection system, provision of stormwater drainage and sewerage also show positive association with ZAEQ thus reinforcing the assumption that adequacy of services improve the environmental quality.

On the other hand, a closer inspection of the bar charts with trend lines as indicated in figure 5.8 to figure 5.17 reveal some noteworthy findings. The important findings from the density and neighbourhood environmental quality analyses are:

- As people density, building density and spatial density go on increasing across all the different residential patterns, the environmental quality fluctuates becoming positive or improving (favourable to very favourable) for particular combinations of the density variables and again deteriorating (unfavourable to very unfavourable) for other combinations of the variables.
- **People Density** Neighbourhoods with 40-50pph and 8-10DUs/ha; 160-210pph and 40-50DUs/ha; 500-540pph and 100-110DUs/ha; and 900-950pph and 180-190DUs/ha have favourable environmental quality. These can be suitably classified/bunched as low, medium, high and very high density patterns as indicated in figure 5.8 and figure 5.9.
- **Building Density** The favourable values of FAR and plot coverage are found to be 1-1.5 with 35-40% coverage; and 2-3 with 11-20% coverage respectively. The first group as observed in the case studies can be the low and medium rise neighbourhoods while the second group corresponds to the high rise residential developments as indicated in figure 5.10 and figure 5.11.
- Spatial Density Height to width ratio of ≈3 (w.r.t high rise developments) and distribution of open spaces greater than equal to 35% is required for favourable environmental quality. Similarly, 60-70% of the neighbourhood should have continuous and good quality sidewalks to promote walkability. Streetlights should be 30m c/c and domestic waste collection, stormwater drainage and sewerage system should be as per the norms laid down (100% coverage of waste collection, drainage and sewerage systems) for good environmental quality.

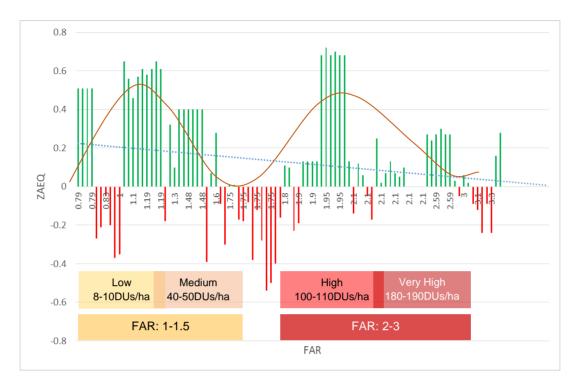


Figure 5.10: Variation in Environmental Quality with Floor Area Ratio (FAR)

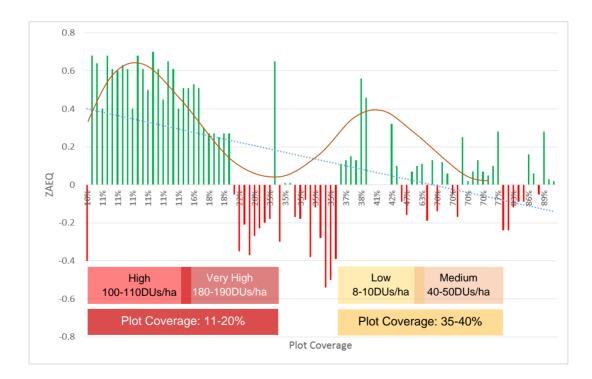


Figure 5.11: Variation in Environmental Quality with Plot Coverage

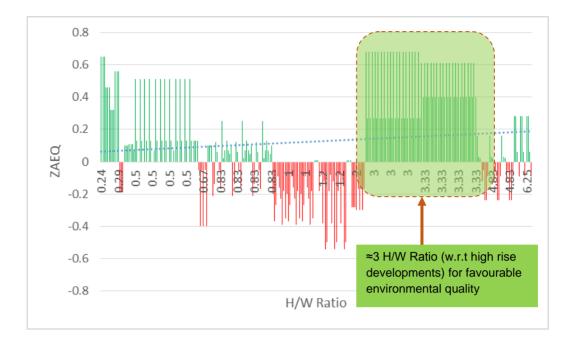
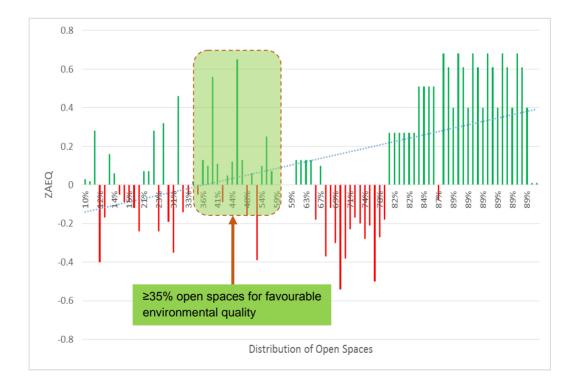
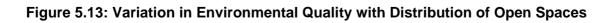




Figure 5.12: Variation in Environmental Quality with Height to Width Ratio

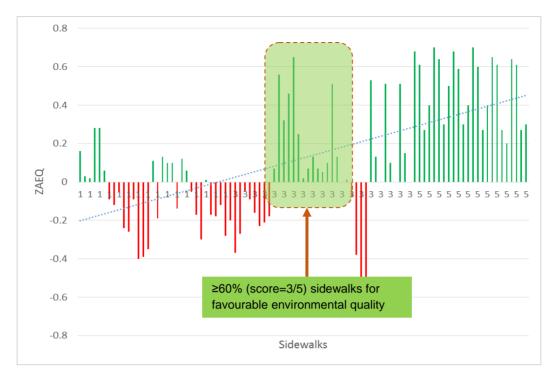


Figure 5.14: Variation in Environmental Quality with Distribution of Sidewalks

Figure 5.15: Variation in Environmental Quality with Streetlight Density

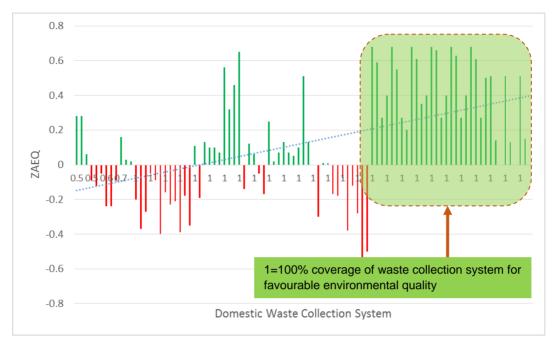
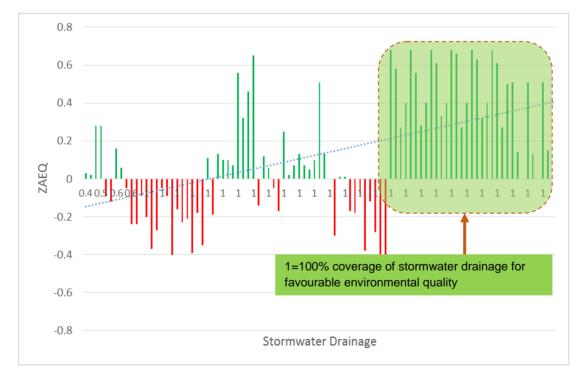



Figure 5.16: Variation in Environmental Quality with Coverage of Domestic Waste Collection System

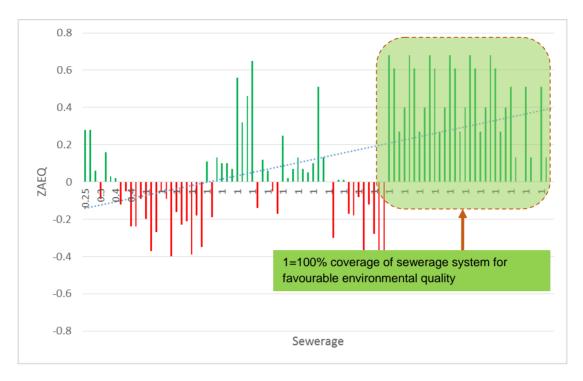


Figure 5.18: Variation in Environmental Quality with Coverage of Sewerage System

It is therefore observed that the different residential patterns identified can primarily be grouped into low, medium, high and very high density based on people density given by population and residential density; building density given by FAR and plot coverage and spatial density given by height to width ratio, distribution of open spaces, sidewalks, streetlights and other services like domestic waste collection, stormwater drainage and sewerage. It is also noteworthy to mention here that the case study data shows that low and medium density neighbourhoods generally comprise of the low and medium rise residential patterns while the high and very high density neighbourhoods comprise of the high rise residential patterns when all the different density variables namely people density, building density and spatial density are taken together as indicated in table 5.11.

5.5 Concluding Remarks

The present chapter assesses the environmental quality at the micro-level by using the multicriteria approach. The multi-criteria approach helps to consider several density variables that can be controlled and modified during the planning and design phase to achieve better spatial

	Density Varial	Key points for favourable			
People Density	Building Density	environmental quality (based on trend lines)			
Low 40-50pph 8-10DUs/ha	• FAR = 1-1.5 (Height = Low &	 Open Spaces = 35-70% Sidewalks = 60-70% 	 With population density ≥630pph in low/medium rise compact developments 		
Medium 160-210pph 40-50DUs/ha	Medium Rise) • Plot Coverage = 30-50%	 Sidewarks = 60-70% Services = 100% 	 environmental quality tends to deteriorate Plot Coverage should not exceed 70% 		
High 500-540pph 100-110DUs/ha	• FAR = 2-3 (Height = High	 H/W Ratio ≈3 Open Spaces = 80-90% 	 Open Spaces should be minimum 35% Minimum 60-70% of the neighbourhood should have continuous 		
Very High 900-950pph 180-190DUs/ha	Rise) Plot Coverage = 11-20%	 Sidewalks = 100% Services = 100% 	 sidewalks Waste collection, drainage and sewerage services should be 100% 		

quality of the designed space. The 'Environmental Quality Index' formulated serves as a tool to classify different neighbourhoods of the city according to the level of environmental quality. The illustrative maps are useful visual aids that help in bringing out heterogeneity at the block/neighbourhood level by identifying problems/issues at the micro-level. They represent and validate the conditions observed on site during the primary survey. The 'Environmental Quality Profiles' help to identify commonalities and differences in the indicators of environmental quality and justify the level of aggregated neighbourhood environmental quality (ANEQ) ascertained. The study also shows that significant relationships exist between density and neighbourhood environmental quality further propelling one to identify the most important density variables impacting environmental quality and test the research hypothesis for identifying optimum density values to maintain favourable environmental quality in neighbourhoods with different residential patterns.

References:

1. Cheng, V. (2010) Understanding Density and High Density. In: Edward Ng. (Ed.), *Designing High Density Cities – For Social and Environmental Sustainability* (pp. 3-17). New York: Earthscan.

- 2. Cramer, D. (1998) Fundamental statistics for social research. London: Routledge.
- 3. Cramer, D. and Howitt, D. (2004) The SAGE dictionary of statistics. London: SAGE.
- 4. Doane, D.P. and Seward, L.E. (2011) Measuring Skewness. *Journal of Statistics Education*, Vol. 19, No. 2, 1-18.
- Friendly, M. (1991) Statistical Graphics for Multivariate Data. In: Proceedings of SAS SUGI 16 Conference, York University, Canada. [online] Available at: <u>http://www.datavis.ca/papers/sugi/sugi16-paper.pdf</u> [Accessed 7 December 2016].
- Khattab, O. (1993) Environmental Quality Assessment An Attempt to Evaluate Government Housing Projects. *Forum*, Vol. 2, 36-41.
- Razali, N.M. and Wah, Y.B. (2011) Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. *Journal of Statistical Modeling and Analytics*, Vol. 2, No. 1, 21-33.
- 8. Shapiro, S.S. and Wilk, M.B. (1965) An Analysis of Variance Test for Normality (Complete Samples). *Biometrika*, Vol. 52, No. 3/4, 591-611.

Chapter Six

IMPACT OF DENSITY ON ENVIRONMENTAL QUALITY

6.1 Introduction

The present chapter tests the research hypothesis – "Density impacts Environmental Quality in Residential Neighbourhoods" through the use of the multiple hierarchical regression (MHR) approach. The multiple regression approach is generally used for prediction. It is a statistical technique to understand the impact of two or more predictor or independent variables (i.e., lower-level attributes) on a single criterion or dependent variable (i.e., higher-level attribute). In this study, the MHR approach is used to understand the extent to which the observed variance in the dependent variable (neighbourhood environmental quality) is explained by the observed variance in the independent variables (density variables), also referred to as the 'model fit'.

The MHR approach is also used to assess the 'standardized regression weights' (β 's). In the present study, this is a very important property, since the ' β -coefficients' indicate the relative importance of lower-level attributes and help in assessing which density variables significantly impact environmental quality. In addition, the best-to-fit analysis helps in identifying optimum density ranges/values to maintain favourable environmental quality in different residential neighbourhoods and subsequently arrive at guidelines to achieve environmentally conducive patterns of residential development in our cities.

6.2 The Multiple Hierarchical Regression (MHR) Approach

The correlation analysis between the density variables and standardized aggregated environmental quality, ZAEQ (as indicated in table 5.10, Chapter 5) is taken as the starting point for carrying out the multiple hierarchical regression in IBM SPSS Statistics 22 (Statistical Package for Social Sciences). The hierarchical approach yields estimates of association that are more precise than conventional estimates by controlling for the effects of covariates and enables testing the effects of certain predictors independent of the influence of others. With this understanding, independent variables are entered into the model block wise with variables having low correlations with ZAEQ entering first followed by variables showing high correlations (whether positive or negative) with the dependent variable. The variable(s) showing no significant association with ZAEQ, in this case – Distribution of Roads is left out of the model.

The analysis is initially run with n=279 out of 320 samples (as indicated in section 3.8.1, Chapter 3) as 41 samples are discarded because of the existence of significant amounts of missing data. At this stage multicollinear or highly correlated independent variables are also omitted from the model. Multicollinearity causes difficulties in disentangling the separate effects of the various independent variables on the dependent variable. If two independent variables are highly correlated, the first one entered in the analysis might account for much of the explained variance in the respective higher level criterion variable. Entering the second source, then, may lead to less higher predictive power, due to its covariance, hence, its contribution could become insignificant. In the present analysis, on the basis of the above argument, four variables namely – population density, distribution of open spaces, distribution of sewerage and stormwater drainage are removed from the model due to their high correlation with residential density, plot coverage and domestic waste collection system respectively.

Outliers are also suitably identified from the dataset on the basis of Cook's and Mahalanobis's Distances (Field, 2009) and finally the multiple hierarchical regression is carried out with n=258 i.e. 80% of the original dataset which is fairly high.

		R	Adjusted	Std. Error of	R Square	F			Sig. F	Durbin-
Model	R	Square	R Square	the Estimate	Change	Change	df1	df2	Change	Watson
1	.207ª	.043	.039	.30761	.043	11.431	1	256	.001	
2	.727 ^b	.529	.519	.21759	.486	64.913	4	252	.000	
3	.827°	.683	.674	.17904	.155	61.103	2	250	.000	1.435

Table 6.1: Model Summary^d of Multiple Hierarchical Regression Analysis

a. Predictors: (Constant), Domestic Waste

b. Predictors: (Constant), Domestic Waste, Streetlight Density, Residential Density, Height to Width Ratio, FARc. Predictors: (Constant), Domestic Waste, Streetlight Density, Residential Density, Height to Width Ratio, FAR,Sidewalks, Plot Coverage

d. Dependent Variable: ZAEQ

The model summary (as indicated in table 6.1) shows that the model fits the data significantly at all levels of the hierarchical regression analysis with p<0.05. It further shows that R^2 changes significantly when the predictors are entered in model 2 and model 3. In the first stage, model 1, the domestic waste collection system representing adequacy of services accounts for just 4.3% of the variance in neighbourhood environmental quality. However, entering the second set of

variables (model 2) - residential density, FAR, height to width ratio and streetlight density causes 48.6% variation in neighbourhood environmental quality while plot coverage and distribution of sidewalks (model 3) further account for 15.5% variation in neighbourhood environmental quality. Summing up all the three models, the following density variables namely – Residential Density (People Density), Plot Coverage and FAR (Building Density) and Height to Width Ratio, Distribution of Sidewalks, Streetlights and Waste Collection Systems (Spatial Density) account for 68.3% variation in neighbourhood environmental quality.

The model also suggests that population density, distribution of open spaces, distribution of sewerage and stormwater drainage that are highly correlated with residential density, plot coverage and domestic waste collection system respectively and are removed from the model due to their overlapping nature, will also show similar results thus signifying that density impacts environmental quality in residential neighbourhoods.

Table 6.2: Analysis of Variance (ANOVA)of Standardized Aggregated Environmental Quality (ZAEQ)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.082	1	1.082	11.431	.001 ^b
	Residual	24.224	256	.095		
	Total	25.306	257			
2	Regression	13.375	5	2.675	56.500	.000 ^c
	Residual	11.931	252	.047		
	Total	25.306	257			
3	Regression	17.292	7	2.470	77.065	.000 ^d
	Residual	8.014	250	.032		
	Total	25.306	257			

ANOVA^a

a. Dependent Variable: ZAEQ

b. Predictors: (Constant), Domestic Waste

c. Predictors: (Constant), Domestic Waste, Streetlight Density, Residential Density, Height to Width Ratio, FAR

d. Predictors: (Constant), Domestic Waste, Streetlight Density, Residential Density, Height to Width Ratio, FAR, Sidewalks, Plot Coverage

The analysis of variance (ANOVA) technique (as indicated in table 6.2) further shows that the variance in the means of the Standardized Aggregated Environmental Quality values (ZAEQ) of the sample study units is significant (p<0.05) and not just by chance thus rejecting the null hypothesis and confirming the alternative hypothesis that — Density impacts Environmental Quality in Residential Neighbourhoods.

Moving further, the inspection of the ' β -coefficients' indicate the relative importance of the lower-level attributes and help in assessing which density variables significantly impact the environmental quality (as indicated in table 6.3).

Model		Unstandardized	Coefficients	Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	419	.168		-2.493	.013
	Domestic Waste	.585	.173	.207	3.381	.001
2	(Constant)	-2.770	.313		-8.860	.000
	Domestic Waste	1.716	.199	.607	8.625	.000
	Residential Density	004	.000	646	-9.267	.000
	FAR	.056	.038	.111	1.491	.137
	Height to Width Ratio	.192	.014	.912	13.571	.000
	Streetlight Density	33.191	7.976	.192	4.161	.000
3	(Constant)	-1.206	.308		-3.915	.000
	Domestic Waste	367	.262	130	-1.401	.162
	Residential Density	004	.000	694	-11.393	.000
	FAR	.158	.041	.312	3.832	.000
	Height to Width Ratio	.043	.019	.205	2.331	.021
	Streetlight Density	42.992	6.668	.249	6.447	.000
	Plot Coverage	290	.114	227	-2.534	.012
	Sidewalks	.116	.014	.559	8.516	.000

Table 6.3: Regression Coefficients (β –coefficients) of independent variables

It is observed that residential density has the largest impact with β =-0.694 (negative in nature) on neighbourhood environmental quality followed by distribution of sidewalks (β =0.559), FAR (β =0.312), streetlight density (β =0.249), plot coverage (β =-0.227) and height to width ratio (β =0.205) respectively. While plot coverage also has a negative impact like residential density implying that as these (residential density and plot coverage) increase beyond a certain limit the

neighbourhood environmental quality deteriorates, all the other density variables of the model have a positive impact (as indicated in figure 6.1). Thus, as FAR, height to width ratio, distribution of sidewalks, etc. increases, neighbourhood environmental quality improves.

High residential density with high plot coverage generally implies low/medium rise compact developments with problems of crowding, congestion, noise and air pollution that deteriorate the environmental quality. On the other hand, higher FAR with higher height to width ratio point towards the high rise residential patterns with lower plot coverage and more open spaces having better environmental quality. The impact of domestic waste is not considered here as it is statistically not significant.

It is also worth noting that in addition to people density given by residential density and building density given by FAR and plot coverage; spatial density depicted by height to width ratio, distribution of sidewalks and streetlight density are amongst the influential attributes impacting neighbourhood environmental quality. This can be understood from the fact that presence of good and continuous sidewalks is one of the prerequisites for an environmentally conducive walkable neighbourhood. Similarly, adequacy of streetlights is important for a safe and secure neighbourhood. Higher height to width ratio affects the shade rating and ventilation score thus increasing outdoor comfort and promoting walkability, activity intensity, etc.

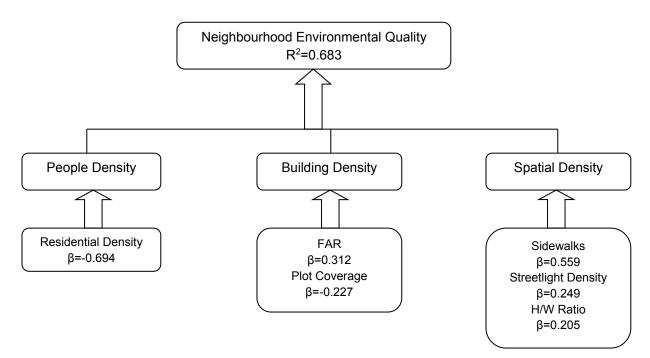


Figure 6.1: Results of the Multiple Hierarchical Regression Analysis

Finally, the accuracy of the model is also confirmed from the fact that the standardized residuals (difference between the observed values and the predicted values by the model) arise from a normal distribution. Further, in this regard, figure 6.2 shows that the histogram of the residuals is consistent with the assumptions of normality.

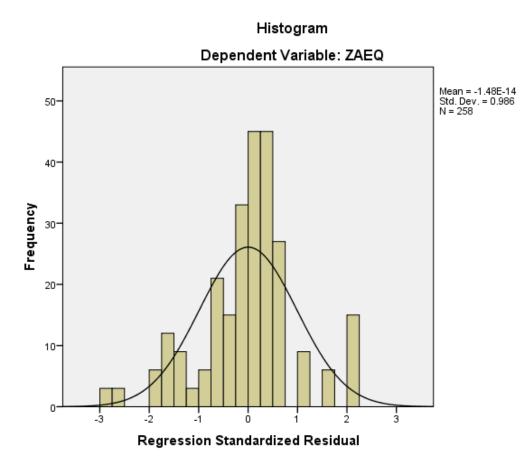


Figure 6.2: Histogram of Standardized Regression Residuals

6.3 The Best-to-Fit Analysis

The study applies the curve-fit function of IBM SPSS Statistics 22 (Statistical Package for Social Sciences) to explore the best-to-fit function between density variables and standardized aggregated environmental quality (ZAEQ) represented by the z-scores. The range of density variables as identified in table 5.11, Chapter 5 are considered to identify the optimum values of the significant density variables for the different residential patterns with the aid of the SOLVER optimization application of MS Excel 2013.

6.3.1 ZAEQ and People Density

The regression analysis between residential density – a type of people density and ZAEQ suggests that residential density accounts for 13.1% of the variance in ZAEQ and this is statistically significant as shown by the ANOVA table (as indicated in table 6.4).

R	F	R Square	Adjusted R Square		S	otd. Error of the Estimate				
.362		.131	.121			.299				
	ANOVA									
Sum of Sc		quares	df		Mean Square	F	Sig.			
Regression			3.707		3	1.236	13.807	.000		
Residual			24.611	27	5	.089				
Total			28.318	27	8					

The independent variable is Residential Density.

The curve-fit function shows that the cubic function fits the data most closely and further reinforces the fact that as residential density goes on increasing, the environmental quality fluctuates becoming positive or improving (favourable to very favourable) for particular density values and again deteriorating (unfavourable to very unfavourable) for other values of residential density (as indicated in figure 6.3).

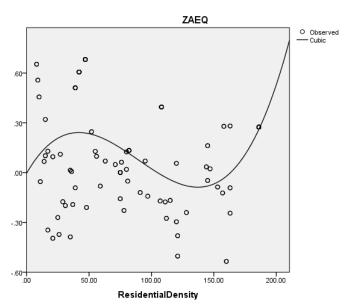


Figure 6.3: Best-to-fit analysis of residential density and ZAEQ

The optimization process using SOLVER optimization application of MS Excel 2013 reveals that there are typical residential density values at which the environmental quality of the neighbourhood is positive (as indicated in figure 6.4 and figure 6.5). These are **11-12 DUs/hectare** that corresponds to the very low density neighbourhoods as found in the northern sectors of Chandigarh or the gated communities generally found in the peripheral areas of different cities with plotted or high rise developments and large size accommodations. The next most typical residential density value is around **40-50DUs/hectare** that corresponds to the low/medium rise medium density neighbourhoods like Ranjit Avenue, Amritsar. The third typical value corresponds to high rise high/very high density neighbourhoods with approximately **170-180 DUs/hectare**. This finding is also in line with **Chen's**, **2007** study that tries to establish a relationship between urban compactness and environmental profile of 45 Chinese cities and reveals that environmental efficiency generated by urban compaction is positive only up to a certain level, after which the relationship becomes negative. This finding appears consistent with many established arguments that "an environment has a limit or capacity up to which it can absorb activities without irreparable harm" (**Jenks**, **2000**).

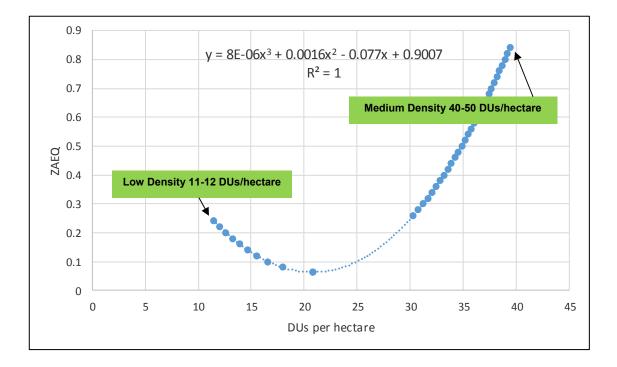


Figure 6.4: Residential density values (Low & Medium) for favourable ZAEQ

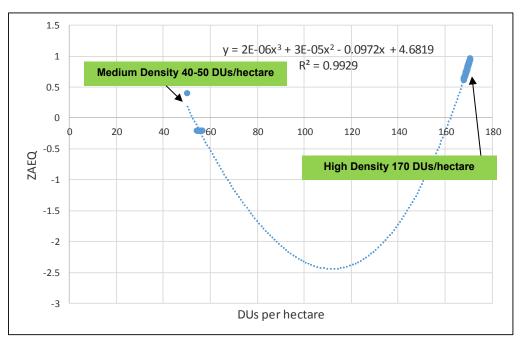
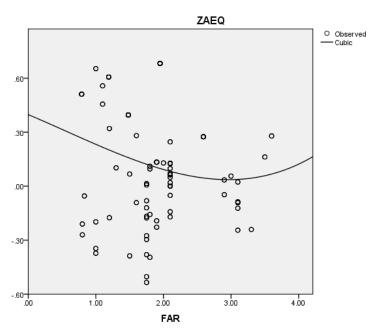



Figure 6.5: Residential density values (Medium & High) for favourable ZAEQ

6.3.2 ZAEQ and Building Density

The multiple hierarchical regression indicates that FAR and plot coverage have significant impact on environmental quality. Based on this, the curve-fit function shows that cubic function fits the data most closely in case of FAR (as indicated in figure 6.6).

Similarly, the cubic function fits the plot coverage most closely (as indicated in figure 6.7) and helps us to draw conclusions regarding the desirable values of this density variable for favourable environmental quality.

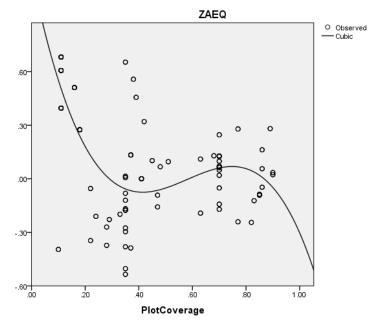


Figure 6.7: Best-to-fit analysis of Plot Coverage and ZAEQ

The regression model of both the variables – FAR and plot coverage are statistically significant and account for 4.4% and 46.4% variance in neighbourhood environmental quality respectively (as indicated in table 6.5 and table 6.6).

	-	Мо							
			Adju	Adjusted R		td. Error of the			
R	F	R Square	So	quare		Estimate			
.209		.044		.033		.314			
ANOVA									
Sum of		Sum of S	quares	df		Mean Square	F	Sig.	
Regression			1.237	:	3	.412	4.188	.006	
Residual			27.081	27	5	.098			
Total			28.318	278	8				

The independent variable is FAR.

		Мо	del Sun	nmary						
			Adju	Adjusted R		Std. Error of the				
R	F	R Square	Sc	quare	Estimate					
.681		.464	.458			.235				
	ANOVA									
	Sum of S		quares	df	Mean S	Square	F	Sig.		
Regression			13.127	3	3	4.376	79.213	.000		
Residual			15.191	275	5	.055				
Total			28.318	278	3					

The independent variable is Plot Coverage.

The optimization process indicates and reinforces the findings of Chapter 5 by mathematically showing that the favourable values of FAR and plot coverage are **1-1.5 with 30-45% plot coverage**; and **2-3 with 13-22% plot coverage** respectively. Hence, the first group as observed in the case studies can be the low and medium rise neighbourhoods while the second group can be the high rise residential developments (as indicated in figure 6.8, figure 6.9 and figure 6.10).

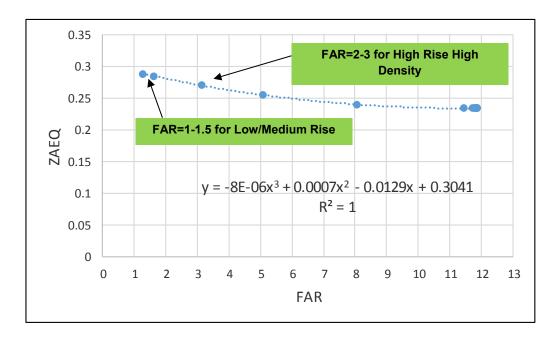


Figure 6.8: FAR for favourable ZAEQ

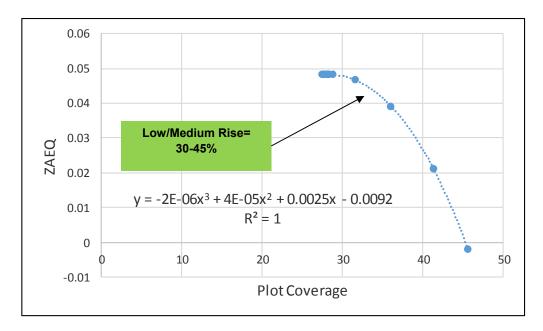
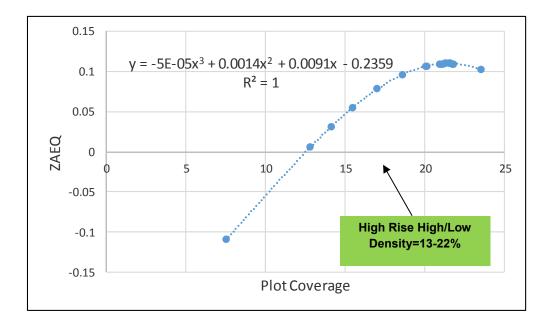



Figure 6.9: Plot Coverage (Low/Medium Rise) for favourable ZAEQ

Figure 6.10: Plot Coverage (High Rise Development) for favourable ZAEQ

6.3.3 ZAEQ and Spatial Density

The spatial density variables namely height to width ratio, sidewalks and streetlight density are also subjected to the curve estimation process in IBM SPSS Statistics 22 and it is observed that while the cubic function fits the height to width ratio, the quadratic function fits the datasets of the other two variables most closely (as indicated in figure 6.11, figure 6.13 and figure 6.14). The statistically significant regression model further substantiates the fact that height to width ratio, sidewalks and streetlight density account for 19.7%, 48% and 14.4% of the variance in ZAEQ (as indicated in table 6.7, table 6.8 and table 6.9).

