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Abstract

In the landscape of computer architecture research, branch prediction has been an impor-

tant item of both academic and industrial research interest since long. Indeed, as widely

acknowledged in this community, designing efficient branch predictors has always been one

of the top priority research tasks in computer architecture. Over the past few decades, a

wide variety of branch prediction strategies have been proposed in literature, with widely

varying insights, structures, philosophies and performance considerations. Fostered by phe-

nomenal research in branch prediction algorithms, modern commercial processors today

embed quite sophisticated predictors inside, with significant prediction capabilities and

runtime performance on widely varying workloads.

This thesis is an attempt to revisit the problem of branch predictor design from a slightly

different lens. In particular, the specific focus of our work is in designing predictors that

are particularly suited for low storage environments. Dynamic branch predictors which

are invoked during program execution typically store outcome histories of program branch

instances, learn interesting patterns from these histories and use them for delivering pre-

dictions for future branch instances. As is evident from experiments reported in literature,

many of the state-of-the-art dynamic branch predictors that show promise when exercised in

high end processors, often fail to meet the accuracy and energy expectations when exercised

in storage constrained embedded environments. A thorough scrutiny of the performance

debacle reveals the fact that these sophisticated prediction strategies are significantly sen-

sitive to the sizes of the history they learn from, more the size of the history structures

these predictors are allowed to operate on, the better is the prediction accuracy, in general.

This motivates us to design strategies that can efficiently mitigate these concerns, while

maintaining desired prediction accuracies at low storage points.

In our journey through the different chapters of this thesis, we explore three main directions

in branch prediction research. On one side, we examine if static analysis, through which we

learn program characteristics beforehand between program versions, can lead to enhanced

prediction performance. Our explorations reveal a positive performance benefit, and we

propose a novel scheme to do away with a number of dynamic predictor invocations, and

thereby improve on latency and energy, without compromising on prediction accuracy. As

our second theme of exploration, we explore the problem of multi-component predictor de-

sign that can deliver better prediction accuracy by combining several dynamic components

to deliver a prediction. Indeed, this is quite useful in general, since branch instances of a

given application exhibit widely varying dependencies on the outcome history patterns, and

it is usually not possible to learn these and predict their outcomes with a single predictor
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component. However, the price to be paid for such multi-component predictors is in terms

of the storage cost, since these components are typically trained to operate on individual

history storage tables, which makes them difficult to exercise at low storage points. This

is where our research provides two novel design schemes, with a proposal to unify the stor-

age tables of the multiple components, and still deliver the expected prediction accuracy

performance. In particular, we look at predictor designs with two or more components,

and propose suitable modifications to make them work with shared predictor tables, while

maintaining high prediction accuracy. The final theme of our research is around branch

predictor evaluation. On one side, we develop a framework for branch predictor selection

with consideration of multiple metrics of evaluation, namely, accuracy, latency, energy etc.

This is an useful aid for prediction strategy selection for a given application domain, wherein

multiple performance metrics, not just one, are important elements of concern. Our frame-

work provides an useful exploration aid in this direction. On the other side, we examine the

different components of a branch predictor design with respect to their resilience against

faults and attacks. One of our key contributions in this direction is an attack scheme that

can definitively slow down a benign application in a concurrent multi-threaded execution

environment. We believe that such studies can lead to positive benefits for predictor design.

In summary, we believe that this thesis makes some important contributions in the space of

branch predictor design for low storage processors. On one hand, our strategies for storage

consolidation entail predictor component designs that can work on shared predictor tables.

On the other hand, inputs from static program analysis help us synthesize better strategies

for prediction. This gives us a unique advantage, as we demonstrate through extensive

experiments on architecture workloads.



Chapter 1

Introduction

In high performance pipelines, branch instructions disrupt the smooth flow of instruction

fetching and execution. This causes serious performance degradation as the fetched instruc-

tion and the following instructions must wait until the result of the condition is available.

To alleviate this issue, out of order execution was introduced to make use of this idle time

and let other non-dependent instructions advance with their execution. To further enhance

the efficiency of pipelines, the processor at runtime often predicts the direction which a

branch instruction will take. Branch predictors thus play a critical role in achieving high

performance in all modern pipeline processors. A branch predictor at runtime predicts the

direction which a branch instruction will take and begins fetching, decoding and executing

instructions using this prediction even before the result of the branch condition is known.

This greatly reduces delay and decreases CPI (cycles per instruction) of a program. The

branch predictor is therefore, a crucial piece inside any modern pipelined processor. This

has a flip side as well. If the branch predictor gives an incorrect prediction, all the fetched

instructions have to be flushed and the alternative path that was expected to be not taken

and all its following instructions have to be fetched into the pipeline. This in turn implies

that the entire branch prediction effort has been a waste and the mis-prediction penalty

1
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manifests in terms of the energy and processor cycles wasted as a result.

Developing efficient branch predictors has always been one of the top priority research tasks

in computer architecture. While on one hand, a simple branch predictor component is easy

to implement and light to support at runtime, its accuracy may often be limited. On the

other hand, a sophisticated predictor may guarantee better expected prediction success, but

at the cost of more energy and performance footprint, and this may elongate the pipeline

critical path, often leading to a performance slowdown. This trade-off has inspired decades

of research on efficient branch prediction strategies and led to the development of numerous

branch predictors with varying degrees of complexities and efficiency [55][59][83][96].

An interesting evolution in branch prediction research aimed at improving the prediction

accuracy of branch predictors, has been the proposal of multi-component branch predic-

tors [26] which work by synergistic orchestration of dynamic single component branch pre-

dictors at run-time. The main motivation driving this has been the observation [35][45] that

different dynamic predictors fare differently on different branches in terms of the mispre-

diction metric. In other words, branches which are ill-suited for a certain branch prediction

policy often have better performance when run with another predictor. A single dynamic

predictor, therefore, may not be suited for all branches in a program, thereby necessitating

the idea of multi-component hybrid branch prediction. Multi-component predictors have

been well-studied in literature, with a number of design strategies, attempting to improve

prediction accuracy and power consumption [26][36][35][45][54][83][86].

The most widely explored direction of research in predictor design has been around the

objective of prediction accuracy maximization, with an expectation of energy reduction

due to lesser mis-predictions. However, it has often been the case that the energy gain

expected has been nullified by the energy footprint of the history tables that these schemes

need to store and manipulate. An additional parameter of interest is the latency of pro-

gram execution, which varies as well across different predictor designs. Another important
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parameter to evaluate the performance of a branch predictor is the size of the predictor

history table. Branch predictors typically function based on the history information stored

in the corresponding prediction tables. Evidently, accuracy of branch predictors is sensitive

to the storage they are allowed to use, more history information usually has been seen to

generate more accuracy of prediction. The issue of storage for predictor tables is even more

important for a resource constrained embedded environment with low storage budgets, since

there is a more acute trade-off that needs to be worked out. On one hand, increased storage

budget for the predictor tables, can lead to better accuracy of prediction. However, the

cost and other overheads associated with storage structures increase. On the other hand,

having a lower storage for predictors reduces cost, however, increases misprediction and

manifests in terms of wasted instructions, latency and energy. Selecting an appropriate

branch predictor structure for an embedded environment is therefore, quite a crucial task.

A branch prediction unit charges a significant amount of power consumption in modern

processor designs, and consumes a significant amount of storage and becomes a major issue

for relatively small embedded processors.

The main objective of this research is to work on different aspects of the branch prediction

methodology. On one side, we investigate how program analysis methods can be used to

improve classical prediction techniques to improve system performance. On the other side,

we propose some improvements in predictor design suitable for low resource and low power

processors. We evaluate our methodologies using architectural simulators on large scale

public domain benchmarks.

1.1 Motivation of this dissertation

In the field of computer architecture and processor design, the problem of efficient branch

predictor implementation has attracted significant research across several decades. It is
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reported that upto 15% of processor energy [83] can be consumed for branch prediction.

An inefficient predictor can thus in turn lead to performance degradation as well. The

primary motivation of this thesis is to improve the performance of the predictor in terms

of different metrics like prediction accuracy, energy consumption, execution latency and

predictor size. Another major challenge is to design branch predictors for an embedded

processor with low resource budget and low power constraints. This is quite significant in

the context of embedded systems or edge devices, which are being increasingly used today

as compute nodes in the context of edge and fog computing. In this work, we also focus to

work on the improvements of branch predictors for embedded processors.

1.2 Contributions of this dissertation

The objective of this thesis is to propose improvements in different aspects of branch pre-

diction to improve system performance. The contributions of this thesis described in the

different chapters, are briefly summarized below.

An efficient dynamic predictor design using program evolution: Software evolu-

tion has been extensively studied in the past decade for various properties and interesting

patterns. In this work, we study the effect of evolution on branch prediction techniques.

Typically for any program, at the hardware level, all dynamic branch prediction strategies

learn branch behaviors at run time and later re-use them to predict the direction of future

branches. The duration of the learning curve depends heavily on the kind of technique used

and also the complexity of the program at hand. We show that saving the branch outcome

profile from an older version and reusing it in a new version can significantly reduce this

overhead and improve performance. In this thesis, we discuss the effect of program evolution

on the performance of branch prediction, study how the individual branches get affected
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during evolution, suggest a new method to reuse the branch behavior information from

a previous version, and share our results on various software repositories. Experimental

results indicate our intuitions are well justified.

A two-component dynamic predictor design with shared predictor tables: It has

been widely acknowledged in literature that a single predictor component is often insuf-

ficient for prediction for complex programs comprising of branches with diverse history

characteristics. This has led to the proposal of predictors with multiple components. These

multi-component predictors have been able to achieve better accuracy, at the cost of storage.

In this work, we study the problem of designing two-component branch predictors for low

resource budget. We first examine a two-component predictor design where the individual

predictor components are made to share the predictor table structure. Our experiments

reveal that this sharing leads to a loss in prediction accuracy due to extensive interference

between the predictors. To take care of the interfering entries, we add a tiny dealiasing

cache to store the interfering entries, while the components still work on the shared pre-

diction history table for the remaining. We present our findings on the CBP-2 traces [33].

Experiments show expected accuracy improvements over the shared design. Synthesis re-

sults generated using the Synopsys Design Compiler with TSMC 90nm libraries confirm the

area and power benefits of our design.

A multi-component dynamic predictor design with interference control: We

study the problem of designing multi-component branch predictors for low resource bud-

get. We first examine a multi-component predictor design where the individual predictor

components are made to share the predictor table structures. Further, we propose a simple

modification to contemporary multi-component predictor designs to improve accuracy. We

present our findings on the SPEC 2006 benchmarks.
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Branch predictor selection with aggregation on multiple parameters: Selecting

a branch predictor for a program for prediction is a challenging task. The performance

of a branch predictor is measured not only by the prediction accuracy - parameters like

predictor size, energy expenditure, latency of execution play a key role in predictor selection.

For a specific program, a predictor which provides the best results based on one of these

parameters, may not be the best when some other parameter is considered. The task to

select the best predictor considering all the different parameters, is therefore, a non-trivial

one, and is considered one of the foremost challenges. In this thesis, we propose a framework

to systematically address this important challenge using the concept of aggregation and

unification. For a given program, our framework considers the performance of the different

predictors, with respect to the different parameters, and makes a predictor selection based

on all of them. On one side, our framework can be an important aid for deciding on the

best predictor to use at runtime. On the other side, the proposal of a new predictor can be

systematically evaluated and placed in purview of existing ones, considering the parameters

of choice. We present experimental results on the Siemens and SPEC 2006 benchmarks.

Performance attacks on branch predictors in Simultaneous Multithreading Pro-

cessors: In an embedded processor with support for multi-threaded execution, with mul-

tiple different applications executing in different threads, and managed by a single predictor,

significant inter-application interference due to sharing of predictor data structures has been

acknowledged to be a serious concern. In this work, we show an attack methodology which

exploits these shared structures for performance attacks on a benign application. In partic-

ular, we propose a methodology for creating a variant of a benign application, which when

dispatched in a concurrently executing thread, can definitively slow down the performance

of the benign one. We report the effect of such attacks on the Siemens benchmarks.
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An empirical study on predictor storage and fault sensitivity: We first examine

the common branch predictor designs available in literature, and characterize their accuracy

versus storage performance. As expected, many of the predictors which are known to have

high accuracy in general, lose out on performance when exercised in low storage scenarios.

This work presents an empirical evaluation of different branch predictors at various storage

points and the resulting effect on processor performance in terms of prediction accuracy

and latency. We present our findings using contemporary branch predictors and the traces

of the Championship Branch Predictor-2 benchmarks. We believe that our study will be

extremely beneficial for choosing a branch predictor design for embedded processors working

in resource constrained environments. In addition to this, we also present an empirical

exploration of different state-of-the-art predictors with respect to faults on their storage

structures (e.g. history tables, registers) and the resulting effect on processor performance.