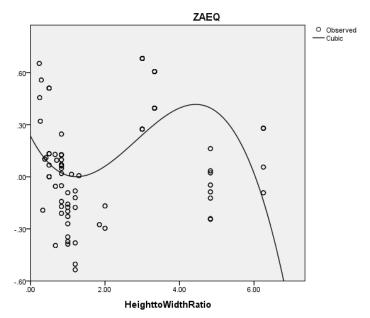


Figure 6.11: Best-to-fit analysis of Height to Width Ratio and ZAEQ

			Adjusted R		Std. Error of the					
R	F	Square	Square		Estimate					
.444		.197	.189			.287				
	ANOVA									
		Sum of Squares		df		Mean Square	F	Sig.		
Regression	1		5.589		3	1.863	22.539	.000		
Residual			22.730	27	5	.083				
Total			28.318	27	8					

Table 6.7: Model Summary and ANOVA of ZAEQ and Height to Width Ratio

The independent variable is Height to Width Ratio.

Model Summary

Table 6.8: Model Summary and ANOVA of ZAEQ and Sidewalks

Model Summary						
		Adjusted R	Std. Error of the			
R	R Square	Square	Estimate			
.693	.480	.476	.231			

ANOVA							
	Sum of Squares	df	Mean Square	F	Sig.		
Regression	13.580	2	6.790	127.163	.000		
Residual	14.738	276	.053				
Total	28.318	278					

The independent variable is Sidewalks.

Table 6.9: Model Summary and ANOVA of ZAEQ and Streetlight Density

Model Summary								
			Adjusted R		Std. Error of the			
R	R	Square	Sq	uare	Estimate			
.379		.144		.138		.296		
ANOVA								
		Sum of Squares		df		Mean Square	F	Sig.
Regression	ı		4.071		2	2.035	23.169	.000
Residual			24.247	27	6	.088		
Total			28.318	27	8			

The independent variable is Streetlight Density.

The optimization for height to width ratio shows that the desirable values are in the range of 1.5-5 with **2.5** being the most optimum. In other words, this implies that the height of the buildings should generally be about 2.5 times the space left in between buildings. If height increases, the space should be increased accordingly to maintain this ratio for proper light, views and ventilation (as indicated in figure 6.12). For dense/compact developments, the ratio may be more but it should be noted that beyond 2.5 the ZAEQ starts falling drastically because of absence of daylight and views particularly even though it might provide shaded streets and pathways due to mutual shading as observed specially in Katra Dullo, Amritsar. Thus, climate of a place given by solar radiation and shade hours, wind and ventilation, etc. are important while assessing environmental quality. The study findings are suggestive values for the composite climate. Similar assessment can be carried out for cities located in other climatic zones.

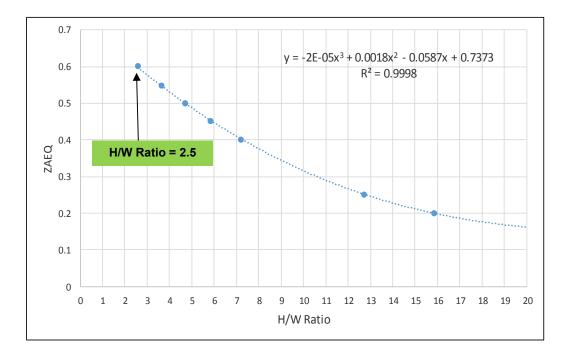


Figure 6.12: Height to Width Ratio for favourable ZAEQ

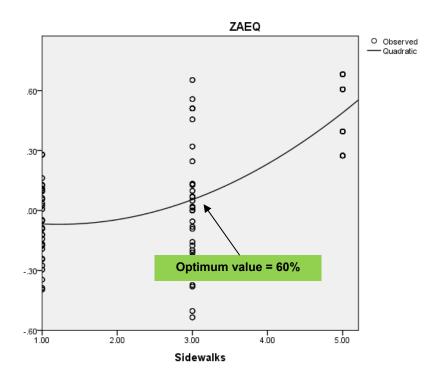


Figure 6.13: Best-to-fit analysis of Sidewalks and ZAEQ

The best-to-fit analysis shows that ZAEQ goes on increasing with the increase in sidewalks, the optimum being **3/5 or 60%** (as indicated in figure 6.13). This implies that 60% of the neighbourhood should have continuous sidewalks for favourable environmental quality. Good sidewalks are also known to encourage people to walk for short trips within and in near proximity of the neighbourhood and in turn reduce vehicular congestion, noise and air pollution in the locality. All these aspects further help in the development of an environmentally conducive walkable neighbourhood.

The streetlight density (with pole height of approximately 8-10m) is also understood to promote walkability and sense of safety in the neighbourhood especially after evening hours. The best-to-fit analysis gives an optimum value of **0.034 streetlights per unit paved road length** that works out to approximately **30m c/c distance** between adjacent streetlights as compared to 35m c/c suggested by the Report on Indian Urban Infrastructure and Services, HPEC Committee, March 2011 across various classes of cities.

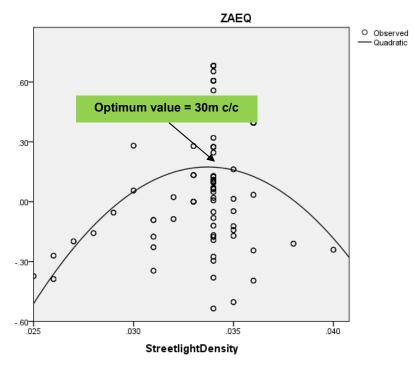


Figure 6.14: Best-to-fit analysis of Streetlight Density and ZAEQ

The best-to-fit analysis of streetlight density and ZAEQ (as indicated in figure 6.14) also shows that streetlight density > 30m c/c causes insufficient street lighting on one hand while streetlight

density < 30m c/c causes wastage of infrastructure and energy thus affecting neighbourhood environmental quality.

Based on the assessment of the impact of density on neighbourhood environmental quality and the identification of optimum values of significant density variables for favourable environmental quality, certain measures are suggested for environmentally conducive development of the case study neighbourhoods as follows:

The values of the different significant density variables observed in the case study neighbourhoods are listed in table 6.10 as achieved from the case study findings in Chapter 4. Several spatial and physical characteristics can be modified to improve the overall environmental quality in most of the neighbourhoods. While Sector-8, Chandigarh – a low density neighbourhood has most of the values in the optimum range, it needs considerable improvement in the provision of good and continuous sidewalks to transform it into a more walkable neighbourhood.

	People Density	Buildin	g Density	Spatial Density			
Neighbourhood	Residential Density (DUs/ha)	FAR	Plot Coverage (%)	H/W Ratio	Sidewalks (Score)	Streetlight Density (streetlights/paved road length)	
Sector 8, Chandigarh	17	1.00	49%	0.40	2	0.034	
Ranjit Avenue, Amritsar	36	1.00	30%	0.93	3	0.030	
World Spa, Gurugram	44	2.00	11%	3.17	5	0.034	
Marble Arch (Manimajra), Chandigarh	65	1.57	31%	0.50	3	0.033	
Sector 38W, Chandigarh	76	2.00	70%	0.83	2	0.034	
Sector 20 (Panchkula), Chandigarh	98	2.00	35%	1.40	2	0.034	
Uniworld City, Gurugram	147	2.03	15%	3.17	5	0.035	
Katra Dullo, Amritsar	149	3.00	85%	5.30	1	0.034	

Table 6.10: Values for different density variables of Case Study Neighbourhoods

In the medium density category as per the revised classification, Ranjit Avenue, Amritsar still has some scope of intensification by increasing the residential density marginally because population density (256pph) is already more than the optimum range (160-210pph) because of larger household size. Alongside the condition of the sidewalks can be improved as mentioned for Sector-8, Chandigarh. Marble Arch (Manimajra), Chandigarh also needs improvement in the

provision of sidewalks especially in the study unit close to the main road. Thus provision and condition of sidewalks proves to be a really significant density variable for the creation of sustainable and walkable neighbourhoods as also shown by the multiple hierarchical regression analysis ((β =0.559) – the second most significant density variable having a positive impact on neighbourhood environmental quality.

Sector-38W, Chandigarh cannot be further intensified even by raising the FAR as the plot coverage is already quite high i.e. 70% and further intensification will have negative impact on the neighbourhood environmental quality by increasing crowding and congestion, noise pollution and air pollution. However, some improvement can be achieved by provision of sidewalks and improving the condition of the open spaces. For Sector-20 (Panchkula), Chandigarh along with improvement of the sidewalks, the level of cleanliness especially solid waste management will have to be taken up rigorously. Also the noise levels have to be controlled by increasing tree cover thus creating a sort of buffer/noise barrier between the roads and the dwelling units, controlling/managing vehicular movement (goods vehicles coming for delivery to the shopping area catering to the entire district as well as private vehicles using Sector-20 as a thoroughfare for accessing the large number of gated communities coming up beyond the sector boundary) and encouraging and promoting pedestrian movement – the latter being management practices to improve the quality. Certain time zoning/time clocking may be adopted forbidding goods vehicles movement during the day time. Also alternative road/bypass should be developed to cater to other residential areas lying beyond the sector boundary.

In the high density category, gated communities like Uniworld City, Gurugram can improve by increasing the road density to increase paved road length per capita (PRL/Capita) and avoiding dead ends that lead to congestion. Also, the FAR can be increased to raise the built-up area per capita (BUA/Capita) and reduce crowding. Finally, for core areas like Katra Dullo, Amritsar the most feasible solution is to develop open spaces, public squares etc. on vacant plots or by removal of dilapidated and structurally unsafe buildings from the neighbourhood. Such spaces at times may also be utilized as parking lots and thus help in decongesting the narrow streets which may then be more conveniently used by the pedestrians or non-motorized vehicles. This shall also help in reducing noise and air pollution and improve the environmental quality. Other interventions in compliance with local building regulations and HRIDAY, 2015 may include appropriate infill strategies and improvement of existing infrastructure and provision of adequate services to cater to the needs (of the residents) of such areas. Thus, it can be concluded that

the present research methodology can help in suggesting case-specific solutions and pave the way for future sustainable cities.

6.4 Concluding Remarks

The present chapter proves the research hypothesis (alternative hypothesis) with the help of the multiple hierarchical regression (MHR) approach and conclusively shows that different density variables in varying degrees impact environmental quality in residential neighbourhoods. The hierarchical regression model indicates that the density variables namely – Residential Density (People Density), Plot Coverage and FAR (Building Density) and Height to Width Ratio, Sidewalks, Streetlight Density and Waste Collection Systems (Spatial Density) account for nearly 68.3% variation in neighbourhood environmental quality which is quite high. The β coefficients give the relative importance of each of the significant density variables affecting neighbourhood environmental quality. Residential density is found to have a high negative impact whereas sidewalks have a considerable positive impact on neighbourhood environmental quality. The best-to-fit analysis and optimization technique enables identification of optimum values of the significant density variables that can be used as measures to attain favourable environmental quality in neighbourhoods with different residential patterns in the composite climate. The important findings are summated in table 6.11 below.

Table 6.11: Optimum Density Values for favourable Environmental Qualityin different Residential Patterns

People Density (Residential Density)	Building Density (FAR and Plot Coverage)	Spatial Density (H/W Ratio, Sidewalks and Streetlight Density)	Key points for favourable environmental quality (based on Optimization)		
Low 11-12DUs/ha	 FAR = 1-1.5 Height = Low & Medium Rise 		 Residential density for favourable environmental quality varies with residential pattern 		
Medium 40-50DUs/ha	 Plot Coverage = 30-45% 	 H/W Ratio = 2.5 Sidewalks = 60% Streetlight 	 Plot Coverage should not exceed 70% or open spaces should not be less than 30% Minimum 60% of the 		
High 170-180DUs/ha	 FAR = 2-3 Height = High Rise Plot Coverage = 13-22% 	Density = 0.034 streetlights per unit paved road length or 30m c/c	 Minimum 60% of the neighbourhood should have continuous sidewalks Streetlights should be spaced 30m c/c for optimum utilization assuming other parameters constant 		

The study convincingly shows that all the parameters of physical density (people density, building density and spatial density) have significant impact on neighbourhood environmental quality thus justifying their adoption for planning/design or retrofitting/revitalization in the residential pattern under consideration.

References:

- 1. Chen, H., Jiaa, B. and Laua, S.S.Y. (2008) Sustainable urban form for Chinese compact cities: Challenges of a rapid urbanized economy. *Habitat International*, 32 (1), 28-40.
- 2. Field, A. (2009) *Discovering Statistics using SPSS*. London: SAGE.
- 3. Jenks, M. (2000) The Acceptability of Urban Intensification. In: K. Williams et al., (Eds.), *Achieving Sustainable Urban Form* (pp. 242-250). E & FN Spon.

Chapter Seven

SUMMARY, FINDINGS AND RECOMMENDATIONS

7.1 Introduction

The previous chapters help to identify typical residential patterns in Indian cities and assess the environmental quality at the micro-level – the level of the residential neighbourhoods which are the basic unit of urban planning. The novelty of the research lies in the fact that it considers the neighbourhood as an important unit for the assessment of environmental quality in urban areas hitherto generally evaluated at the level of the city. Secondly, it details out the process of assessing the environmental quality at the micro-level using the multi-criteria approach that helps to consider several density variables like people density, building density and spatial density. All these variables can be controlled and modified during the planning and design phase to achieve better spatial quality of the designed spaces. This further creates the possibility of taking up local actions at the street/cluster level by the residents, residents' welfare associations or 'mohalla sudhar committees' and the urban local bodies (ULBs) to improve the neighbourhood environmental quality that in turn can help in improving the overall quality of the urban environment.

The study model devised can be applied to diagnose case-specific issues in existing neighbourhoods and suggest remedial/retrofitting options to improve the environmental quality. For newly developing areas policy recommendations and design guidelines with respect to the residential pattern and density can be suggested so that favourable environmental quality can be attained/maintained.

The research also attempts to give objectivity to an otherwise abstract and subjective term called 'environmental quality'. Environmental quality at the neighbourhood level is assessed on the basis of crowding and congestion given by built-up area per capita (BUA/Capita), public ground area per capita (PGA/Capita), paved road length per capita (PRL/Capita) and mobilization factor (M.F); nature and use of open spaces given by type and condition of open spaces, tree cover, activity intensity and activity diversity; shade rating; ventilation score; temperature variations within and outside the neighbourhood; average noise levels; level of cleanliness; neighbourhood walkability given by proximity to daily needs, condition of sidewalks, condition of streetlights and type and condition of open spaces; and air quality given by levels of

 SO_2 , NO_x and $RSPM_{10}$. All these indicators are objectively measured or gathered from secondary sources, standardized and summated to get the aggregated neighbourhood environmental quality (ANEQ) – an objective value.

The 'Environmental Quality Index' (EQI) formulated from the objective values serves as a tool to classify different neighbourhoods of the city according to the level of environmental quality. The illustrative maps generated on the basis of the EQI can be used as useful visual aids that can help in bringing out heterogeneity at the neighbourhood level by identifying problems/issues at the micro-level.

The 'Environmental Quality Profiles' (EQPs) show the multivariate data consisting of different environmental quality indicators - crowding and congestion; nature and use of open spaces; shade and ventilation; temperature variations; noise levels; level of cleanliness; walkability and air quality on different axes of a radar chart. These help to identify commonalities and differences in the indicators of environmental quality and justify the level of neighbourhood environmental quality ascertained.

Overall, the present research attempts to provide a useful and simple approach for assessing neighbourhood environmental quality on the basis of the physical characteristics of the residential neighbourhoods. Further, it is envisaged that the process can be easily adapted by taking socio-economic variables to conduct cross-case and cross-time comparisons at a meaningful level. This in turn shall lead to a better understanding of the relationship between environmental quality and physical and/or socioeconomic conditions and expedite the realization of the long term and holistic goal of achieving urban sustainability in lines with the United Nations Sustainable Development Goals: Goal 11 – Sustainable Cities and Communities.

7.2 Summary of the Studies

There are many ways in which density helps limit environmental damage by reducing use of land, encouraging people to live in apartments, clustering of civic amenities and public transportation, supporting walkability, etc. However, most of the discussion about urban sustainability in India centres on "green codes" for buildings. The problem with the so-called green codes is that they exclusively focus on maximising an individual building whereas real gains come from the overall urban form. In short, the factors that matter are: Is the city dense or

sprawled? Do people live in apartments or free-standing houses? Is the city designed for public transport? For instance, energy use drops by over 30% just by moving people from houses to apartments even if the green codes are ignored (World Wide Fund for Nature (WWF), 2010). Similarly, public transport systems do not work efficiently when the city is spread out and commuters cannot easily walk to the bus/metro stop. Thus, it is seen that one of the enduring themes behind the search for more sustainable urban forms is that of the density of development. Also, TERI's (The Energy and Resources Institute, New Delhi) Green Guidelines for Large Developments 2012 (Jia, 2012) and GRIHA (Green Rating for Integrated Habitat Assessment) for Large Development 2015 (Vij, 2015) consider several parameters for development and evaluation of sustainable neighbourhoods but somehow do not give much idea about the optimum values of the physical density variables. With this intent the research proposes a tool that can be used by decision makers and physical planners, architects and urban designers to assess the effects of urbanisation on the environmental quality of a neighbourhood and classify localities based on physical density and corresponding environmental quality. The research also expects to assist in adopting optimum people, building and spatial densities in neighbourhoods with varying residential patterns for environmentally conducive development in existing as well as future cities.

7.2.1 Answers to the Research Questions

The study attempts to answer some pertinent research questions that are necessary to understand the nature of impact of different density variables on neighbourhood environmental quality. The different research questions and the important findings are as follows:

Research Question No. 1

What are the different residential patterns identifiable in rapidly urbanising Indian cities?

The urban form of the city is characterized by different configuration and types of built form and related population distribution across the geographical extent of the city. Alternatively, it can be stated that distribution of buildings, their typology and geometry, layout patterns, distribution / availability of open spaces, quality of infrastructure, etc. vary from one locality to the other within the city. Based on these parameters, rapidly urbanising cities generally have compact built-forms in the core/old areas with 70% ground coverage and 30% of the area occupied by pedestrian streets and courtyards. These characterise the low rise high density areas. Outside these core areas, either low rise low density British annexes like cantonment, civil lines or railway colonies dominate the city or haphazardly developed medium/high rise high density

areas are found in and around commercial and industrial zones offering jobs to resident and migrant population or along transport corridors that promote easy accessibility to and from the place of work. Finally, the residential development seen in most city outskirts are the gated communities dominated by high rise apartment blocks, community open space and shared facilities and amenities. Thus, based on these findings, the study helps to identify eight different residential patterns based on building height and gross population density namely – Low Rise Low Density (LRLD), Low Rise Medium Density (LRMD), Low Rise High Density (LRHD), Medium Rise Medium Density (MRMD), Medium Rise High Density (MRHD), High Rise Low Density (HRLD) and High Rise High Density (HRHD) in different case study neighbourhoods of three rapidly urbanising cities namely, Amritsar, Chandigarh and Gurugram and enables the assessment of neighbourhood environmental quality categorically.

Research Question No. 2

How does People Density measured by Population Density and Residential Density impact environmental quality in different residential patterns?

The research finds that there is a strong correlation (multicollinearity) between population density (persons per hectare) and residential density (DUs per hectare) and hence similar relationships of both these variables with environmental quality. Therefore, the findings here mainly describe residential densities in terms of DUs per hectare and its impact on neighbourhood environmental quality.

The correlation analysis indicates that there is a strong negative impact of residential density on crowding and congestion, an important indicator of neighbourhood environmental quality. Generally the built-up area per capita (BUA/Capita), public ground area per capita (PGA/Capita) and paved road length per capita (PRL/Capita) decrease with increasing people density, r = -0.50, -0.80 and -0.70 as indicated in figure 4.14, 4.15 and 4.16, Chapter 4 respectively. The association is strongest and statistically significant between residential density and PGA/Capita (p<0.05). This suggests that increasing people density causes more crowding and congestion and hence deteriorates the environmental quality.

Also, it is found that generally there is a decrease in the level of environmental quality with increasing residential density. Hence, a blanket residential or population density range or value cannot be suggested across different residential patterns. Every type – whether low, medium or high density has optimum values of residential density that differ from the other and help in

maintaining/attaining favourable neighbourhood environmental quality. While low density neighbourhoods can have 11-12DUs/ha, medium density neighbourhoods can have 40-50DUs/ha and high density neighbourhoods can have approximately 170-180DUs/ha for favourable environmental quality. These findings appear consistent with many established arguments that "an environment has a limit or capacity up to which it can absorb activities without irreparable harm" (Jenks, 2000).

Research Question No. 3

How does Building Density measured by FAR and Plot Coverage impact environmental quality in different residential patterns?

It is known that plot ratio or FAR is often controlled in the master plan in order to govern the extent of built-up and to prevent overdevelopment. Similarly, site or plot coverage and height of individual developments is often controlled in order to prevent over-build and to preserve areas for greenery and landscaping. For a particular residential density on a given site, the proportion of open areas for communal facilities, etc. goes on increasing as the urban form transforms from a low rise to medium rise to high rise residential pattern (Cheng, 2010). Thus, plot coverage particularly shapes the quality and amount of open spaces that further impact the neighbourhood environmental quality.

The present study clearly shows that in case both these density variables show an increasing trend, then environmental quality deteriorates i.e. if both FAR and plot coverage are high as in the case of Katra Dullo, Amritsar – it leads to a very compact and dense sort of residential pattern that loses out on many other factors like distribution of open spaces, proper roads and sidewalks, etc. and hence becomes unable to have favourable environmental quality.

Thus, it is concluded that low FAR (1-1.5) with higher plot coverage (30-45%) and higher FAR (2-3) with comparatively lower plot coverage (13-22%) works best for favourable environmental quality. While the first group corresponds to the low and medium rise neighbourhoods, the second group is most suitable for the high rise residential developments.

Research Question No. 4

How does Spatial Density impact environmental quality in different residential patterns?

Spatial density refers to the perception of density with respect to the relationship among spatial elements such as height to width ratio, spacing and juxtaposition. The present research finds

that most of the spatial density variables like distribution of open spaces, sidewalks, services (domestic waste collection, stormwater drainage, sewerage) etc. have a positive correlation with neighbourhood environment quality. The greater the distribution of the open spaces, sidewalks and services, the better is the environmental quality.

The study also brings forth the optimum requirements of these variables for favourable environmental quality. While any neighbourhood should have atleast 30% area under open spaces and 60-70% of the commuting routes with sidewalks, it should have 100% coverage of domestic waste collection system, stormwater drainage and sewerage i.e. all the houses of the locality should have door-to-door collection of domestic waste on a regular basis and should be connected to the underground sewerage system. Similarly when the height to street width ratio and streetlight density are considered, they are found to have an overall positive impact on neighbourhood environmental quality. However, the detailed analysis and subsequent optimization shows that for certain specific values of the above mentioned variables, the environmental quality is favourable and tends to deteriorate with either an increase or decrease from the optimum value. Desirable values for height to width ratio are in the range of 1.5-5 with 2.5 being the most optimum. In other words, this implies that the height of the buildings should generally be about 2.5 times the street width or space in between buildings. If height increases, the street width/space should be increased accordingly to maintain this ratio for favourable light, views and ventilation. In case of streetlight density, 30m c/c distance between adjacent streetlights keeping other parameters constant works out to be the most optimum distance for adequate lighting promoting a safe and secure residential environment in the type of cities under consideration. Anything substantially over or under either causes insufficient street lighting or wastage of infrastructure and energy thus affecting neighbourhood environmental quality.

Research Question No. 5

What are the optimum ranges of density for neighbourhoods with different patterns to maintain favourable environmental quality?

In the present study, residential patterns are identified by the physical density variables namely – people density, building density and spatial density. The emerging relationships of the study are consistent with the mainstream arguments of density and environmental quality. The influence of density on the studied environmental quality attributes is found to be significant as expected. Significant correlations at 95% confidence level are seen between many density

variables and (indicators of) neighbourhood environmental quality. While environmental quality varies negatively with population density, residential density, FAR and plot coverage; it shows positive correlation with height to street width ratio, distribution of open spaces, sidewalks and streetlight density. In other words, this means that as population density, residential density, etc. goes on increasing the environmental quality tends to deteriorate whereas with increase in height to width ratio, open spaces, sidewalks and streetlights permitting walkable and safe neighbourhoods, the environmental quality starts improving. It is also seen that spatial density of domestic waste collection system, provision of stormwater drainage and sewerage also show positive association with ZAEQ thus reinforcing the assumption that adequacy of services improve the environmental quality. It is also observed that as people density, building density and spatial density go on increasing across all the different residential patterns, the environmental quality fluctuates becoming positive or improving (favourable to very favourable) for particular combinations of the density variables and again deteriorating (unfavourable to very unfavourable) for other combinations of the variables. Thus, the desired ranges of density for neighbourhoods with different patterns work out as:

- ✓ People Density Based on people density, the residential patterns with favourable environmental quality can be suitably divided into three categories – low density with 11-12DUs/ha, medium density with 40-50DUs/ha and high density with 170-180DUs/ha.
- ✓ Building Density The favourable values of FAR and plot coverage are found to be 1-1.5 with 30-45% coverage; and 2-3 with 13-22% coverage respectively. The first group as observed in the case studies can be the low and medium rise neighbourhoods while the second set of values can be suitably adopted for the high rise residential developments.
- ✓ Spatial Density The distribution of open spaces greater than equal to 30% is required for favourable environmental quality. Similarly, 60-70% of the roads/streets in the neighbourhood should have continuous and good quality sidewalks to promote walkability. Streetlights should be 30m c/c for optimum lighting and coverage of waste collection, drainage and sewerage systems should be 100% for good environmental quality. The important findings as stated above are already summated in table 6.11, Chapter 6.

7.3 Policies and Guidelines for Environmentally Conducive Development of Residential Neighbourhoods

The research findings amply show that physical aspects of the neighbourhood can be effectively regulated to enhance the neighbourhood environmental quality. This further offers an

opportunity to frame policies and development control regulations for spatial and physical aspects of urban neighbourhoods to attain favourable environmental quality and tread towards sustainability.

- Accordingly, first of all, it is important to understand that a city has a heterogeneous spatial structure and there is a need to revise the density regulations depending on the residential pattern observed/envisaged for future sustainable growth and development of the city. Blanket density values for e.g. as suggested by URDPFI – 125 to 175pph (developed area average densities for metropolitan cities) may not work and it is important for policy makers to avoid a 'one policy fits all' approach.
- 2. Secondly, equally distributed low FAR throughout the city is detrimental for the sustainable growth of the city. Low FAR causes shortage of floor space within city limits and raises real estate prices thus forcing people to move outwards leading to urban sprawl and unsustainable growth in the absence of infrastructure and services and destruction of agricultural fields, forests and environmentally sensitive areas in most cases. Therefore, the FAR should be regulated in accordance with the residential pattern envisaged for future sustainable development.
- 3. Thirdly, one should note that Master Plans do not incorporate density as a tool for development even though some large urban programs like JNNURM (Jawaharlal Nehru National Urban Renewal Mission 2005) are promoting densification of inner cores and trying to fill the gaps in policies. The present research suggests that land-use plan and urban form should be intensively analysed to understand the location of activity nodes, movement of people, distribution of population and residential densities, typology of built forms, etc. in core, intermediate and peripheral areas of the city. This in turn may be utilized to decide the people, building and spatial densities for specific areas/neighbourhoods of the city. In line with Ray's (2012) findings, conical massing with high density high rise areas in the centre and tapering towards the edges of the city interspersed with open/public spaces may be promoted.
- 4. Fourthly, it is apparent from the study that neighbourhood environmental quality assessed on the basis of the physical attributes of the built environment gives different outcomes for different residential patterns. This indicates that environmental policies and guidelines should be contextual and made at the neighbourhood/local level to cater to

the issues at hand promptly and make communities safe, resilient and sustainable as envisioned in the United Nations Sustainable Development Goals: Goal 11 – Sustainable Cities and Communities.

5. Last but not least, by facilitating the participation of people and local communities along with the government agencies, inclusive neighbourhoods that continue to thrive and grow, while improving resource use and reducing pollution and poverty can be built at a much faster pace. People should be involved in the future planning process also by being given a chance to assess their built environment based on socio-cultural, economic and psychological needs in addition to physical attributes.

7.4 Conclusion

It can be concluded that the neighbourhood is a valid level of aggregation for the assessment of environmental quality and several policies, guidelines and development control regulations need to be formulated at this level for environmentally conducive growth and development in rapidly urbanising Indian cities. Consequently, some of the effective ways can be as follows:

- Moderate to high density neighbourhoods (40-50 DUs/ha or 170-180DUs/ha) should be promoted as they would use land efficiently to accommodate more people, have better access to services and facilities, feel more secure and develop as vibrant and active social units in the overall city structure.
- Horizontal and vertical randomisation of buildings coupled with high FAR and low plot coverage (FAR 2-3 and Plot Coverage – 13-22%) should be adopted for environmentally conducive sustainable development.
- 3. Streets and sidewalks well-connected to services and facilities like public transportation stops at the neighbourhood edges and open spaces supporting pedestrian access (taking lighting, paving, safety etc. into account) should be designed. Relatively small design and planning decisions such as the width and design of streets, the size of blocks etc. can have huge implication on urban sustainability. Hence, they should be designed accordingly and integrated with emerging concepts of mixed land use, smart neighbourhoods, etc.
- 4. Management of shared greens or open spaces in high and very low density neighbourhoods is problematic as observed in Sector-8, Sector-38W and to some extent in Sector-20 (Panchkula), Chandigarh. Design of such neighbourhoods should frame certain guidelines for maintenance and supervision of open/public spaces.

- 5. Creating a range of attractive open spaces centrally located and visually more integrated with other neighbourhood spaces may be taken up as an integral part of neighbourhood planning. This in turn may influence the number of social contacts, quality of social network and frequency of social interaction in the neighbourhood as also shown by Raman's (2010) study.
- Additionally children play areas etc. may be provided near medium and high rise buildings to provide comfortable micro-climate by ensuring natural sun protection from mutual shading that may further enhance activity intensity and diversity (Shekhar and Tripathi, 2015).
- 7. For old areas of historical cities as seen in case of Katra Dullo, Walled City Amritsar, the built forms reflect the history, culture, traditions, climate responsiveness and socio-economic patterns of the period in which they developed. In such cases, links to the past can be maintained by retaining the integrity of the urban form and benefitting from centuries of experience while adopting changes through appropriate retrofitting and revitalization strategies.

Thus, it can be summarised that action policies and strategies with proper land use and infrastructure planning, urban design, investment and efficient management at the neighbourhood level may be adopted for sustainable development of rapidly urbanising Indian cities.

References:

- 1. Cheng, V. (2010) Understanding Density and High Density. In: Edward Ng. (Ed.), *Designing High Density Cities For Social and Environmental Sustainability* (pp. 3-17). New York: Earthscan.
- 2. Jenks, M. (2000) The Acceptability of Urban Intensification. In: K. Williams et al. (Eds.), *Achieving Sustainable Urban Form* (pp. 242-250). E & FN Spon.
- 3. Raman, S. (2010) Designing a Liveable Compact City: Physical Forms of City and Social Life in Urban Neighbourhoods. *Built Environment* (1978-), 36 (1), 63-80.
- Ray, S. (2012) Sustainable Urban Form for Indian Cities. [online] Available at: <u>http://www.city-form.org/india/pdf/Cityform%20Conference%209th%20Jan-%20Satmohini.pdf</u> [Accessed 25 May 2017].
- Shekhar, S. and Tripathi, A. (2015) Smart Neighbourhood: A way to Sustainable Development. In: XVI International Conference on Governance: Changing Paradigms (pp. 773-789), 3-5 January 2015, Delhi. [online] Available at: <u>http://www.internationalconference.in/XVI_AIC/TS5B-</u> <u>PDF/20Shashank_Shekhar%20(1).pdf</u> [Accessed 10 May 2016].

- Vij, A. (2015) GRIHA for Large Development. [online] Available at <u>http://www.grihaindia.org/files/GRIHA-LD-V2015.pdf</u> [Accessed 27 Aug 2017].
- World Wide Fund for Nature (WWF) (2010). Urbanisation and Sustainability in India: An Interdependent Agenda. *The Alternative Urban Futures Report 2010*. [online] Available at: <u>http://assets.wwfindia.org/downloads/urbanisation_report.pdf</u> [Accessed 25 Aug. 2011].
- 8. Zia, H. (2012) *Looking beyond Buildings: Green guidelines for large developments*. [online] Available at http://grihaindia.org/events/ncgd/2012/pdf/HINA_ZIA.pdf [Accessed 27 Aug 2017].

Chapter Eight

AVENUES FOR FUTURE WORK

8.1 Introduction

The present research helps to prove that physical density has significant impact on the neighbourhood environmental quality in our cities. It shows that there is lot of scope for architects, urban designers, urban planners, decision makers and local stakeholders to adopt suitable strategies for environmentally conducive design, development and maintenance of residential neighbourhoods that in turn can be the catalysts for future sustainable development of Indian cities.

The present research also reinforces the fact that a blanket density range/value cannot be suggested across different residential patterns and the 'one policy fits all' approach is not justified. Every type – whether low, medium or high density has optimum values of density that differ from the other and help in maintaining/attaining favourable neighbourhood environmental quality. These findings appear consistent with many established arguments like **Carl's (2000)** statement that 'Sustainable cities are a matter of density'. The research enables assessment of optimum values of different density variables for varying residential patterns that is seldom found in the literature. This further facilitates the formulation of case specific policies and guidelines for environmentally conducive development of residential neighbourhoods in Indian cities.

8.2 Limitations and Parallel Challenges

The background studies reveal that references are scanty and there is very little work reported in this domain especially in the Indian context. **Leidelmijer et al. (2002)** argue that there is no coherent system to measure and evaluate aspects of, and trends in, environmental quality though concepts of urban environmental quality and related terms such as livability, quality of life and sustainability enjoy great public popularity and form a central issue in research programs, policy making and urban development. It follows that there is a need to evaluate several physical aspects of the urban form from a new perspective in order to gain detailed insights into the spatial components that influence environmental quality. Based on these views, the present research provides an immense possibility of advancing the derived methodology of assessing environmental quality at the neighbourhood level and understanding the variations (if at all) in optimized densities for residential patterns in cities of different sizes, classes, types, regions, climatic zones, etc. to derive case-specific solutions and suggest suitable measures to improve the environmental quality.

The present work is limited to a number of physical aspects of neighbourhoods from cities of a particular size and class due to the boundary conditions of the research, constraints of time and resources, availability of data, etc. However, further studies can be conducted in more detail with certain aspects for e.g. analyzing the impact of car traffic volume of the neighbourhood on crowding and congestion, noise levels and air quality – all extremely important indicators of neighbourhood environmental quality.

Factors like the role of urban governance in the taxation and maintenance of municipal services and variations in socio-economic status of people and its effect on the type of facilities and amenities in a residential neighbourhood and the resultant impact on environment quality should also be considered for future study and analyses. Similarly, social density – one of the types of perceived density (Chan, 1999) should be made part of the analyses to understand the level of social interaction among the people and its implication on neighbourhood environmental quality.

Slums and squatter settlements pose a constant threat to the sustainable development of our cities. They are kept out of the scope of the present study. These could be taken up in future studies by team of researchers from educational institutions, government and non-government organizations (NGOs), urban local bodies (ULBs), etc. to assess the environmental quality by applying the methodology developed and upgradation/redevelopment measures with peoples' participation can be undertaken to make them desirable for human habitation. The governments should strive to create an 'enabling environment', under which people by using their own resources can find unique local solutions for their housing and shelter problems.

8.3 Directions for Future Research

For holistic understanding of the several forces shaping the 'neighbourhoods' – the primary urban morphological unit, the research can encompass the social, economic, political, historical, and psychological aspects and assess their impact on the environmental quality. This in turn will open multidisciplinary avenues for future researchers not only from the design field but for people from different backgrounds and expertise like sociologists, economists, historians, psychologists, etc.

It is also expected that further research may be undertaken to explore alternative methods along with application of advanced mathematical modeling and optimization techniques, geographic information system (GIS) and urban simulation softwares to systematically assess and predict the environmental quality of entire cities. Action research on actual design and execution of model neighbourhoods with different residential patterns according to peoples' needs and aspirations based on such techniques should be put to test against time and actual use for future sustainable cities.

Finally, it is well understood that if the various parameters of density like number of dwelling units, floor area ratio (FAR), plot coverage or the built form, layout, minimum standard of living and outdoor space, etc. are linked together, environmentally conducive neighbourhoods can be developed in our existing and future cities. However, densities can be delivered in many different forms and it is important that these forms match the needs and aspirations of the residents, to deliver the best possible quality of life (Dave, 2010). In this regard, the present research can serve as a foundation for formulation of policies, guidelines and development control regulations for the planning and design of sustainable neighbourhoods with different residential patterns suitable for different parts of the city.

In addition, a re-examination of the national and regional urban growth policies to tackle urbanrural migration may be considered along with such guidelines and regulations in place as mentioned above, so that before long we are able to deal with the complex challenge of achieving sustainability in rapidly urbanising Indian cities.

References:

- Carl, P. (2000) Urban Density and Block Metabolism. In: S. Koen and S. Yannas. (Eds.), Architecture, city, environment. Proceedings of PLEA 2000 (pp. 343-347). London: James & James.
- 2. Chan, Y.K. (1999) Density, crowding and factors intervening in their relationships: Evidence from a hyper-dense metropolis. *Social Indicators Research*, 48, 103-124.
- 3. Dave, S. (2010) High Urban Densities in Developing Countries: A Sustainable Solution? *Built Environment* (1978-), 36 (1), 9-27.
- 4. Leidelmijer, K., van Kamp, I. and Marsman, G. (2002) *Viability towards a conceptual framework and conceptual framing (RIGO, RIVM).* Report Number 81330.

This is an extremely useful technique when multiple sample cases are Analysis of involved. It is used to determine the significance of difference of more than Variance (ANOVA) two sample means at the same time. Thus, through ANOVA technique one can, in general, investigate any number of factors which are hypothesized or said to influence the dependent variable. This is a method of statistical evaluation used to study the strength of a Correlation relationship between two, numerically measured, continuous variables (e.g. Analysis height and weight). Both histograms and q-q plots are graphical methods to assess whether the Histogram and Q-Q data is normally distributed or not. A close to bell shaped curve in case of Plots the histogram and points approximately falling on a straight line in case of a g-g plot shows that the data is normally distributed. **Outliers** In statistics, an outlier is an observation point that is distant from other observations. An outlier may be due to variability in the measurement or it may indicate experimental error. It is generally excluded from the data set as it can cause problems in statistical analyses. In a hypothesis test in statistics, a p-value helps to determine the p-value significance of the results. The p-value is a number between 0 and 1 and interpreted in the following way: A small p-value (typically ≤ 0.05) indicates strong evidence against the null hypothesis, so one can reject the null hypothesis. Regression This is used to understand which among the independent variables are related to the dependent variable, and to explore the forms of these Analysis relationships. In restricted circumstances, regression analysis can be used to infer causal relationships between the independent and dependent variables. The test is one of the important normality tests designed to detect all Shapiro Wilk Test departures from normality. The test rejects the hypothesis of normality when p-value the p-value is less than or equal to 0.05. Passing the normality test is prerequisite for carrying out parametric statistical tests. Skewness is asymmetry in a statistical distribution, in which the curve Skewness and appears distorted or skewed either to the left or to the right. Skewness can **Kurtosis** be quantified to define the extent to which a distribution differs from a normal distribution. In probability theory and statistics, kurtosis (from Greek: κυρτός, kyrtos or kurtos, meaning "curved, arching") is a measure of the "tailedness" of the probability distribution of a real-valued random variable. That is, data sets with high kurtosis tend to have heavy tails, or outliers. Data sets with low kurtosis tend to have light tails, or lack of outliers. The difference between the observed value of the dependent variable (y) Standardized and the predicted value (\hat{y}) from the model is called the residual (e). Each Regression data point has one residual. Residual = Observed value - Predicted value or Residuals $e = y - \hat{y}$. Standardized Residuals arising from a normal distribution confirm the accuracy of the model.

Source: www.wikipedia.org

DEPARTMENT OF ARCHITECTURE

Jadavpur University, Kolkata

ACADEMIC SURVEY for Ph.D. THESIS Residential Neighbourhood Survey

The following survey is being undertaken as part of a doctoral thesis to understand the pattern of physical development and environmental quality of a locality. The findings will help in determining the kind of association between physical density and neighborhood environmental quality and further enable the planning and design of better and more livable urban localities. Please do not feel obliged to answer a question if you do not wish to, though it is assured that any information you provide will be treated with strict confidentiality.

Inves	tigator :	Date :								
Gene	eral Information									
1.	Name of Locality :	2. House No. :								
3.	Head of Family :	4. Age :								
5.	Occupation :	6. Area of work place :								
7.	Mode of travel to work	: 🗆 Walk 🗆 Cycle 🗆 2-wheeler 🗆 Rickshaw 🗆 Car 🔅 Bus								
8.	Type of occupancy	: Rented / Owned								
9.	Rent Paid	: □1000-2500 □2501-5000 □5001-7500 □7501-10,000 □>10,000								
10.	Family Structure	: Joint / Nuclear								
11.	Total no. of family members	:								
12.	No. of families / dwelling unit	:								
	· · ·									
l.	Physical Features of the Building	g / Built Form								
a) Type of housing	: Row / Detached / Flatted								
b) Total Plot Area	: 30sqm or less / 31-50sqm / 51-100sqm / 101-250sqm / >250sqm								
C) Total plinth area	: 30sqm or less / 31-50sqm / 51-100sqm / 101-250sqm / >250sqm								
d) No of stories	: G / G+1 / G+2 / G+3								
e) Material of Construction	: Pucca / Semi - Pucca								
f)	Stay since (in years)	: 1-5, 6-10, 11-20, 21-30, 31-40, 41-50, >50								
g) Age of building (in years)	: <10, 10-19, 20-49, 50-70, >70								
h) Condition of building	: 🗆 Very Good 🛛 Good 🖓 Fair 🖓 Bad 🖓 Very Bad								
i)	Light and ventilation	: 🗆 Very Good 🛛 Good 🖓 Average 🖓 Bad 🖓 None								

II. Infrastructure Available

	a)	Storm Water Drains	:	□ Open	Undergro	ound					
	b)	Percentage of drains – open v/s undergroun	: b								
	C)	Sewage disposal	:	□ Sewer	□ Septic ta	ank					
	d)	Garbage disposal point	:	: Door to door collection / M.C. Waste Bin / other							
	e)	Frequency of collection	:	🗆 Daily	□ 2-3 times a W	/eek 🛛 Weekly once					
	f)	Road type	:	Metalle	ed 🛛 🗆 Brick or S	Stone Paved					
	g)	Width in metres	:								
	h)	Rate the cleanliness of the roads	:	□ Good	□ Satisfactory	□ Poor					
	i)	Rate the sidewalks in your locality	:	□ Good	□ Satisfactory	Poor					
	j)	Provision of Street Lights	:	Yes / No							
	k)	Provision of Parking Lots	:	Yes / No							
	I)	If yes, approx. capacity	:		Cars and	_Scooters					
III.	Ar	nount and Distribution of Open Spaces									
	a)	Open area at plot level	: Yes / No								
	b)	Percentage of open area in the plot									
	с)	Open area at cluster level	: Yes / No								
	d)	Cluster level use and approx. area	:								
	e)	Open area at locality level	: Yes / No								
	c) f)	Approx. area	: 1037110								
	., g)	Nature of openness	: Incide	cidental 🗆 Organised							
	9) h)	If organised		aintained 🗆 Unattended							
	i)	5		/ Playgrounds / Fairs and Festivals							
IV.		her factors contributing to overall Envi		50							
	a)	Traffic congestion on roads				ts					
	b)	Outdoor noise level (traffic, loudspeakers, et	c.) :	🗆 Quiet	□ Reasonable [□ Loud					
	C)	Air pollution level (smoke and dust)	:	□ None	□ Some □ L	ots					
	d)	Foul smell from garbage / litter / open drains	:	□ None	□ Some □ L	ots					
	e)	No. of trees in the locality	:	□ None	□ Some □ Lo	ots					
	f)	Presence of birds and butterflies	:	□ None	□ Some □ Lo	ots					
	g)	Landscaping features in the locality	:	□ None	□ Some □ Lo	ots					
	h)	Temperature difference observed	:	□ None	□ Some □ Lo	ots					

Please rank sections I – IV above priority wise that according to you affect the environmental quality of the neighbourhood most.

V. Open Questions

1. What do you like about your locality?

2. What do you don't like about your locality?

3. Do you think your locality is getting crowded and losing its ambience over time?

4. Do you think certain guidelines and rules would help to improve the place? Specify.

5. What are your suggestions for improvement?

Thank You!

				Data S	Sheet 1: Ka	tra Dullo,	Amritsar –	Crowdi	ng and Cor	ngestion				
STUDY UNIT	Area of Study Unit (sqm)	FAR	Popula- tion	Gross Popln. Density (pph)	No. of Households	Gross Residential Density (DUs/ha)	BUA/Capita (sqm/person)	Public Ground Area (sqm)	PGA/Capita (sqm/person)	Paved Road Length Available (m)	PRL/Capita (m/person)	No. of Vias (V)	No. of Exits (E)	Mobilization Factor (E/V)
K1	2767	3.5	171	625	40	145	54.70	392	2.24	80	0.46	1	3	3.00
K2	3388	2.9	208	621	48	144	45.18	322	1.50	98	0.46	1	3	3.00
K3	4139	3.1	258	630	60	147	48.72	434	1.66	110	0.42	2	2	1.00
K4	1462	1.6	101	700	24	163	24.85	168	1.82	83	0.89	2	2	1.00
K5	2242	3.6	151	680	35	158	57.05	523	3.69	75	0.53	3	3	1.00
K6	4682	3.0	238	515	55	120	47.13	655	2.21	115	0.39	2	3	1.50
K7	8610	3.1	596	700	139	163	48.29	1303	2.39	257	0.47	1	3	3.00
K8	3611	3.1	242	677	56	157	48.98	610	2.67	172	0.75	2	2	1.00
K9	3558	2.9	220	625	51	145	45.97	515	2.29	194	0.86	2	3	1.50
K10	4727	3.1	327	700	76	163	49.26	840	2.81	139	0.46	1	3	3.00
K11	4047	3.3	220	550	51	128	52.86	924	3.61	151	0.59	1	3	3.00
K12	6587	3.1	430	660	100	153	48.40	970	2.33	174	0.42	2	3	1.50
	Total=		Total=	Average		Average=	47.62		2.43		0.56			1.96
	49820	3	3161	= 640	Total= 735	149	20-30		12		0.91			≤1
							Analyzing Urban Layouts – SB Patel 2011		URDPFI 2014		Amritsar Master Plan 2010-31			Env. Quality Indicators – WIT Press 2000
		Green i	indicates thre	shold values a	s per secondary s	ources.			•	-				
	on of Terms		.											
	'				r person in the uni n-to-sky area that i	,	nerson. It includes	e etropte par		ounds etc				
<u> </u>			<u> </u>	·	ed road area in the		•	/1	No, ochoci pidy gri					
<u> </u>		0	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>'</u>	om (entry into) the	,		<u> </u>	re traffic and great	er chances of	congestion.			

Annexure 2

Annexure	
----------	--

				Data Sl	neet 2: Ran	jit Avenue	, Amritsar -	- Crowo	ding and Co	ongestio	n			
STUDY UNIT	Area of Study Unit (sqm)	FAR	Popula- tion	Gross Popln. Density (pph)	No. of Households	Gross Residential Density (DUs/ha)	BUA/Capita (sqm/person)	Public Ground Area (sqm)	PGA/Capita (sqm/person)	Paved Road Length Available (m)	PRL/Capita (m/person)	No. of Vias (V)	No. of Exits (E)	Mobilization Factor (E/V)
R1	28134.5	1.0	946	340	86	31	18.39	20700	21.88	773	0.82	12	4	0.33
R2	31210.6	1.0	880	285	80	26	20.00	21300	24.20	832	0.95	12	4	0.33
R3	28288.8	0.8	781	279	71	25	19.33	22200	28.43	820	1.05	12	4	0.33
R4	88390.9	0.83	1056	121	96	11	35.42	30985	29.34	1656.8	1.57	20	5	0.25
R5	47620.1	1.6	1480	314	185	39	27.97	19990	13.51	1766	1.19	42	7	0.17
R6	34034.2	1.8	360	107	72	21	28.00	4028	11.19	223	0.62	1	2	2.00
R7	23461.7	1.8	865	373	173	75	26.25	11215	12.97	1132	1.31	30	6	0.20
R8	39063.8	1.9	1500	388	300	78	22.40	27842	18.56	1119	0.75	30	6	0.20
R9	41609.6	0.8	990	241	198	48	19.19	31549	31.87	839	0.85	20	5	0.25
R10	31482.8	1.5	1188	382	108	35	20.71	17040	14.34	878	0.74	30	6	0.20
R11	21414.5	1.2	682	322	62	29	19.53	13975	20.49	686	1.01	12	4	0.33
R12	30630.9	1	561	185	51	17	20.46	9451	16.85	614	1.10	12	4	0.33
	Total=		Total=	Average	Total= 1482	Average= 36	23.14		20.30		0.99			0.41
	445346	1	11289	= 256			20-30		12		0.91			≤1
							Analyzing Urban Layouts – SB Patel 2011		URDPFI 2014		Amritsar Master Plan 2010-31			Env. Quality Indicators – WIT Press 2000
	·	Green i	indicates thre	shold values a	s per secondary s	ources.								
	on of Terms		<u> </u>											
					r person in the uni		person. It includes	e etropte par		ounds etc				
			<u> </u>		,		t is accessible to a	71	ina, autou pidy gr					
· ·		0	, , ,			,	o via routes thus ir		re traffic and great	ter chances of	congestion.			

Annexure	
----------	--

				Data S	Sheet 3: Se	ctor 8, Cha	andigarh –	Crowdi	ng and Cor	ngestion				
STUDY UNIT	Area of Study Unit (sqm)	Avg. FAR	Popula- tion	Gross Popln. Density (pph)	No. of Households	Gross Residential Density (DUs/ha)	BUA/Capita (sqm/person)	Public Ground Area (sqm)	PGA/Capita (sqm/person)	Paved Road Length Available (m)	PRL/Capita (m/person)	No. of Vias (V)	No. of Exits (E)	Mobilization Factor (E/V)
8-1	58571	1.8	855	148	155	27	72.52	24081	28.17	981	1.15	14	6	0.43
8-2	48231	1.9	982	206	179	37	62.71	14325	14.59	978	1.00	6	10	1.67
8-3	134401	2.0	1247	94	227	17	71.54	48589	38.95	1791	1.44	20	9	0.45
8-4	104542	1.3	843	82	153	15	97.86	38312	45.44	1185	1.40	2	6	3.00
8-5	100086	1.8	1167	118	212	21	41.43	66619	57.11	1503	1.29	16	11	0.69
8-6	137142	1.5	1016	75	185	14	89.87	29073	28.60	1239	1.22	2	6	3.00
8-7	86204	1.1	404	47	74	9	138.53	33704	83.37	1064	2.63	6	5	0.83
8-8	94079	1.2	751	81	137	15	112.22	23079	30.74	1769	2.36	8	10	1.25
8-9	87330	1.1	497	58	90	10	131.88	27330	55.03	1064	2.14	6	5	0.83
8-10	71397	1.0	300	43	55	8	129.87	32397	107.88	954	3.18	6	3	0.50
	Total=		Total=	Average = 95	Total= 1466	Average=	94.84		48.99		1.78			1.26
	921982	1	8062			17	20-30		12		0.91			≤1
							Analyzing Urban Layouts – SB Patel 2011		URDPFI 2014		Amritsar Master Plan 2010-31			Env. Quality Indicators – WIT Press 2000
			indicates thre	shold values a	s per secondary se	ources.								
	on of Terms		.											
·	· ·			· ·	r person in the uni		and the second second							
					n-to-sky area that i			71	rks, school play gro	ounds etc.				
FRE/Capi	RL/Capita – Paved Road Length per Capita or all the paved road area in the unit of study that is accessible to a person.													

Mobilization Factor (M.F) > 1 will imply more no. of exits from (entry into) the area compared to via routes thus indicating more traffic and greater chances of congestion.

Annexure

				Data Sh	eet 4: Sect	or 38W, C	handigarh	- Crow	ding and C	ongestio	n			
STUDY UNIT	Area of Study Unit (sqm)	FAR	Popula- tion	Gross Popln. Density (pph)	No. of Households	Gross Residential Density (DUs/ha)	BUA/Capita (sqm/person)	Public Ground Area (sqm)	PGA/Capita (sqm/person)	Paved Road Length Available (m)	PRL/Capita (m/person)	No. of Vias (V)	No. of Exits (E)	Mobilization Factor (E/V)
38w-1	26160	2.1	1462	565	252	97	25.86	8160	5.58	584	0.40	1	5	5.00
38w-2	26687	2.1	1218	462	210	80	25.86	11659	9.57	944	0.77	8	7	0.88
38w-3	23958	2.1	1044	441	180	76	24.14	12093	11.58	733	0.70	4	4	1.00
38w-4	22470	2.1	1044	470	180	81	30.17	7469	7.15	735	0.70	3	4	1.33
38w-5	14190	2.1	870	620	150	107	30.17	1690	1.94	534	0.61	5	6	1.20
38w-6	29374	2.1	870	300	150	52	30.17	16919	19.45	678	0.78	5	6	1.20
38w-7	27419	2.1	1253	462	216	80	30.17	9419	7.52	854	0.68	6	7	1.17
38w-8	40235	2.1	1462	368	252	63	24.14	23435	16.03	925	0.63	7	9	1.29
38w-9	33363	2.1	1044	317	180	55	30.17	15093	14.46	735	0.70	6	7	1.17
38w-10	25488	2.1	1392	553	240	95	30.17	5456	3.92	933	0.67	18	8	0.44
38w-11	25645	2.1	1044	412	180	71	30.17	10645	10.20	788	0.75	8	7	0.88
38w-12	52235	2.1	1670	324	288	56	30.17	28235	16.90	1318	0.79	11	9	0.82
	Total=		Total=	Average = 441	Total= 2478	Average=	28.45		10.36		0.68			1.36
	347224	2	14372				20-30		12		0.91			≤1
							Analyzing Urban Layouts – SB Patel 2011		URDPFI 2014		Amritsar Master Plan 2010-31			Env. Quality Indicators – WIT Press 2000
		Green i	indicates thre	shold values a	s per secondary se	ources.				•			•	
	on of Terms													
	<u>'</u>	<u> </u>	<u> </u>	<u>'</u>	r person in the uni	,			dan andrastisti					
			<u> </u>		n-to-sky area that i ed road area in the			71	rks, school play gro	ounds etc.				
		0			om (entry into) the	,			re traffic and oreat	er chances of	congestion.			

			Data	Sheet 5:	Marble Arc	h (Manima	ijra), Chano	ligarh –	Crowding	and Cor	ngestion			
STUDY UNIT	Area of Study Unit (sqm)	FAR	Popula- tion	Gross Popln. Density (pph)	No. of Households	Gross Residential Density (DUs/ha)	BUA/Capita (sqm/person)	Public Ground Area (sqm)	PGA/Capita (sqm/person)	Paved Road Length Available (m)	PRL/Capita (m/person)	No. of Vias (V)	No. of Exits (E)	Mobilization Factor (E/V)
MA1	5206	0.79	106	206	20	39	38.68	4386	41.38	119	1.12	2	2	1.00
MA2	7167	1.9	307	434	58	82	43.69	4481	14.58	108	0.35	2	2	1.00
MA3	12208	2.1	477	395	90	75	52.42	7151	14.99	260	0.54	2	2	1.00
	Total=		Total=	Average		Average=	44.93		23.65		0.67			1.00
	Total= 24581	1.57	890	= 345	Total= 168	65	20-30		12		0.91			≤1
							Analyzing Urban Layouts – SB Patel 2011		URDPFI 2014		Amritsar Master Plan 2010-31			Env. Quality Indicators – WIT Press 2000
		Green	ndicates thre	shold values a	s per secondary se	ources.						1		
Explanation	on of Terms													
BUA/Capi	ta – Built-up	Area per	Capita or Bui	lt floor area pe	r person in the uni	t of study.								
					n-to-sky area that i		•	<i>,</i> 1	ks, school play gr	ounds etc.				
		0			d road area in the	,								
Mobilizati	on Factor (N	1.F) > 1 w	ill imply more	no. of exits fro	om (entry into) the	area compared to	o via routes thus ir	ndicating mo	re traffic and great	er chances of	congestion.			

Annexure	
----------	--

			Data	Sheet 6	: Sector 20	(Panchku	la), Chandi	garh – (Crowding a	nd Cong	gestion			
STUDY UNIT	Area of Study Unit (sqm)	FAR	Popula- tion	Gross Popln. Density (pph)	No. of Households	Gross Residential Density (DUs/ha)	BUA/Capita (sqm/person)	Public Ground Area (sqm)	PGA/Capita (sqm/person)	Paved Road Length Available (m)	PRL/Capita (m/person)	No. of Vias (V)	No. of Exits (E)	Mobilization Factor (E/V)
20-1	70086	1.75	4568	660	831	120	23.64	48489	10.61	1396	0.31	8	4	0.50
20-2	73982	1.75	1447	198	263	36	25.45	66576	46.00	972	0.67	2	4	2.00
20-3	146496	1.75	2773	192	504	35	21.82	134587	48.54	550	0.20	2	1	0.50
20-4	93103	1.75	5809	631	1056	115	21.82	67359	11.60	1549	0.27	4	8	2.00
20-5	105000	1.75	6348	612	1154	111	18.18	81559	12.85	1562	0.25	6	5	0.83
20-6	41887	1.75	1345	325	245	59	21.82	36455	27.10	840	0.62	8	4	0.50
20-7	44385	1.75	2916	665	530	121	21.82	31255	10.72	867	0.30	8	6	0.75
20-8	66968	1.75	3299	498	600	91	31.82	45690	13.85	914	0.28	8	4	0.50
20-9	63698	1.75	3868	614	703	112	21.82	46903	12.13	859	0.22	6	5	0.83
20-10	50887	1.75	4413	877	802	160	18.18	35212	7.98	851	0.19	8	5	0.63
20-11	32810	1.75	2160	666	393	121	18.18	24956	11.56	627	0.29	10	3	0.30
	Total=		Total=	Average		Average	22.23		19.36		0.33			0.85
	789301	2	38946	= 540	Total= 7081	Average= 98	20-30		12		0.91			≤1
							Analyzing Urban Layouts – SB Patel 2011		URDPFI 2014		Amritsar Master Plan 2010-31			Env. Quality Indicators – WIT Press 2000
		Green i	indicates thre	shold values a	s per secondary se	ources.				•	•		•	
	on of Terms													
	·	<u> </u>	•	· ·	r person in the uni		person. It includes	atracta ac						
			<u> </u>		,		t is accessible to a	71	ks, scribbi piay gro					
· ·		0	<u> </u>			,	o via routes thus ir		re traffic and great	er chances of	congestion.			

Annexure

			Data SI	heet 7: W	/orld Spa a	nd Uniwor	ld City, Gu	rugram	– Crowdin	g and Co	ongestion			
STUDY UNIT	Area of Study Unit (sqm)	FAR	Popula- tion	Gross Popln. Density (pph)	No. of Households	Gross Residential Density (DUs/ha)	BUA/Capita (sqm/person)	Public Ground Area (sqm)	PGA/Capita (sqm/person)	Paved Road Length Available (m)	PRL/Capita (m/person)	No. of Vias (V)	No. of Exits (E)	Mobilization Factor (E/V)
WS-W	44196	1.95	816	187	204	47	105.83	39117	47.94	1657.4	2.03	2	1	0.50
WS-E	37805	1.19	632	169	158	42	71.23	33613	53.18	1260.2	1.99	2	1	0.50
	Total=		Total=	Average		Average=	88.53		50.56		2.01			0.50
l I	82002	2	1448	= 178	Total= 362	44								
UW-W UW-E	24312 7897	2.59 1.48	2240 420	932 538	448 84	186 108	28.08 27.86	12399 4028	5.54 9.59	850.9 315.9	0.38 0.75	2	1	0.50
	Total=	0.00	Total=	Average	T () 500	Average=	27.97		7.56		0.57			0.75
	32209	2.03	2660	= 735	Total= 532	147	20-30		12		0.91			≤1
							Analyzing Urban Layouts – SB Patel 2011		URDPFI 2014		Amritsar Master Plan 2010-31			Env. Quality Indicators – WIT Press 2000
	<u> </u>	Green i	indicates thre	shold values a	s per secondary s	ources.								
· ·	on of Terms													
· ·	· ·	<u> </u>	•		r person in the uni									
					,		•	71	rks, school play gr	ounds etc.				
		0				,	t is accessible to a							
Mobilizatic	on Factor (M.	F) > 1 will	imply more r	o. of exits from	n (entry into) the a	rea compared to	via routes thus inc	licating more	e traffic and greate	r chances of c	ongestion.			