1.3 Organization of the dissertation

This dissertation is organized into 9 chapters. A summary of the contents of the chapters

is as follows:

Chapter 1 : This chapter contains an introduction and a summary of the major contri-

butions of this work.

Chapter 2 : A detailed study of branch prediction methodologies and relative research

is presented here.

Chapter 3 : This chapter studies the effect of program evolution on the performance of

branch prediction techniques.
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Chapter 4 : This chapter presents our two-component branch predictor design for low

storage environments.

Chapter 5 : This chapter discusses the multi-component branch predictor design for low

storage environments.

Chapter 6 : An evaluation framework for branch predictor selection on multiple param-

eters is proposed here.

Chapter 7 : This chapter discusses a performance slowdown technique on predictors.

Chapter 8 : An empirical study on storage sensitivity of branch predictors and their

robustness against faults in prediction information is discussed in this chapter.

Chapter 9 : We summarize with conclusions on the contributions of this dissertation.



Chapter 2

Background and Related Work

In this chapter, we first present a few background concepts related to branch predictor

design. We then present a brief overview of different methodologies proposed in literature

for branch prediction.

2.1 Preliminary Concepts

In a pipelined architecture, instructions typically go through an assembly line while a pro-

gram executes, as shown in Figure 2.1. Figure 2.1 shows a simplified view of a pipelined

processor, wherein each instruction goes through different stages to reach the end of execu-

tion. Thus in every clock cycle, a new instruction can be fetched, while other instructions

transit through the different stages inside the pipeline. This leads to improved execution

by overlapping instruction latencies and different instructions can be in flight, resulting in

improved performance. Branch instructions in this pipeline typically get resolved in the

later stages (second / third stage in a 5-stage pipeline), thus it is a tricky task to decide

which instruction to fetch next, when a branch instruction is encountered as the current in-

9
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struction. The processor may still go ahead and load instructions from the immediate next

instruction, but if the branch gets resolved in the else-path, the entire instruction stream

loaded has to be flushed off. To improve the performance of program execution, efficient

predictors are employed inside a modern processor which guide the processor to predict

the direction of a branch and start fetching, decoding and executing instructions before the

result of the branch condition is evaluated, as shown in Figure 2.1.

Figure 2.1: Architecture of a Pipelined Processor

To illustrate the importance of branch prediction, we consider the performance of a 5-

wide super-scalar (fetches 5 instructions per cycle) 30-stage pipeline with a steady state

performance of 1 instruction per cycle and a 20-cycle branch resolution latency (the cycle

at which the exact direction of a branch is known / resolved). Hence, 1 mis-prediction

causes wastage of 19 instruction fetches and new ones need to be brought in, thereby

increasing the total number of clock cycles by 20. Consider a program with 500 instructions

where 1 out of 5 instructions is a branch (uniformly distributed). Therefore, we have 100

branch instructions. We now discuss the accuracy versus overhead for processing these 500

instructions for different cases, as explained below.

• All instructions are fetched from the correct path (predictor predicts correctly for all

100 branches) - we have 100% accuracy and it takes 100 cycles.

• For 1 mis-prediction - it gives 99% accuracy and takes 120 clock cycles (100 cycles for

correct path and 20 cycles for the wrong path).

• For 2 mis-predictions, it gives 98% accuracy and takes 140 clock cycles (100 for the
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Processor Minimum mis-prediction Penalty(cycle)

PPro,P2,P3 10
Intel Atom and Silvermont 11

Intel Nehalem 17
P4, P4-E4 24

Sandy Bridge, Ivy Bridge 15
Intel Haswell 15

VIA Nano 16
AMD K8 and K10 12

AMD Bobcat and Jaguar 13

Table 2.1: Mis-prediction penalties for some example processors

correct path + 20 * 2 for the wrong path).

• For 5 mis-predictions, it gives 95% accuracy and takes 200 clock cycles (100 for the

correct path + 20 * 5 for the wrong path).

It is seen that only 5 mis-predictions out of 100 branches can double the number of processor

cycles and cause 100% extra instruction fetch. The example above illustrates the crucial

role of the efficiency of a branch predictor as a metric for processor performance. An

inefficient predictor can lead to significant performance degradation. Designing efficient

branch predictors has therefore been one of the top priority tasks in computer architecture.

Table 2.1 shows the mis-prediction penalties in terms of the cycles wasted for some repre-

sentative processors. It can be observed that in all the cases, incorrect predictions can cause

significant performance degradation due to high mis-prediction penalty. For example, P4

and P4E processors take around 24 clock cycles and 45 micro-operations as mis-prediction

penalty [49]. Apparently, the processor cannot cancel an unnecessary micro-operation before

it has reached the retirement stage. This implies that if we have a lot of micro-operations

with long latency or poor throughput, then the mis-prediction penalty may be substantial.

Before we present an overview of branch predictor research, we discuss in the following some

preliminary concepts related to branch instructions.
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int	main	()	{			
			int					i,	j;		
			for	(i=0;	i<1000;	i++)	{				
							for	(j=0;	j<4;	j++)	{		
											c++;												
							}				
			}			
			return	c;
}

main:					
						leal				4(%esp),	%ec	 				;	function	overhead				
						andl				$-16,	%esp					
						pushl			-4(%ecx)						
						pushl			%ecx					
						xorl				%ecx,	%ecx	 	 ;	i	=	0	(%ecx)
.L2:							
						xorl				%edx,	%edx	 	 ;	j	=	0	(%edx)
.L3:					
						movl				c,	%eax	 	 	 ;	%eax	=	c		
						addl				$1,	%edx	 	 								;	j++							
						addl				$1,	%eax	 	 								;	%eax++				
						movl				%eax,	c	 	 	 ;	c	=	%eax				
						cmpl				$4,	%edx	 	 								;	if	j	<	4	then	goto	L3			
						jne					.L3	 	 	 ;	INNER	LOOP	BRANCH					
						addl				$1,	%ecx	 	 								;	i++					
						cmpl				$1000,	%ecx	 	 ;	if	i	<	1000	then	goto	L2		
						jne					.L2	 	 	 ;	OUTER	LOOP	BRANCH				
						movl				c,	%eax	 	 	 ;	return	c						
						popl				%ecx	 	 	 ;	function	overhead				
						leal				-4(%ecx),	%esp						
						ret

Figure 2.2: Source code of a C program and compiler generated assembly

2.2 Preliminary terms and concepts

Some fundamental concepts related to branch instructions are discussed below. Consider

the program fragment shown in Figure 2.2. The set of instructions shown in the X86

assembly language on the right are generated by the compiler as a result of the compilation

of the C code on the left. Consider a pipelined processor on which these instructions get

executed. The first 10 instructions do not pose any problem in smooth pipeline execution

since the successor instruction is uniquely defined (unless these are exceptions or interrupts).

However, for the instruction ”jne .L3”, the decision on which instruction to fetch next, is

difficult to take, unless the condition gets evaluated. This is where the branch predictor

steps in and attempts to predict the direction of a branch based on history of outcomes of

earlier branch instances. We discuss below some related concepts in this direction.

Definition 2.1 Local and global history

Some branches use only their own outcome history for prediction. This history is known

as local history. However, some branches use outcome history of other preceding branch



2.2. Preliminary terms and concepts 13

instances, this history is called as global history. �

Example 2.1 Consider the inner loop branch of the program shown in Figure 2.2. If the

loop test is performed at the end of the loop, it shows the history pattern as 1110 since the

loop branch is taken for the first 3 iterations, and not-taken the last time when the loop

exists. Hence, by knowing the outcome of this branch for last 3 iterations, the next outcome

is predicted. Hence, 1110 is the local history of this branch. When this loop is encountered

again in a subsequent iteration of the outer loop, the 1110 local history is used for the

prediction. The global history for this branch would include the outcomes of the other loop

instance as well, in addition to its own. �

We now present some classification metrics on branches.

Definition 2.2 Taken / not-taken branch

A branch is considered as a not-taken branch if it follows the normal sequence of program

execution, otherwise it is considered as a taken branch. �

As an example, if an instruction of the form if -else evaluates to the else path, it is consid-

ered as taken, while it is considered as not-taken if evaluated on the then path.

Example 2.2 Consider the 2 branches (inner and outer loop) of the program shown in

Figure 2.2. The inner loop branch is considered as taken for the first 3 times and as not-

taken for the 4th time in each execution of the outer loop branch. �

Definition 2.3 Biased / unbiased branch

Branches mostly evaluated towards one direction (taken / not taken) are called biased

branches. The preferred direction for such a branch is its bias. �
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Example 2.3 The inner loop branch of the program shown in Figure 2.2 is biased towards

the taken direction, hence is considered as a biased branch. �

Definition 2.4 Easy to predict / hard to predict branch

If a branch is predicted correctly most of the times by a branch predictor, then the branch is

considered as an easy to predict branch for the given predictor. A branch is considered as a

hard to predict branch, if most of the times the branch predictor predicts it incorrectly. �

2.3 Research overview on branch predictor design

In this section, we first present an overview of branch predictors in literature. We begin

with a classification of these predictors, depending on the state at which they operate. A

broad classification of branch predictor in shown in Figure 2.3 and discussed below.

Branch Predictor

Dynamic Predictor

Single-component Multi-component (Hybrid)

Static-Dynamic Hybrid PredictorStatic Predictor

Single- level Two- level

Figure 2.3: Predictor classification

2.3.1 Static Branch Prediction

In static branch prediction, the direction of a branch is assumed to be known at compile

time. The earliest static branch predictors use always taken, BTFN (backward taken,

forward not taken) strategies [105]. Another important static branch prediction policy uses
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profile information for prediction [122]. This technique runs a program with different input

sets, records the branch direction of every branch, and uses this information for further

prediction. Static prediction with value range propagation is also widely used [87]. In

[31], neural networks are used to perform static branch prediction. In this case, the likely

direction of a branch is predicted by extracting program features such as control-flow and

opcode information and supplying these features as input to a trained neural network. This

approach achieves almost 80% correct prediction in comparison to 75% for other static

heuristics [21][31].

2.3.2 Dynamic Branch Prediction

Modern processors mostly rely on dynamic branch prediction strategies, since they work

during execution by collecting run time information. These predictors accumulate data

during run-time or execution of an instruction. Since they consider the execution history of

branches, they are more likely to adapt to dynamic changes in branch behaviour. History

information is stored in special registers (Branch History Registers), and history tables. This

history can be either the previous outcomes of a particular branch instance (local history)

or the outcomes of preceding branch instances (global history). Branch History Register

or BHR is a n bit shift register which shifts in bits to represent the branch outcomes of

the most recent n branches (or the last n occurrences of the same branch). So in BHR a

1 is recorded if a branch is taken, otherwise a 0 is recorded. For a BHR of size n bits, at

most 2
n

different patterns can appear in this history register. For each of these 2
n

patterns,

there is a corresponding entry in the Pattern History Table (PHT) which is achieved by

using an indexing function as discussed later. Each PHT entry contains the branch result

for the last k times the same output of the indexing function appears. A two bit saturating

counter [75] is used to perform this operation. Local history is stored in the Local Branch

History Register (LBHR) and global history is stored in the Global Branch History Register
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(GBHR). A branch predictor works in the following two stages :

Fetch stage During the fetch stage, the branch predictor provides its prediction based

on the prediction information stored in its prediction tables. Generally, it uses history

information to access the prediction table. Each entry of the prediction table stores a

saturating counter whose Most Significant Bit (MSB) gives the final prediction. If the MSB

is 1, prediction for the branch direction is taken, otherwise it is considered as not-taken.

For prediction, branch prediction typically keeps track of the outcome history of each branch

based on the program paths that it encounters earlier. This is known as history information,

and is encoded and stored in some form in history tables for lookup when the same branch

is encountered again.

Retire stage The actual outcome of a branch is known when it retires. The branch pre-

dictor updates the history register and the contents of the prediction tables, more specifically

the state of the counter used for the prediction according to the actual outcome. If actual

outcome is taken, history register is left shifted and a 1 is inserted at the Least Signifi-

cant Bit (LSB) position, otherwise a 0 is inserted at LSB. Similarly, the counter value is

incremented by 1 if outcome is taken, otherwise it is decremented by 1.