Annexure

				Dat	ta Sheet	8: Katra	a Dullo, A	mritsar –	Nature ar	nd Use of	Open Sp	aces		
					Nat	ure of Op	en Space					Use of	f Open Space	
	Тур	e of Ope	n Space	(Ti)	Condition	n of Open	Space (Ci)							
STUDY UNIT	4 = Square	3 = Vacant Plot	2 = Cul-de-sac	1 = Dead-end	5 = Maintained	3 = Unattended	1 = Encroached	SCORE ∑TiCi	RATIO (Score / Max. Score)	TREE COVER (%)	Total People involved in different activities	Public Ground Area (sqm)	ACTIVITY INTENSITY (persons/ha)	ACTIVITY DIVERSITY (no. of activities / population)
K1	4	3		1x3	5	3	1	28	0.27	0%	38	392	981	0.22
K2		3		1x4	5	3		29	0.28	0%	23	322	723	0.11
K3		3		1x4	5	3		29	0.28	0%	39	434	909	0.15
K4		3		1x2	5 5			25	0.24	0%	23	168	1385	0.23
K5		3		1x5	5	3		34	0.32	41%	21	523	406	0.14
K6		3		1x2	5	3		19	0.18	0%	31	655	479	0.13
K7								0	0.00	0%	22	1303	171	0.04
K8								0	0.00	0%	32	610	531	0.13
K9		3		1x3	5	3		24	0.23	0%	20	936	216	0.09
K10	4			1x2	5 5			30	0.29	0%	11	840	133	0.03
K11				1x4	5			20	0.19	0%	28	924	307	0.13
K12		3		1x2	5		1	13	0.12	0%	37	970	386	0.09
								Average= 21	Average= 0.20	Average= 3%			Average= 552	Average= 0.12
								Maximum S	core = 105					
Explanatio	on of Terr	ns:			-			•		•		-	•	
	<u> </u>		· ·				nd condition of	open space and	Tree Cover give	en by area unde	er tree crowns d	livided by total	area of open space.	
Use of Op	•				ity and Activity	Diversity,								
•		-			•	s taking place	e in an open sp	ace						

Annexure

			Data	Sheet 9: R	anjit Av	venue, A	Amritsar –	Nature an	d Use of	Open Sp	oaces		
				Natu	re of Ope	n Space					Use of	Open Space	
	Type of	Open Spac	e (Ti)	Condition of	of Open Sp	ace (Ci)							
STUDY UNIT	6 = Park	5 = Playground	3 = Vacant Plot	5 = Maintained	3 = Unattended	1 = Encroached	SCORE ∑TiCi	RATIO (Score / Max. Score)	TREE COVER (%)	Total People involved in different activities	Public Ground Area (sqm)	ACTIVITY INTENSITY (persons/ha)	ACTIVITY DIVERSITY (no. of activities / population)
R1	6			5			30	0.29	60%	38	20700	19	0.04
R2	6			5			30	0.29	47%	36	21300	17	0.04
R3	6			5			30	0.29	60%	27	22200	12	0.03
R4		5		5			25	0.24	46%	63	30985	21	0.06
R5	6	5		5 5			55	0.52	39%	58	19990	29	0.04
R6	6			5			30	0.29	50%	23	4028	58	0.06
R7	6			5			30	0.29	45%	42	11215	38	0.05
R8	6			5			30	0.29	41%	56	27842	20	0.04
R9	6			5			30	0.29	50%	23	31549	7	0.02
R10	6			5			30	0.29	58%	43	17040	26	0.04
R11	6			5			30	0.29	60%	18	13975	13	0.03
R12		5	3	5	3		34	0.32	34%	69	9451	74	0.12
							Average= 32	Average= 0.30	Average = 49%			Average= 28	Average= 0.05
							Maximum	Score = 105					
Explanatio	on of Terms:	•	•	•	•	•			•				·
						condition of	open space and	Tree Cover given	by area unde	r tree crowns o	divided by total	area of open space).
	•	· ·	,	ity and Activity D	iversity,								
•	Activity Inten			square area	aking place in		200						

UNIT * <th></th> <th></th> <th></th> <th>Data Shee</th> <th>et 10: Sec</th> <th>tor 8, Cl</th> <th>nandigarh</th> <th>– Nature</th> <th>and Use o</th> <th>of Open S</th> <th>paces</th> <th></th> <th></th>				Data Shee	et 10: Sec	tor 8, Cl	nandigarh	– Nature	and Use o	of Open S	paces			
STUDY STUDY UNIT Y a b b b b b b b b b b b b b b b b b b				Ν	lature of Op	oen Space	1			Use of Open Space				
STUDY UNITY Y B B B SCORE U SCORE STUCI RATIO (SCORE Max.) TREE CV/M People involved different People (round area) Peopleo (round area) People (round area		Type of Op	en Space (Ti)	Condition	n of Open Spa	ace (Ci)								
8-2 Image: Constraint of the second seco	STUDY UNIT	П	П	П	П	11		(Score / Max.	COVER	People involved in different	Ground Area	INTENSITY	DIVERSITY (no. of activities /	
8-3 6 3 18 0.17 28% 49 48589 10 0.04 8-4 6 3 18 0.17 28% 49 48589 10 0.04 8-4 6 3 18 0.17 25% 30 38312 8 0.04 8-5 6 3 18 0.17 24% 57 66619 9 0.05 8-6 5 5 125 0.24 38% 50 29073 17 0.05 8-7 6 5 5 13 33704 4 0.03 8-8 6 5 1 30 0.29 35% 13 33704 4 0.03 8-9 6 5 1 30 0.29 38% 28 2730 10 0.06 8-10 6 5 30 0.29 38% 28 2730 10 0.06 8-10 6 5 30 0.29 2% 9 32397 3 0.03 </td <td>8-1</td> <td>6</td> <td>5</td> <td>5 5</td> <td></td> <td></td> <td>55</td> <td>0.52</td> <td>13%</td> <td>26</td> <td>24081</td> <td>11</td> <td>0.03</td>	8-1	6	5	5 5			55	0.52	13%	26	24081	11	0.03	
0 0 10 <t< td=""><td>8-2</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0.00</td><td>26%</td><td>40</td><td>14325</td><td>28</td><td>0.04</td></t<>	8-2						0	0.00	26%	40	14325	28	0.04	
0 4 0 4 0 4 10 10 0 10 10 100	8-3	6			3		18	0.17	28%	49	48589	10	0.04	
0.00 0.00	8-4	6			3		18	0.17	25%	30	38312	8	0.04	
8-7 6 5 30 0.29 35% 13 33704 4 0.03 8-8 6 5 30 0.29 22% 26 23079 11 0.03 8-9 6 5 30 0.29 38% 28 2730 10 0.06 8-10 6 5 30 0.29 27% 9 32397 3 0.03 8-10 6 5 30 0.29 27% 9 32397 3 0.03 8-10 6 5 30 0.29 27% 9 32397 3 0.03 8-10 6 5 30 0.29 27% 9 32397 3 0.03 8-10 6 6 6 6 Average= Average= 0.24 28% 1 Average=11 Average=0.04 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8-5	6			3		18	0.17	24%	57	66619	9	0.05	
8-8 6 5 30 0.29 22% 26 23079 11 0.03 8-9 6 5 30 0.29 38% 28 2730 10 0.06 8-10 6 5 30 0.29 27% 9 32397 3 0.03 8-10 6 5 30 0.29 27% 9 32397 3 0.03 8-10 6 5 30 0.29 27% 9 32397 3 0.03 8-10 6 1 0 Average= 25 Average= 0.24 Average= 28% 1 Average=11 Average= 0.04 1 0	8-6		5	5			25	0.24	38%	50	29073	17	0.05	
8-9 6 5 30 0.29 38% 28 27330 10 0.06 8-10 6 5 30 0.29 27% 9 32397 3 0.03 8-10 6 5 30 0.29 27% 9 32397 3 0.03 6 1 Average= Average= Average= 28% Average= Average= 0.04 1 1 1 Average= Average= 1 Average= 0.04 1 1 1 1 1 Average= 28% 1 1 Average= 0.04 1 1 1 1 1 1 1 1 1 1 1 Set of the signe by Score of Open Space given by type and condition of open space and Tree Cover given by area under tree crowns divided by total area of open space. Visit of Open Space – It is given by Activity Intensity and Activity Diversity. Activity Intensity – No. of persons per square area	8-7	6		5			30	0.29	35%	13	33704	4	0.03	
8-10 6 5 30 0.29 27% 9 32397 3 0.03 8-10 6 1 <td>8-8</td> <td>6</td> <td></td> <td>5</td> <td></td> <td></td> <td>30</td> <td>0.29</td> <td>22%</td> <td>26</td> <td>23079</td> <td>11</td> <td>0.03</td>	8-8	6		5			30	0.29	22%	26	23079	11	0.03	
Average Averad Average Average	8-9	6		5			30	0.29	38%	28	27330	10	0.06	
Average= 11 Average= 0.04 Average= 11 Average= 0.04 Average= 11 Average= 0.04 Average= 11 Average= 0.04 Average= 0.04 Maximum Score = 105 Image: 0.04 Explanation of Terms: Maximum Score = 105 Image: 0.04 Nature of Open space – It is given by Score of Open Space given by type and condition of open space and Tree Cover given by area under tree crowns divided by total area of open space. Use of Open Space – It is given by Activity Intensity and Activity Diversity, • Activity Intensity – No. of persons per square area	8-10	6		5			30	0.29	27%	9	32397	3	0.03	
Explanation of Terms: Nature of Open space – It is given by Score of Open Space given by type and condition of open space and Tree Cover given by area under tree crowns divided by total area of open space. Use of Open Space – It is given by Activity Intensity and Activity Diversity, • Activity Intensity – No. of persons per square area												Average= 11	Average= 0.04	
Nature of Open space – It is given by Score of Open Space given by type and condition of open space and Tree Cover given by area under tree crowns divided by total area of open space. Use of Open Space – It is given by Activity Intensity and Activity Diversity, • Activity Intensity – No. of persons per square area							Maximum	Score = 105						
Activity Intensity – No. of persons per square area	Nature of	Open space –	\$,		0 , , ,	and condition	of open space a	nd Tree Cover g	given by area une	der tree crowns	divided by total	area of open space).	
		•	, , ,	,										
Activity Diversity – No. of different types of activities taking place in an open space		-				ce in an open	snace							

		D	ata S	Sheet	t 11: Secto	or 38W, C	handigarl	n – Nature a	and Use o	of Open S	paces		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Open Space								
	Type of Ope	n Space (Ti)	С	onditio	on of Open Sp	bace (Ci)							
STUDY UNIT	Ш	Ш			П			(Score /	COVER	People involved in different	Ground Area	ACTIVITY INTENSITY (persons/ha)	ACTIVITY DIVERSITY (no. of activities / population)
38w-1	6	5	5	5			55	0.52	39%	41	8160	51	0.03
38w-2	6	5	5	5			55	0.52	30%	67	11659	58	0.06
38w-3	6	5	5	5			55	0.52	18%	37	12093	31	0.04
38w-4	6			5			30	0.29	21%	30	7469	41	0.03
38w-5							0	0.00	16%	26	1690	156	0.03
38w-6	6	5	5	5			55	0.52	35%	50	16919	30	0.06
38w-7	6			5			30	0.29	18%	24	9419	26	0.02
38w-8	6		-	5			30	0.29	25%	51	23435	22	0.03
38w-9	6	5	5	5			55	0.52	27%	68	15093	46	0.07
38w-10	6		-	5			30	0.29	11%	23	5456	43	0.02
38w-11	6		-	5			30	0.29	18%	23	10645	22	0.02
38w-12	6		-	5			30	0.29	24%	43	28235	15	0.03
							•					Average= 45	Average= 0.03
							Maximum	Score = 105					
Explanatio	on of Terms:												
						and condition o	f open space an	d Tree Cover give	n by area under	tree crowns div	ided by total ar	ea of open space.	
	•	, <u>,</u>			, ,,								
•	,	ity – No. of perso ity – No. of differ	<u> </u>	<u> </u>			200						

		Data Sh	eet 12	Marble Arc	h (Manim	najra), Cha	andigarh -	- Nature a	nd Use of	Open Sp	aces	
				Nature of O	pen Space					Use o	f Open Space	
	Type of Op	oen Space (Ti)	Con	dition of Open S	oace (Ci)							
STUDY UNIT	6 = Park	5 = Playground	5 = Maintained	3 = Unattended	1 = Encroached	SCORE ∑TiCi	RATIO (Score / Max. Score)	TREE COVER (%)	Total People involved in different activities	Public Ground Area (sqm)	ACTIVITY INTENSITY (persons/ha)	ACTIVITY DIVERSITY (no. of activities / population)
MA1	6	5	5	5		55	0.52	40%	33	4386	76	0.31
MA2	6	5	5	5		55	0.52	30%	21	4481	47	0.07
MA3	6		5			30	0.29	40%	15	7151	21	0.03
						Average= 47	Average= 0.44	Average= 35%			Average= 48	Average= 0.14
						Maximum	Score = 105					
Explanation	on of Terms:			ł								
Nature of	Open space –	It is given by Score	e of Open	Space given by type	and condition	of open space a	nd Tree Cover g	iven by area un	der tree crowns	divided by total	area of open space.	
Use of Op	en Space – It i	is given by Activity	Intensity a	nd Activity Diversity,								
•	Activity Inten	isity – No. of perso	ons per squ	lare area								
•	Activity Dive	rsity – No. of differ	rent types	of activities taking pla	ace in an open	space						

		Data S	heet 13	3: Sector 2	20 (Panc	hkula), Cha	andigarh –	Nature and	d Use of C) Dpen Spa	ces	
				Nature of	f Open Sp	ace				Use of	f Open Space	
	Type of Ope	n Space (Ti)	Condition of Open Space (Ci)									
STUDY UNIT	6 = Park	5 = Playground	5 = Maintained	3 = Unattended	1 = Encroached	SCORE ∑TiCi	RATIO (Score / Max. Score)	TREE COVER (%)	Total People involved in different activities	Public Ground Area (sqm)	ACTIVITY INTENSITY (persons/ha)	ACTIVITY DIVERSITY (no. of activities / population)
20-1	6		5			30	0.29	6%	49	48489	10	0.01
20-2	6x2		5			60	0.57	41%	105	66576	16	0.07
20-3	6		5			30	0.29	85%	102	134587	8	0.04
20-4	6x2		5			60	0.57	6%	100	67359	15	0.02
20-5	6x2		5			60	0.57	15%	72	81559	9	0.01
20-6	6		5			30	0.29	36%	60	36455	17	0.04
20-7						0	0.00	0%	150	31255	49	0.05
20-8	6x2		5			60	0.57	22%	42	45690	9	0.01
20-9	6		5			30	0.29	53%	62	46903	13	0.02
20-10						0	0.00	10%	93	35212	27	0.02
20-11						0	0.00	0%	97	24956	39	0.04
						Average= 33	Average= 0.31	Average= 25%			Average= 19	Average= 0.03
						Maximum	Score = 105					
Explanatio	on of Terms:	•			-			•			-	
	<u> </u>	<u> </u>				tion of open space	e and Tree Cover g	iven by area und	er tree crowns d	livided by total	area of open space.	
	en Space – It is				sity,							
•	-	ty – No. of perso	· ·									
•	Activity Divers	ity – No. of differ	ent types o	r activities taking	place in an o	pen space						

Annexure

		Data Shee	et 14	l: Wo	orld Spa	a and Uni	world City,	Gurugrar	n – Nature	and Use	of Open	Spaces	
					Nature o	of Open Spa	се				Use o	f Open Space	
	Type of Ope	n Space (Ti)	Co	nditio	n of Open	Space (Ci)							
STUDY UNIT	6 = Park	5 = Playground		5 = Maintained	3 = Unattended	1 = Encroached	SCORE ∑TiCi	RATIO (Score / Max. Score)	TREE COVER (%)	Total People involved in different activities	Public Ground Area (sqm)	ACTIVITY INTENSITY (persons/ha)	ACTIVITY DIVERSITY (no. of activities / population)
WS-W	6	5	5	5			55	0.52	42%	53	39117	14	0.06
WS-E	6	5	5	5			55	0.52	40%	89	33613	27	0.13
				•			Average= 55	Average= 0.52	Average= 41%			Average= 20	Average= 0.10
							Maximum S	core = 105					
UW-W	6	5	5	5			55	0.52	42%	200	12399	163	0.08
UW-E	6	5	5	5			55	0.52	40%	95	4028	239	0.21
							Average= 55	Average= 0.52	Average= 41%			Average= 201	Average= 0.15
							Maximum S	core = 105					
Explanatio	on of Terms:	1	1		1		1		1				
	· · ·	, ,			• •		tion of open space	e and Tree Cove	r given by area ι	Inder tree crown	s divided by tot	al area of open space	
-	ben Space – It is	o , , ,			,	ersity,							
•	y	ity – No. of perso ity – No. of differ											

	Data S	heet 15:	Katra D	ullo, Amrits	sar – Shade a	nd Ventilatio	on, Temperatu	re Variatio	ns & Noise	Levels	
		Lig	ht and Ve	ntilation							
STUDY		Sha	ade		Orientation of Street Network	Temperature Variations		Noise Levels			
UNIT	Building Ht. to	Average	No. of	Shade	Ventilation	Within Locality	Outside Locality	At Entry /	Inside the	On Main	Avg.
	Street Width Ratio (H/W)	H/W Ratio	hours of Shade	Rating	Score	At random 6 locations		Exit Points	Locality	Roads	Noise Level (dB)
K1	2:1, 5:1, 7.5:1	4.83	5hrs	3	3			56	48	65	56
K2	2:1, 5:1, 7.5:1	4.83	5hrs	3	3	28.1°C	30.1°C	55	48	56	53
K3	2:1, 5:1, 7.5:1	4.83	5hrs	3	3	28.1°C	30.0°C	55	48	65	56
K4	5:1, 7.5:1	6.25	6hrs	5	3			45	45	45	45
K5	5:1, 7.5:1	6.25	6hrs	5	3	28.0°C		45	45	45	45
K6	5:1, 7.5:1	6.25	6hrs	5	3			45	45	45	45
K7	5:1, 7.5:1	6.25	6hrs	5	3	27.8°C	30.0°C	47	47	47	47
K8	2:1, 5:1, 7.5:1	4.83	5hrs	3	3			65	46	65	59
K9	2:1, 5:1, 7.5:1	4.83	5hrs	3	3	27.8°C	29.7°C	52	48	50	50
K10	2:1, 5:1, 7.5:1	4.83	5hrs	3	3			48	45	50	48
K11	2:1, 5:1, 7.5:1	4.83	5hrs	3	3	28.1°C	29.9°C	48	46	50	48
K12	2:1, 5:1, 7.5:1	4.83	5hrs	3	3			53	46	55	51
Avera	erage H/W Ratio of Locality= Average= 4 Average				Average= 3	Average=	Average=	Average No	ise Level of the	Locality=	50
	5.30			Average= 4	Average= 5	27.98°C	29.94°C		55 dE	3	
	Green indicates threshold value as per secondary sources.						ifference= 1.96°C	CPCB, New D	elhi - Daytime nois	se level in Resid	lential Areas
Shade Ra	ting and Ventilatio	n Score – As	discussed in	Chapter 4, 4.6.3 S	hade and Ventilation,	page no. 151.					

		Lig	ht and Ve	ntilation							
STUDY		Sha	ade		Orientation of Street Network	Temperat	ure Variations	Noise Levels			
UNIT	Building Ht. to Street Width Ratio (H/W)	Average H/W Ratio	No. of hours of Shade	Shade Rating	Ventilation Score	Within Locality	Outside Locality at random 6-7 locations	At Entry / Exit Points	Inside the Locality	On Main Roads	Avg. Noise Level (dB)
R1	1:1	1	2-5hrs	3	1	31.3°C	31.6°C	61	45	59	58
R2	1:1	1	2-5hrs	3	1	31.3°C		60	43	61	70
R3	1:1	1	2-5hrs	3	1	29.9°C	31.6°C	63	43	61	70
R4	1:1.5	0.67	2-5hrs	3	1	27.2°C		60	45	62	58
R5	1:1	1	2-5hrs	3	1	31.3°C		53	50	60	60
R6	1:1.5	0.67	2-5hrs	3	1	31.6°C	31.6°C	60	51	61	75
R7	1:1	1	2-5hrs	3	1	31.2°C	33.1°C	56	45	61	60
R8	1:1	1	2-5hrs	3	1	32.6°C	33.1°C	55	50	61	60
R9	1:1.5, 1:1	0.83	2-5hrs	3	1	32.6°C	33.1°C	60	45	61	65
R10	1:1	1	2-5hrs	3	1	31.6°C		60	45	61	70
R11	1:1	1	2-5hrs	3	1	32.1°C	32.1°C	61	44	61	65
R12	1:1	1	2-5hrs	3	1	32.1°C		60	46	63	72
Avera	erage H/W Ratio of Locality= Average= 3 Average= 1						Average=	Average Nois	se Level of the	Locality=	65
	0.93			Average= 5	Average= 1	31.2°C	32.3°C		55 dB	;	
	Green indicates threshold value as per secondary sources.						Mean Temp. Difference= 1.1°C CPCB, New Delhi - Daytime noise level in				ential Areas

		Lig	ht and Ve	ntilation							
STUDY		Sha	ade		Orientation of Street Network	Temperature Variations		Noise Levels			
UNIT	Building Ht. to Street Width Ratio (H/W)	Average H/W Ratio	No. of hours of Shade	Shade Rating	Ventilation Score	Within Locality	Outside Locality at random 5 locations	At Entry / Exit Points	Inside the Locality	On Main Roads	Avg. Noise Level (dB)
8-1	1:2,1:3	0.42	< 2hrs	3	1	32.6°C		60	50	62	57
8-2	1:3	0.33	< 2hrs	3	1	32.6°C	33.5°C	61	50	59	57
8-3	1:1.5	0.66	< 3hrs	2	1	32.6°C		60	50	61	57
8-4	1:2,1:3.75	0.40	< 2hrs	3	1	31.6°C	33.5°C	55	55	58	56
8-5	1:1.25, 1:1.65	0.70	2-3hrs	2	1	33.4°C	33.4°C	56	58	58	57
8-6	1:2	0.50	< 2hrs	3	1	32.5°C	33.1°C	55	50	59	55
8-7	1:3, 1:4	0.29	< 2hrs	3	1	31.6°C		54	48	52	51
8-8	1:3, 1:5	0.27	< 2hrs	3	1	32.6°C		54	45	51	50
8-9	1:3, 1:6	0.25	< 2hrs	3	1	32.1°C	32.5°C	54	50	52	52
8-10	1:3, 1:7	0.24	< 2hrs	3	1	31.3°C		53	46	52	50
Avera	ige H/W Ratio of Locality= Average= 3 Average		Average= 1	Average=	Average=	Average Nois	se Level of the	Locality=	54		
	0.40				Average= 1	32.3°C	33.2°C		55 dB	1	
	Green indicates th	reshold value	e as per secor	ndary sources.		Mean Temp.	Difference= 0.9°C	CPCB, New De	lhi - Daytime noise	e level in Resid	ential Areas

		Lig	ht and Ve	ntilation							
STUDY		Sha	ade		Orientation of Street Network	Temperature Variations		Noise Levels			
UNIT	Building Ht. to Street Width Ratio (H/W)	Average H/W Ratio	No. of hours of Shade	Shade Rating	Ventilation Score	Within Locality	Outside Locality at random 6-7 locations	At Entry / Exit Points	Inside the Locality	On Main Roads	Avg. Noise Level (dB)
38w-1	1:1.2	0.83	< 2hrs	1	5	32.6°C		60	48	62	57
38w-2	1:1.2	0.83	< 2hrs	1	5	32.6°C	31.6°C	61	48	59	56
38w-3	1:1.2	0.83	< 2hrs	1	5	32.6°C		60	46	61	56
38w-4	1:1.2	0.83	2-5hrs	3	1	31.6°C	31.6°C	63	48	61	57
38w-5	1:1.2	0.83	2-5hrs	3	1	31.6°C	31.1°C	60	46	61	56
38w-6	1:1.2	0.83	2-5hrs	3	1	31.6°C	31.1°C	55	50	61	55
38w-7	1:1.2	0.83	2-5hrs	3	1	31.6°C		60	48	63	57
38w-8	1:1.2	0.83	2-5hrs	3	1	32.6°C		60	45	61	55
38w-9	1:1.2	0.83	2-5hrs	3	1	32.1°C	32.1°C	61	50	61	57
38w-10	1:1.2	0.83	2-5hrs	3	1	31.3°C			46	60	53
38w-11	1:1.2	0.83	2-5hrs	3	1	32.6°C	31.0°C		50	61	57
38w-12	1:1.2	0.83	2-5hrs	3	1	32.6°C	31.0°C		51	61	56
Avera	verage H/W Ratio of Locality= Average= 3 Average= 2						Average=	Average Nois	se Level of the	Locality=	56
	0.83			Average= 5	Average= 2	32.12°C	31.36°C		55 dB	ł	
	Green indicates threshold value as per secondary sources.						Difference= 0.8°C	CPCB, New Delhi - Daytime noise level in Residential Areas			

Dat	a Sheet 19:	Marble	Arch (Ma	animajra), C	Chandigarh –	Shade and \	/entilation, T	emperature	Variations	& Noise I	_evels	
		Lig	ht and Ve	ntilation								
STUDY		Sha	ade		Orientation of Street Network	Temperatur	e Variations	Noise Levels				
UNIT	Building Ht. to Street Width Ratio (H/W)	Average H/W Ratio	No. of hours of Shade	Shade Rating	Ventilation Score	Within Locality	Outside Locality	At Entry / Exit Points	Inside the Locality	On Main Roads	Avg. Noise Level (dB)	
MA1	1:1.5	0.66	2-5hrs	3	1	31.3°C	32°C	NA	45	55	50	
MA2	1:1.5	0.66	2-5hrs	3	1	31.3°C	31.6°C	NA	45	59	52	
MA3	1:1.5	0.66	2-5hrs	3	1	31.3°C	32°C	62	50	61	58	
Avera	e H/W Ratio of L	ocalitv=				Average=	Average=	Average Noise Level of the Locality= 53				
	0.66 Average= 3 Average=					31.2°C	32.3°C	55 dB				
	Green indicates th	nreshold value	e as per secor	ndary sources.		Mean Temp. Difference= 1.1°C CPCB, New Delhi - Daytime noise level in Reside					ential Areas	
Shade Ra	ting and Ventilatio	n Score – As	discussed in	Chapter 4, 4.6.3 S	hade and Ventilation,	page no. 151.						
NA – not a	applicable as MA1 a	nd MA2 are ii	nner parts of t	he gated communi	ty.							

		Lig	ht and Ve	ntilation							
STUDY		Sha	ade		Orientation of Street Network	Temperature Variations		Noise Levels			
UNIT	Building Ht. to Street Width Ratio (H/W)	Average H/W Ratio	No. of hours of Shade	Shade Rating	Ventilation Score	Within Locality	Outside Locality at random 6-7 locations	At Entry / Exit Points	Inside the Locality	On Main Roads	Avg. Noise Level (dB
20-1	1:1,3:1	2	2-3hrs	2	2	37.6°C		70	62	65	66
20-2	1.4:1,1.2:1	1.3	< 2hrs	1	1	37.6°C		70	65	65	67
20-3	1:1,1.2:1	1.1	< 2hrs	1	1	37.6°C	38.0°C	68	60	65	64
20-4	2:1	2	2-6hrs	3	2	38.0°C	38.0°C	60	56	57	58
20-5	1:1,1.4:1	1.2	< 2hrs	1	1	37.4°C	38.0°C	60	56	60	59
20-6	1:1,1.4:1	1.2	< 2hrs	1	1	37.2°C	38.0°C	60	56	63	60
20-7	1:1,1.4:1	1.2	< 2hrs	1	1	38.0°C		60	56	62	59
20-8	1:1,1.4:1	1.2	< 2hrs	1	1	37.5°C	38.0°C	60	55	66	60
20-9	1.2:1,2.5:1	1.85	< 2hrs	1	1	37.0°C	37.6°C	58	56	58	57
20-10	1:1,1.4:1	1.2	< 2hrs	1	1	38.0°C	38.0°C	57	57	60	58
20-11	1:1,1.4:1	1.2	< 2hrs	1	1	38.0°C		57	57	60	58
Avera	erage H/W Ratio of Locality= Average= 1 Ave				Average= 1	Average=	Average=	Average Nois	se Level of the	Locality=	61
	1.40					37.63°C	37.94°C	55 dB			
	Green indicates threshold value as per secondary sources.						np. Difference= 0.31°C	CPCB, New Delhi - Daytime noise level in Residential Areas			

		Lig	ht and Ve	ntilation							
STUDY		Sha	ade		Orientation of Street Network	Temperature	e Variations	Noise Levels			
UNIT	Building Ht. to Street Width Ratio (H/W)	Average H/W Ratio	No. of hours of Shade	Shade Rating	Ventilation Score	Within Locality	Outside Locality	At Entry / Exit Points	Inside the Locality	On Main Roads	Avg. Noise Level (dB
WS-W	1:1,5:1	3	2-6hrs	3	5	37.6°C	39.0°C	70	60	70	67
WS-E	1:1,4:1,5:1	3.33	2-6hrs	3	3	38.0°C	39.0°C	70	60	70	67
Avera	Average H/W Ratio of Locality= 3.165 Average= 3 Average= 4					Average= 37.8°C	Average= 39.0°C	Average Nois	se Level of the	Locality=	67
						Mean Temp. Dif	ference= 1.2°C				
UW-W	1:1,5:1	3	2-6hrs	3	3	37.6°C	39.0°C	70	62	70	67
UW-E	1:1,4:1,5:1	3.33	2-6hrs	3	3	38.0°C	39.0°C	70	65	70	68
Avera	verage H/W Ratio of Locality=				Average=	Average=	Average Nois	se Level of the	Locality=	68	
	3.165			Average= 3	Average= 3	37.8°C	39.0°C		55 dE	}	
	Green indicates th	reshold value	e as per secor	ndary sources.		Mean Temp. Dif	ference= 1.2°C	CPCB, New De	elhi - Daytime nois	e level in Reside	ential Areas

Annexure

		١	Walkability	/		Level of Cleanliness							
STUDY UNIT	Proximity to Daily Needs	Condition of Sidewalks	Adequacy of Streetlights		Type & Condition of Open Space	Length (m)	Domestic Waste Mgmt.		Coverage of Stormwater Drainage		Coverage of Sewage Network		
	SCORE (0.1-0.5km = 5, 0.51-1km = 3, >1km = 1)	SCORE (Good = 5, Fair = 3, Poor = 1)	Centre to centre dist.	SCORE (≤35m = 5, 35.1-40m = 3, >40m = 1)	RATIO (Score/ Max. Score)	Paved Road Len	Road Length attended by Primary/ Sec. Waste Collection Service	Cleanliness Indicator	Road Length covered by Drains	Drainage Indicator	No. of properties connected to the network/ Total no. of properties	Sewage Indicator	
K1	5	1	33	5	0.27	200	140	0.70	120	0.60	39/97	0.40	
K2	5	1	35	5	0.28	140	98	0.70	56	0.40	31/78	0.40	
K3	5	1	37	3	0.28	220	154	0.70	88	0.40	31/77	0.40	
K4	5	1	41	1	0.24	165	82.5	0.50	66	0.40	8/30	0.25	
K5	5	1	38	3	0.32	150	75	0.50	75	0.50	8/33	0.25	
K6	5	1	38	3	0.18	230	115	0.50	138	0.60	20/79	0.25	
K7	5	1	34	5	0.00	642	321	0.50	321	0.50	27/90	0.30	
K8	5	1	31	5	0.00	343	205.8	0.60	172	0.50	28/71	0.40	
K9	5	1	31	5	0.23	430	258	0.60	258	0.60	26/65	0.40	
K10	5	1	31	5	0.29	277	166.2	0.60	166	0.60	18/45	0.40	
K11	5	1	27	5	0.19	302	181.2	0.60	181	0.60	20/50	0.40	
K12	5	1	34	5	0.12	436	261.6	0.60	262	0.60	24/60	0.40	
Average	5	1	34	4	0.20			59%		53%		35%	

Source: Report on Indian Urban Infrastructure and Services, HPEC Committee, March 2011

Cleanliness Indicator, Drainage Indicator and Sewage indicator – As mentioned in Chapter 2, 2.4.4 Spatial Density in Indian Cities, footnotes, page no. 51.

Annexure

STUDY UNIT		١	Nalkability	/		Level of Cleanliness							
	Proximity to Daily Needs	Condition of Sidewalks	Adequac	Adequacy of Streetlights		gth (m)	Domestic Waste Mgmt.		Coverage of Stormwater Drainage		Coverage of Sewage Network		
	SCORE (0.1-0.5km = 5, 0.51-1km = 3, >1km = 1)	SCORE (Good = 5, Fair = 3, Poor = 1)	Centre to centre dist.	SCORE (≤35m = 5, 35.1-40m = 3, >40m = 1)	RATIO (Score/ Max. Score)	Paved Road Length (m)	Road Length attended by Primary/ Sec. Waste Collection Service	Cleanliness Indicator	Road Length covered by Drains	Drainage Indicator	No. of properties connected to the network/ Total no. of properties	Sewage Indicator	
R1	5	3	38	3	0.29	1104	1104	1	1104	1	86/86	1	
R2	5	3	41	1	0.29	1188	1188	1	1188	1	82/82	1	
R3	5	3	40	3	0.29	1172	1172	1	1172	1	71/71	1	
R4	5	3	35	5	0.24	2071	2071	1	2071	1	96/96	1	
R5	5	1	33	5	0.52	1962	1962	1	1962	1	185/185	1	
R6	5	3	32	5	0.29	223	223	1	223	1	72/72	1	
R7	5	1	37	3	0.29	1257	1257	1	1257	1	143/143	1	
R8	5	1	33	5	0.29	1598	1598	1	1598	1	100/100	1	
R9	5	3	27	5	0.29	1049	1049	1	1049	1	90/90	1	
R10	5	3	40	3	0.29	1254	1254	1	1254	1	108/108	1	
R11	5	3	34	5	0.29	980	980	1	980	1	62/62	1	
R12	5	3	41	1	0.32	768	768	1	768	1	51/51	1	
Average	5	3	35	4	0.30			100%		100%		100%	

Annexure

					– Walkability and Level of Cleanliness							
STUDY UNIT	Proximity to Daily Needs	Condition of Sidewalks	Walkability Adequac	y of Streetlights	Type & Condition of Ê Open Space ₤		Domestic Waste Mgmt.		Coverage of Stormwater Drainage		Coverage of Sewag Network	
	SCORE (0.1-0.5km = 5, 0.51-1km = 3, >1km = 1)	SCORE (Good = 5, Fair = 3, Poor = 1)	Centre to centre dist.	SCORE (≤35m = 5, 35.1-40m = 3, >40m = 1)	RATIO (Score/ Max. Score)	Paved Road Length (m)	Road Length attended by Primary/ Sec. Waste Collection Service	Cleanliness Indicator	Road Length covered by Drains	Drainage Indicator	No. of properties connected to the network/ Total no. of properties	Sewage Indicator
8-1	5	1	30	5	0.52	1401	1401	1	1401	1	74/74	1
8-2	5	1	30	5	0.00	1397	1397	1	1397	1	85/85	1
8-3	5	1	30	5	0.17	2239	2239	1	2239	1	108/108	1
8-4	5	1	30	5	0.17	1692	1692	1	1692	1	7373	1
8-5	5	1	30	5	0.17	2506	2506	1	2506	1	101/101	1
8-6	5	3	30	5	0.24	1770	1770	1	1770	1	88/88	1
8-7	3	3	30	5	0.29	1182	1182	1	1182	1	35/35	1
8-8	3	3	30	5	0.29	1966	1966	1	1966	1	65/65	1
8-9	3	3	30	5	0.29	1182	1182	1	1182	1	43/43	1
8-10	3	3	30	5	0.29	1060	1060	1	1060	1	26/26	1
Average	4	2	30	5	0.24			100%		100%		100%

Annexure

		۱	Walkability	/		Level of Cleanliness							
STUDY UNIT	Proximity to Daily Needs	Condition of Sidewalks	Adequacy of Streetlights		Type & Condition of Open Space	gth (m)	Domestic Waste Mgmt.		Coverage of Stormwater Drainage		Coverage of Sewage Network		
	SCORE (0.1-0.5km = 5, 0.51-1km = 3, >1km = 1)	SCORE (Good = 5, Fair = 3, Poor = 1)	Centre to centre dist.	SCORE (≤35m = 5, 35.1-40m = 3, >40m = 1)	RATIO (Score/ Max. Score)	Paved Road Length (m)	Road Length attended by Primary/ Sec. Waste Collection Service	Cleanliness Indicator	Road Length covered by Drains	Drainage Indicator	No. of properties connected to the network/ Total no. of properties	Sewage Indicator	
38w-1	5	1	30	5	0.52	834	834	1	834	1	84/84	1	
38w-2	5	1	30	5	0.52	1179	1179	1	1179	1	70/70	1	
38w-3	5	1	30	5	0.52	916	916	1	916	1	60/60	1	
38w-4	5	1	30	5	0.29	1050	1050	1	1050	1	60/60	1	
38w-5	5	1	30	5	0.00	763	763	1	763	1	50/50	1	
38w-6	5	3	30	5	0.52	969	969	1	969	1	50/50	1	
38w-7	5	3	30	5	0.29	1220	1220	1	1220	1	72/72	1	
38w-8	5	3	30	5	0.29	1321	1321	1	1321	1	84/84	1	
38w-9	5	3	30	5	0.52	1225	1225	1	1225	1	60/60	1	
38w-10	5	3	30	5	0.29	1167	1167	1	1167	1	80/80	1	
38w-11	5	3	30	5	0.29	985	985	1	985	1	60/60	1	
38w-12	5	3	30	5	0.29	1648	1648	1	1648	1	96/96	1	
Average	5	2	30	5	0.36			100%		100%		100%	

Source: Report on Indian Urban Infrastructure and Services, HPEC Committee, March 2011

2.4.4 Spatial Density in Indian Cities, footnotes, page no. 51.

Annexure

STUDY UNIT	Walkability						Level of Cleanliness							
	Proximity to Daily Needs	Condition of Sidewalks	Adequacy of Streetlights		Type & Condition of Open Space	Length (m)	Domestic W			erage of er Drainage	Coverage of Sewage Network			
	SCORE (0.1-0.5km = 5, 0.51-1km = 3, >1km = 1)	SCORE (Good = 5, Fair = 3, Poor = 1)	Centre to centre dist.	SCORE (≤35m = 5, 35.1-40m = 3, >40m = 1)	RATIO (Score/ Max. Score)	Paved Road Len	Road Length attended by Primary/ Sec. Waste Collection Service	Cleanliness Indicator	Road Length covered by Drains	Drainage Indicator	No. of properties connected to the network/ Total no. of properties	Sewage Indicator		
MA1	1	3	30	5	0.52	149	149	1	149	1	20/20	1		
MA2	1	3	30	5	0.52	120	120	1	120	1	58/58	1		
MA3	1	3	30	5	0.29	289	289	1	289	1	90/90	1		
Average	1	3	30	5	0.44			100%		100%		100%		

Annexure

	Da	ata Sheet 27	7: Secto	r 20 (Panchk	ula), Chano	digarh -	- Walkabi	lity and Lev	el of Cle	anliness			
		١	Walkability	1		Level of Cleanliness							
STUDY	Proximity to Daily Needs	Condition of Sidewalks	Adequacy of Streetlights		Type & Condition of Open Space	gth (m)	Domestic \	Domestic Waste Mgmt.		rage of er Drainage	Coverage of Sewage Network		
UNIT	SCORE (0.1-0.5km = 5, 0.51-1km = 3, >1km = 1)	SCORE (Good = 5, Fair = 3, Poor = 1)	Centre to centre dist.	SCORE (≤35m = 5, 35.1-40m = 3, >40m = 1)	RATIO (Score/ Max. Score)	Paved Road Length (m)	Road Length attended by Primary/ Sec. Waste Collection Service	Cleanliness Indicator	Road Length covered by Drains	Drainage Indicator	No. of properties* connected to the network/ Total no. of properties	Sewage Indicator	
20-1	5	1	30	5	0.29	1396	1396	1	1396	1	17/17	1	
20-2	5	1	30	5	0.57	1215	1215	1	1215	1	4/4	1	
20-3	5	3	30	5	0.29	687	687	1	687	1	7/7	1	
20-4	1	1	30	5	0.57	1722	1722	1	1722	1	14/14	1	
20-5	1	1	30	5	0.57	1953	1953	1	1953	1	11/11	1	
20-6	3	3	30	5	0.29	933	933	1	933	1	7/7	1	
20-7	5	3	30	5	0.00	963	963	1	963	1	16/16	1	
20-8	3	1	30	5	0.57	1016	1016	1	1016	1	1/1	1	
20-9	1	1	30	5	0.29	954	954	1	954	1	6/6	1	
20-10	1	3	30	5	0.00	945	945	1	945	1	20/20	1	
20-11	1	3	30	5	0.00	784	784	1	784	1	10/10	1	
Average	3	2	30	5	0.31			100%		100%		100%	
	orm for Streetlights: port on Indian Urban				h 2011	Cleanline 2.4.4 Spa	ess Indicator, D tial Density in In	rainage Indicator dian Cities, footno	and Sewage tes, page no.	indicator – As 51.	mentioned in Cl	napter 2,	
* Here prop	erties refer to no. of C	Gated Communities	s or Group Ho	ousing Societies in a	study unit.								

	Walkability						Leve	l of Cleanl	iness			
STUDY	Proximity to Daily Needs	Condition of Sidewalks	Adequac	y of Streetlights	Type & Condition of Open Space	ype & dition of \widehat{E} Domestic Waste Mgmt. Coverage of Stormwater Drainage		ିE Domestic Waste Mgmt.		Coverage of Sewage Network		
UNIT	SCORE (0.1-0.5km = 5, 0.51-1km = 3, >1km = 1)	SCORE (Good = 5, Fair = 3, Poor = 1)	Centre to centre dist.	SCORE (≤35m = 5, 35.1-40m = 3, >40m = 1)	RATIO (Score/ Max. Score)	Paved Road Length (m)	Road Length attended by Primary/ Sec. Waste Collection Service	Cleanliness Indicator	Road Length covered by Drains	Drainage Indicator	No. of blocks connected to the network/ Total no. of blocks	Sewage Indicato
WS-W	5	5	30	5	0.52	1842	1842	1	1842	1	10/10	1
WS-E	5	5	30	5	0.52	1575	1575	1	1575	1	8/8	1
Average	5	5	30	5	0.52			100%		100%		100%
UW-W	5	5	30	5	0.52	1216	1216	1	1216	1	15/15	1
UW-E	5	5	30	5	0.52	395	395	1	395	1	5/5	1
Average	5	5	30	5	0.52			100%		100%		100%

Journal Publications:

- 1. Dutta, S., Bardhan, S. and Bhaduri, S. (2013) **Patterns of Urbanization and Environmental Quality in the Context of Indian Cities**. *Environment and Urbanization ASIA*, 4 (2), 287 – 299.
- Dutta, S., Bardhan, S. and Bhaduri, S. (2013) Urban Environment Studies for a Sustainable Future: An Alternative Approach. *ABACUS (Journal of BITs, Mesra)*, 8 (1), 38 49.
- Dutta, S., Bardhan, S. and Bhaduri, S. (2017) Residential Density and Neighbourhood Environmental Quality – A Comparative Study in the context of Indian Cities. SPECIAL ISSUE of International Journal on Emerging Technologies (IJET), 8 (1), 315 – 323.

Conference Presentations and Publications:

- Dutta, S., Bardhan, S. and Bhaduri, S. (2015) A Model Framework for Assessing Urban Environmental Quality in proceedings of *National Conference on Rediscovering Cities (NCRC – 2015)* organized by School of Architecture, MM University, Sadopur, Ambala, India and Indian Institute of Architects (Chd-Pb Chapter), 10–11 April 2015, (pp. 331-339).
- Dutta, S., Bardhan, S. and Bhaduri, S. (2017) Multi-criteria Approach for Assessing Neighbourhood Environmental Quality - A Way towards Future Sustainable Development of Indian Cities presented at International Conference on Sustainable Built Environment 2017 (SBE 2017) organized by Department of Architecture and Planning, IIT Roorkee, 03-05 February 2017.

Received "Best Paper Award" under the theme 'Planning for Resilience'.

 Dutta, S., Bardhan, S. and Bhaduri, S. (2017) Residential Density and Neighbourhood Environmental Quality – A Comparative Study in the context of Indian Cities presented at National Conference on Urban Environmental Management: Problems and Prospects organized by Department of Architecture and Planning, MNIT Jaipur, 13-14 February 2017.

Article

Patterns of Urbanization and Environmental Quality in the Context of Indian Cities

印度城市背景下城市化和环境质量的模式

Swati Dutta, Suchandra Bardhan and Sanjukta Bhaduri

Environment and Urbanization ASIA 4(2) 287–299 © 2013 National Institute of Urban Affairs (NIUA) SAGE Publications Los Angeles, London, New Delhi, Singapore, Washington DC DOI: 10.1177/0975425313510768 http://eua.sagepub.com

Abstract

The link between quality of urban development and its impact on environment has for long been debated. The authors attempt to assess the impact that India's rapidly urbanizing cities and related development are having on urban environment. The authors emphasize on the 'quality' of development while attempting to answer this question and indicate that quality factors, such as, density, urban massing and spatial pattern of land use, as well as socio-economic and cultural factors resulting from these, have an important bearing on the quality of urban environment in Indian cities. The authors conclude that several physical and human environmental factors need to be further evaluated from a new perspective to gain insights into perceived and measured components that influence environmental quality.

城市发展质量及其对环境的影响之间的联系,是长久以来一直争论不休的话题。作者试图评估 印度城市的快速城市化及其相关开发对城市环境的影响。作者强调发展的团质量团,并试图回答 这个问题,作者还指出与质量有关因素(比如密度、城市体量、土地使用的空间模式以及由此 形成的社会经济和文化因素)对印度城市环境的质量产生了重要影响。作者的结论是一些空间 和人居环境的因素需要从一个新的视角进一步评估,从而深入了解可感知和可测量的、影响环 境质量的因素。

Keywords

Environmental quality, quality of development, urban pattern, density, configuration of built environment

Introduction

The year 2008 was a milestone in the process of urbanization that began several thousand years ago, but accelerated greatly in recent times. For the first time, there were as many people living in towns and cities as in rural areas. By 2050—when the world population is projected to reach over 9 billion—around 75 per cent will be living in urban areas (AGS, 2009).

Urbanization has many causes and many faces. In underdeveloped countries, already about 1 billion people live in slums without basic necessities, such as, clean water and sanitation, and lack secure tenure of the land they occupy. In rapidly industrializing countries, such as, China and India, urban growth is fuelled by economic development outstripping the capacity of cities to provide basic infrastructure. The results are traffic congestion, environmental pollution, increasing stress levels and acute health problems. At the other extreme, in some of the richest countries, a demand for larger houses and gardens is seen to produce vast areas of urban sprawl, with people using an ever denser transport network to commute long distances to their places of work. Huge megapolitan regions emerge in the process consuming small towns as they grow, causing fundamental changes to local, regional and global environments. In this context, visions of how cities will develop in future are quite diverse. With the urban populations of Asia and Africa set to double between 2000 and 2030,¹ future urbanization is predicted to be a largely developing world phenomenon.² India, projected to be an urban majority country^{3,4} by 2040–2045, is expected to be at the forefront of this massive socio-economic shift. It is believed that the manner in which the subcontinent responds to urbanization over the next two to three decades shall define the social, economic and environmental future of not just the country, but given its size, also of the world.

Patterns of Urbanization in Developing Countries

It is generally seen that current trends and patterns of urbanization point towards an uncertain future. Therefore, cities need to manoeuvre themselves to a position where they can improve life for people who flock to them and be environmentally sustainable also. The different patterns of urbanization found in developing countries are as follows:

- 1. Peri-urbanization or Suburban Sprawl and Formation of City Regions: At present low- and middle-income countries are increasingly identified by the process of peri-urbanization. In the peri-urban interface, the boundaries between the 'urban' and the 'rural' are continuously renegotiated, and rather than being clearly defined are characterized by transition zones. These interfaces are affected by some of the most serious problems of urbanization, including intense pressures on resources, slum formation, lack of adequate services, such as, water and sanitation, poor planning and degradation of farmlands. In most cases, planning regulations are weak or weakly enforced, and result in areas with complex patterns of land tenure and land use (McGregor et al., 2006; Tacoli, 2006). Although these areas provide a variety of activities and services for urban centres, they are generally beyond the legal and administrative boundaries of the cities, with the result that the process of urbanization in most cases is unplanned and informal with frequent struggles over land use. Some scholars refer to these emerging urban configurations as 'city regions' emphasizing the fact that cities are growing not just in terms of population size, they are also changing their economic character and spatial form.
- 2. Low Density Urbanism or Restrictive Residential Enclave: Low-density urbanism, on the other hand, is a model equated with what is considered as destructive selfishness of the gated community and the environmentally disastrous results of low-density car-orientated suburbs, which are highly unsustainable and do nothing to support the traditional energy and vitality of urban life.

- 3. Urban Compaction and High Density: This refers to the compact city model which is often proposed for the sustainable development of our cities. However, in developing countries, cities generally have high densities and are characterized by high proportions of informal development lacking the infrastructure and urban management structures required to make the system work. Most of the people live in deplorable conditions with extreme compromises made on the standard of living. Any attempt at further densifying/intensifying these cities aggravates a range of problems like:
 - infrastructure overload,
 - · housing shortage,
 - overcrowding,
 - congestion,
 - air and noise pollution,
 - health hazards,
 - lack of public and green spaces and
 - · environmental degradation.

As Figure 1 illustrates, generally Indian cities have high density patterns as compared to the relatively dispersed and flat density pattern found in London, Berlin or Johannesburg. Mumbai is a typical example where within the city limits, the average density surpasses the mark of 27,000 people per km²—a figure that rises to well above 50,000 people per km² (taking only the built-up area into account), a level higher than even the highest density peaks in New York City's Manhattan area. Furthermore, it is not rare for

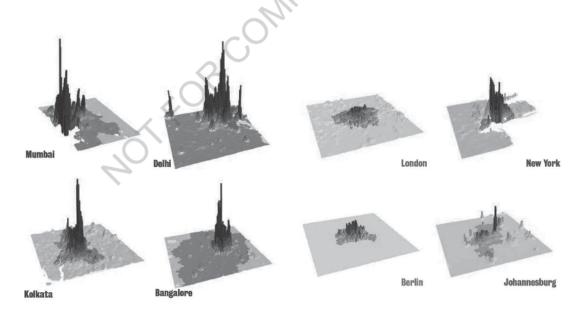
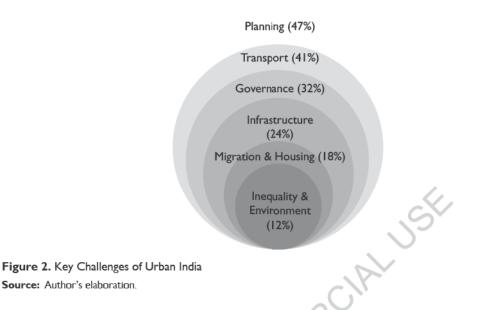


Figure 1. Urban Densities of Indian Cities Compared with some World Cities Source: Integrated City Making Report (2008) of Urban Age, London School of Economics and Political Science.

the densest neighbourhoods of Mumbai to accommodate as many as 100,000 residents per km². Similarly Delhi, the capital city, has a high average density of 9,340 people per km² inspite of its legacy of parks and other open spaces, as well as non-residential buildings and built forms that cannot be converted to residential uses.

Effects of Urbanization on Our Cities


The high rate of increase in the urban population creates many problems in our urban areas. Doubling and tripling of urban population practically in all major cities and towns and the consequent strain on the existing system gets manifested in an environmental chaos. Every major city of India faces the same proliferating problems of urban expansion, inadequate housing, poor transportation system, poor sewerage, erratic electric supply, insufficient drinking water supplies etc. An increasing number of trucks, buses, cars, three-wheelers and motorcycles, all spewing uncontrolled fumes, surging through haphazard city streets jammed with jaywalking pedestrians, rickshaw, cattle and goats are not an uncommon sight. The phenomena of accelerated urbanization becomes the main culprit for bringing in problems like growth of dense and unplanned residential areas, increasing environmental pollution, non-availability of services and amenities, large amounts of solid waste generation and growth of slums (Rahman et al., 2011).

These conditions lead to the deterioration of the urban environment so fast that the sustainability of the cities is threatened. In metro cities, land and environment are especially under stress due to the pressure of rapid urbanization. Population growth and in-migration of people, industrial growth, inefficient and inadequate traffic corridors, poor environmental infrastructure, etc., are the main factors that deteriorate the overall quality of the city. As the cities expand and population increases, the resources, which are limited, are shared. Housing, water supply, roads, drainage, transport, education, health services, police and fire services, etc., are not able to keep pace with the prevailing urban growth rate that leads to further degradation of the urban environment.

While the more conventional challenges of providing adequate housing, public transportation and other civic amenities to urbanizing societies are recognized to some extent, it is felt that the impact of India's urbanization on the overall environment is not yet fully understood or studied. This view is corroborated by independent research, which confirms that issues focusing on maintaining urban environmental quality do not figure very high on the agenda of city planners and local/national development authorities in India.

According to Urban Age, London School of Economics and Political Science (2008), 'Integrated City Making—Governance, Planning and Transport Report', only 12 per cent of the respondents drawn from every level of Indian government and civil society point out environment as one of the three key challenges of urban India (Figure 2). The other key challenges include planning (47 per cent), transport (41 per cent), governance (32 per cent), infrastructure (24 per cent), migration (18 per cent), housing (18 per cent) and inequality (12 per cent). Hence, there arises a need to assess and maintain the environmental quality of our cities.

While India can, and should, draw a variety of lessons from the developed world that has already urbanized, it should base its tomorrow on fresh thinking and original ideas relevant to the local context. What follows is a thoughtful attempt to challenge mindsets and provide practical solutions for our common urban future—a future that is not only economically stable or socially equitable but most importantly, environmentally sustainable.⁵

Quality of Development and its Effect on the Urban Environment

The urban environment is shaped by both human and natural factors operating at different spatial scales. In urban areas the local scale is dominated by individual buildings, streets and trees, etc., but regional scale influences may include the whole city and beyond (Nichol and Wong, 2005). While certain aspects like liveability and quality of place defined by the quality of natural resources (levels of air and water pollution), infrastructure and open space availability and other amenities of the built environment are quantifiable, there are several other aspects of the urban environment that can be assessed only on a qualitative basis depending on the daily, local and sensory experiences of the city's residents. Therefore, in principle, all attributes of the environment and all characteristics of people are relevant domains in the person–environment relationship (Mitchell et al., 2001). However, the important point is that generally the total domain is never too strictly defined leaving a scope for multidisciplinary intervention and evaluation of physical, spatial, social and environmental parameters.

Taking into account both aspects mentioned earlier, the quality of urban environment is generally determined from two approaches—one is the 'Total City Environment' and the other is the 'Appraisal of Built Forms', that is, quality of life and quality of development respectively (Nichol and Wong, 2004). In other words, spatial and physical features in addition to socio-economic factors affect the environmental quality. Generally, most of the studies look into the social aspect of the urban environment from the sociologist's viewpoint in terms of human well-being and quality of life indicators. This leaves a considerable gap in the design and planning field when it comes to policy formulation and plan implementation by architects, urban designers and planners who are faced with important questions such as:

- What is the effect of rapid urbanization on the quality of development in our cities?
- Does quality of development have an impact on the urban environment?

- Is urban environmental quality uniform over the geographical extent of the city?
- · Can urban environment studies help in designing sustainable cities?

Answers to these questions can only be found if one tries to first understand how the quality of development governed by various urban processes affects the city environment. Environmental challenges faced by cities around the world are more complex now than at any other time in history. In many parts of the world, and notably in Asia Pacific, rapid economic growth, decentralization, privatization and related socio-cultural changes have impacted the local, regional and global ecosystems in varying magnitudes (Figure 3). Some activities have environmental impacts within small sections of cities while others impact ecosystems that are planetary in size.

In the Western context, it is often seen that small- or low-income cities with unplanned development have environmental problems that are localized, immediate and health threatening for the local residents because of the poor environmental quality within the city. The environmental problems in middleincome cities are somewhat city-wide or regional, while affluent cities generally have fewer environmental problems and hence good environmental quality but because of their high rate of consumption and resource use pose a threat to environment and ecological sustainability at the global level. Also as cities transform from one level to another, the type of environmental problems they have to deal with change (Figure 4).

Figure 3. Urban Processes Adding to Environmental Burdens Source: Author's elaboration.

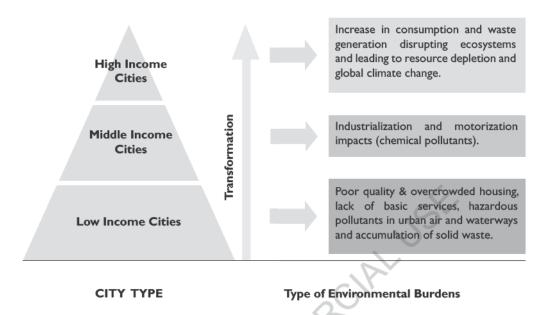


Figure 4. Environmental Issues in Different Types of Cities Source: Author's elaboration from UNU/IAS Report—Urban Ecosystem Analysis: Identifying Tools and Methods.

The Indian scenario though somewhat similar for smaller cities is different in terms of the growth and development patterns and subsequent environmental problems faced especially by the larger cities. The small and medium towns continue to face local environmental problems as a result of lack of infrastructure and provision of basic services. The larger cities and metropolises, on the other hand, continue to grow undesirably in most cases accompanied by transformations and transgressions that adversely affect the city environment and its inhabitants. As more and more people from small cities and rural areas migrate to these cities in hope of better jobs and comfortable lives, the city and its hinterland become an object to plunder for personal gains. The profiteering tendencies of the development authorities capped with political and bureaucratic jargon become responsible for the negative physical growth of the city. Zoning regulations and building byelaws are relaxed to enable the private players to produce development of their liking. Land use changes are allowed without giving a thought to the impact that would follow. Lung spaces disappear in the city and ironically the city has hardly any green space left with most of the parks converted to other land uses, primarily the commercial uses. Land prices shoot up as a result of profit oriented privatized urban development and the poor are completely alienated from the development process. With no choice left, they are forced to grab the nearest available open patch of land. Thus starts the proliferation and growth of slum and squatter settlements in the urban landscape (Sandhu and Gill, 2010).

Slums are found to be overcrowded, often polluted and lack basic civic amenities like clean drinking water, sanitation, solid waste collection and disposal facilities, drains, paved roads and other forms of infrastructure and services necessary for a healthy environment. Most of the slum dwellers are involved in informal sector activities where there is constant threat of eviction, removal, confiscation of goods and almost non-existent social security cover. 54.71 per cent of urban slums have no toilet facility (as per the

National Sample Survey Organisation's 58th Round). Most free community toilets built by state government or local bodies are rendered unusable because of the lack of maintenance. As such the road sides, rail reservation areas and other vacant plots are used for open defecation by poor segments of the city. As per 2001 census report, the slum population of India in cities and towns with a population of 50,000 and above was 42.6 million, which was 22.6 per cent of the urban population of the states/union territories reporting slums.

Away from the inner city, the periphery presents an equally dismal scene with the agricultural land fast converted to residential plots by both licensed and unlicensed private colonizers. The absence of appropriate periphery control and regulations result in unabated informal and chaotic developments on the fringe area leaving little scope for planned and orderly expansion in the future.

Thus, overall this type of unregulated growth and poor quality development results in bad water and air quality, unmanaged or mismanaged waste and increasing noise pollution because of increasing traffic especially in the already congested core of the city. In several instances, controlling encroachment into public spaces and degradation of cultural and heritage sites also becomes a major problem. All these become a threat to the environment and people's lives and eventually cause deterioration of urban environmental quality. Therefore, it is important to note that growth and development patterns result in a particular quality of development that has a definite impact on the urban environmental quality.

Urban Pattern of Indian Cities

By and large, it is seen that patterns of urbanization within a city differ from one location to another depending on local topography, land use regulations, socio-economic and cultural preferences of people, political and historical developments and so on and so forth. It is also understood that these varying patterns of urban development from one place to another result in differences in levels of population density, concentration of residential or commercial uses within specific areas, mixing of residential and commercial land uses, amount of open spaces and amount of intervening land devoted to non-urban uses (Galster et al., 2001). This fact is best understood by carefully observing our Indian cities.

In most of the cases, the inner core or walled city in a traditional Indian city is found to be a compact city largely designed for pedestrian use and cycle rickshaws supported by horse-driven carts (*tongas*) on certain marked routes. The entire built-up mass is more or less a compact monolithic volume with small punctures for the purpose of light, ventilation and movement. Domestic life revolves around an organically grown settlement pattern, closely knit to a physical density that permits the essential public open spaces in the form of streets and chowpals (public squares) and large courtyards. It is estimated that courtyards and pedestrian streets occupy nearly 30 per cent of the area with the remaining area constituting the built-up volume. The compact ground coverage of nearly 70 per cent with ground plus two or three stories high buildings ensure that streets are shielded from the heat of the sun. Thus, the pedestrian streets remain cool during hot summers and much cooling is also obtained by natural wind currents because of the particular orientation of the streets. Old parts of Shahjahanabad (Delhi), Jaisalmer, Jaipur, Ahmedabad, Vadodara, Indore, Surat and many other cities exhibit these characteristics. Being predominantly pedestrian entities, the towns ensure an interactive social community and since social, cultural and religious customs play a huge role in peoples' lives, they are seen expressed in special architectural details and in use of space at the residential and neighbourhood level (Kapadia, 2010).

The city outside the walled area is dominated by the British annexes in many cases. While the indigenous or traditional city that grew around or alongside a fortress, royal palace or holy place or emerged from a village is irregular and amorphous in composition, the annexes (cantonment, civil lines and railway colonies), though in varying degree, are found to be much more organized with regular settlements that are spacious and sanitary with buildings far more clearly distinguished and grouped according to their function (Smailes, 1986).

Leaving aside the British annexes, in most cases, newer parts of the city are found to have developed haphazardly around or along old areas as a result of accelerated industrialization and rapid urbanization. High densities are found in and around commercial and industrial zones offering jobs to resident and migrant population, along the transport corridors that promote easy accessibility to and from the place of work and so on and so forth. The built forms are generally mid and high rise buildings, typically designed as homogeneous, repetitive, self-referential projects that rarely respond to their adjacencies, surrounding streets or their location within the city. The haphazard mushrooming of slabs and towers represent not only the denial of a coherent urban form and public realm, but the reduction of the very idea of city-making into an unchecked, rapacious capitalism in such cases (Bharne, 2011). The urban form of the city is thus characterized by different configuration and types of built form and related population distribution across the geographical extent of the city. Alternatively, it can be stated that distribution of buildings, their typology and geometry, layout patterns, distribution/availability of open spaces, quality of infrastructure including links to the wider urban system, etc., vary from one locality to the other within the city.

So, in order to understand the relationship between urban patterns characterized by spatial structures and population distribution and urban environmental quality, it becomes quintessential to study the local environmental problems associated with different patterns of urbanization within a city. With time, it has been understood that many urban environmental problems have a local origin and should be addressed in close cooperation with local stakeholders. At the same time it has also been recognized that global environmental decay often manifests itself at a local level. It follows that, although descriptive pattern identification and mapping at the macro-scale is of value as a pointer to detailed investigation, policy relevant urban environmental quality indicators are more likely to be derived at the local area scale (Pacione, 2003). Also of importance is the fact that since urban populations are disaggregated along a large number of planes like class, caste, age, lifestyle, gender and ethnicity, to be of real value to both citizens and decision makers, urban environmental quality studies should be directed to the appropriate social groups or constituencies depicting distinct patterns of urbanization in the city.

Assessing the Urban Environment of Our Cities

Urbanization is usually viewed as a characteristic of the population, as a characteristic of particular kinds of land uses and land covers, as well as a characteristic of social and economic processes and interactions affecting both population and land (McIntyre et al., 2000). Social scientists like demographers, geographers, urban policy analysts and others generally define levels of urbanization in terms of population densities. Alternatively, regional economists, labour analysts and related researchers define urban in terms of the functional area integrated with an urban centre. For these researchers, urban is more of a sociological and functional definition rather than a structural (density-based) phenomenon. However, physical scientists like ecologists and physical planners especially approach definitions of urbanization

from the standpoint of the built environment. To these researchers, density of buildings and impervious surfaces is important (McIntyre et al., 2000). However, among this group a wide variety of urban definitions are used in research, ranging from any human alteration of the landscape to more precise definitions based on density and specified land-use characteristics. Broadly speaking, the term land use is used to describe the different functions of the environment. Within the urban context, the dominant land use tends to be residential but a functional urban area requires industrial, retail, offices, infrastructure and other uses. Hence, a thorough understanding of the spatial (micro) pattern of land uses is crucial to be aware of the unregulated growth, urban sprawl and increasing land use conversions that are straining the resources and further degrading the environment of our cities.