However these history based predictions require hardware storage to save some past data

of branches and utilize that data for prediction of the branches [112][117]. Early predictors

used in dynamic branch prediction include a single level predictor consisting of a branch

history table that keeps a record for each branch whether the previous branches were taken

or not [105]. It comprises a table of saturating counters, where every counter tracks the past

directions. The concept of two level prediction technique that can improve the prediction

accuracy of a single level predictor is proposed in [119]. An active research in branch

prediction [42][78][82][84] done during 1990 to 2000 resulted in the design of complex branch
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predictors. After 2001, some sophisticated predictors are proposed to improve prediction

accuracy. Research on neural inspired prediction is introduced in [107][64][59][61]. The

GEometric History Length predictors proposed in [95] and the TAGE predictor and its

variants are proposed in [57][96][97][98][100]. A recent work involves the number of taken

branch instructions (NTB) branch predictor [37]. The NTB branch predictor utilizes two-

bit saturating counters in the pattern history table based on the information about the

number of taken-branches in the global branch history. It achieves high accuracy at no

additional hardware cost. In the discussion below, we present a little more detail on some

representative branch predictors.

2.3.2.1 Last Time Predictor

This predictor stores only the last branch outcome for every branch instruction and performs

prediction using that single bit of information [105]. It is actually a 1-bit state machine with

two different states 0 (not-taken) and 1 (taken) as shown in Figure 2.4. The state transitions

occur in response to a taken (T) or not-taken (NT) outcome resulting from the execution of

one or more branch instructions. When a branch instruction arrives, this predictor predicts

the branch outcome as T or NT depending on the current state of the state machine. If a

branch instruction generates branch outcomes like TTTTTTTTTTNNNNNNNNNN, this

predictor gives the correct prediction every time except the transition from T to N. This

predictor always mis-predicts the last iteration and the first iteration of a loop that can be

resolved with a bimodal branch predictor, which is explained in the following.

2.3.2.2 Bimodal Predictor

A bimodal predictor (also referred in literature as a saturating counter) is essentially a

state machine as shown in Figure 2.5. It has four different states 00 (strongly not-taken),
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Figure 2.4: Last Time branch predictor

Figure 2.5: Bimodal branch predictor

01 (weakly not-taken), 10 (weakly taken) and 11 (strongly taken) defined by the 2 bits as

shown in Figure 2.5. The counter transitions from one state to another in response to a

taken (T) or not-taken (NT) outcome resulting from the execution of one or more branch

instructions. Each bit of the two-bit counter plays a different role. The most significant

bit, called the direction bit is used to track the direction of branches. If the counter is in

state 01 or 00, the branch is predicted as NT. When it is in state 10 or 11, the prediction

is T. The least significant bit provides a hysteresis which prevents the direction bit from

immediately changing when a mis-prediction occurs.
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2.3.3 Two-Level Adaptive Branch Predictor

The Two-Level Adaptive Branch Predictor was proposed by Yeh and Patt in 1991 [119][118]

to make the predictions using two levels of branch history information. The first level stores

the history of the last n branches encountered. The second level is the branch behavior for

the last k occurrences of the same pattern of these n branches. Prediction is done on the

basis of branch behavior for the last k occurrences of the pattern. This predictor uses two

main data structures, the Branch History Register (BHR) and the Pattern History Table

(PHT), as shown in Figure 2.6. The information required for branch prediction is collected

at run-time by updating the contents of the history registers and the pattern history bits

in the entries of the pattern history table depending on the outcomes of the branches.

Figure 2.6: Architecture of the Two-Level Adaptive Branch Predictor

Variations of the Two-Level Adaptive Branch Predictor [34][46][78][119] have been proposed

in literature. These are based on different parameters as discussed in the following:

• In first level, the last n branches can mean any of the following :

– The actual last n branches encountered (GShare [78], GAg, GAp, GAs [119][120])

– The last n occurrences of the same branch (PAp, PAg, PAs [119][120])

– The last n occurrences of the branch from the same set (SAp, SAg, SAs [120])
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• Different indexing functions are used to index an entry of the PHT. For example the

indexing function can use any of the following :

– Only the content of BHR (GAg, PAg, PAp)

– The XOR of the branch address (available from the program counter PC) and

the BHR content (GShare)

– The concatenation of the low address bit and BHR (GAp) etc.

When a conditional branch is predicted, the content of the BHR is used as one of the

inputs of the indexing function to address the pattern history table. The pattern history

bits at that particular address in the PHT are then used for predicting the branch. After

a conditional branch is resolved (at a later stage in the pipeline when the actual branch

direction gets known exactly), the BHR is left shifted by one bit and the branch outcome

is recorded at the least significant bit position in the BHR. This new updated BHR is also

used to update the corresponding pattern history table entry by changing the current state

of the saturating counter. Some of the popular two-level predictors are discussed below.

GShare and GAg: GShare and GAg are the global history based branch predictors.

The GShare predictor [78] uses two main data structures - a Pattern History Table (PHT)

and a Branch History Register (BHR), as shown in Figure 2.7. In this predictor, BHR is

an n bit shift register that contains the branch outcomes of the most recent n branches.

For each of these BHR patterns, a corresponding PHT entry is selected by XOR-ing the

Program Counter (PC) value and the BHR content. Each PHT entry contains a two bit

saturating counter and the MSB of that counter gives the final prediction. After resolving

the branch condition, the states of the two bit counter and the BHR content are updated

according to the actual branch outcome. The GAg predictor [120] is almost similar to the

GShare predictor, the only difference is that it keeps the PHT indexed by the BHR value,

as shown in Figure 2.8.



2.3. Research overview on branch predictor design 21

Figure 2.7: GShare Predictor

Figure 2.8: GAg Predictor

GAp: GAp [35] is a combination of global BHRs with multiple per-address PHTs. In

GAp, each branch has its own PHT. The global BHR content is used to select the index in

a PHT whereas a PHT is selected by the branch instruction address.

PAp: PAp [35] is a popular local history based branch predictor. It is a combination

of multiple per-address BHRs with multiple per-address PHTs as shown in Figure 2.9. In
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PAp, each branch has its own BHR as well as its own PHT. The BHR content is used to

select the index in a PHT whereas a PHT is selected by the branch instruction address. For

this predictor, storage size depends on BHR size and per address PHT size.

Figure 2.9: PAp Predictor

2.3.4 Perceptron Predictor

It is well-understood, that the prediction accuracy can be increased with the preservation

of longer branch history. However, this is found to be an impossible proposition for large

programs with many branches. To address this issue, neural dynamic branch predictor is

introduced in [115]. This works proposes the use of learning vector quantization, which is

soon usurped by a series of works based on Perceptrons [65]. The perceptron predictor [64]

uses a simple neural network, the perceptron instead of the two-bit counters. Figure 2.10

shows a diagram of the internals of a perceptron predictor. It learns a target Boolean

function f(x1, x2, ..., xn) over the inputs that predicts whether a particular branch will be

taken or not. Here xis are the bits of a global branch history shift register. xis are bipolar,

-1 represents not taken and 1 represents the taken outcome. A perceptron is represented

as a vector of weights w0, w1, ..., wn. Here, the weights are signed integers. The output
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is calculated as the dot product of the weight vector w0, w1, ..., wn and the input vector

x0, x1, ..., xn (x0 provides the bias input and is always set to 1). The output y of a perceptron

is as below:

y = w0 +
∑n

i=1wi ∗ xi

The prediction algorithm requires computation of the sum of weights, which also results

in a serious disadvantage for Perceptron-based branch predictors. Even after using high-

speed arithmetic circuits, more than 4 cycles of latency is reported in [65]. To address this

concern, path-based neural branch predictor is introduced in [60]. In path-based neural

branch predictors, the branch scenario is considered to a greater extent, by accounting

for the path that leads up to the branch, instead of considering the branch address alone.

By considering the paths, the weight summation could be done before the actual branch

instruction is encountered. As a result, both high accuracy and lower latency compared

to [65] could be achieved.

Figure 2.10: Perceptron Model

A major weakness of perceptrons is their increased computational complexity when com-

pared with two-bit counters. However, it provides better prediction accuracy compared

to other popular predictors even at lower resource budget. In a perceptron predictor, the

best performance can be achieved by tuning the history length, the number of bits used to

represent the weights, and the threshold. A smaller predictor size affects the number of bits

of these three parameters, thereby degrading the prediction accuracy in turn.
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2.3.5 Neural-Inspired Geometric History Length Table-based Predictors

In parallel with the rapid development of neural branch predictors, a set of prediction

techniques that rely on separately tagged predictor tables showed slightly better accuracy

for the same hardware budget. A comparative study in [108] reports that a tag-based

predictor performs better when compared to an analog neural predictor.

∑ 

Figure 2.11: GEHL: GEometric History Length Predictor

The idea of separate predictor tables combined for branch prediction is in-depth analyzed

in [95] (represented graphically in Figure 2.11). The predictor features M distinct tables

Ti, where 0 ≤ i < M . The tables are indexed with hash functions of the branch address

and the global branch/path history and contains predictions as signed saturating counters.

The prediction is computed by reading a single counter C(i) from each predictor table Ti

and adding those like Neural predictors. The following equation provides the sum S.

S =
M

2
+

∑
0≤i<M

C(i) (2.1)

When S is positive or null, the branch is taken, otherwise not. The predictor update policy

is also inspired from the Neural predictor [95]. A key innovation in the table-based predictor
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is to index different tables using different history lengths, so as to capture the correlation

with long branch/path history. For example, a predictor with 8 tables will be indexed with

the lengths L(i) = αi−1×L(1). Considering table T0 to be indexed with branch address, and

with L(1) = 1 and α = 2, the rest of the tables are indexed with {2, 4, 8, 16, 32, 64, 128}.

This approach addresses the shortcoming due to less history lengths of earlier adaptive

predictor schemes. T0 could be a simple bimodal predictor, indexed by branch address.

2.3.6 TAgged GEometric (TAGE) History Length Branch Predictor

Figure 2.12: Architecture of the Two-Component TAGE Predictor

The GEHL scheme together with Perceptron-inspired update and prediction policy formed

this efficient branch prediction technique [97]. This technique has introduced additional

tagging in the predictor tables. The tagging is extremely useful to remove the aliasing effect

(when two paths are identified as the same) in tables indexed with short history lengths.

For tables indexed with long history lengths, tagging allows to keep a check on aliases and

thereby dynamically switches to the prediction with shorter/longer history lengths. This

TAGE predictor uses a base predictor P0 and a set of (partially) tagged components Pi,

as shown in Figure 2.12. The base predictor is a simple PC-indexed 2-bit counter which is
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used to provide the default prediction. The tagged predictor components Pi, 1 ≤ i ≤ M

are indexed using different history lengths that form a geometric series [95]. Each entry

of a tagged component contains a partial tag, an unsigned counter u and a signed counter

ctr with the sign providing the prediction. At prediction time, the base predictor and the

tagged components are accessed simultaneously. If no matching in the tagged component

is found, the base predictor is used to provide the default prediction.

2.3.7 L-TAGE Branch Predictor

L-TAGE was introduced in the realistic track of the 2nd Championship Branch Prediction

[97]. This is a combination of a TAGE predictor and a loop predictor. Default prediction is

provided by the TAGE predictor when the loop prediction has low confidence. The TAGE

predictor is storage-effective for realistic storage budgets whereas, with limited storage, the

loop predictor can capture some branch behaviors that are not captured by TAGE. This

predictor can be directly implemented in hardware as a multi-cycle overriding predictor

(discussed later) backing a fast single cycle predictor and achieves higher accuracy.

2.3.8 Multi-component branch Predictors

An important observation [35] [45] in predictor design literature has been the fact that differ-

ent predictors perform differently on different branches in terms of the misprediction metric,

in other words, branches which are ill-suited for a certain branch prediction policy often

have better performance when run with another predictor. A single predictor component,

therefore, may not be well suited for all branches in a program, thereby necessitating the

idea of multi-component branch prediction. Multicomponent hybrid predictors with multi-

ple predictor components, with varying algorithms, have been well studied in the literature,

with a number of design strategies, attempting to improve prediction accuracy and power



2.3. Research overview on branch predictor design 27

consumption [26] [29] [36] [53] [54] [83] [86]. Hybrid (multiple-scheme) branch predictors are

introduced in [36]. In this research, according to the branch mis-prediction rates, authors

classify branches into two different classes: single-directional branches and mixed directional

branches. Once that is done, they identify which class provides better prediction accuracy

for a given predictor data structure. According to this, predictors for different classes of

branches are selected. Some popular dynamically selected multi-component branch predic-

tors are discussed in the following subsections.

2.3.8.1 Tournament predictor

This predictor [69], maintains multiple predictor components at run-time, queries each

component for their prediction for each branch, and finally selects the best predictor to

use, based on past performance of these. Internally, these predictors use a choice predictor

component that maintains a running counter to keep track of each predictor’s performance

for each branch and overall, till that point, based on which, it decides whose prediction to

go forward with. Architectural details of a tournament predictor that combines local and

global predictor together is shown in Figure 2.13. The different components are described

in the following.

Predictor components We have two components here, a local and a global predictor

operating independently. The local predictor uses a Branch History Table (BHT) to store

the branch specific history patterns (branch outcomes). The Local Branch History register

(LBHR) corresponding to a branch stores a n-bit pattern corresponding to the last n out-

comes of the branch. The BHT is of size 2pXn. For a given branch, the BHT is indexed

by the last p bits of the branch address or the Program Counter (PC) value and the n-bit

LBHR value stored at that index is used to index the PHT. Each entry in the PHT stores

a 2-bit saturating counter value, the most significant bit of this counter value is taken as
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Figure 2.13: Tournament branch predictor

the predicted direction of a branch instance. Therefore, the size of the PHT is 2nX2 bits.

An identical PHT is used by the global predictor component, as shown in Figure 2.13. The

global predictor uses a m-bit Global Branch History Register (GBHR) to index its PHT.

The GBHR stores a running outcome history of the m previous branch instances. As ear-

lier, each PHT entry is a 2-bit saturating counter. When a branch is issued, the predictions

of the local and the global predictors are read from the corresponding indices of the PHT.

When a branch retires, the corresponding LBHR, GBHR and the 2-bit counter are updated

with the actual outcome to train the predictors for future prediction.

Choice Predictor To select between the local and the global predictions for a branch, a

choice predictor is used. The choice predictor is a choice pattern table of size 2mX2 bits,

indexed by the m bit GBHR. Each entry of this table stores a 2-bit counter whose MSB

determines the best predictor (either global or local) for every branch. If the counter state

is 00 or 01, the prediction from the global predictor is considered as the final prediction. If

the counter state is 10 or 11, the local prediction is taken as the final prediction. When the



2.3. Research overview on branch predictor design 29

branch outcome is known, and the predictions from the two predictors are different, this

counter is updated [69]. The counter state is decremented if the branch outcome matches

with the global prediction, otherwise it is incremented.

Alpha 21264 [69] is a two-component predictor that uses the tournament prediction policy

as discussed before. An architectural overview of Alpha 21264 is shown in Figure 2.14.

Figure 2.14: Architecture of Alpha 21264 Predictor

2.3.8.2 Overriding predictor

This predictor [67] [103] usually comprises of a combination of low response time (and

usually, less accurate) and high response time (and possibly more accurate) predictors.

These predictors typically start off with the prediction of a low response time predictor,

and override the decision, in case the prediction from the high response time and expected

to be more accurate component, differs from the former. This is done at execution time.
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2.3.8.3 Static-Dynamic Hybrid Predictor

An alternative implementation of this hybrid predictor using a two level selection for dy-

namic predictors is introduced in [35]. The work in [36] proposes another popular hybrid

prediction technique that combines static and dynamic predictors together. Static predic-

tors are selected to perform prediction for mostly single-directional biased branches and

dynamic predictors for the mixed directional branches. This predictor selection technique

is done statically based on previous simulation output. In addition to this static selec-

tion, authors have also applied a dynamic selection technique to select a dynamic predictor

among multiple dynamic predictors. They show that this static-dynamic predictor not only

improves the prediction accuracy but processor energy expenditure as well, since branch

predictors are not invoked at runtime corresponding to these static predictions. A variation

of static-dynamic hybrid predictor is implemented in [86] to reduce the effects of destructive

aliasing caused in a dynamic predictor when two branches with different branch behaviors

share the same entry. Authors propose to identify branches for which this aliasing does not

occur and use static prediction for them. Along with this, they suggest another new selection

method which selects the static prediction policy for all easy to predict and tough to predict

branches, since involvement of any dynamic predictor is redundant for these branches as the

nature of these branches are well known beforehand. Their work shows the improvements

gained in processor performance in terms of accuracy and energy expenditure.

2.4 Metrics for evaluating branch predictors

From the experiments reported in literature, we observe that different metrics have been

considered for efficient predictor design. In some domains, metrics like prediction accuracy,

mis-prediction per kilo instruction (MPKI), latency of execution, number of cycles etc.

are of extreme importance, while energy is a crucial element of concern for some other
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domains. Evidently, branch predictor design, in most of the cases, has tried to address one

of these metrics as the primary design goal, with suitable constraints, if any, on the rest. An

overview of related literature on branch prediction with respect to the objectives considered

in the design is summarized in Table 2.2. In [67], researchers have shown that a branch

predictor design optimized for accuracy can have a negative impact on overall instructions

per clock (IPC) when the wire delays or the clock rates increase. A cost effectiveness study

of different dynamic branch predictors is discussed in [120].

Researchers have extensively explored the role of a branch predictor considering the energy

/ performance tradeoff for processor design [85]. In [23], researchers have introduced a

power-aware branch prediction technique for high performance processors. They selectively

turn on and off some tables used in the combined branch predictor to reduce branch predic-

tion power dissipation. In [56], authors have shown that customized branch predictors can

be implemented by exploiting program behaviour repetition. Their approach can achieve a

significant amount of energy saving, while causing a minimal degradation of prediction accu-

racy and performance. Along with prediction accuracy and energy consumption of a branch

predictor, latency and storage requirement are two additional important performance pa-

rameters for branch predictor designs. Branch predictors are designed for fixed storage bud-

gets in all Championship Branch Prediction programs [32][33][51][58][62][63][66][80][89][102],

while latency aware branch predictors are designed in [59][67][103].

In [56], researchers propose the general principle of on-demand resource allocation for hy-

brid branch prediction using software to customize the predictor according to its resource

demands. This on-demand branch prediction, which they call adaptive branch prediction,

incurs two types of overhead: reconfiguration overhead and energy waste incurred by in-

creased mis-speculation due to weaker predictor configurations. To reduce such overhead,

they adopt a feedback-based approach. They divide an application into smaller units called

modules, characterize their branch prediction demand through profiling, and then instru-
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ment the application to dynamically reconfigure the predictor. The benefit they achieve

is twofold: first, since characterization and decision making take place off line, this ap-

proach incurs little runtime reconfiguration overhead and adds little to the processor design

complexity. Secondly, because of the module behaviors being repeated often, the hard-

ware receives accurate demand information, which leads to a highly efficient reduction of

operational complexity.

Another energy efficient branch prediction scheme has been introduced in a recent arti-

cle in [54]. They use profiling, bias measurement and delay region scheduling to find the

branches well suited for static prediction and perform static prediction instead of dynamic

prediction for them. They show that, with the combined use of these two methods, the

number of dynamic branch predictor accesses / updates are reduced by up to 62% which ul-

timately results in an average global processor power saving of 6.22% in a high-performance

embedded architecture. To save processor energy in hybrid prediction, an interesting re-

search is proposed in [83]. They introduce the idea of on-demand dynamic branch prediction

that uses compiler generated hints to identify those instructions that can be more accurately

predicted statically to eliminate unnecessary branch prediction unit lookups. They avoid

branch prediction unit table lookups and use static prediction for mostly biased branches

with high accuracy. This on-demand prediction technique enables 36% average energy sav-

ing in the fetch unit and 7% average energy saving in the core by combining dynamic and

static branch prediction together. The compiler, using profiling information, provides static

hints that enables the program to avoid dynamic predictions on highly-biased branches

(where the bias exceeds the accuracy of the dynamic predictor). They show that this leads

to 80% reduction in lookup events, and an average gain of 9 to 12% in energy-delay prod-

uct. [26] introduces another efficient static-dynamic hybrid predictor to save more energy

and die space. In their work, a new bias parameter is introduced as a mechanism for trading

off small amount of performance for saving die-space and energy.
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Another variation of the hybrid predictor named as poTAGE-SC is introduced in [81]. It

combines several TAGE based predictors using different forms of histories (local, global,

and frequency), a COLT inspired [74] prediction combiner and a statistical corrector (SC)

predictor [98][99] fed with various forms of branch histories together. In [101], MTAGE-SC

is proposed to improve the prediction accuracy of this poTAGE-SC. This improvement is

done in two ways, first, through incorporating new forms of branch histories, adding a new

TAGE component and incorporating other forms of histories in the statistical corrector

predictor and second, in conveying more information from the TAGE predictors stage to

the statistical corrector and to the final prediction computation stage. Results show, this

MTAGE-SC predictor achieves 2.575 MPKI, 4.7% lower than the poTAGE-SC predictor.

A new hybrid prediction approach that combines a static profile-based branch correlation

analyzer and a dynamic branch predictor is proposed in recent literature [110]. The static

profile-based branch correlation analyzer finds precise correlations between branches using

profiling and data dependency analysis and identifies all the branches that do not have any

impact on the worst case execution time of the task and then the dynamic predictor uses

the correlation information to make online predictions. Experimental results show that

this approach outperforms some of the state-of-the-art approaches. An overview of related

literature on branch prediction with respect to the objectives considered in the design is

summarized in Table 2.2.

In contrast to the existing literature on branch predictor design, the objective of this thesis

is to study predictors for low resource architectures. We explore some branch prediction

schemes existing in literature and attempt to tailor them to make them suitable at low

storage points. This gives us a unique novelty and standpoint that we illustrate in the

following chapters.



34 2. Background and Related Work

Existing Work References Metrics
Static prediction [105] [87] [122] [21] [31] Prediction accuracy

Dynamic prediction [112] [117] [42] [82] [78] [84] Prediction accuracy
energy consumption

State of the art prediction [57] [96] [97] [98] [100] Prediction accuracy
Neural branch prediction [64] [59] [61] [109] Prediction accuracy

Energy consumption
Single-level dynamic prediction [105] Prediction accuracy
Two-level dynamic prediction [118] [119] Prediction accuracy

Single-component dynamic prediction [118] [119] [64] [59] [61] [109] Prediction accuracy
[57] [96] [97] [98] [100]

Multi-component dynamic prediction [67] [103] [69] [98] [99] Prediction accuracy
Power aware branch prediction technique [23] [55] Energy consumption

Customized branch predictor [56] Prediction accuracy/energy tradeoff
Static-dynamic hybrid predictor [36] [26] [54] [86] [119] Prediction accuracy/energy tradeoff
On demand branch prediction [83] Energy-delay product

IPC focused Branch predictor design [67] [59] [103] Instruction per clock(IPC)
Branch predictor attacks [17] [16] [18] [47] [48] [111] Prediction accuracy

Table 2.2: Summary of metrics considered in branch predictor design

2.5 Overview of Architectural simulators used

Architectural simulators used in this work are discussed below.

2.5.1 Tejas Simulator

Tejas [11] is an open source, Java based multicore architectural simulator. It is highly

configurable i.e. number of cores, cache configurations, memory, prediction policy, etc. can

be configured in an XML file, which the simulator reads before execution. It translates the

emulated instructions to Virtual Instruction Set Architecture instructions and simulates

these unlike other simulators like SimpleScalar [9] and SESC [8]. This simulator can run

any software without the hassles of cross compilation. Firstly it emulates the x86 executable

with the PIN Tool [76]. At the end of each execution, it reports various statistics related to

cache utilization, branch prediction accuracy, energy expenditure, etc. Tejas provides two

types of pipeline: In-Order and Out-of-Order. Here, the In-Order pipeline is a standard five-

stage (Fetch, Decode, Execute, Memory, Write-back) pipeline architecture where branch
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prediction is performed in the decode stage and a mis-prediction results in a penalty of

further instruction fetches being stalled for a pre-determined number of cycles. We use the

In-Order pipeline architecture of this simulator in our experiments.

2.5.2 Gem5 Simulator

Gem5 [27] is a modular discrete event driven simulation platform. It can simulate user

specified programs where system services are provided by the simulator in the syscall emu-

lation mode and can also simulate a complete system i.e. an operating system in full system

mode. This simulator supports simultaneous multi-threading (SMT) mode where multiple

user specific programs can run simultaneously. In this SMT mode, each program is provided

a unique thread id with a round-robin scheduler as the default scheduler.

2.5.3 Championship Branch Prediction-2 (CBP-2)

CBP-2 provides an evaluation framework that includes a set of traces, and a driver that

reads traces and simulates the behavior of a branch predictor. The processor has a 14-stage,

4-wide pipeline. The trace set given in CBP-2 includes 40 traces which are classified into

5 categories as - CLIENT, INT (Integer), MM (Multimedia), SERVER and WS (Worksta-

tion). The driver reads a trace and calls the branch predictor through a standard interface.