It is also understood that density plays a significant role in determining the city's physical structure and the level of efficiency achieved by use of its land (Frenkel, 2004). Simply put, density is used as a measure of the number of people living in a given area. However, when one refers to quality of development, the configuration of the built environment and the interactions within play an important role. Density indicates the distribution of people and the urban massing. In other words, it indicates the relationship between built-up and open land. It may describe the image of a residential area or in town row house area and help in determining the physical patterns of land use and buildings (refer Figure 5).

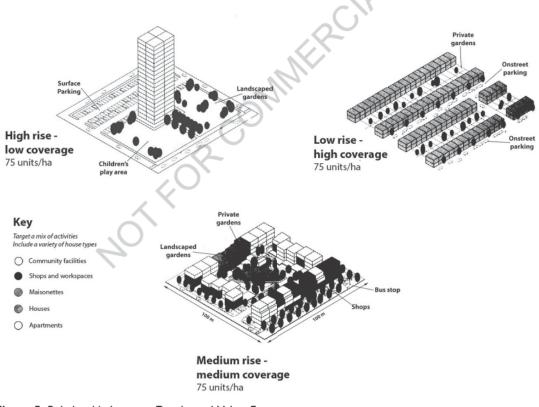


Figure 5. Relationship between Density and Urban Form Source: Moughtin (2003).

While generally physical elements of the built fabric, such as, architectural differences and variety, the combination between the public and the private domains, the relationship between the built and open spaces, the distinction between the monumental and the ordinary, the integration between different types of land use, the harmony of the language of architecture in which every detail is a piece in an elaborate mosaic and the various means used to decorate the city (sculptures, murals and the like), help in the 'appraisal of built forms' as suggested by Kimhi (2005), it is important to note that it is not possible to define density from the outset without examining the nature of the spaces to which it is applied. In several instances it is found that localities have a specific configuration that depends on the scale of the urban space in question and the size of the open spaces contained within it. Thus, in order to assess environmental quality, it becomes imperative to examine the nature and use of spaces in the locality.

Another aspect that is important to understand is that the intra city structure is dynamic and keeps on changing with time as a result of several urban processes and mechanisms at play. However, the one common thing generally seen in the structure is that households with similar socio-economic status and similar land uses tend to cluster at various locations within the city. The locations are generally determined by a complex combination of historical, physical, socio-cultural, economical and administrative factors. These socio-economic and cultural preferences of people along with historical and political processes are found to have strong influence on the urban form patterns and hence density of development. Hence, a careful analysis of the demographic aspects also becomes a prerequisite for understanding the urban environment of the city.

Thus, it can be stated that in order to assess the urban environment based on a set of physical, social and environmental indicators, investigations pertaining to several aspects may have to be carried out to achieve certain conclusive results which can further be applied to the planning, design and maintenance of future sustainable cities. A research taking into account people's perception along with an objective analysis of the urban environment can thus really prove useful in terms of being used as a tool by residents to highlight and communicate concerns, wishes and positive aspects of their local area to fellow residents or decision makers (for example, local authorities, planners, policy makers and organizations) and as a conceptual framework for the planning and development of new areas of the city.

Conclusion ⁴

In order to gain a detailed insight into the perceived and measured components that influence environmental quality, several factors of the physical and human environment need to be evaluated from a new perspective. So far, science has not advanced a comprehensive framework to address these issues in an integrated manner and to enable an evaluation of physical, spatial, social and environmental indicators. There is no coherent system to measure and evaluate aspects of, and trends in, environmental quality though concepts of urban environmental quality and related terms, such as, liveability, quality of life and sustainability, enjoy great public popularity and form a central issue in research programmes, policy making and urban development (Leidelmijer et al., 2002). Accordingly, a study analyzing how varying urban structures and land uses in addition to distribution of people and their activities affect the urban environment can help understand current trends with respect to the urban processes taking place in and

around the city. It should be understood that principally the mix of the urban built density depends on the size of the space in question, and the size of the open spaces contained within it. Hence, a number of density measures relative to the open spaces should be applied to measure the density of a given area. Employing a number of density measures can give a complete picture while accounting for the different scales of urban form (the city, neighbourhood/locality and the street). Or in other words, the above-mentioned approach can help in assessing and establishing a link between environmental quality and urban sustainability and help develop a methodology that can assess, monitor and potentially forecast developments of environmental quality of our cities.

Notes

- 1. United Nations Population Fund (UNFPA), Unleashing the Potential of Urban Growth, State of World Population Report 2007.
- 2. According to United Nations Department of Economic and Social Affairs/Population Division; World Urbanisation Prospects: The 2003 Revision Population Database: In developed countries, 75 per cent of the population already lives in cities, compared to 35 per cent in developing countries. But the rate of urbanization in developing countries is much higher—3 per cent compared to 0.5 per cent in developed countries. Estimates show that by 2030, about 84 per cent of the population of developing countries will be living in cities.
- 3. United Nations Population Division, World Urbanisation Prospects: The 2007 Revision Population Database.
- Currently 30 per cent of India's total population or approximately 330 million people live in urban areas.
- 5. World Wide Fund for Nature (WWF), Urbanisation and Sustainability in India: An Interdependent Agenda, The Alternative Urban Futures Report 2010. http://assets.wwfindia.org/downloads/urbanisation_report.pdf

References

- Alliance for Global Sustainability (AGS). (2009). Urban futures: The challenge of sustainability, Annual Conference Report 2009. Retrieved from http://www.ags.ethz.ch/AGS_AM2009_UrbanFutures.pdf
- Bharne, V. (2011). Enabling responsible urban form. The Urban Vision: Expert Diary. Posted in Architecture and Planning. Retrieved from http://www.theurbanvision.com
- Frenkel, A. (2004). The potential effects of national growth-management policy on urban sprawl and the depletion of open spaces and farmland, *Land Use Policy*, 21(4), 357–369.
- Galster, G., Hanson, R., Wolman, H., Coleman, S., & Freihage, J. (2001). Wrestling sprawl to the ground: Defining and measuring an elusive concept. *Housing Policy Debate*, 12(4), 681–717.
- Kapadia, K. (2010). The sustainable Indian cities—An oxymoron. Journal of the Development and Research Organisation for Nature, Arts and Heritage, 7(2), 41–47.
- Kimhi, I. (2005). Urban environmental quality—A summary. The Center for Environmental Policy Studies, Series No. 12, The Jerusalem Institute for Israel Studies, Jerusalem.
- Leidelmijer, K., van Kamp, I., & Marsman, G. (2002). Leefbaarheid Naar een begrippenkader en Conceptuele inkadering (RIGO, RIVM) (Viability towards a conceptual framework and conceptual framing). Report Number 81330.
- McGregor, D., Simon D., & Thompson D. (Eds). (2006). The peri-urban interface: Approaches to sustainable natural and human resource use. London: Earthscan.
- McIntyre, N.E., Knowles-Yanez, K., & Hope, D. (2000). Urban ecology as an interdisciplinary field: Differences in the use of 'urban' between the social and natural sciences. Urban Ecosystems, 4, 5–24.
- Mitchell, G., Namdeo, A., & Kay, D. (2001). A new disease-burden method for estimating the impact of outdoor air quality on human health. Sci. Total Environ., 246(2–3), 153–164.
- Moughtin, C. (2003). Sustainable urban form, urban design: Street and square, 3rd edition. London: Architectural Press.

Nichol, J., & Wong, M.S. (2004). Proceedings from ISPRS Congress, July 12–23, 2004: Mapping and modelling of urban environment quality in Hongkong. Istanbul, Turkey.

——. (2005). Modeling urban environment quality in a tropical city. *Landscape and Urban Planning*, 73, 49–58.

- Pacione, M. (2003). Urban environmental quality and human wellbeing—a social geographic perspective. Landscape and Urban Planning, 65(1–2), 19–30.
- Rahman, A., Kumar, Y., Fazal, S., & Bhaskaran, S. (2011). Urbanization and quality of urban environment using remote sensing and GIS techniques in East Delhi – India. *Journal of Geographic Information System*, 3 (1), 62–84.
- Sandhu, K., & Gill, G.S. (2010). Impact of urban paraphernalia on Amritsar City: Of transformations and transgressions. Sri Lankan Journal of Real Estate, 4, 1–17.
- Smailes, A.E. (1986). The Indian city: A descriptive model. In V.K. Tewari, J.A. Weinstein, V.L.S. Prakasa Rao (Eds), *Indian cities ecological perspectives* (pp. 35–54). Concept Publishing Company.

Tacoli, C. (Ed). (2006). The Earthscan Reader in rural-urban linkages. London: Earthscan.

OTFORCE

Swati Dutta, Research Scholar, Jadavpur University, Kolkata. Presently working as Associate Professor in Chitkara School of Planning and Architecture, Punjab. E-mail: swatiiitkgp@gmail.com

Suchandra Bardhan, Associate Professor, Department of Architecture, Jadavpur University, Kolkata. E-mail: suchandrab@gmail.com

Sanjukta Bhaduri, HoD, Department of Urban Planning, School of Planning and Architecture, New Delhi. E-mail: sanjukta.bhaduri@gmail.com

299

NOTHORCOMMERCIAL

|

____|

____|

URBAN ENVIRONMENT STUDIES FOR A SUSTAINABLE FUTURE: AN ALTERNATIVE APPROACH

Swati Dutta is currently pursuing Ph.D. from Jadavpur University, Kolkata and working as Associate Professor in Chitkara School of Planning and Architecture, Chitkara University, Punjab. She is an alumnus of IIT Kharagpur and Chandigarh College of Architecture. Her areas of interest include study of sustainable urban design strategies, environmental planning and management of eco-fragile areas like wetlands and integrating theories of design into the architectural design process to evolve a comprehensive approach for the students of architecture. E-mail: swatiiitkgp@gmail.com

Dr. Suchandra Bardhan, Associate Professor, Department of Architecture, Jadavpur University, Kolkata is a Landscape Architect with a doctoral degree in Engineering. She has active interest in research on Building & Environment and has received many honours throughout her career.

Prof. (Dr.) Sanjukta Bhaduri, HoD, Department of Urban Planning, School of Planning and Architecture, New Delhi is an architect-urban planner and has specialized in environmental planning / energy consumption in human settlements. Her areas of interest are Sustainable Development of Settlements, Urban Environmental Management, Assessment of Environmental Impacts, Disaster Management, Energy in Urban Development, Planning for Tourism in Settlements and Environmental Quality of Human Settlements.

SWATI DUTTA, DR. SUCHANDRA BARDHAN, DR. SANJUKTA BHADURI

ABSTRACT

Different configuration and types of built form and related population distribution characterize the urban form of our cities. Alternatively, density given by distribution of buildings, their typology and geometry, layout patterns, distribution / availability of open spaces, quality of infrastructure including links to the wider urban system varies from one locality to the other within cities. Density gives rise to specific urban forms, land use and transit patterns in the city. In addition, urban form and land-use, and the transportation system become critical factors affecting urban environmental quality of a city. The following paper examines patterns and effects of rapid urbanization on Indian cities and the resulting deterioration of urban environmental quality in our cities. It highlights the fact that both environmental conditions and environmental quality become crucial if urban planning and management aim towards sustainable development.

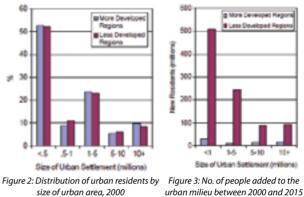
Further, the paper outlines the world urbanization trends and identifies a number of cities that hold the key to future urbanization in India. Considering a naturally evolving Indian metropolitan city, the research proposes to examine the relationship between urban environmental quality and built-up density. After ascertaining several aspects for assessing urban environmental quality, a set of objective and subjective indicators are listed. The study envisages that the objective indicators shall help in diagnosing the environmental conditions whereas the subjective indicators shall help in the evaluation of the quality. The approach may be used by decision makers and physical planners, architects and urban designers to assess the effects of urbanization on the local environment of a city and help classify localities based on physical density and development patterns and corresponding environmental quality. The study also expects to assist in adopting minimal requirements of built-up density of different localities for future sustainable cities.

Keywords: urban environmental quality, urban form, urbanization, density, configuration of built forms

1.0 INTRODUCTION

A high concentration of population and economic activities and an urban development pattern that has so far had more negative rather than positive effects on the environmental condition of cities and their hinterland characterizes urbanization in India. Some of the visible negative effects of urbanization include – segregation and isolation, overcrowding, deficient or misallocated facilities and services, poor quality of construction, housing design and infrastructure. Other effects include – inadequate urban transport planning, inadequate treatment of solid and liquid waste, air and water pollution and risks of flooding and landslides. All these have contributed to the creation of urban space that is scarce and unacceptable for a healthy and comfortable human life. These are part of what has been called the "Brown Agenda" which is concerned with unsustainable development in our cities, in contrast to the "Green Agenda", which concentrates on the global problems of the Earth (refer figure 1). The poor environmental quality in low-income neighborhoods has become one of the most urgent and greatest problems of Indian cities because of the risk it presents to its inhabitants' health. Despite macro-economic improvements within the cities, habitat conditions pose one of the most serious problems affecting the lives of the urban population.

Figure 1: Brown, Gray and Green environmental issues in Cities Source: Author's elaboration from UNU/IAS Report -

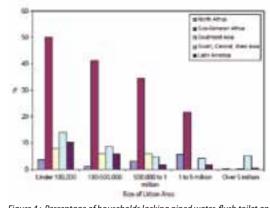

Urban Ecosystem Analysis: Identifying Tools and Methods

In order to understand the urban environmental quality, it has become quintessential to study the local environmental problems associated with different patterns of urbanization within a city. Several studies show that urban environmental problems have a local origin and should be addressed in cooperation with local stakeholders. At the same time, it is recognized that global environmental decay often manifests itself at a local level. This awareness has led to the formulation of the Local Agenda 21 (1997)¹, in which a plea is made for local dedicated actions needed to combine a reduction of environmental decay with an improvement of local socio-economic conditions.

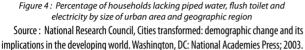
2.0 FUTURE WORLD URBANIZATION TRENDS

While much of the current sustainable cities debate focuses on the formidable problems of the world's largest urban agglomerations, it is predicted that in future majority of all urban dwellers will continue to reside in smaller urban settlements of fewer than 500,000 residents (refer figure 2). However, since no comprehensive database of cities with population below 750,000 exist in a readily available format, exact data is hard to find.

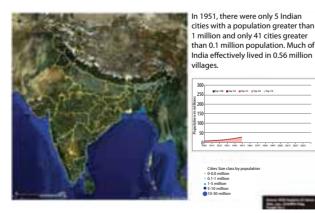
Nevertheless, according to the most recent estimates of the United Nation's Population Division, world over the lion's share of the increase in urban population over the next 15 years is predicted to continue in towns and cities with fewer than half a million inhabitants. Even by 2015, towns and cities under half a million will account for just over half of the total urban population. By comparison, less than nine percent of the world's urban population will be living in cities of 10 million or more by 2015. When added together, the combined size of the population of comparatively smaller cities and towns will make them very significant (refer figure 3).



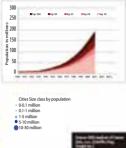
Source: World urbanization prospects: the Source: World urbanization prospects: the 2003 revision data tables and highlights. New York, United Nations, 2004.

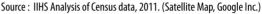

according to city size 2003 revision data tables and highlights.

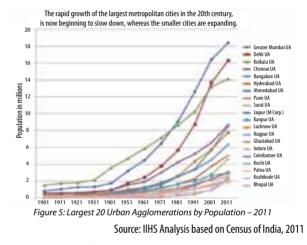
New York, United Nations, 2004.


In addition, it can be stated that since by definition these cities are starting from a comparatively smaller base, they will typically grow faster than the larger cities. Also, according to a recent study conducted by the US National Academy of Sciences, which was based on an analysis of data from more than 90 countries, it is seen that across all major geographic regions investigated, residents of smaller cities suffer a marked disadvantage in the provision of piped water, waste disposal, electricity and schools than residents of medium or large cities (refer figure 4). Also, there is some evidence to suggest that rates of poverty are higher in these cities and in many countries levels of infant and child mortality are negatively proportional to the city size². Hence, in view of the role that will be played by the above mentioned class of cities in accommodating future population growth, it is clear that their need for improved basic services would have to be urgently addressed (Cohen, 2005).

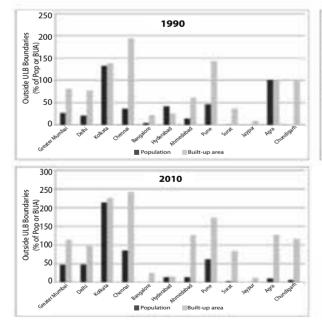
3.0 URBANIZATION IN INDIA

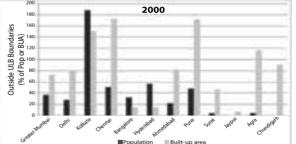

India is well endowed with cities spread evenly across the country. Historically, cities in India have been located in areas with adequate water and on popular trade routes. Like other countries, cities have had bulk of the economic wealth and have been 24-hour market places. The high concentration of people living in the cities has brought variety of tastes, preferences, wants, resources, products and services to our cities (Bhandari, 2006). Over the years the megacities with population of tens of millions have occupied significant mind, media and policy space in terms of urbanisation in India. Post-Independence also urbanization in India has been dominated by the largest cities. However, with time, these cities have grown in size but quality of life has been severely compromised.


Map 1: Urban India - 1951 Source: IIHS Analysis³ of Census data, 1951. (Satellite Map, Google Inc.)



Map 2: Urban India - 2011

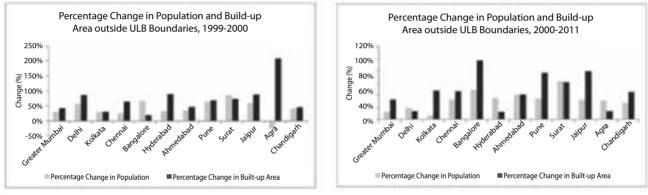

The fact, however, is that most of India's urban centres are smaller towns. The 8000 urban centres / townships identified in the 2011 census comprise of only 53 cities with a population of over 1 million. Out of the total urban population, only twenty percent live in cities of 10 million or more. Eighty percent of the urban population lives in cities and towns of population \leq 1 million (refer map 1 and map 2). Hence, the most meaningful approach in our case would be to anticipate the rapid growth of these cities and put the Class I (0.1 - 1 million) cities centrally on the development agenda. This does not however mean that mega cities and larger metropolises would be neglected as they will continue playing a significant role in absorbing future anticipated growth, but for the near future Class I cities will hold the key to urbanization in India.


4.0 UNDERSTANDING URBAN EXPANSION AND GROWTH PATTERN OF INDIAN CITIES

Land is one of the most contested and valuable of natural resources in urban areas. Change in land cover and modifications in land use account for one of the most significant changes in the environment due to human activity (Lambin, 1999). At first glance, the issue of land and land use might appear superfluous to urbanization as urban areas occupy less than 3% of the total land area globally (Lambin, 2001), but the issue is extremely important for a number of reasons. It is well documented that the impacts of contemporary patterns of urbanization on land and other resources far exceeds the actual extent of urban areas, as measured through ecological footprints and other tools. Moreover, there is already an indication that we may not be using land as efficiently as earlier, as the change in urban land use is faster than the rate of change in urban population (Seto, 2011). Also, in almost all developing cities, the demand for urban land gets precedence over all other uses and results in loss of fertile croplands and ecologically sensitive areas (Lambin, 2003).

While there are a few studies that measure land-use and land-cover changes for cities globally, there are only a handful of these for Indian cities. Generally, the patterns of urbanization show that cities are sprawling. As they expand past their formal administrative boundaries, city densities lower over time as population growth rates lag behind the rate of the growth of built-up areas (refer figure 6 and figure 7). This is hardly an unusual pattern when seen from a global perspective, but it does have obvious and possibly unfortunate consequences for urban governance, regional planning and the sustainability of our cities.

Most studies pertaining to causes and effects of urban expansion, nationally and internationally examine the issues at the citywide level. They however do not consider the issues at a smaller scale and understand the differences in patterns of urbanization and its effect on the environment in different localities / neighbourhoods of a city. Dowall and Monkkonen (2007) examine urban densities in Chennai. The paper suggests that the city is growing both because of increasing density in inner city areas as well as expansion of city



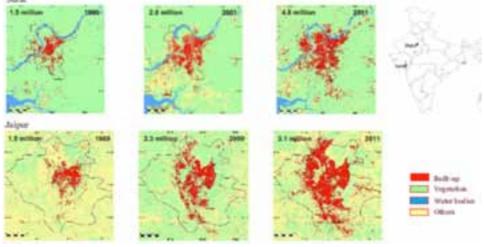

India's largest cities have a significant portion of both population and built-up areas outside ULB boundaries. In most cases, the proportion of built-up area outside ULB boundaries is greater than the proportion of population outside the administrative boundaries, implying relatively low-density sprawl. Comparison over time (highlighted in the next page) shows that this spatial expansion has accelerated between 2000 and 2010.

Figure 6: Population and Built-up Area – Inside and outside India's 10 largest cities Source: H.S.Sudhira (2011) and IIHS Analysis.

boundaries. Densities vary drastically from as low as 13 persons per hectare to more than 1000 persons per hectare in Chennai. Studying changes between 1971 and 2001 shows that the city has grown faster than predicted and density gradient of the city has flattened over the decades. The authors illustrating the case of Chennai point out that high density in central city is not because of high-rise buildings, but because of overcrowding. The above study points out that nature of density are as significant as the measure of density. Similarly, the study by Patel (2011) is an attempt to set a framework on understanding densities and its relation to other factors that contribute to desirable urban living. The paper studies the interrelationships of six parameters: built up area per capita, public ground per capita, plot factor, floor space index, gross densities and net densities. It aims to arrive for a range of desirable values for a combination of these parameters while designing and planning an area between 20 and 200 hectares of land. The data is analyzed by plotting characteristics of select localities in Mumbai and New York. While this paper misses most sustainability aspects, it is one of the first attempts to answer the question of optimal densities in Indian cities.

Build-up area is growing faster than population in nearly all of the largest cities, especially between 2000-2011. In other words, lower-density sprawl is accelerating.

Figure 7: Urban Growth - Population versus Built-up Areas Source: H.S.Sudhira (2011) and IIHS Analysis.

Figure 8(a): Change in Urban Built-up Area and Land Cover

Source: H.S.Sudhira (2011) and IIHS Analysis.

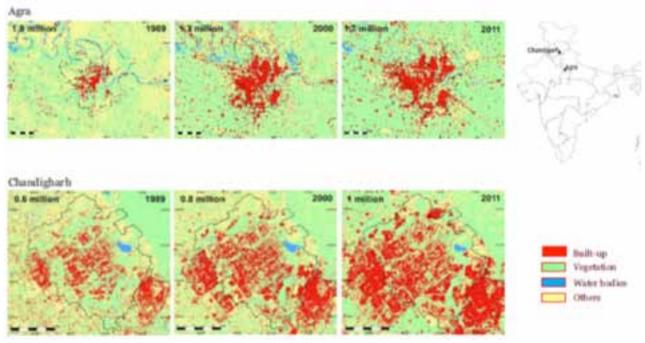


Figure 8(b): Change in Urban Built-up Area and Land Cover

5.0

Source: H.S.Sudhira (2011) and IIHS Analysis.

Thus, most studies conclude that urban areas have a tendency to expand, and then gradually fill in and become contiguous (refer figure 8a & 8b). However, since the research intends to understand the effect on the city's environmental quality with respect to the physical development and socio-economic factors, it becomes imperative to understand what is happening within a particular land use. What is the nature of built-up density? What are the type of transportation systems and resultant environmental quality? One of the reasons, as Cadenasso (2007) points out is that most land cover and land change methods are not adequate, as they do not capture urban heterogeneity well enough. These capture urban expansion, but not urban granularity at the block/ neighbourhood level. Hence, a combination of tools may be required to answer the following questions:

- What are the environmental implications of specific urban densities in different localities within a city?
- What is the impact of the quality of development on the urban environment, and?
- Can urban environment studies help in designing sustainable cities?

IDENTIFYING CITIES FOR ASSESSING URBAN ENVIRONMENTAL QUALITY

In order to gain a detailed insight into the perceived and measured components that influence environmental quality and develop a methodology that can assess, monitor and potentially forecast developments of environmental quality in our cities, it is necessary to first identify some cities that hold the key to future urbanisation in India. The main criteria for selecting the cities can be as follows:

- 1. The cities should be emerging centres of economic activity.
- 2. They should be located between other urban centres and well connected.
- 3. In near future, these cities should create better opportunities for citizens living in and around them.
- 4. Some out of them should be cities that are budding and have the potential to turn into much larger centres.
- 5. They should be steadily gaining the necessary scales in terms of population and market size.

Based on the criteria listed and a study by an economic research firm, Indicus Analytics, all

potential cities are divided into three categories as shown in Table 1.

Sibling Cities	Upcoming Cities	Budding Cities		
A collection of smaller cities clustered around each other and highly dependent on the mother city.	Cities that in the recent past have come onto their own as important regional and economic centres.	Cities that have the potential to turn into much larger centres in the near future.		
 Centres that are siblings of larger cities such as Gurgaon and Noida (Delhi), Panchkula and Mohali (Chandigarh). Kolkata's siblings in North 24 Parganas such as Baranagar, Barasat, Dum Dum, Kamarhati, Panihati and Salt Lake City. Mumbai's siblings in Thane district such as Dombivli, Bhayandar, Navi Mumbai, Thane, Ulhasnagar and Virar. Chennai's siblings in Thiruvallur district such as Ambattur, Avadi and Tiruvottiyur. 	centres of economic activity. As they progress, they will create opportunities for citizens living in them and	cities such as Udaipur and Mysore.		

 Table 1: Potential Cities that hold the key to future urbanization in India

Source: Author's elaboration from – The Diversity of top 100 cities of India by Indicus Analytics, An Economic Research Firm

All the above-mentioned cities are grouped into three population categories as shown in Table 2. However, since the literature and background studies indicate that no comprehensive database of cities with population under 750,000 exists in a readily available

		Shillong – 0.14 million
		Gandhinagar – 0.2 million
		Chandigarh's Siblings: Mohali – 0.15 million, Panchkula – 0.2 million
	0.1 – 0.49 million	Kolkata's Siblings: Salt Lake – 0.22 million, Baranagar – 0.25 million, Barasat – 0.3 million, Kamarhati – 0.34 million, Panihati – 0.38 million and Dumdum – 0.4 million
Population		Chennai's Siblings: Tiruvottiyur – 0.25 million, Avadi – 0.3 million and Ambattur – 0.47 million
		Durg – 0.27 million
		Bokaro – 0.4 million
		Udaipur – 0.45 million
		Mumbai's Siblings: <u>Ulhasnagar</u> – 0.5 million
	0.5 – 0.74 million	Ajmer – 0.54 million
	million	Bhilai – 0.6 million

format, the research shall consider a city with 0.75 million- \leq population \leq 1.5 million. It should be noted that some cities with just over 1 million population are included since they feature as potential cities according to Table 1.

		Delhi's Siblings: Noida – 0.65 million
		Thiruvananthapuram – 0.75 million
		Mysore – 0.88 million
		Vijayawada — 1.05 million
		Amritsar – 1.1 million
		Srinagar – 1.2 million
	0.75 – 1.5 million	Varanasi – 1.2 million
		Goa – 1.4 million
		Delhi's Siblings: Gurgaon – 1.5 million
		Mumbai's Siblings:_ Bhayandar – 0.8 million, Navi Mumbai – 1.1 million, Vasai Virar – 1.22 million, Kalyan Dombivli – 1.25 million and Thane – 1.8 million

Table 2: Population of Potential Case Study Cities

Source: List of most populous cities in India according to Census 2011 – Wikipedia

6.0 URBAN FORM OF INDIAN CITIES

Urban form deals with the physical layout and internal functional structure of an urban area. Here 'physical layout' means 'urban structure' and 'functional structure' may be interchanged with 'urban land use'. Various theories have been advanced by urban geographers to analyze the form of urban areas. Of these mention may be made of the *Concentric Zone Theory by E.W. Burgess (1923), the Sector Theory by Homer Hoyt (1939) and the Multiple Nuclei Theory by C.D. Harris and E.L. Ullman (1945).* These models have helped us in identifying various functional zones within the territorial limit of the city. These include the business area (including CBD), residential areas, industrial area, administrative area, educational areas, cultural areas, other areas and gardens and open spaces.

O.H.K. Spate and A.T.A. Learmonth (1967), John E. Brush (1962) and A.E. Smiles (1973) are the pioneers to have made significant contribution towards the study of urban form of Indian towns. According to Brush, Indian towns can be classified into two broad categories based on their physical characteristics:

- 1. Indigenous: These have fully Indian characteristics; such historic towns exist in the areas of northern plains, desert borderlands and Deccan Peninsula and exhibit impact of South-West Asian (Islamic) culture in the form of narrow winding streets.
- European type: These include cantonments, civil lines, railway colonies etc. built during the British rule with regular grid pattern layout and detached bungalow type houses along straight and wide roads.

The urban form of the Indian cities was initially concentric in nature and was mostly affected by the physical characteristics of the site. During the British period with the development of new 'mohallas' (neighbourhoods), market places and suburbs it became sectored (consisting of two or three sectors). In certain port and capital cities it is multi-nuclei depicting the third stage of urban morphological development.

The study of the general urban structure and land use of the Indian cities shows that there is absence of clear separation between residential and other areas. Most of the traders, businessmen, artisans, service men and factory workers prefer to reside near their place of work. In general, upper stories, rear portions of the houses and neighbourhoods are utilized for residential purposes. The central part of the city, which is the main market place, is known as 'chowk' but its characteristics are not similar to the central business district (CBD) of the western cities. Here retail trade area extends along the main road and streets. Its commercial structure includes separate areas for food grains, clothes, ornaments, utensils, iron goods, vegetables etc. Main commercial area is surrounded by residential area that too denotes separation on basis of religion, caste, language etc. Generally, high caste and elite class residences are located nearer to the city-centre while low-income group prefers to occupy the peripheral area. In recent years, however, due to marked improvement in transport facilities, especially in road transport, people belonging to high and middle-income groups are moving away to outer parts of the city to avoid congestion and pollution. New residential colonies are also emerging in these suburban areas (see figure 10).

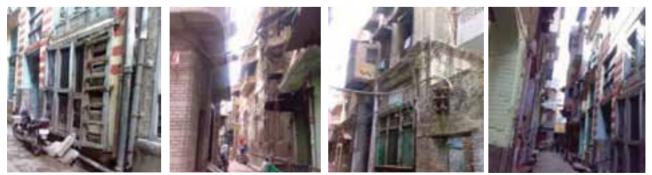


Figure 9: Poor Housing Condition, poor mass space relationship, mesh of wires and high intensity of development in the walled city (historic city) of Amritsar

Source : authors

Due to multinucleated development in the Indian cities, the CBD is not as developed as in case of Europe and America. It has emerged as a weak centre lacking mono central concentration. Excessive congestion, population density and intensity also obstruct its growth (see figure 9). The old part of the city is characterized by irregular, narrow and winding streets whose two sides are dotted with multi-storied <u>buildings</u> consisting of old and new houses with occasional location of temples, mosques and gurudwaras. The mixed land use further complicates the urban form and makes it difficult to identify clear functional zones in such cities.

Figure 10: View of new upcoming suburban residential projects along Bye-Pass, Amritsar

Source : authors

On the other hand, part of the city (including civil lines, military cantonment, railway colony, etc.) that developed during the British regime is very much similar to the western cities. <u>Post-Independence</u> many new cities have been built and old cities have been replanted on the western model. Here roads are straight and wide, well decorated with trees, parks and gardens. Along the road lie single storied bungalows without any trace of social segregation. However, with the growth of population in some cases, there is an increase in the vertical dimension of the houses.