The predictor can decide when and what predictions to provide to the driver. The driver

records whether the predictor is correct when the prediction is provided. For each branch,

a mis-prediction penalty value is calculated by the number of cycles that the fetch unit

was on the wrong path. After execution, it reports the performance statistics in terms of

Misprediction Penalty per Kilo Instructions (MPKI) for conditional and indirect branches.

In the following chapters, we present the contributions of this thesis in more detail.





Chapter 3

An efficient dynamic predictor

design using program evolution

The main contribution of this chapter is an energy efficient dynamic predictor design, uti-

lizing inputs and outcome histories from software version repositories. Dynamic predictors

make predictions based on dynamic information about the program under execution col-

lected at runtime. Since they consider the execution histories of branches, they are more

likely to adapt to dynamic changes in branch behaviour. However this improvement in

branch prediction accuracy comes at a cost. For most sophisticated processors, dynamic

predictors account for a significant share of the processor’s energy consumption [54]. A

number of research articles have reported a nice handshake of the predictors, whereby a

static predictor (working with the compiler), based on its analysis and profiling, can insert

taken / not-taken hint bits into branch instructions, which the dynamic branch predictor

at runtime can take help from, to decide the branch direction. In [54], Hicks et al. pro-

posed a mechanism to use these hint bits in improving the energy utilization of a processor.

The energy expenditure for the branch predictor is directly proportional to the number of

37
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accesses to the branch predictor. They used profiling and local delay regions to reduce the

number of calls to the branch predictor. This information was encoded as taken / not-taken

hint bits for the branch instructions and some calls to the branch predictor were avoided

for such branches, resulting in improved energy utilization.

The main observation driving our research presented in this work is the fact that in many

cases, the direction of a branch tends to be heavily biased to either the taken or not-taken

path resulting in a skewed distribution in contrast to being bimodal. In such cases, it is

better to prevent calls to the dynamic predictor and rather make fixed choices (taken / not-

taken) each time it is encountered. This choice has to be made maintaining the accuracy

of branch prediction. Hence, only those branches can be chosen, for which the accuracy of

the predictor is almost equal to or less than bias based prediction. We use this idea here

and extend this to different program versions, where we collect the profiling information

from an earlier program version from software repositories and explore how it can be used

for expediting the branch prediction for later versions.

Software archives and bug databases provide researchers with a wealth of information.

Over the past decade, researchers have come up with various interesting patterns and use

cases related to source code development and bug scenarios. Software evolution involves

addition, deletion and modification of functionality that the application provides. The

change may range from a simple bug fix patch to addition of a new feature. Software

evolution was introduced as early as in 1980 [73]. This work classified programs according

to their relationship with the environment in which they are executed and proposed laws

on program evolution based on quantitative studies on various systems. In a more recent

study, researchers [25] exploited graph topologies to better model software evolution and

constructed predictors for enhancing software development and maintenance by estimating

bug severity, prioritizing refactoring efforts, and predicting defect-prone releases. They

tested their methodology on various open source programs like Firefox, Eclipse, etc. In
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[22], researchers showed how a functionally correct software version, referred by them as

the ”Golden Implementation”, can serve as a reference model in software debugging. They

used dynamic slicing and weakest precondition methods to produce bug reports which point

to the location of fault precisely. In our work, we use weakest preconditions to bring out

differences in behaviour of program branches across two versions of a software. In [90]

a new approach, DARWIN, was proposed for debugging evolving programs. DARWIN

performs a dynamic symbolic execution along the execution of a given test input in two

programs. Thus, it is applicable for debugging a buggy implementation with respect to a

golden implementation. A study of change effect analysis over software versions, in an ideal

setting, computes all the differences that a change of a code in a program causes on every

element or statement of that program. This difference includes which program elements are

affected by that change and also how exactly their behavior in terms of frequency and states

have been affected. The work in [93] elaborates on this idea. This work describes change-

impact analysis and change testing. Building from the foundation of research in software

evolution, in this chapter, we analyze how branch behaviour changes across program versions

and apply our methodology to demonstrate the re-usability of predictions across versions.

In this work, we explore how the features of software evolution can possibly help us improve

branch prediction performance. As we witness from a number of software repositories, the

behaviour of a significant number of branches remains unchanged across program versions.

This motivates us to explore the idea of using branch outcome profiles from previous versions

of the software for enhancing static branch prediction for future versions. Given two versions

of a software, our analysis collects information about the unchanged parts of program code

and possibly easy to predict branches. This information is later used to aid branch prediction

for branches for the modified program version. This idea forms the core highlight of this

work and we provide experimental evidences to support our claims as well.

Static branch prediction through profiling has often been found to be quite useful in practice,
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given that the test suite for a production software is quite exhaustive and consists of test

inputs that can explore the different paths of the program. The process of profiling is time

consuming and as we observe here, can often be dispensed with, at least partially for later

program versions exploiting version change information. One can consider an incremental

process of accumulating branch profiling information. The efforts involved in generating a

branch profile through rigorous testing for the first version can be reused in the successive

versions, thereby eliminating the profiling overhead, at least partially for branches which

are expected to behave identically. This is the main motivation behind our work here.

Contributions of this work

• We study the effects of software evolution on different dynamic prediction strategies.

• We propose a selective dynamic prediction call strategy for a given program, based

on the branch profile information recorded from a previous version of the program.

• We perform experiments on open source benchmarks to show the benefits in all the

metrics for 4 different predictors used using our selective predictor call strategy.

The rest of the chapter is organized as follows: Section 3.1 demonstrates an example which

discusses the problem at hand. Section 3.2 elaborates the main methodology behind our

framework. Section 3.3 discusses the building blocks of our implementation. In Section 3.4,

we show the results obtained on benchmark code versions. Section 3.5 discusses about some

of the limitations of this work, while Section 3.6 concludes the chapter.
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1 void dodash(char delim, char *src, int i, char *dest,
int *j, int maxset) 
2 { 
3     while ((src[*i] != delim) && (src[*i] != ENDSTR))
4     { 
5         if (src[*i] == ESCAPE) {     /* Branch 1 */
6          ... 
7         } else 
8            if (src[*i] != DASH)      /* Branch 2 */
9               ... 
10           else if (*j <= 1 || src[*i + 1] == ENDSTR)
11               ...                   /* Branch 3 */
12           else if ((isalnum(src[*i  1])) && 
13                    (isalnum(src[*i + 1])) && 
14                    (src[*i  1] <= src[*i + 1])) 
15              ...                    /* Branch 4 */
16           else                      /* Branch 5 */
17              ... 
18     }        
19 } 
 
20 bool getccl(char *arg, int *i, char *pat, int *j) 
21 { 
22     if (arg[*i] == NEGATE) {       /* Branch 6 */
23        ... 
24     } else {                       /* Branch 7 */
25        ... 
26     }  
27     ... 
28     dodash(CCLEND, arg, i, pat, j, MAXPAT); 
29     ... 
30     return (arg[*i] == CCLEND); 
31 }   

                         (a)

1 void dodash(char delim, char *src, int i, char *dest,
int *j, int maxset) 
2 { 
3     while ((src[*i] != delim) && (src[*i] != ENDSTR))
4     { 

5         if (src[*i] != DASH)         /* Branch 2 */
6            ... 
7         else if (*j <= 1 || src[*i + 1] == ENDSTR) 
8            ...                       /* Branch 3 */
9         else if ((isalnum(src[*i  1])) &&   
10                 (isalnum(src[*i + 1])) && 
11                 (src[*i  1] <= src[*i + 1])) 
12            ...                      /* Branch 4 */
13        else                         /* Branch 5 */
14            ... 
15     }      
16 }  
 
17 bool getccl(char *arg, int *i, char *pat, int *j) 
18 { 
19     if (arg[*i] == NEGATE) {     /* Branch 6 */
20        ... 
21     } else {                     /* Branch 7 */
22        ... 
23     }  
24     ... 
25     dodash(CCLEND, arg, i, pat, j, MAXPAT); 
26     ... 
27     return (arg[*i] == CCLEND); 
28 } 

                           (b)

Figure 3.1: Source code of replace program, program version V1 (a) and V2 (b)

3.1 Motivating Example

In this section, we present an overview of our approach on a simple fragment based on the

replace code piece (replace.c) of the SIR benchmarks [10]. The replace program performs

string substitution. We consider two versions of the replace program, versions v1 and v2

from the distribution [10]. We refer to these two versions as V1 and V2 in the following

sections. Figure 3.1(a) and (b) show two functions, dodash and getccl, from the versions

V1 and V2. Across these two versions, the only change is the removal of Branch 1 in

the dodash function. Let us analyze the effect of this change on the following branches

and examine the branch conditions. To understand the effect of this change, it is not only

sufficient to examine the branch conditions, but also the preceding code logic that may

influence the evaluation of the branch condition. As we see here, as a result of this change,
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the other branches, previously in the else part of Branch 1, now are evaluated by default.

It can be observed that the consequence of this change is that branches 2, 3, 4 and 5 in the

dodash function in V2 now have different conditions on the preceding logic under which

they are evaluated in V1. This is formalized in the discussion later.

Additionally, in the getccl function, which invokes dodash, the statements following the

function call may be affected by the change in dodash. For example, the statement return

(arg[*i] == CCLEND) in getccl (line number : 27 of Figure 3.1(b)) is dependent on dodash

as the variable i may be modified inside dodash. This implies that the other functions,

which are dependent on this return statement, may also be affected. On the other hand, in

getccl, branches 6 and 7 are not affected by this code change.

A thorough analysis of these two versions of the replace program reveals that a considerable

number of branches are not affected by the modifications done within dodash. Hence, the

branch behaviour of all the unaffected branches of V2 will be the same as in V1 for the

same set of inputs. Therefore, it is possible to reuse the branch profile information from V1

as the predictions for the corresponding branches in V2. Additionally, the direction of some

branches tend to be heavily biased to either taken or not taken direction. The objective

of our work is to relinquish the branch predictor for all such unaffected biased branches in

V2 by inheriting the branch profile information from V1. In the next section we propose a

formal methodology to this end.

We now explain the working of our method with the help of V1 and V2. We run V1 and

record the branch outcome information for all the branches which are biased towards a

fixed direction (taken/not taken). We identify all the branches in V2 corresponding to the

biased branches in V1 and isolate the ones which are unaffected or affected less than a

threshold. For V2, we load that recorded branch profile information for all these branches

and during branch prediction of these branches, we relinquish the predictor by reusing this

branch profile information.
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3.2 Detailed Methodology

We now describe the overall methodology behind our framework. Our approach takes two

versions of a software and proceeds in three main steps.

• Step 1 : Branch profiling and biased branch identification.

• Step 2 : Branch mapping and candidate branch identification.

• Step 3 : Selective dynamic predictor invocation.

Below, we discuss each of these steps in detail.

3.2.1 Branch profiling and biased branch identification:

We run an architectural simulator on the first version and record the execution and predictor

statistics for each branch. From this information, we isolate branches which are biased

towards a particular direction - taken/ not-taken. Recall that a taken branch is one which

takes the else path. These branches are good candidates for our work. We present a couple

of definitions to formalize this.

1   int i1, i2, var, var2;   /* input variables */
2   if (i1 > 0)               /* Branch 1 */
3      x = f1(i1);
4    else                     /* Branch 2 */
5       x =  f2(i1);
6   y = f1(i2);     
7   if (x > y) {              /* Branch 3 */
8     ...   
9   }
  
10   var2 = var + 1;
11   if (var2 != var1) {     /* Branch 4 */
12    ...
13  }

Figure 3.2: Example program code snippet



44 3. An efficient dynamic predictor design using program evolution

Definition 3.1 Biased Branches: Branches mostly evaluated towards one direction

(taken / not taken) are called biased branches. The preferred direction for such a branch is

its bias. �

Example 3.1 Consider the code snippet in Figure 3.2. Branch 4 is always evaluated as

not taken for any input value of var and is biased towards one direction. �

Definition 3.2 Bias Hit Ratio: This is the ratio of a branch’s bias to the total number

of times it is executed. �

Example 3.2 In Figure 3.2, bias hit ratio for Branch 4 is 1, since it is executed as taken

every time. However, for Branches 1, 2 and 3, it depends on the executions. �

Definition 3.3 Prediction Hit Ratio: This is the ratio of the total number of correct

predictions for a branch to the total number of times the branch is executed. �

Example 3.3 Consider a scenario where the number of correct predictions for Branch 4

in Figure 3.2 is 900 and it is executed 1000 times. Hence the prediction Hit Ratio is 0.9. �

In our method, if the bias hit ratio of a branch in the first program version is more than

the prediction hit ratio, we select the branch as a candidate for the next version and follow

the steps discussed below. Branch 4 in Figure 3.2 is such a candidate since its bias hit ratio

(1) is more than its prediction hit ratio (0.9) when executed 1000 times with 900 correct

predictions. Bias Hit Ratio serves as a hint for the branch in the next version. All such

identified branches are passed on to the next step.
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3.2.2 Branch mapping and candidate branch identification:

We identify the extent to which the branches received from the first step have changed in

the evolved version, this is formally characterized in terms of the weakest precondition with

respect to the branch condition. If the change is below a certain threshold, we use that

branch and its outcome from the first version as the prediction for the evolved version. We

expect the dynamic predictor will utilize this hint while executing the evolved version and

dispense the dynamic predictor call on these. Our motivation in this work is to explore if

an evolution aware branch prediction strategy can be designed by comparing the weakest

preconditions of the corresponding branches across the two program versions. The predictor

tracks changes in the weakest preconditions and benefits from the evolution information.

We assume as earlier two versions of a given program, say V1 and V2. Between these two

versions, a lot may have changed at the source code level. Hence directly correlating the

branches in the two versions might be difficult. Again, even if a branch remains unchanged

i.e. its condition is unaltered, some conditions in the influencing cone of the branch condition

along the paths leading to this branch might have changed. Hence, we require a formal way

to characterize the influencing logic and map the branches in V1 to those in V2 without

compromising the accuracy of branch prediction. We formalize the characterization in terms

of the weakest precondition [14] of a branch condition. Before presenting our approach, we

present some formal definitions below.

Definition 3.4 Weakest Precondition (WP): For a given branch B with a branch con-

dition C, it is a disjunction of the path conditions [20] of paths leading to B. �

Essentially, this expression consists of program statements which either directly or indirectly

influence the evaluation of C. It may be noted that any set of inputs which satisfy the WP

leads to the branch condition being evaluated to true.
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Example 3.4 In Figure 3.2, WP for Branch 3 is computed as :

(x > y) ∧ (y = f1(i2)) ∧ (((i1 > 0) ∧ (x = f1(i1))
∨

(¬(i1 > 0) ∧ (x = f2(i1)))

It is evident that the condition evaluation for Branch 3 is influenced by the program state-

ments at line numbers 2, 3, 4, 5, 6 and 7. �

We now present an approach for computing the weakest precondition.

3.2.2.1 Weakest precondition (WP) computation

Weakest precondition of a given branch with branch condition c can be defined as follows.

Let π be a set of instructions 〈i1, . . . in〉 in program P , where in is our branch where c should

hold true. Inductively we calculate wp(in, c) = condn−1, then wp(in−1, condn−1) = condn−2

and so on. The weakest precondition of c along π is then the formula cond0 obtained when

we reach the beginning of the program.

We now elaborate on the WP computation method for each branch of a given program. It

is done recursively by computing the weakest precondition for every statement.

WP computation rules: Our WP computation algorithm is simple. We start from the

first branch of the program. For a branch, to compute the WP, we need to first set a

post-condition c, with respect to which the weakest precondition is to be computed. This is

straightforward in our case, we use the branch condition for which WP is being calculated

as the post-condition. For each statement instance stmt encountered during the backward

traversal, the algorithm updates the current WP Q as follows. Initially, Q = c.
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1. Data dependency (Assignment statement): For a statement stmt of the form x = e,

we use the following rule:

wp(x = e,Q) : Q[e/x]

This rule essentially substitutes e for all occurrences of variable x in the currently

computed WP Q.

2. Control dependency (branch statement): For a control statement stmt involving the

condition R, we use the rule:

wp(R,Q) : R∧Q

This rule essentially conjoins the control condition with the currently maintained WP.

This algorithm terminates when we reach the beginning of the program. The resultant WP,

Q, is reported as the final WP.

Example 3.5 The WPs are computed for both the programs V 1 and V 2 in Figure 3.1 (a)

and (b). Let us examine the application of the rules given above in computing the WP

for Branch 2 in example program V1 given in Figure 3.1(a), line number 8. Initially,

the WP is set as the post-condition src[∗i]! = DASH(branch condition of Branch 2) .

While traversing backward, we encounter statement 5 (¬(src[∗i] == ESCAPE) as a control

dependency. Therefore, Rule 2 above applies, and we have the updated WP as (src[∗i] 6=

DASH)∧¬ (src[∗i] == ESCAPE). Proceeding in this fashion, we compute the WP as :

(src[∗i] 6= DASH ) ∧ ¬(src[∗i] == ESCAPE ) ∧ (src[∗i] 6= delim) ∧(src[∗i] 6= ENDSTR) �
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3.2.2.2 Comparing program branches across program versions

We now proceed to discuss the methodology to identify the candidate branches in the evolved

version. We assume that the mapping of the branches (either at the source or the assembly

level) of version V1 to those in V2 is already available. A mapper performs a more detailed

analysis of these branches before the final mapping. The discussion below provides the

intelligence behind choosing a subset of those addresses in V1 which can be safely mapped

to their counterparts in V2 without compromising on branch prediction accuracy. To do

so, we first identify the possible scenarios to be considered for the two branch counterparts

in the two program versions. For each branch pair B1 in V1 and corresponding B2 in V2,

we consider the the following cases.

Case I: Branch Condition and WP unchanged:

This is the simplest and most common case, as seen in our experiments, for most branches.

The change across two program versions is quite small in comparison to the whole code

base. Hence for many branches there might not be any change in the branch condition as

well as the WP. In such a case, we can safely inherit the prediction data from the older

version, if available, and prevent the call to the branch predictor. For example, Branch 6 at

line number 19 in Figure 3.1(b) is not affected by the change between the replace versions.

As mentioned earlier, the only change between the versions is inside the dodash function.

This change does not influence the WP of Branch 6 since the dodash function is called after

Branch 6. In this case, we can reuse the profile of Branch 6 from V1 in V2.
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Case II: Branch Condition unchanged, WP changes:

This is a more complex situation. Here we have to determine whether the branch behaviour

will be affected and if it is, then to what extent. In this scenario, we compute the WP for

each branch condition first. Let us assume the WP for the branch in V1 is φ1 and that for

the corresponding branch in V2 is φ2. Then we consider the following cases:

• φ1 ⇒ φ2 : This means that φ2 is a weaker condition than φ1. In this case we can

reuse the predictions from V1 as whenever φ1 is true, φ2 will be true.

Example 3.6 The WP for Branch 2 in V1 is :

φ1 : (src[∗i] 6= DASH )∧¬(src[∗i] == ESCAPE )∧(src[∗i] 6= delim) ∧(src[∗i] 6= ENDSTR)

On the other hand, for V2, the WP for Branch 2 is :

φ2 : (src[∗i] 6= DASH ) ∧ (src[∗i] 6= delim) ∧(src[∗i] 6= ENDSTR)

Branch 2 is now missing one clause and hence has been weakened. Intuitively, this

means that Branch 2 will now evaluate to true on more input scenarios than before.

This also means that whenever φ1 is true, φ2 will be true. So the predictions for

Branch 2 in V1 will also be valid in V2, although the hit ratio might increase. �

• φ2 ⇒ φ1 : If φ2 is a stronger condition than φ1, for some cases when φ1 is true, φ2

will be false. Hence we may not be able to reuse the prediction information for this

as easily as in the previous case. In such a scenario, we might consider inheriting the

branch information based on some similarity index. In this work, we fix a threshold,

say T , which quantifies a percentage of similarity. If φ1 and φ2 have a similarity above

T , then we pass on the bias based branch prediction to the next level. This technique
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1 void dodash(char delim, char *src, int i, char *dest, 
int *j, int maxset) 
2 { 
3     while ((src[*i] != delim) && (src[*i] != ENDSTR)) 
4     { 
5         if (src[*i] == ESCAPE) {      /* Branch 1* /
6          ... 
7         } 
8     }
9     while (src[*i] != DASH)           /* Branch 2* /
10    {
11        if (*j <= 1 ) { 
12           if (src[*i + 1] == ENDSTR) /* Branch 3 */  
13              ...                   
14           else                       /* Branch 4 */
15              ... 
16        }
17         ...
18     }        
19  } 
                           
                  

(a)

1 void dodash(char delim, char *src, int i, char *dest, 
int *j, int maxset) 
2 { 
3     while ((src[*i] != delim) && (src[*i] != ENDSTR)) 
4     { 
5         if (src[*i] != DASH) {         /* Branch 1 * /
6             if (src[*i] == ESCAPE) {   /* Branch 2 * /
7          ... 
8         } 
9     }
10    while (src[*i] != delim)           /* Branch 3* /
11    {
12        if (maxset <= 1 ) { 
13           if (src[*i + 1] == ENDSTR)  /* Branch 4 */ 
14              ...                   
15           else                        /* Branch 5 */
16              ... 
17        }
18         ...
19    }        
20  } 

 (b)

Figure 3.3: Modified program code snippet of replace program

is based on the intuition that if the two weakest preconditions are mostly similar, then

it is highly probable that the branch in consideration still has the same bias and in

V2 it will have a behaviour that is similar to that in V1. We now need to decide on

how to measure the similarity of φ1 and φ2. Let

φ1 = Collection of clauses : (α1, α2, ..., αn) and

φ2 = Collection of clauses : (β1, β2, ..., βm)

Definition 3.5 Similarity Index: We define the similarity index of φ2 with respect

to φ1 as :

Number of satisfying valuations common to φ1 and φ2

Total number of satisfying valuations for φ2
�

Example 3.7 We calculate the similarity index for φ2 for the affected branch in V2.

If this is more than the chosen threshold T , then we allow the bias based prediction

to be re-applied in V2. In our experimentation a threshold of 70% worked well for us.

Consider the program fragments shown in Figure 3.3. Branch 1 in V1 corresponds to



3.2. Detailed Methodology 51

Branch 2 in V2. Weakest precondition of Branch 1 of V1 is :

φ1 : (src[∗i] == ESCAPE ) ∧ (src[∗i] 6= delim) ∧(src[∗i] 6= ENDSTR)

On the other hand, for V2, the WP for Branch 2 is :

φ2 : (src[∗i] ==ESCAPE ) ∧ (src[∗i] 6= DASH ) ∧ (src[∗i] 6= delim) ∧ (src[∗i] 6= ENDSTR)

So in φ1, one clause is missing and hence becomes weakened. This implies for some

cases when φ1 is true, φ2 may not be true. In this case we calculate the similarity

index for φ2 and decide accordingly. �

• (φ1 ; φ2)∧(φ2 ; φ1)∧(φ1∩φ2 6= Φ) : This implies that except the branch condition

no other similarity or relationship (weak/strong) exists between φ1 and φ2. This

scenario is much more difficult to analyze. Typically, this means there have been a

lot of changes in the logic preceding the branch which led to significant restructuring

and modifications. In this case as well, we fall back to the Similarity Index based

comparison, as discussed in the previous case.

Apart from the two cases discussed above, we do not reuse the prediction profile across

versions and allow the normal calls to the dynamic branch predictor. Specially, this corre-

sponds to cases where the branch condition changes (with the remaining WP changed or

unchanged). For these cases as well, we can adopt a similarity indexed based analysis. At

the end of this step, we isolate a subset from the set of branches identified in Step 1, as

candidate branches that have not undergone any/much changes. These are passed to the

the third step.



52 3. An efficient dynamic predictor design using program evolution

3.2.3 Selective dynamic predictor invocation :

From the previous two steps, we identify the candidate branches in the evolved program

version and their bias branch direction that can be used as hint bits. We propose to

relinquish the branch predictor for these identified branches and reuse the outcome profile

from the previous version as the prediction. This saves a lot of dynamic predictor calls and

possibly, compute cycles and energy. However, in case of a mis-prediction, we allow the

normal rollback to happen as usual. We compare our performance in terms of prediction

accuracy, time and energy consumption between the runs with and without relinquishing the

branch predictor for the candidate branches, and observe considerable benefits as explained

in Section 3.4.

3.3 Implementation

Figure 3.4: System Architecture

We now describe the implementation of our framework. The framework performs three

major steps described below:



3.3. Implementation 53

1. Branch Profile Generation: An architectural simulator, Tejas [77] is used to record

the branch behaviors for the software version V1 across multiple testcases.

2. Branch Mapper and Filter: Identifies the branches in V2 for which one can

actually use the bias based prediction as explained in the previous section and prevents

calls to the branch predictor.

3. Simulation using the bias based prediction: The software version V2 is run

using the results from the previous stage for four branch predictors - GShare, PAp,

TAGE and Tournament. For each, the prediction accuracy and energy improvement

is recorded and contrasted against a normal run (without bias information) for V2.