7.0 ASSESSING THE URBAN ENVIRONMENT

In order to understand how the quality of physical development in addition to socio-economic factors has an effect on the environmental quality of our cities and assess the urban environment, an appraisal of the built forms at the neighbourhood / locality level shall be carried out as per the following stages of work.

I. Identifying 2-3 localities in the chosen city based on the following aspects:

- a. Significance of the locality within the city
- b. Land-use of the locality Residential (formal or informal), Commercial or Mixed-use
- c. Population and socio-economic conditions of the locality

- II. Carrying out an appraisal of the built forms and quality of development by studying the following aspects of the built environment in each of the localities:
 - a. Urban form and built-up density (built-up versus open space relationship)
 - b. Grain and texture of the built forms
 - c. Type and quality of construction
 - d. Type and quality of road network serving the locality
 - e. Provision of urban services & utilities electricity, drinking water supply, storm water drainage, sewage, solid waste management, etc.
 - Provision of social infrastructure educational buildings, health services, recreational areas (shopping and community facilities), security services and green areas (parks and playgrounds)
 - g. Overall visual quality
 - h. People's perception about and aspirations for the locality

III. Identifying a set of objective and subjective indicators for assessing urban environmental quality

Both environmental conditions and environmental quality are crucial if urban planning and management aim towards sustainable development. The objective indicators shall help in diagnosing the environmental conditions whereas the subjective indicators shall help in the evaluation of the quality. The information on the subjective perception of environmental quality is as important for planners as objective information (Fadda and Jiron, 1999). In order to achieve better and more equitable living standards for especially the low and middle-income groups in our cities and give priority to the problems described in the Brown Agenda, it is most significant to assess the urban environment of low and middle-income neighbourhoods / localities. To select and evaluate meaningful environmental elements as included in the UNESCO chart, the factors pointed out by Haramoto et al., 1991 as well as the checklist proposed by Milbrath, 1978 and Rahman et al., 2011 are primarily taken into account. The parameters selected are shown in the synoptic chart in Table 3. The synoptic chart that lists down the main topics of investigation can be the first step towards the proposed methodology. The first column corresponds to the physical, social and environmental parameters selected as most significant at the locality level. Columns 2 and 3 correspond respectively to preliminary identification of the objective and / or subjective indicators out of the listed parameters.

S.No Parameters to assess Urban Environment Quality (counting, measuring, illustrations and reports, environmental conditions and facts) (observations, questionnaires and discussions) 1. PHYSICAL √ √ 1.1 Land-use (Horizontal and Vertical) √ √ √ 1.2 Urban built form of the locality given by: √ √ √ 1.2.1 Distribution of buildings / Built-up Density √ √ √ 1.2.2 Geometry and Typology (Height, Massing, Plot Coverage) √ √ √ 1.2.3 Layout Pattern (Orientation w.r.t. sun and wind) √ √ √ 1.3 Population Density (Net & Gross) √ √ √ 1.4 Occupancy Ratio √ √ √ 1.5 Type & quality of construction √ √ √ 1.6 Type & quality of cond network √ √ √ 1.7 Volume of Traffic √ √ √ 1.8 Provision of Electricity Supply √ √ √			Objective Indicators	Subjective Indicators
Urban Environment Qualityand reports; environmental conditions and facts)questionnaires and discussions)1.PHYSICAL $$ $$ 1.Land-use (Horizontal and Vertical) $$ $$ 1.2Urban built form of the locality given by: $$ $$ 1.2.1Distribution of buildings / Built-up Density $$ $$ 1.2.2Geometry and Typology (Height, Massing, Plot Coverage) $$ $$ 1.2.3Layout Pattern (Orientation w.r.t. sun and wind) $$ $$ 1.3Population Density (Net & Gross) $$ $$ 1.4Occupancy Ratio $$ $$ 1.5Type & quality of construction $$ $$ 1.6Type & quality of construction $$ $$ 1.8Provision of parking lots $$ $$ 1.9Provision of Urban Utilities & Services given by: $$ $$ 1.9.1Provision of Electricity Supply $$ $$ 1.9.2Dirinking Water Supply $$ $$ 1.9.3Storm Water Drainage $$ $$ 1.9.4Sewage $$ $$ 1.9.5Solid Waste Management $$ $$ 1.0Overall visual quality of the locality $$ $$ 2.1.1Educational Buildings $$ $$ 2.1.2Health Services $$ $$ 2.1.3Religious Buildings $$ $$	S No.		(counting, measuring, illustrations	
1. PHYSICAL 1.1 Land-use (Horizontal and Vertical) $$ 1.2 Urban built form of the locality given by: 1.2.1 Distribution of buildings / Built-up Density $$ 1.2.2 Geometry and Typology (Height, Massing, Plot Coverage) $$ 1.2.3 Layout Pattern (Orientation w.r.t. sun and wind) $$ $$ 1.2.4 Distribution of open spaces $$ $$ 1.3 Population Density (Net & Gross) $$ $$ 1.4 Occupancy Ratio $$ $$ 1.5 Type & quality of construction $$ $$ 1.6 Type & quality of road network $$ $$ 1.7 Volume of Traffic $$ $$ 1.8 Provision of Electricity Supply $$ $$ 1.9 Provision of Electricity Supply $$ $$ 1.9.1 Provision of Electricity Supply $$ $$ 1.9.3 Storm Water Drainage $$ $$ 1.9.4 Sewage $$ $$ 1.10	5.110	Urban Environment Quality		•
1.1 Land-use (Horizontal and Vertical) $$ $$ 1.2 Urban built form of the locality given by: 1 1.2.1 Distribution of buildings / Built-up Density $$ 1.2.2 Geometry and Typology (Height, Massing, Plot Coverage) $$ 1.2.3 Layout Pattern (Orientation w.r.t. sun and wind) $$ $$ 1.2.4 Distribution of open spaces $$ $$ 1.3 Population Density (Net & Gross) $$ $$ 1.4 Occupancy Ratio $$ $$ 1.5 Type & quality of construction $$ $$ 1.6 Type & quality of road network $$ $$ 1.7 Volume of Traffic $$ $$ 1.8 Provision of parking lots $$ $$ 1.9 Provision of Electricity Supply $$ $$ 1.9.1 Provision of Electricity Supply $$ $$ 1.9.2 Drinking Water Drainage $$ $$ 1.9.4 Sewage $$ $$ 1.9.5 Solid Waste Managemen			conditions and facts)	discussions)
1.2 Urban built form of the locality given by: 1.2.1 Distribution of buildings / Built-up Density $$ 1.2.2 Geometry and Typology (Height, Massing, Plot Coverage) $$ 1.2.3 Layout Pattern (Orientation w.r.t. sun and wind) $$ 1.2.4 Distribution of open spaces $$ 1.3 Population Density (Net & Gross) $$ 1.4 Occupancy Ratio $$ 1.5 Type & quality of construction $$ 1.6 Type & quality of road network $$ 1.7 Volume of Traffic $$ 1.8 Provision of parking lots $$ 1.9 Provision of Electricity Supply $$ 1.9.1 Provision of Electricity Supply $$ 1.9.2 Drinking Water Supply $$ 1.9.3 Storm Water Drainage $$ 1.9.4 Sewage $$ 1.9.5 Solid Waste Management $$ 1.9.4 Sewage $$ 1.9.5 Solid Waste Management $$ 1.0 Overall visual quality of the locality	1.	PHYSICAL		
1.2.1 Distribution of buildings / Built-up Density $$ 1.2.2 Geometry and Typology (Height, Massing, Plot Coverage) $$ 1.2.3 Layout Pattern (Orientation w.r.t. sun and wind) $$ 1.2.4 Distribution of open spaces $$ 1.2.4 Distribution of open spaces $$ 1.3 Population Density (Net & Gross) $$ 1.4 Occupancy Ratio $$ 1.5 Type & quality of construction $$ 1.6 Type & quality of road network $$ 1.7 Volume of Traffic $$ 1.8 Provision of parking lots $$ 1.9 Provision of Electricity Supply $$ 1.9.1 Provision of Electricity Supply $$ 1.9.2 Drinking Water Supply $$ 1.9.3 Storm Water Drainage $$ 1.9.4 Sewage $$ $$ 1.9.5 Solid Waste Management $$ $$ 1.9.4 Sewage $$ $$ 2.1 Provision of Social Infrastructure given by: $$	1.1	Land-use (Horizontal and Vertical)	√	
1.2.2 Geometry and Typology (Height, Massing, Plot Coverage) $$ $$ 1.2.3 Layout Pattern (Orientation w.r.t. sun and wind) $$ $$ 1.2.4 Distribution of open spaces $$ $$ 1.3 Population Density (Net & Gross) $$ $$ 1.4 Occupancy Ratio $$ $$ 1.5 Type & quality of construction $$ $$ 1.6 Type & quality of road network $$ $$ 1.7 Volume of Traffic $$ $$ 1.8 Provision of parking lots $$ $$ 1.9.1 Provision of Electricity Supply $$ $$ 1.9.2 Drinking Water Supply $$ $$ 1.9.3 Storm Water Drainage $$ $$ 1.9.4 Sewage $$ $$ 1.9.5 Solid Waste Management $$ $$ 1.9.4 Sewage $$ $$ 1.9.5 Solid Waste Management $$ $$ 2.1 SociAL $$	1.2	Urban built form of the locality given by:		
1.2.3 Layout Pattern (Orientation w.r.t. sun and wind) $$ $$ 1.2.4 Distribution of open spaces $$ $$ 1.3 Population Density (Net & Gross) $$ $$ 1.4 Occupancy Ratio $$ $$ 1.5 Type & quality of construction $$ $$ 1.6 Type & quality of road network $$ $$ 1.7 Volume of Traffic $$ $$ 1.8 Provision of parking lots $$ $$ 1.9 Provision of Electricity Supply $$ $$ 1.9.1 Provision of Electricity Supply $$ $$ 1.9.2 Drinking Water Supply $$ $$ 1.9.3 Storm Water Drainage $$ $$ 1.9.4 Sewage $$ $$ 1.9.5 Solid Waste Management $$ $$ 1.0 Overall visual quality of the locality $$ $$ 2.1 Provision of Social Infrastructure given by: $$ $$ 2.1.1 Educat	1.2.1	Distribution of buildings / Built-up Density	\checkmark	
1.2.4Distribution of open spaces $$ $$ 1.3Population Density (Net & Gross) $$ $$ 1.4Occupancy Ratio $$ $$ 1.5Type & quality of construction $$ $$ 1.6Type & quality of road network $$ $$ 1.7Volume of Traffic $$ $$ 1.8Provision of parking lots $$ $$ 1.9Provision of Lrban Utilities & Services given by: $$ $$ 1.9.1Provision of Electricity Supply $$ $$ 1.9.2Drinking Water Supply $$ $$ 1.9.3Storm Water Drainage $$ $$ 1.9.4Sewage $$ $$ 1.9.5Solid Waste Management $$ $$ 1.10Overall visual quality of the locality $$ $$ 2.11Educational Buildings $$ $$ 2.13Religious Buildings $$ $$	1.2.2	Geometry and Typology (Height, Massing, Plot Coverage)	\checkmark	\checkmark
1.3 Population Density (Net & Gross) $$ 1.4 Occupancy Ratio $$ 1.5 Type & quality of construction $$ 1.5 Type & quality of road network $$ 1.6 Type & quality of road network $$ 1.7 Volume of Traffic $$ 1.8 Provision of parking lots $$ 1.9 Provision of Urban Utilities & Services given by: $$ 1.9.1 Provision of Electricity Supply $$ 1.9.2 Drinking Water Supply $$ 1.9.3 Storm Water Drainage $$ 1.9.4 Sewage $$ 1.9.5 Solid Waste Management $$ 1.10 Overall visual quality of the locality $$ 2.1 Provision of Social Infrastructure given by: $$ 2.1.1 Educational Buildings $$ 2.1.2 Health Services $$ 2.1.3 Religious Buildings $$	1.2.3	Layout Pattern (Orientation w.r.t. sun and wind)	\checkmark	\checkmark
1.4 Occupancy Ratio $$ 1.5 Type & quality of construction $$ 1.6 Type & quality of road network $$ 1.6 Type & quality of road network $$ 1.7 Volume of Traffic $$ 1.8 Provision of parking lots $$ 1.9 Provision of Urban Utilities & Services given by: $$ 1.9.1 Provision of Electricity Supply $$ 1.9.2 Drinking Water Supply $$ 1.9.3 Storm Water Drainage $$ 1.9.4 Sewage $$ 1.9.5 Solid Waste Management $$ 1.0 Overall visual quality of the locality $$ 2. SOCIAL $$ 2.1.1 Educational Buildings $$ 2.1.2 Health Services $$ 2.1.3 Religious Buildings $$	1.2.4	Distribution of open spaces	\checkmark	
1.5Type & quality of construction $$ 1.6Type & quality of road network $$ 1.7Volume of Traffic $$ 1.8Provision of parking lots $$ 1.9Provision of Urban Utilities & Services given by:1.9.1Provision of Electricity Supply $$ 1.9.2Drinking Water Supply $$ 1.9.3Storm Water Drainage $$ 1.9.4Sewage $$ 1.9.5Solid Waste Management $$ 1.0Overall visual quality of the locality $$ 2.SOCIAL $$ 2.1.1Educational Buildings $$ 2.1.3Religious Buildings $$	1.3	Population Density (Net & Gross)	\checkmark	
1.6Type & quality of road network $$ 1.7Volume of Traffic $$ 1.8Provision of parking lots $$ 1.9Provision of Urban Utilities & Services given by:1.9.1Provision of Electricity Supply $$ 1.9.2Drinking Water Supply $$ 1.9.3Storm Water Drainage $$ 1.9.4Sewage $$ 1.9.5Solid Waste Management $$ 1.0Overall visual quality of the locality $$ 2.SOCIAL $$ 2.1.1Educational Buildings $$ 2.1.2Health Services $$	1.4	Occupancy Ratio	\checkmark	
1.7Volume of Traffic $$ 1.8Provision of parking lots $$ 1.9Provision of Urban Utilities & Services given by:1.9.1Provision of Electricity Supply $$ 1.9.2Drinking Water Supply $$ 1.9.3Storm Water Drainage $$ 1.9.4Sewage $$ 1.9.5Solid Waste Management $$ 1.10Overall visual quality of the locality $$ 2.SOCIAL $$ 2.1.1Educational Buildings $$ 2.1.2Health Services $$ 2.1.3Religious Buildings $$	1.5	Type & quality of construction		
1.8Provision of parking lots $$ 1.9Provision of Urban Utilities & Services given by:1.9.1Provision of Electricity Supply $$ 1.9.2Drinking Water Supply $$ 1.9.3Storm Water Drainage $$ 1.9.4Sewage $$ 1.9.5Solid Waste Management $$ 1.10Overall visual quality of the locality $$ 2.SOCIAL $$ 2.1.1Educational Buildings $$ 2.1.2Health Services $$	1.6	Type & quality of road network		
1.9Provision of Urban Utilities & Services given by:1.9.1Provision of Electricity Supply $$ 1.9.2Drinking Water Supply $$ 1.9.3Storm Water Drainage $$ 1.9.4Sewage $$ 1.9.5Solid Waste Management $$ 1.10Overall visual quality of the locality $$ 2.SOCIAL $$ 2.1Provision of Social Infrastructure given by: $$ 2.1.1Educational Buildings $$ 2.1.3Religious Buildings $$	1.7	Volume of Traffic	\checkmark	
1.9.1Provision of Electricity Supply $$ $$ 1.9.2Drinking Water Supply $$ $$ 1.9.3Storm Water Drainage $$ $$ 1.9.4Sewage $$ $$ 1.9.5Solid Waste Management $$ $$ 1.10Overall visual quality of the locality $$ $$ 2.SOCIAL $$ $$ 2.1Provision of Social Infrastructure given by: $$ 2.1.1Educational Buildings $$ 2.1.2Health Services $$ 2.1.3Religious Buildings $$	1.8	Provision of parking lots	\checkmark	
1.9.2Drinking Water Supply $$ $$ 1.9.3Storm Water Drainage $$ $$ 1.9.4Sewage $$ $$ 1.9.5Solid Waste Management $$ $$ 1.10Overall visual quality of the locality $$ $$ 2.SOCIAL $$ $$ 2.1Provision of Social Infrastructure given by: $$ 2.1.1Educational Buildings $$ 2.1.2Health Services $$ 2.1.3Religious Buildings $$	1.9	Provision of Urban Utilities & Services given by:		
1.9.3Storm Water Drainage $$ $$ 1.9.4Sewage $$ $$ 1.9.5Solid Waste Management $$ $$ 1.10Overall visual quality of the locality $$ $$ 2.SOCIAL $$ $$ 2.1Provision of Social Infrastructure given by: $$ 2.1.1Educational Buildings $$ 2.1.2Health Services $$ 2.1.3Religious Buildings $$	1.9.1	Provision of Electricity Supply	\checkmark	\checkmark
1.9.4Sewage $$ $$ 1.9.5Solid Waste Management $$ $$ 1.10Overall visual quality of the locality $$ $$ 2.SOCIAL $$ $$ 2.1Provision of Social Infrastructure given by: $$ 2.1.1Educational Buildings $$ 2.1.2Health Services $$ 2.1.3Religious Buildings $$	1.9.2	Drinking Water Supply	\checkmark	
1.9.5Solid Waste Management $$ 1.0Overall visual quality of the locality $$ 2.SOCIAL $$ 2.1Provision of Social Infrastructure given by: $$ 2.1.1Educational Buildings $$ 2.1.2Health Services $$ 2.1.3Religious Buildings $$	1.9.3	Storm Water Drainage	\checkmark	
1.10Overall visual quality of the locality $$ 2.SOCIAL2.1Provision of Social Infrastructure given by:2.1.1Educational Buildings2.1.2Health Services2.1.3Religious Buildings	1.9.4	Sewage	\checkmark	
SOCIAL 2.1 Provision of Social Infrastructure given by: 2.1.1 Educational Buildings 2.1.2 Health Services 2.1.3 Religious Buildings	1.9.5	Solid Waste Management	\checkmark	\checkmark
2.1 Provision of Social Infrastructure given by: 2.1.1 Educational Buildings 2.1.2 Health Services 2.1.3 Religious Buildings	1.10	Overall visual quality of the locality		
2.1.1Educational Buildings√2.1.2Health Services√2.1.3Religious Buildings√	2.	SOCIAL		
2.1.2 Health Services √ 2.1.3 Religious Buildings √	2.1	Provision of Social Infrastructure given by:		
2.1.3 Religious Buildings √	2.1.1	Educational Buildings	\checkmark	
	2.1.2	Health Services	\checkmark	
2.1.4 Market Place / Shopping Sites √	2.1.3	Religious Buildings	√	
	2.1.4	Market Place / Shopping Sites	√	

	.	Objective Indicators	Subjective Indicators
S.No	Parameters to assess	(counting, measuring, illustrations	(observations,
	Urban Environment Quality	and reports; environmental conditions and facts)	questionnaires and discussions)
2.1.5	Community Centre		uiscussionsy
2.1.6	Security Services like police station, fire station etc.		
2.2	Nature & use of Open Spaces		
2.3	Availability of Public Transport		
2.4	Preference of Public / Private Transport		
2.5	Psychological & Social Aspects of the built form given by:		
2.5.1	Location		\checkmark
2.5.2	Comfort (daylight, views & natural ventilation)		\checkmark
2.5.3	Privacy		\checkmark
2.5.4	Security		\checkmark
2.5.5	Spaciousness		\checkmark
2.6	Psychological & Social Aspects of the locality given by:		
2.6.1	Friendliness		\checkmark
2.6.2	Sense of identity and belongingness		\checkmark
2.6.3	Historical / religious significance		\checkmark
2.6.4	Cleanliness and maintenance		\checkmark
2.7	Monthly / Annual Expenditure on Health	\checkmark	
3.	ENVIRONMENTAL		
3.1	Air Quality (dust particles / SPM)	√	
3.2	Air Quality (% of population affected from foul smell)		
3.3	People suffering from specific types of diseases (allergies, water		
3.4	borne etc.) as a result of deteriorating environmental quality Type of domestic fuel used and related emissions	√	
3.5	Indoor Air Quality	V	
3.6	Water Quality (physical appearance and taste)		<u></u>
3.7	% of population affected from noise given by:		· · ·
3.7.1	Noise outside (traffic / loud speaker etc.)		
3.7.2	Noise inside (human noise, radio, TV, etc.)	√	√
3.8	Percentage of green areas converted to built-up areas	√	· √
3.9	Temperature (summer)	√ √	· √
3.10	Temperature (winter)		√
3.11	Temperature (Diurnal variations)		
5.11		V V	V

Table 3: Synoptic Chart of Parameters to Assess Urban Environmental Quality

Source: Synthesis of Milbrath and UNESCO, 1978; Rahman et al., 2011 and other authors mentioned in the theoretical background

It is expected that the study will demonstrate how varying urban structures and land uses given by distribution of buildings, their typology and geometry, layout patterns, distribution / availability of open spaces, quality of infrastructure including links to the wider urban system etc. in addition to <u>distribution</u> of people and their activities in different types of localities affect urban environmental quality.

8.0 CONCLUSION

The process suggested above may be considered as the starting point for evolving an alternative approach that can be used by decision makers and physical planners, architects and urban designers to assess the effects of urbanization on the local environment / microclimate of a city and help classify localities based on physical density and development patterns and corresponding environmental quality. It is expected to assist in adopting minimal requirements of built-up density of different localities for future cities.

Many studies have suggested that a more sustainable city is featured by green space, economic growth and continuity of open spaces (Irvine et al. 2010), which correspond well with the key factors in determining a city's environmental quality. Evidently, cities with favourable urban environmental quality hold the possibility of delivering a more sustainable future. Besides, the process can be easily adopted to <u>conduct</u> cross-case and cross-time comparisons at a meaningful level. This in turn shall lead to a better understanding of the relationship between urban environmental quality and urban physical and socioeconomic conditions and expedite the realization of the long term and holistic decision-making process of urban sustainability.

ENDNOTES:

¹ Agenda 21 is an action plan of the United Nations (UN) related to sustainable development. It was an outcome of the United Nations Conference on Environment and Development (UNCED) held in Rio de Janeiro, Brazil in 1992. It is a comprehensive blueprint of action to be taken globally, nationally and locally by organizations of the UN, governments and key groups in every area in which humans directly affect the environment. The implementation of Agenda 21 was intended to involve action at international, national, regional and local levels. Some national and state governments have legislated or advised that local authorities take steps to implement the plan locally, as recommended in Chapter 28 of the document. Such programs are often known as 'Local Agenda 21' or 'LA21'.

- ² National Research Council. Cities transformed: demographic change and its implications in the developing world. Washington, DC: National Academies Press; 2003.
- ³ Urban India 2011: Evidence A book produced by Indian Institute of Human Settlements (IIHS) for the India Urban Conference Evidence and Experience (IUC 2011) comprising of a series of events designed to raise the salience of urban challenges and opportunities in the on-going debate on India's development.

REFERENCES:

- Barney, C., (2005) Urbanization in developing countries: Current trends, future projections and key challenges for sustainability. Technology in Society, Vol. 20, No. 10, pp. 1-18.
- Bhandari, L., (2006) The Diversity of the Top 100 cities of India. Indicus Analytics, An Economic Research Firm <u>http://www.indicus.net</u>
- Cadenasso, M.L., Pickett, S.T. and Schwarz, K., (2007) Spatial Heterogeneity in Urban Ecosystems: Reconceptualizing Land Cover and a framework for classification. Front Ecol Environ, Vol. 5, No. 2, pp. 80-88.
- Dowall, D.E. and Monkkonen, P., (2007) Dense and Expanding: Urban Development and Land Markets in Chennai, India. Institute of Urban and Regional Development, University of California.
- Fadda, G. and Jiron, P., (1999). Quality of life and gender: a methodology for urban research. Environment and Urbanisation, Vol. 11, No. 2, pp. 261-270.
- Haramoto, E., Moyano, E., Kliwadenko, Y., Sepulveda, R., Campos, M.A. and Chiang, P., (1991) La calidad residencial del entrono immediate de la Vivienda social. INVI, II Jornada de Vivienda Social, Santiago, pp. 161-172.
- Irvine, K.N., Fuller, R.A., Wright, P.D., Tratalos, J., Payne, S.R., Warren, P.H., Lomas, K.J. and Gaston, K.J., (2010) Ecological and Psychological Value of Urban Green Space. In M. Jenks et al., Editors, Dimensions of the Sustainable City 2. © Springer Science + Business Media B.V. 2010, pp. 215-237.
- Lambin, E.F., Geist, H.J. and Lepers, E., (2003) Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resource, 28, pp. 205-241.
- Lambin, E.F., Turner, B., Geist, H.J., Agbola, S.B., Angelsen, A., Bruce, J.W., et al., (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11, pp. 261-269.
- Milbrath, L. W., (1978) Indicators of environmental quality in UNESCO, Indicators of environmental quality and quality of life. Reports and papers in Social Sciences, No. 38, pp. 3-56.
- Patel, S.B., (2011) Analyzing Urban Layouts Can high density be achieved with good living conditions? Environment and Urbanisation, Vol. 23, No. 2, pp. 583-595.
- Rahman, A., Kumar, Y., Fazal, S. and Bhaskaran, S., (2011) Urbanization and Quality of Urban Environment using Remote Sensing and GIS Techniques in East Delhi, India. Journal of Geographic Information System, 3, pp. 62-84.
- Seto, K.C., Fragkias, M., Guneralp, B. and Reilly, M.K., (2011) A Meta-Analysis of Global Urban Land Expansion. PLoS ONE, Vol. 6, No. 8, pp. 1–9.

ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255

Density and Neighbourhood Environmental Quality – A Comparative Study in the context of Indian Cities

Ar. Swati Dutta*, Dr. Suchandra Bardhan ** and Dr. Sanjukkta Bhaduri***

*School of Architecture and Design, Manipal University Jaipur. **Department of Architecture, Jadavpur University, Kolkata. ***Department of Urban Planning, School of Planning and Architecture, New Delhi.

(Corresponding author: Ar. Swati Dutta) (Received 28 December, 2016 accepted 18 January, 2017) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: The study attempts to understand the relationship between density and neighbourhood environmental quality. A multiple case research design (Yin, 1994) is adopted by identifying different residential patterns in three case study cities. Amritsar, Chandigarh and Gurgaon are selected as the case study cities. The chosen cities are typical in nature and it is expected that through intensive analysis generalizations can be made that are applicable to other rapidly urbanizing Class I cities in the Indian context. There are important differences between the older habitations in the historic city of Amritsar with newer settlements of the city, post-independence planned interventions in Chandigarh and modern residential areas in the millennium city of Gurgaon. The assessment of Neighbourhood Environmental Quality and formulation of the Environmental Quality Index help in classifying different neighbourhoods according to the level of environmental quality. The study also helps in identifying significant relationships between different density variables and neighbourhood environmental quality. The future work envisages re-examining density measures of different residential patternsfor environmentally conducive development in our existing and future cities.

Keywords: Residential Patterns, Density, Neighbourhood Environmental Quality and its Assessment, Environmental Quality Index, Correlation Analysis

I. INTRODUCTION

Several studies indicate that majority of the Indian cities present a very similar pattern of urban development. All major towns and cities are found to be witnessing an explosive increase in urban population that strains the existing system and finally manifests into an environmental chaos. It is increasingly felt that the problems related to environmental quality in urban areas are very complex and require a systematic approach and careful analysis of all the relations between the variables that are part of the urban environment. Hence, in order to provide a cleaner and sustainable environment to the city residents, it becomes pertinent to look at the urban environment at a micro scale, specifically the habitat of a neighborhood in our Indian cities.

II. DENSITY & ENVIRONMENTAL QUALITY

The literature study outlines that Environmental Quality is an abstract concept resulting from both human and natural factors operating at different spatial scales. *In*

urban areas the local scale is dominated by individual buildings, streets and trees, but regional scale influences may include the whole city and beyond(van Kamp et al., 2003; Pacione, 2003; Nichol and Wong, 2005). Hence, environmental quality is both objective and subjective in nature and in other words, spatial and physical features in addition to socio-economic factors affect the environmental quality.

At the same time, a general study of the urban morphology of our cities reveals that different configuration and types of built form and related population distribution characterise the urban form across the geographical extent of the city. Alternatively, it can be stated that density given by distribution of buildings, their typology and geometry, layout patterns, distribution of open spaces, quality of infrastructure etc. varies from one locality to the other within the city. Density gives rise to particular urban forms, land use and transit patterns in the city. Concurrently, it is also understood from various studies that urban form, land use and transport system of a city are critical factors affecting the environmental quality. Thus, it can be hypothesised that density has an impact on environmental quality.

The relationship between density and environmental quality is also found to be based on the concept of viable thresholds: at certain densities, the amount of development and number of people within a given area becomes sufficient to generate the interactions needed to make urban functions or activities viable without putting a stress on the environmental carrying capacity. In a wider sense, as Carl, 2000 puts it; *'Sustainable Cities are a matter of Density'*.

Thus, it is seen that one of the enduring themes behind the search for more sustainable urban forms is that of the density of development. Capello and Camagni, 2000 argue that "with the increase of residential density and the concentration of human activities within smaller built areas, it helps to exploit economies of scale for public services (e.g. schools, public buses and public utilities) and environmental resources (e.g. land, petrol and water). However, an excessive concentration of activities and proximity result in aggravated negative environmental externalities like traffic congestion, less privacy, poor access to natural agents (air, daylight, view, etc.) and overcrowding, which tend to outweigh the claimed benefits of urban compaction" (Burgess, 2000; Rudlin and Falk, 1999; Williams et al., 2000).

Hence, a research on environmental quality with an objective analysis of the built environment of a residential neighbourhood can really prove useful. It can be used as a tool by residents to highlight and communicate concerns and positive aspects of their area to fellow residents or decision makers (e.g. local authorities, planners, policy makers and organisations). It can also be used as a framework for the planning and development of new residential areas of the city.

III. OBJECTIVES OF THE STUDY

The present study is concerned with understanding the impact of density on neighborhood environmental quality. The study is limited to the objective analysis of the physical aspects of the built environment of the different neighborhoods. The investigation of people's perception to check the subjective values of an objective situation is presently kept out of the scope of the study. This is based on the argument given by Alexander (1993)that though individual cognitive factors provide a wider thinking on density as a concept, what determines density that is perceived by people is the physical density of the built environment. Also, even though people evaluate their environments

as perceived, it is the physical density that provides a basis to objectively assess spatial quality of a place. Therefore, the objectives of the study are:

(i) To operationalize density and ascertain objective indicators of environmental quality at the neighborhood level.

(ii) To identify different residential patterns and find representative neighborhoods in the case-study cities.

(iii) To assess aggregated neighbourhood environmental quality and formulate the environmental quality index.

(iv) To identify significant relationships between density variables and neighbourhood environmental quality.

IV. OPERATIONALIZING DENSITY AND IDENTIFYING INDICATORS OF ENVIRONMENTAL QUALITY

'Density' is broadly disaggregated into Population Density; Built Form Characteristics like Residential Density, Height, Ground Coverage and Built to Open Ratio; Amount of Roads and Sidewalks; etc. to cover all significant physical aspects of the neighbourhood. On the other hand, the indicators of neighbourhood environmental quality are identified as: Crowding and Congestion, Nature and Use of Open Spaces, Shade and Ventilation, Temperature Variations, Average Noise Levels, Level of Cleanliness, Neighbourhood Walkability and Air Quality. A conceptual matrix showing possible correlations between Density Variables and Indicators of Environmental Quality is generated (Table 1).