Figure 3.4 shows an architectural view of our proposed framework. In this framework,

we use the Tejas Simulator [77] and Frama-C [2] as discussed in Section2. The steps are

discussed in detail below.

3.3.1 Branch Profile Generation

This is the first stage of the framework. The older program version V1 is compiled into

an executable and run using Tejas. The simulator is modified to record the behavior of

each branch for different prediction strategies. In this work we consider 4 different branch

prediction strategies i.e. GShare [78], PAp[120], TAGE [97] and Tournament[70]. In each

run, for every individual branch we record the following : a) frequency of taken (condition

of the branch is evaluated as false), b) frequency of not-taken (condition of the branch is

evaluated as true) and c) bias hit ratio. We record these statistics for all the four predictors

used. Thus, for each branch, we have 3 tuples. Only for those branches for which the

bias hit ratio is more than or equal to the predictor hit ratio, across all test cases for the

program, the branch address and bias based prediction are saved for future stages. The

intuition behind this is that we do not intend to compromise on the accuracy of branch
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prediction of the processor and wish to save energy as increase in mis-predictions will result

in penalties and incur more delay and energy loss. It is to be noted that if for some branch,

the bias based prediction accuracy is more than or equal to the predictor accuracy for some

test cases and it is less for some other test cases, then those branches are ignored. Hence,

only branches having a consistent bias are carried over to the next stages.

3.3.2 Branch Mapper and Filter

The Branch Mapper takes the source code of the two program versions, the executables for

each and branch profile information from the previous stage. It then does the following:

Code Change Tracker: This module takes in the source code of the two software versions

and maps the unchanged portions of the code. Basically it computes the difference for

the two files and uses it to map the original source code lines to their location in the new

version. It is to be noted that we do not map the changed or added or deleted lines in the

new version. The reason behind this is that the behavior of the changed portion of the code,

especially the branches, might have changed and hence reusing the bias based prediction

for such branches might not be advantageous. At the end of this step we have a SourceMap

which contains the mapped lines from V1 to V2. This is done using a Python [7] script.

DumpReader: Next we use the executables for mapping each source line to its correspond-

ing assembly level branch address. A Linux utility objdump [6] can dump the assembly

code from the executable annotated with source code line numbers. A simple parser can

therefore read such a file and store the source line to branch address map. This has to be

done for V1 as well as V2. We create a Python script to perform this task as well.

Branch Mapper: The Branch Mapper forms the core of this framework. Its task is to

map the branch addresses from V1 to corresponding branch addresses in V2. A simple

mapper takes the SourceMap generated by the code change tracker module and the source



3.3. Implementation 55

to branch address map for both versions from the previous module and using it maps all

the branches in V1 to V2. Though simple, this method might suffer from a lot of excess

mis-predictions and hence extra energy expense. For instance, in the replace program in the

previous section, branch 2 in V1 (Figure 3.1(a), line number 8) will be mapped to branch 2

in V2 (Figure 3.1(b), line number 5) and hence the bias based prediction, if available, will

be reused for this. However, as discussed previously, the path condition for branch 2 in V1

has now been altered in V2. To augment the simple syntactic mapper as implemented in the

code change tracker, we have a new mapper module in Python. This mapper uses a more

formal methodology, as discussed in the previous section, to map the branches across two

versions, using WP change analysis. Since computing the number of satisfying valuations

for an arbitrary WP expression may be infeasible in practice, we approximated this with

the number of clauses common in the WPs between the program versions. For Boolean

and integer programs, this may be achieved using model counting [5], however, it is hard

in general. Our approximation does not hurt as well since we still allow rollback in case of

mis-prediction as usual.

3.3.3 Simulation using bias based prediction

The Branch Mapper gives as output the addresses and static predictions for those branches

of V2 which have not been affected by the software evolution or the extent of change is

below a given threshold, and making such predictions would not harm the accuracy of the

underlying branch prediction strategy. Next we need to reuse this information and use Tejas

to run V2 with these updates. We modify the source code of Tejas to be able to do this.

The simulator updates this information in an internal data structure during initialization

and calls the branch predictor only in case no hints are provided for a certain branch. This

decision is made in the decode unit of the pipeline. The mechanism discussed here puts

minimum load on the processor and tries to improve the energy efficiency and accuracy of
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branch prediction with minimum hardware support. Simulation is done for different branch

predictors as mentioned earlier. Each time Tejas is run, a simulation report is produced.

We obtain the energy and branch prediction statistics from this report.

3.4 Evaluation

We now report our experience in using our method on various benchmarks.

3.4.1 Experience with Siemens benchmarks

The Siemens benchmark is a set of C programs [10] widely used in the program analysis

community. Each program is associated with a set of faults and a set of test cases. We

use our framework on these benchmarks and record the results. We provide the results

on 6 Siemens benchmarks : replace, schedule, schedule2, printtokens, printtokens2 and

totinfo. Two versions for each program are obtained from V1 and V2 sub-folders in the

distribution. Lines of codes (LOC) and number of branches in V1 and V2 are shown in

Table 3.1. Percentage of unaffected branches in V2 are also listed in Table 3.1, which are

found in the Branch Mapper and Filter stages as described in Section 3.3. The branch

profile is obtained by running the V1 executable in the Tejas Simulator for 50 test cases

for each benchmark. As mentioned before, we only consider those branches for which the

bias based prediction accuracy is equal or more than the predictor accuracy for all the runs.

Branches which show any variation in their bias are removed from consideration. For these

benchmarks, we find that a majority of branches are heavily biased. This allows us to

apply our technique to most branches. For many branches, Frama-C is unable to compute

the weakest preconditions due to various limitations pointed out in Section 3.5. In spite

of these shortcomings, our results are quite encouraging as seen in Tables 3.2 and 3.3 for

all the different predictors. Table 3.2 shows the results for 6 benchmarks for the PAp and
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Programs LOC Number of branches % of unaffected
V1 V2 V1 V2 branches

replace 565 561 94 93 20
schedule 415 415 30 30 63
schedule2 311 311 41 42 47

totinfo 407 407 45 45 66
printtokens 727 726 40 39 50
printtokens2 564 571 78 80 20

Gzip 59547 60941 1636 1641 4

Table 3.1: Benchmark Detail

Programs LOC GShare PAp
Energy Prediction Accuracy(%) Energy Prediction Accuracy(%)

V2 V2’ V2 V2’ V2 V2’ V2 V2’
replace 565 55.9884 26.1664 61.1684 69.0722 55.9884 26.1664 69.0722 78.6942
schedule 415 43.4824 10.1972 46.0177 81.8584 43.4824 10.1972 59.292 72.5664
schedule2 311 119.6728 47.138 51.1254 60.9325 119.6728 47.138 60.1286 68.9711
totinfo 565 214.7184 45.214 51.2545 67.9211 214.7184 45.214 56.4516 72.8495

printtokens 727 801.5384 52.91 61.4978 94.4791 801.5384 52.91 85.6457 94.5271
printtokens2 564 962 395.1896 80.42 85.16 962 395.1896 82.28 83.48

Table 3.2: Energy Statistics and Prediction Accuracy for GShare and PAp

GShare predictors and Table 3.3 shows the same for the TAGE and Tournament Predictors.

V2 represents the second version when run solely with the predictor and V2’ represents the

same version when run with the biased based prediction. The column labeled as Energy

shows the dynamic energy expenditure measured by Tejas, given in Nanojoules. In all cases,

we obtain a significant reduction in energy and the prediction accuracy is enhanced as well.

This indicates that our Branch Mapping strategy improves system performance.

Programs LOC TAGE Tournament
Energy Prediction Accuracy(%) Energy Prediction Accuracy(%)

V2 V2’ V2 V2’ V2 V2’ V2 V2’
replace 565 55.9884 26.1664 50.1718 76.2887 55.9884 26.1664 68.0412 80.0687
schedule 415 43.4824 10.1972 50.885 78.7611 43.4824 10.1972 59.7345 72.1239
schedule2 311 119.6728 47.138 56.2701 61.8971 119.6728 47.138 60.4502 68.8103
totinfo 565 214.7184 45.214 65.233 73.2079 214.7184 45.214 60.8423 73.6559

printtokens 727 801.5384 52.91 88.4061 94.7672 801.5384 52.91 85.7657 94.5511
printtokens2 564 962 395.1896 81.14 85.16 962 395.1896 83.58 85.28

Table 3.3: Energy Statistics and Prediction Accuracy for TAGE and Tournament
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Predictor Energy Prediction Accuracy(%)
V2 V2’ V2 V2’

PAp 1426.646 646.2716 87.5927 87.7815
Gshare 1426.646 646.2716 78.8672 89.8314
TAGE 1426.646 646.2716 83.1962 88.6042

Tournament 1426.646 646.2716 87.8085 88.0243

Table 3.4: Results for Gzip

3.4.2 Experience with Gzip

We use our framework on Gzip versions 1.5 and 1.6 [3] for our experiments and apply our

methodology over it to test the scalability of our framework. Gzip version 1.5 contains 59547

LOC and 1.6 contains 60941 LOC. Since this is a multi file source repository, we apply the

code change tracker over all the files in the two repositories pairwise and recursively. Each

version has around 1600 branches as shown in Table 3.1. Due to limitations of Frama-C,

we are able to compute the weakest preconditions for 600 of these. Table 3.1 shows the

percentage of unaffected branches in Gzip-1.6. Table 3.4 shows that our method works

quite well in this case as well. The reduction in energy (nanojoules) is significant for Gzip

using our strategy. The branch profile obtained from Gzip-1.5 is applied to the simulation

of Gzip-1.6 using Tejas.

3.5 Discussion and limitations

Observing from our experiments, we can conclude that our method works quite well in

practice. We even manage to improve the accuracy of the branch predictors by our method

and energy expenditure is reduced as well. The Branch Mapper maps the branch addresses

very efficiently and in reasonable time. In this phase it is assumed that the source to

assembly mapping can be obtained from the executable itself. This requires the programs

to be compiled with the ”-g” option (debugging option). In large softwares, this might not
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be the default case and hence their build configurations may need to be changed.

Some branches (in the two versions) can be semantically same but their syntax may have

changed somehow. For example, the order of the conditions might have changed or multiple

conditions may have been split into multiple lines. Such changes make it more challenging

to map these branches at the source code level. Currently the code change tracker ignores

them and leaves them from consideration of the developer.

For computing the weakest precondition at the source code level, Frama-C poses some

problems while handling some specific programming controls which forced us to leave them.

For example, disjunction and function constraints had to be discarded.

3.6 Summary

In this work, we demonstrate how the branch profile of an older (preferably preceding)

software version can be reused for branch prediction of a future version. This reduces the

burden on the developer as now he does not need to profile the software from scratch every

time a new version is released, which is both time consuming and inefficient. We present a

formal methodology that can easily inherit the information from a previous software version

and make it usable for the next version. Experiments show that our technique produces

promising results. We also observe that in all the cases, the prediction accuracy is also

improved. This shows that there are indeed many branches which the predictor finds very

hard to predict and which are heavily biased as well. This phenomenon gives us as an extra

bonus in improving the accuracy of the predictor.





Chapter 4

A two-component dynamic

predictor design with shared

predictor tables

4.1 Introduction

In the previous chapter, we proposed a strategy to improve energy consumption by relin-

quishing the invocation to dynamic predictors for some branches of a given program, utiliz-

ing outcome histories from previous software versions. The motivation of this chapter is to

design a storage and energy efficient multi-component branch predictor, more specifically, a

two-component branch predictor, to achieve better performance than a single component, at

comparable storage. It is widely acknowledged that a single component predictor can cater

to branches of a specific type, however, for a program, in general, branches exhibit widely

varying characteristics, and history patterns, which may be difficult for a single predictor

to keep track of and learn from. Multi-component predictors, with predictor components,

61
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individually catering to history patterns of specific types, and employing suitable learning

schemes, have therefore been proposed in literature and adopted in the pipeline of most

modern commercial processors. The objective of this chapter is to explore the design of

a 2-component predictor, with a focus of limiting their combined storage footprint, while

enjoying the benefits of improved accuracy, due to the presence of the two components.

As discussed in Chapter 2, a classification of dynamic predictors is based on the information

they use about other branches for predicting a specific branch at run-time. A local predictor

uses history information only about the branch under consideration for its current predic-

tion, while a global history-based predictor takes into account the direction histories of the

preceding branches in addition to the present one while making a prediction for a specific

branch. Combination of a local and a global predictor have been shown to have more predic-

tion accuracy in contrast to any single component predictor [69]. However, these predictors

have a major drawback, they require more space than a single predictor. These predictors

have therefore not been able to make way into low storage processors.