V. RESIDENTIAL PATTERNS IN INDIAN CITIES

Patterns of urbanization within a city differ from one location to another. While the indigenous or traditional city is irregular in composition; the annexes (cantonment, civil lines, etc.) are found to be much more organized. These varying patterns of urban development result in differences in levels of population density, concentration and mixing of residential or commercial uses, amount of open spaces, etc. (Galster et al. 2001). The inner core is found to be a compact city largely designed for pedestrians and cycle rickshaws. The entire built up mass is more or less a compact monolithic volume with small punctures for the purpose of light, ventilation and movement. Old parts of Shahjahanabad (Delhi), Jaisalmer and Jaipur (Rajasthan), Ahmedabad (Gujarat), etc. exhibit these characteristics (Kapadia, 2010). The city outside is sometimes dominated by the British annexes with buildings more clearly distinguished and grouped according to their functions (Smailes, 1986).

Looking beyond, newer parts of the city are found to have developed haphazardly as a result of accelerated industrialization and rapid urbanization. High densities are found in commercial and industrial zones offering jobs to resident and migrant population and along transport corridors promoting easy accessibility to and from the place of work. The built forms are designed asheterogeneous projects that rarely respond to their surroundings in the city (Bharne, 2011). Lastly, the residential development seen in most city outskirts are the gated communities dominated by high rise apartment blocks, community open space and shared facilities. Though these communities are usually high density enclaves but at the scale of the city, lying on the fringes they are generally part of a low-density car-orientated suburb, which is highly unsustainable and does nothing to support the traditional energy and vitality of urban life. The urban form is thus characterized by different configuration of built forms and population distributions across the city.

Table 1: Conceptual Correlation Matrix.

VI. AREA OF STUDY

Most of India's urban centers are smaller towns. The 8000 urban centers identified in the 2011 census comprise of only 53 cities with a population of over 1 million. Out of the total urban population, only 20% live in cities of 10 million or more. Eighty percent of the urban population lives in cities and towns of population ≤ 1 million. Hence, the most meaningful approach is to anticipate the rapid growth of these Class I cities and devise ways for their sustainable development (Sudhira and Gururaja, 2012).

Amritsar, Chandigarh and Gurgaon with 0.75 million spopulation <1.5</pre> million are selected as case study cities since they are from different time periods and have imprints of all types of residential patterns. There are important differences between the older habitations in the historic city of Amritsar with newer post-independence planned settlements outside, interventions in Chandigarh and modern residential areas in Gurgaon. For detailed investigation, eight neighbourhoods based on population density, residential density and height of buildings (most

prominent built-form characteristic) are identified from the three case study cities (Plate 1).

The population density is categorised as low density with <200pph, medium density with 200 to <400pph, high density with 400 to <600pph and very high as \geq 600pph (refer Table 2). Similarly, the residential density is categorised as low density with <50DUs/hectare, medium density with 50-100DUs/hectare and high density with >100DUs/hectare (refer Table 4). In Table 3, G+3 storeyed structures that do not require elevators are considered low-rise. Structures with more than 8 storeys or 25m in height with mandatory provision of diesel generators in case of an electricity failure are considered high rise as per the National Building Code 2005 Fire Safety and Fire Protection Norms and buildings having 5-8 storeys are considered as medium rise structures. This is based on the population densities, residential densities and heights observed in different neighbourhoods in several Indian cities.

Table 2: Neighbourhoods grouped according to **Population Density.**

Neighbourhood	Population Density (pph)	Range	Level
Sector 8, Chandigarh	95	<200p	Low
World Spa, Gurgaon	178	ph	Low
Ranjit Avenue, Amritsar	256	200 to <400p	Medium
Marble Arch, Chandigarh	345	ph	Weutum
Sector 38W, Chandigarh	441	400 to <600p	High
Sector 20, Pkl, Chandigarh	540	ph	mgn
KatraDullo, Amritsar	641	≥600p	Very
Uniworld City, Gurgaon	798	ph	High

Table 3: Neighbourhoods grouped according to Height.

Neighbourhood	No. of Storeys	Range	Rise
Sector 8, Chandigarh	G, G+1, G+2		
Ranjit Avenue, Amritsar	G, G+1, G+2	<g+3< td=""><td></td></g+3<>	
Sector 38W, Chandigarh	G+2	storeys	Low
KatraDullo, Amritsar	G, G+1, G+2, G+3		
Marble Arch, Chandigarh	G+4	5-8	Mallana
Sector 20, Pkl, Chandigarh	G+5, G+6, G+7	storeys	Medium
World Spa, Gurgaon	G+16	>8	
Uniworld City, Gurgaon	G+18	storeys	High

KatraDullo, Amritsar

Sec-20, Pkl., Chandigarh

Ranjit Avenue, Amritsar

World Spa, Gurgaon

Marble Arch, Chandigarh Sector-38W, Chandigarh

Plate 1: Residential Neighbourhoods in Case Study Cities.

Table 4: Neighbourhoods grouped according to Residential Density.

Neighbourhood	Residential Density (DUs/hectare)	Range	Level
Sector 8, Chandigarh	17		
Ranjit Avenue, Amritsar	36	<50DUs/hectare	Low
World Spa, Gurgaon	44		
Marble Arch, Chandigarh	65		
Sector 38W, Chandigarh	76	50-100 DUs/hectare	Medium
Sector 20, Pkl, Chandigarh	98		
KatraDullo, Amritsar	149	>100DUs/hectare	High
Uniworld City, Gurgaon	200	>100D0s/nectare	High

Data Collection and Organization

Data is collected from both primary and secondary sources (Fig. 1). Certain mechanical instruments like the Temperature and Humidity Data logger and Smartphone Android Applications like deciBel are used to record ambient temperatures and average noise levels in different places of the neighbourhoods.

The environmental quality indicators are measured using several variables as shown in Table 5. They are subsequently compared with threshold values given by CPCB, New Delhi; URDPFI 2014; Handbook of Service Level Benchmarking, MoUD, Govt. of India 2011; etc.

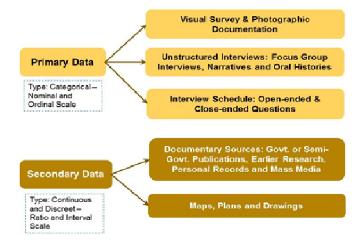


Fig. 1: Types of Data and Methods of Data Collection

Table 5: Variables to Assess Neighbourhood Environmental Quality.

Indicator	Indicator Measurement Var						
Crowding and Congestion	BUA/Capita (Built-up Area per Capita)	PGA/Capita (Public Ground Area per Capita)		PRL/Capita (Paved Road Length per Capita)		Mobilization Factor	
Nature and Use of Open Spaces	Type of Open Space		a of Open Space	Percentage Tree Cover		Activity Intensity	
Shade and Ventilation	Shade Rating - No. of ho Neighbour		hade in the	Orientation of Streets Winds		0	
Temperature Variations	Temperature inside	the Loc	the Locality Temperatu		re outside the Locality		
Average Noise Levels	At Entry Points		Inside the Locality		On Main Roads		
Level of Cleanliness	Cleanliness Indicator	r	Sewage	Indicator	Drainage Indicator		
Neighbourhood Walkability	5 5		Type of dewalks	Availabili Streetlig	2	Type of Open Space	
Air Quality	NO _x	S		O ₂		RSPM	

Source: Synthesis of Milbrath and UNESCO, 1978; Rahman *et al.*, 2011 and Handbook of Service Level Benchmarking, MoUD, Govt. of India, 2011.)

Assessing Neighbourhood Environmental Quality

Each of the eight neighbourhoods are divided into smaller study units along the streets and all the parameters listed in Table 5 above are objectively ascertained using primary and secondary data for each of the neighbourhoods. Thereafter these values are merged together using Standardized Z-scores in IBM SPSS Statistics 22 (Statistical Package for Social Sciences) to get the Standardized Aggregated Environmental Quality (ZAEQ) of all the neighbourhoods (Table 6).

The ZAEQ values are used to create an Environmental Quality Index (refer Figure 2) that can be further used to generate illustrative maps for each of the neighbourhoods showing sections with most favourable, favourable, average, less favourable and least favourable environmental quality. Since, the aggregated environmental quality values are derived from standardized z-scores, they lie between -1 (least favourable) and +1 (most favourable).

Any number of neighbourhoods can be analysed to generate the standardized environmental quality scores and the process can be applied to entire cities thus enabling the identification of areas with good, average and poor environmental quality at the city level. It can further help in conducting cross-case comparisons and help rank cities based on the environmental quality in its residential neighbourhoods. This is partially represented by the row indicating the level of Environmental Quality in Table 6.

Study	AMRI	TSAR		CHAND	IGARH		GURGAON		
Units	KatraDullo	Ranjit Avenue	Sec-8	Sec-38W	Marble Arch	Sec-20, Pkl	Uniworld City	World Spa	
1.	0.18	0.34	-0.37	-0.35	0.37	-0.35	0.17	0.43	
2.	-0.14	0.28	-0.46	-0.34	-0.16	-0.11	0.32	0.44	
3.	-0.22	0.37	-0.31	-0.48	-0.06	0.01	-0.03	0.35	
4.	-0.06	0.53	-0.21	-0.24		-0.45	0.23	0.36	
5.	-0.21	0.41	-0.33	-0.26		-0.56	0.09	0.34	
6.	-0.37	0.3	-0.27	-0.08		-0.12	0.4	0.31	
7.	-0.61	0.38	0.13	-0.23		-0.36	-0.04	0.41	
8.	-0.28	0.35	-0.22	-0.25		-0.27	0.23	0.49	
9.	-0.24	0.64	0.05	-0.2		-0.49	0.17	0.33	
10.	-0.4	0.39	0.23	-0.3		-0.51	0.4	0.3	
11.	-0.19	0.46		-0.3		-0.59	-0.05	0.41	
12.	-0.37	0.48		-0.2			0.21	0.34	
Avg. ZAEQ	-0.24	0.41	-0.18	-0.27	0.05	-0.35	0.18	0.38	
Level as per EQI	Less Favourable	Favourable	Average	Less Favourable	Average	Less Favourable	Average	Favourable	

Table 6: Standardized Aggregated Environmental Quality of Case Study Neighbourhoods.

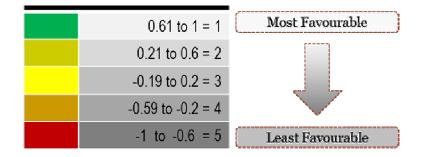


Fig. 2. Environmental Quality Index.

Preliminary Findings

It is observed from Table 6 that Ranjit Avenue, Amritsar and World Spa, Gurgaon with medium and low population density (<400pph), low residential density of 20-50DUs/hectare and low/high rise buildings have favourable environmental quality whereas neighbourhoods with high and very high population density (\geq 400pph), medium and high residential density (>70DUs/hectare) and low and medium rise buildings (G to G+7) have less favourable environmental quality due to crowding, congestion and lack of open spaces. This is especially demonstrated by KatraDullo, Amritsar, Sector 38West and Sector 20, Panchkula, Chandigarh. It is also seen that rest of the three neighbourhoods have average environmental quality. The preliminary findings are summated in Table 7.

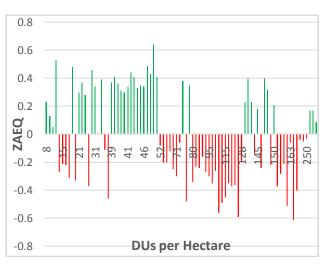

Thus, it can be said that from among the residential patterns assessed, the environmental quality is more favourable in both low and high-rise neighbourhoods with low residential density and medium and low population density respectively. This is seen in Figure 3 and Figure 4.

Figure 3 indicates that mostly areas with more favourable environmental quality have low residential density of <50DUs/hectare whereas areas with higher residential densities of \geq 50DUs/hectare generally have less favourable environmental quality. Figure 4 shows that most of the areas with above average, more

favourable and most favourable environmental quality have >100 and <400pph which constitute low and medium population density. Areas with \geq 400pph i.e. high and very high population density fall in the category having below average, less favourable and least favourable environmental quality.

	Population Density		
Built Form Characteristics	Low Population Density	Medium Population Density	High / Very High Population Density
Low Rise Low Residential Density	Average	Favourable	×
Low Rise Med. Residential Density	×	×	Less Favourable
Low Rise High Residential Density	×	×	Less Favourable
Med. Rise Med. Residential Density	×	Average	Less Favourable
Med. Rise High Residential Density	×	×	×
HighRise Low Residential Density	Favourable	×	×
High Rise High Residential Density	×	×	Average

Table 7: Residential Patterns and Environmental Quality.

Fig. 3. Variation in Environmental Quality with Residential Density.

Correlation Analysis

To statistically establish the relationship between density and neighbourhood environmental quality, a correlation analysis is carried out between density variables like persons per hectare, dwelling units per hectare, height of buildings, plot coverage, etc. and standardized aggregated environmental quality (ZAEQ) of all the residential neighbourhoods. Significant correlations at 99% confidence level are between many density variables seen and

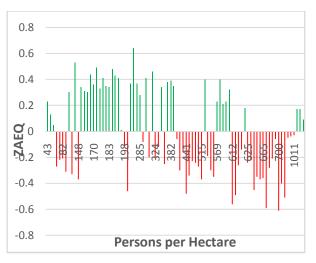


Fig. 4. Variation in Environmental Quality with Population Density.

neighbourhood environmental While quality. environmental quality varies negatively with population density, residential density, plot coverage and encroachment; it shows positive correlation with height, amount of open spaces and condition of sidewalks (Table 8). In other words, this means that as population density, residential density, etc. goes on increasing the environmental quality deteriorates whereas with increase in height of buildings, amount of open spaces and good condition of sidewalks

permitting walkable neighbourhoods, the environmental quality starts improving. This is also in compliance with Table 7 above.

Table 8: Correlation between Density Variables	
and Environmental Quality.	

DENSITY VA	ZAEQ	
	Pearson	355**
Persons per Hectare	Correlation	355
	Sig. (2-tailed)	.001
DUs per Hectare	Pearson	263*
	Correlation	205
	Sig. (2-tailed)	.016
	Pearson	.433**
Height	Correlation	.+33
	Sig. (2-tailed)	.000
	Pearson	387**
Built to Open Ratio	Correlation	
	Sig. (2-tailed)	.000
	Pearson	651**
Plot Coverage	Correlation	
	Sig. (2-tailed)	.000
Open Space	Pearson	.283**
	Correlation	
	Sig. (2-tailed)	.009
	Pearson	097
Road Density	Correlation	
	Sig. (2-tailed)	.382
	Pearson	271*
Encroachment	Correlation	
	Sig. (2-tailed)	.013
Proximity to Daily	Pearson	.107
Needs	Correlation	221
	Sig. (2-tailed)	.331
Condition of	Pearson	.389**
Sidewalks	Correlation	
	Sig. (2-tailed)	.000
0	Pearson	.039
StreetLights	Correlation	726
	Sig. (2-tailed)	.726

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

The future course of work involves carrying out hierarchical multiple regression that will help assess the extent to which the observed variance in the dependent variable (in this case Neighbourhood Environmental Quality) is explained by the variance in the independent density variables. Also the standardized ' β -coefficient' will be used to indicate the relative importance of a density variable thus helping in re-examining the density measures for achieving optimum environmental quality.

CONCLUSION

The present study helps to take up a multiple case study approach to assess and compare the environmental quality of different neighbourhoods from three rapidly urbanizing cities in the Indian context. An analytical framework devised on the basis of detailed literature review showing possible correlations between density variables and indicators of environmental quality helps in understanding the relationship between density and environmental quality. It shows that density has an impact on environmental quality.

The study further emphasizes the need for detailed empirical analyses for better planning at both micro and macro levels of existing urban structure as suggested by Radberg (1996). It envisages identifying desirable density ranges for neighbourhoods having different residential patterns so as to derive guidelines and suggest methods to achieve environmentally conducive patterns of residential development in our present and future cities.

REFERENCES

[1]. Alexander E (1993). Density Measures: A Review and Analysis, *Journal of Architectural and Planning Research*, **10**(3): 181-202.

[2]. Bharne V (2011). Enabling Responsible Urban Form, The Urban Vision: Expert Diary, Posted in Architecture and Planning. Available at http://www.theurbanvision.com (accessed 5 January 2012).

[3]. Burgess R (2000). The compact city debate: A global perspective. In: Jenks M and Burgess R (eds)*Compact cities: Sustainable urban forms for developing countries.* E & FN Spon, pp. 9–24.

[4]. Capello R and Camagni R (2000). Beyond optimal city size: An evaluation of alternative urban growth patterns. *Urban Studies*, **37**(9): 1479–1496.

[5]. Carl P (2000). Urban density and block metabolism. In:Proceedings of PLEA on *Architecture, City, Environment* (eds Koen S and Yannas S), 2000, pp. 343-47. London: James & James Publishing.

[6]. Galster G, Hanson R, Wolman H, Coleman S and Freihage J (2001). Wrestling Sprawl to the Ground: Defining and Measuring an Elusive Concept, *Housing Policy Debate* **12**(4): 681-717.

[7]. Kapadia K (2010). The Sustainable Indian Cities – An oxymoron, *Context: Journal of the Development and Research Organisation for Nature, Arts and Heritage*, **7**(2): 41-47.

[8]. Milbrath LW (1978). "Indicators of environmental quality" in UNESCO, Indicators of environmental quality and quality of life. *Reports and papers in Social Sciences* **38**: 3-56.

[9]. Nichol J and Wong MS (2005). Modeling Urban Environment Quality in a tropical city, *Landscape and Urban Planning* **73**: 49–58.

[10]. Pacione M (2003). Urban environmental quality and human wellbeing—a social geographical perspective, *Landscape and Urban Planning* 65: 19-30.

[11]. Rahman A, Kumar Y, Fazal S and Bhaskaran, S (2011). Urbanisation and Quality of Urban Environment using Remote Sensing and GIS Techniques in East Delhi, India, *Journal of Geographic Information System* **3**: 62-84.

[12]. Rådberg J (1996). Towards a Theory of Sustainability and Urban Quality: A New Method for Typological Urban Classification. In: *14th Conference of the International Association for People-Environment Studies on Evolving Environmental Ideals: Changing Ways of Life, Values and Design Practice* (edGrayM), Stockholm, UK, 384-392.

[13]. Rudlin D and Falk N (1999). *Building the 21st Century Home –The Sustainable Urban Neighbourhood.* Architectural Press, Oxford.

[14.] Smailes AE (1986). The Indian City: A Descriptive Model. In: Tewari VK, Weinstein JA and Prakasa Rao VLS(eds)*Indian Cities Ecological Perspectives*. New Delhi: Concept Publishing Company, pp. 35-54.

[15]. Sudhira HS and Gururaja KV (2012). Population crunch in India: is it urban or still rural? *Journal of Current Science* **103**(1): 37-40.

[16]. Williams K, Burton E and Jenks M (2000). Achieving the compact city through intensification: An acceptable option? In: M. Jenks et al., (eds) *The compact city—a sustainable urban form?* E & FN Spon, pp. 83–96.

[17]. Yin R (1994). Case Study Research: Design and Methods SAGE Publications, London.

Proceedings of the National Conference

Re-Discovering Cities

10-11 April 2015 Ambala

EDITORS

Surinder Bahga Aradhana Jindal

ORGANISED BY

School of Architecture MM University, Sadopur, Ambala and Indian Institute of Architects (Chd-Pb Chapter)

EDITORIAL TEAM

Mekhala Saha, Radhika Rathore, Hena Tiwari, Vipasha Sharma

Copyright © 2015

MM University, Sadopur, Ambala, India Indian Institute of Architects (Chd- Pb Chapter)

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

First published, 2015

ISBN: 978-93-81910-36-8

Published by

Saurabh Medical Publishers

3506, Sector 35-D, Chandigarh- 160 022 E-mail: saurabhmedicalpublishers@gmail.com Phone: +91-93561-17075

Printed at Paper Trading Agency Nicholson Road, Ambala Cantonment, Haryana – 133 001

The views and opinions expressed in the articles are those of the authors. The editors and publishers are in no way responsible for the views expressed.

This book is meant for educational and learning purposes. The author(s) of the research papers has/have taken all reasonable care to ensure that the contents of the book do not violate any existing copyright or other intellectual property rights of any person in any manner whatsoever. In the event the author(s) has/have been unable to track any source and if any copyright has been inadvertently infringed, please notify the publisher in writing for corrective action.

Cover design by Ar. Avinash Kaur

A Model Framework for Assessing Urban Environmental Quality

Swati Dutta¹, Dr. Suchandra Bardhan², Dr. Sanjukta Bhaduri³

¹Pursuing Ph.D, ²Associate Professor, ^{1, 2} Jadavpur University, Kolkata, ³HOD, Department of Urban Planning, School of Planning and Architecture, New Delhi, India ¹swatiiitkgp@gmail.com,² suchandrab@gmail.com,³sanjukta.bhaduri@gmail.com

ABSTRACT

The emergent urban problems such as unprecedented population growth, urban sprawl, disparities between city core and its periphery, urban decay in city centers, increasing traffic volume and congestion pose fresh challenges for planning environmentally sustainable (growth of our) cities. It is observed that the intra city structure is dynamic and keeps on changing with time as a result of several urban processes and mechanisms at play. The study focuses on the residential neighborhoods / localities which are the basic unit of urban planning and intends to understand the relationship between physical density patterns of residential development within a city and associated environmental quality. Based on an understanding of the various patterns of residential development found in Indian cities, physical density and urban environmental quality are defined and the various parameters to assess the same in residential localities are identified. Subsequently an analytical framework is developed to understand the causal relationship between the density variables and indicators of urban environmental quality. On the basis of the analytical framework, a bottom-up theoretical model is proposed to understand the effect of physical density on urban environmental quality. The model envisages finding correlations between the density / urban structure variables and indicators of environmental quality and hence prove/disprove the hypothesis – Density affects Urban Environmental Quality. It also proposes to identify the desirable density ranges for neighborhoods in light of the findings of the study so as to arrive at guidelines to achieve environmentally conducive patterns of residential development in our cities

Key words: Residential Neighborhoods, Physical Density Patterns, Urban Environmental Quality

1.0 INTRODUCTION

Several studies indicate that majority of the Indian cities present a very similar pattern of urban development. All major towns and cities are found to be witnessing an explosive increase in urban population that strains the existing system and finally manifests into an environmental chaos. It is increasingly felt that the problems related to environmental quality in urban areas are very complex and require a systematic approach and careful analysis of all the relations between

International Conference Sustainable Built Environment 2017

Commemorating the Diamond Jubilee of the

Department of Architecture and Planning

Book of Abstracts

Department of Architecture and Planning Indian Institute of Technology Roorkee International Conference on

Sustainable Built Environment 2017

Commemorating the Diamond Jubilee of the Department of Architecture and Planning

(03 – 05 February, 2017)

Patron: Director, IIT Roorkee

Chair Person: Dr. Ila Gupta, Head, Dept. of Architecture and Planning

Convenors

Dr. P.S. Chani, Associate Professor, Department of Architecture and Planning, IIT Roorkee Dr. Mahua Mukherji, Associate Professor, Department of Architecture and Planning, IIT Roorkee

Organizing Secretary: Dr. E. Rajasekar

Dr. Arindam Biswas

Scientific Committee: Dr. Uttam Kumar Roy

Dr. P. Ram Sateesh

Department of Architecture and Planning Indian Institute of Technology Roorkee

Multi-criteria Approach for Assessing Neighbourhood Environmental Quality A way towards Future Sustainable Development of Indian Cities

Swati Dutta, Dr. Suchandra Bardhan and Dr. Sanjukkta Bhaduri

Abstract

India is well endowed with cities spread evenly across the country. These cities are the centers of commercial, political, educational and cultural activities with millions of people residing and many more migrating in and out of them constantly. The high concentration of people brings variety of preferences, resources, products and services to our cities (**Bhandari, 2006**). Over the years, the megacities with population of tens of millions have occupied significant mind, media and policy space in terms of urbanization in India. With time, these cities have grown in size but quality of life has deteriorated¹.

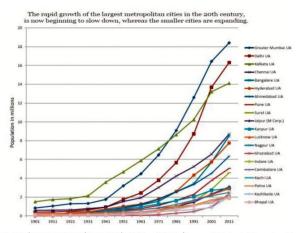


Fig 1: Largest 20 Urban Agglomerations by Population - 2011 (Source: IIHS Analysis based on Census of India, 2011)

On the other side, most of India's urban centers are smaller towns. The 8000 urban centers identified in the 2011 census comprise of only 53 cities with a population of over 1 million. Out of the total urban population, only 20% live in cities of 10 million or more. Eighty percent of the urban population lives in cities and towns of population ≤ 1 million². Figure 1 shows that from 20th century onwards the rapid growth of the largest metropolitan cities has slowed down, whereas the smaller cities are expanding. Hence, the most meaningful approach is to anticipate the rapid growth of these cities and devise ways for their future sustainable development (Sudhira and Gururaja, 2012).

Objectives of Study - The objectives of the study are to Assess the Environmental Quality at the Neighbourhood Level and Understand the relationship between Residential Density and Environmental Quality and suggest measures for environmentally conducive future development.

Scope of Work - The present study identifies typical residential patterns based on physical density variables in a case study city and assesses environmental quality at the micro-level – the level of the residential neighbourhood. Two neighbourhoods are analyzed for the pilot study. The preliminary findings show that significant correlations exist between residential density and neighbourhood environmental quality. The study is limited to the organized sector and socio-economic factors and qualitative perceptions of people are kept out of the scope of the study.

Area of Study - For the first phase, Amritsar - a major pilgrimage/tourist destination and one of the youngest metropolitan cities of India is selected for the study (Sandhu and Teotia, 2013). As no comprehensive database

PR19

of cities with population under 750,000 exists in a readily available format (Barney, 2005), the research is based on cities with 0.75 million \leq 1.5 million.

Methodology - Several tools are applied to carry out the analyses. They are: Multi-criteria Approach to assess the neighbourhood environmental quality. It helps to consider several physical density variables that can be controlled and modified during the planning and design phase to achieve better spatial quality of the designed space. Correlation Coefficient Analysis to understand the relationship between density variables and neighbourhood environmental quality. Generating an "Environmental Quality Index" as a tool to classify different localities of the city according to the level of environmental quality (refer figure 2). The approach identifies the problem areas and creates the possibility of taking up local actions at the micro-level (street/cluster level) by the residents and urban local bodies to improve the environmental quality.

Outcome of Study - The research provides a useful basis for further study of environmental quality by combining socio-economic characteristics with the physical characteristics. Presently, it helps in better understanding of the relationship between residential density and neighbourhood environmental quality and envisages expediting the realization of the long term and holistic process of achieving urban environmental sustainability.

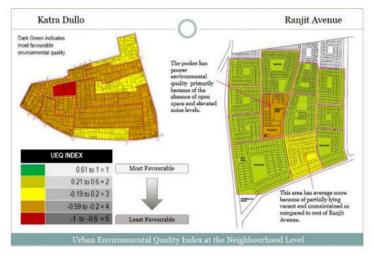


Fig 2: Study Neighbourhoods of Amritsar Classified according to the Level of Environmental Quality (Source: Authors, 2015)

Keywords

Patterns of Urbanization, Residential Density, Neighbourhood Environmental Quality, Multi-criteria Approach, Environmental Quality Index

References

- Barney, C. (2005) Urbanization in developing countries: Current trends, future projections and key challenges for sustainability. Technology in Society, Vol. 20, No. 10, pp. 1-18.
- Bhandari, L. (2006) The Diversity of the Top 100 cities of India. Indicus Analytics, an Economic Research Firm. Retrieved from http://www.indicus.net
- Sandhu, R.S. and Teotia, M.K. (2013) The State of Cities in North-Western India: A Case of Selected JNNURM Cities (Study Focus City: Amritsar) - A Study conducted under HUDCO Chair by Centre for Research in Rural and Industrial Development (CRRID), Chandigarh. Retrieved from http://hudco.org/WRITEREADDATA/Amritsar%20Study.pdf
- Sudhira, H.S. and Gururaja, K.V. (2012) Population crunch in India: is it urban or still rural? Journal of Current Science, Vol. 103, No. 1, pp. 37-40.

Proceedings of

National Conference

on

URBAN ENVIRONMENTAL MANAGEMENT IN INDIA: PROBLEMS & PROSPECTS

February 13th – 14th, 2017

Editorial by: Dr. Tarush Chandra Dr. Satish Pipralia Dr. Nand Kumar Dr. Ashwani Kumar Dr. Pooja Nigam Ar. Niruti Gupta

Organized by

DEPARTMENT OF ARCHITECTURE AND PLANNING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR J.L.N. Marg, Jaipur - 302017

First Impression: 2017

Editorial by

Dr. Tarush Chandra Dr. Satish Pipralia Dr. Nand Kumar Dr. Ashwani Kumar Dr. Pooja Nigam Ar. Niruti Gupta

Department of Architecture and Planning Malaviya National Institute of Technology, Jaipur- 302017

Copyright © 2017, Malaviya National Institute of Technology, Jaipur

were is a

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Editors.

All export rights for this book vest exclusively with MNIT Jaipur. Unauthorised export is a violation of copyright law and is subject to legal action.

ISBN: 978-93-86238-12-2

Published by EXCELLENT PUBLISHING HOUSE Kishangarh, Vasant Kunj, New Delhi-110 070 Tel: 9910948516, 9958167102 E-mail: exlpubservices@gmail.com

Typeset by

Excellent Publishing Services, New Delhi-110 070

Density and Neighbourhood Environmental Quality – A Comparative Study in the Context of Indian Cities

Swati Dutta¹, Suchandra Bardhan², Sanjukkta Bhaduri³

¹School of Architecture and Design, Manipal University Jaipur ²Department of Architecture, Jadavpur University, Kolkata ³Department of Urban Planning, School of Planning and Architecture, New Delhi

ABSTRACT

The study attempts to understand the relationship between density and neighbourhood environmental quality. A multiple case research design (Yin, 1994) is adopted by identifying different residential patterns in three case study cities. Amritsar, Chandigarh and Gurgaon are selected as the case study cities. The chosen cities are typical in nature and it is expected that through intensive analysis generalizations can be made that are applicable to other rapidly urbanizing Class I cities in the Indian context. There are important differences between the older habitations in the historic city of Amritsar with newer settlements of the city, post-independence planned interventions in Chandigarh and modern residential areas in the millennium city of Gurgaon. The assessment of Neighbourhood Environmental Quality and formulation of the Environmental Quality. The study also helps in identifying significant relationships between different density variables and neighbourhood environmental quality. The future work envisages re-examining density measures of different residential patterns for environmentally conducive development in our existing and future cities.

Ms. Swati Dutta is an architect and urban planner from India born in Chandigarh in 1979. She has done Bachelors in Architecture (B.Arch) from Chandigarh College of Architecture (CCA), Panjab University, Chandigarh and Master of City Planning (MCP) from Department of Architecture and Planning, IIT Kharagpur, West Bengal. She has been the recipient of many awards throughout her academic career. Some of her achievements being:

- 1. Institute Silver Medal for First Position, Master of City Planning from IIT Kharagpur
- 2. Certificate of Merit for Best Thesis at Post Graduate Level by ITPI, New Delhi
- 3. Award for Best Thesis at Post Graduate Level by West Bengal Regional Chapter of ITPI, India
- 4. University Medal for Standing First in B.Arch Final Exam (May 2002)
- 5. Government Gold Medal for the year 2001 2002
- 6. Le Corbusier Gold medal for the Best All Rounder of the 1997 2002 Batch

Ms. Swati has been working in the field of academics in various institutions since 2004 and has been felicitated for her teaching skills. She is presently working as an Associate Professor in School of Architecture and Design, Manipal University Jaipur. She has attended many National and International conferences and workshops and has authored many technical papers in the field of Architecture and Planning. She has also contributed in organizing special lectures and workshops. Her areas of interest include – Architectural Design Pedagogy, Environmental Planning and Sustainable Urban Design Strategies. She is a registered Architect with the Council of Architecture-India.

She is married to Dr. Siddhartha Koduru and is blessed with a daughter, Sukanya.