In this work, we aim to propose a storage-efficient design for a two-component hybrid

predictor. We base our study on the design of one of the most popular two-component

hybrid predictors, namely, the Alpha 21264 [69], described in Chapter 2. This predictor

consists of a local and a global predictor component and uses a sophisticated tournament

prediction scheme to choose the final prediction between these predictors at run time. The

local and global components maintain separate Pattern History Tables (PHT) to store

prediction information, which is later used for predicting directions of future instances of

branch instructions. This ensures the predictors can operate in their individual spaces,

without interfering in predictions of each other.

Our first attempt towards a storage-efficient two-component predictor design is to exam-

ine if these local and global components can operate on a single prediction table. Indeed,

the structures of the tables are similar, hence sharing of a single table is possible. We
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Figure 4.1: Average MPKI of Non shared and Shared implementation

implement and simulate this shared table multi-component design on top of the popular

Championship Branch Prediction-2 (CBP-2) traces [33] to examine the performance dif-

ference in terms of prediction accuracy. Figure 4.1 presents the average Misprediction per

kilo instruction (MPKI) of the shared implementation and the non-shared one for some of

the CBP2 benchmark program categories [33]. In general, there is a decline in prediction

accuracy and increase in mis-prediction, when we move to a shared implementation from

the non-shared one. An in-depth analysis reveals that the cause is extensive interference

on the shared PHT on which both the local and global predictors work. The prediction

information of the global predictor stored in the PHT is at times, modified by the local

predictor, and vice-versa, leading to the interference, and therefore, accuracy degradation.

CBP-2 Program category Maximum number of PHT entries interfered
CLIENT 256

INT 205
MM 251

SERVER 254
WS 253

Table 4.1: Interference Statistics on CBP2

The main motivation behind our design proposed in this work is to resolve this interference

between the predictor components with minimum additional storage as compared to the

shared single-table implementation. The essential idea behind our design is to use an
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additional small storage to handle only the interfering entries. To fix the size of this, we

examine the indices of the PHT being interfered upon by both the components, and as

expected, the number of entries suffering from interference is quite less in comparison to

the total PHT size. Table 4.1 shows the maximum number of PHT entries that are victims

for some of the CBP-2 program categories. Our contributions are summarized below.

Contributions of this work

• We propose a two-component dynamic predictor design with a single shared PHT and

discuss the interference therein.

• As a solution to handling interference, we propose an additional de-aliasing cache to

specifically cater to the interfering indices, while the operation of the PHT remains

shared between predictors otherwise.

• We present a complete implementation of our proposal on top of CBP-2. Experimen-

tal results in Section 4.5 show that our proposed implementation can indeed boost

performance when compared to the shared table implementation. More importantly,

for some of the benchmarks, our design achieves comparable performance in terms of

prediction accuracy in comparison to the non shared implementation.

• Further, we present synthesis results produced using the Synopsys DC compiler and

TSMC 90 nm libraries to show the energy and area benefits of our design.

The rest of the chapter is organized as follows. Section 4.2 presents our two-component

predictor design with a shared PHT. Section 4.3 elaborates our architecture, while Section

4.4 discusses the overall principle. Section 4.5 presents the implementation details of our

proposed design, while in Section 4.6, we show results on the CBP-2 traces. Synthesis report

of the proposed design is discussed in Section 4.7 and Section 4.8 concludes this discussion.
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4.2 A two-component predictor with shared PHT

Figure 4.2: Two-component branch predictor with Shared PHT

The main motivation of this work is to design a two-component predictor with a shared

PHT. This predictor combines a local and a global predictor component together as shown

in Figure 4.2. The different components are described below.

4.2.1 Predictor components :

In this case, the local and the global predictor components operate independently. We con-

sider a design with a single PHT table, shared by both the local and the global predictors

as shown in Figure 4.2. The local predictor uses a Branch History Table (BHT) to store

the branch specific history patterns (branch outcomes). The Local Branch History register

(LBHR) corresponding to a branch stores a n-bit pattern corresponding to the last n out-

comes of the branch. The BHT is of size 2pXn. For a given branch, the BHT is indexed

by the last p bits of the branch address or the Program Counter (PC) value and the n-bit



66 4. A two-component dynamic predictor design with shared predictor tables

LBHR value stored at that index is used to index the shared PHT. Each entry in the shared

PHT stores a 2-bit saturating counter value, the most significant bit of this counter value is

taken as the predicted direction of a branch instance as discussed below. Therefore, the size

of the PHT is 2nX2 bits. The global predictor uses a n-bit Global Branch History Register

(GBHR) to index its PHT. The number of bits in LBHR should be equal to the number

of bits in GBHR. The GBHR stores a running outcome history of the n previous branch

instances. When a branch is issued, the predictions of the local and the global predictors

are read from the corresponding indices of the shared PHT. When a branch retires, the

corresponding LBHR, GBHR and the 2-bit counter are updated with the actual outcome

to train the predictors for future prediction. This shared PHT architecture results in in-

terference between the predictors, with both predictors sometimes accessing the same PHT

entry for different branch instances, and thereby modifying the predictions stored by one

another, leading to accuracy degradation. We discuss the interference in Example 4.1 to

motivate the addition of the cache.

Figure 4.3: 2-bit Saturating Counter
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2-bit Saturating Counter : The 2-bit saturating counter is considered as a finite state

machine for most of the dynamic branch predictor designs [119][118]. It has four different

states (00, 01, 10 and 11) defined by the 2 bits of it as shown in Figure 4.3. The counter

transitions from one state to another in response to a taken (T) or not-taken (NT) outcome

resulting from the execution of one or more branch instructions that are assigned to the

index value of the predictor. Each bit of the two-bit counter plays a different role. The

most significant bit, called the direction bit is used to track the direction of branches. If

the counter is in states 01 or 00, the branch is predicted as NT. When it is in states 10 or

11, the prediction is T. The least significant bit provides a hysteresis which prevents the

direction bit from immediately changing when a mis-prediction occurs.

4.2.2 Choice Predictor :

To select between the local and global predictions for a branch, a choice predictor is used.

The choice predictor is a choice pattern table of size 2mX2 bits, indexed by the m bit

GBHR. Each entry of this table stores a 2-bit counter whose MSB stores the decision of

the current best predictor (either global or local) for every branch. If the counter state is

00 or 01, the prediction from the global predictor is considered as the final prediction. If

the counter state is 10 or 11, the local prediction is taken as the final prediction. When the

branch outcome is known, and the predictions from the two predictors are different, this

counter is updated [69]. The counter state is decremented if the branch outcome matches

with the global prediction, otherwise it is incremented.

Example 4.1 Consider a design with a local BHT of size 210X12 and a shared PHT of

size 212X2. Here, BHT is indexed by the lower 10 bits of the branch address and the shared

PHT is indexed by a 12 bit GBHR and LBHR value. Figure 4.4 shows the assembly code

of a C program fragment. Let us assume for Branch 1, the local predictor is selected for the
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4009ae:					55																																								push												%rbp					
4009af:					48				89				e5																												mov													%rsp,%rbp%eax			
4009b5:					3b				45				fc																												cmp													-0x4(%rbp),%eax				
4009b8:					7e				04																																		jle													4009be	<fun+0x10>
4009ba:					83				45				f4				01																						addl												$0x1,-0xc(%rbp)					
4009be:					c7				45				f8				00				00				00				00				movl												$0x0,-0x8(%rbp)			
4009c5:					eb				08																																		jmp													4009cf		<fun+0x21>		
4009c7:					83				45				f4				0a																						addl												$0xa,-0xc(%rbp)				
4009cb:					83				45				f8				01																						addl												$0x1,-0x8(%rbp)						
4009cf:					83				7d				f8				09																						cmpl												$0x9,-0x8(%rbp)						
4009d3:					7e				f2																																		jle													4009c7	<fun+0x19>
4009d5:					b8				00				00				00				00																mov													$0x0,%eax

  Branch 1

 Branch 2

Figure 4.4: Assembly code snippet for branch instructions

final prediction, at retire stage it keep 01 as a 2-bit counter value in the shared PHT index

with a LBHR value- 100010111100. During the prediction of Branch 2, the global predictor

accesses the same PHT index with a GBHR value - 100010111100. In this case, the global

predictor will give the prediction according to the prediction information stored by the local

one (for Branch 1) which is not-taken. Now the current state of the 2-bit counter in the

choice predictor table at index 100010111100 is 01. The MSB of this counter selects the

global predictor for the final prediction for Branch 2. At retire stage, branch outcome is

known as taken, the global predictor increments the 2-bit counter value and it becomes 10.

Now the 2-bit counter state stored by the local predictor for Branch 1 is updated/changed

by the global predictor for another branch instance Branch 2. This is an inter predictor

interference caused due to sharing of the same PHT table by the two different predictors.�

In the following, we present our modified designs to resolve these interferences.

4.3 An improved design with PHT ownership information

and a dealiasing cache

For interference resolution, we propose to augment our design with the following.
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Final prediction
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Local prediction
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Branch address/
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GBHR/LBHR
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Figure 4.5: Our proposed architecture

• Ownership information inside PHT entries

• A dealiasing cache

We explain the detail in the following.

4.3.1 Shared PHT modification

The first task in enabling a shared PHT structure without interference between predictors

is to come up with an interference detection mechanism. To achieve this in our design,

each entry in the shared PHT is associated with an ownership bit, which holds the current

owner of the prediction. A predictor can access the prediction information at a particular

PHT entry only if it owns the prediction from a previous retire stage or nobody owns it.

Ownerships for all PHT entries are initially set to 0, thus the global predictor has the

ownership by default. However, this ownership can change as discussed later, our design

tries to ensure that whoever accesses the entry first, becomes the owner and that disallows

the other component from accessing the entry. This is in spirit of the first touch allocation
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policy [72] commonly used in Operating System Kernels [116]. If an owned entry is accessed

by a non-owning component, a side cache entry is created to serve the latter, so that both

the components can operate independently. This ensures all interferences are nullified. To

this effect, we modify the shared PHT structure to include an ownership bit (called WHO

bit as shown in Figure 4.5) for each PHT entry. Since we have 2 predictor components, a

single bit is sufficient to indicate which predictor stored the prediction information into this

entry last time. We adopt the following convention. If the WHO bit of a PHT entry is 0,

it indicates that the global predictor owns this entry, otherwise the local predictor is the

owner. The size of the shared PHT becomes 2nX3 bits (2n entries, each storing the WHO

bit and the 2-bit counter value) as shown in Figure 4.5.

We now describe the structure of the side cache, as shown in Figure 4.5.

4.3.2 A dealiasing side cache

The role of the side cache is to hold the prediction information of all PHT entries for which

interferences occur. In the side cache, each entry is associated with some PHT entry on

which an interference occurs. To this effect, whenever an entry is created in the side cache

(as discussed below), the corresponding PHT index (GBHR or LBHR) is stored as well.

To store the prediction information, each entry contains a 2-bit counter. Additionally, each

entry contains a valid bit to indicate whether this entry contains a valid PHT entry or

not. Initially, all entries are invalidated. In this case, if the width of GBHR and LBHR is

n-bits each, the size of each entry in this side cache is (n+3) bits (1 valid bit + n bits for

GBHR/LBHR + 2 bits for counter). For our purpose, we keep a small fully associative side

cache. In a fully associative cache, no index is needed since a cache block can go anywhere in

the cache. Each entry stores a tag value which is an unique identifier for each cache entry.

In our design, GBHR/LBHR is considered as the tag-bit. Every tag must be compared

when finding a block in the cache. If the tag matches, the MSB of the 2-bit counter stored
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in the side cache index gives the prediction information. We use the Least Recently Used

(LRU) [79] replacement policy to replace an entry in the side cache. In our experiments,

we present results with different cache sizes.

4.4 Overall working principle of our design

We now explain the overall working of the proposed design. In a pipeline, branch prediction

usually relates to two different pipeline stages, in addition to the stage where the condition

is evaluated:

• The fetch stage, when a predictor predicts the branch direction based on the history

information available, and

• The update stage when a branch retires, the actual branch outcome is known and all

history information are updated to train for future prediction.

In this work, we first propose a methodology that works on our proposed side cache im-

plementation and eliminates any interference that occurs on the shared PHT. A detailed

discussion on this methodology is as follows.

4.4.1 Elimination of all interferences (Methodology-1)

We describe the modifications in the fetch and retire stages.

Fetch Stage

When a branch instance is fetched, the two predictors are active simultaneously and access

the shared PHT to retrieve the predictions for a branch. Based on the current state of the
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choice counter stored in the Choice predictor (indexed by global BHR), the final prediction

is taken from one of them as discussed before (shown in Algorithm 1). The Choice predictor

is updated at the retire stage and discussed later.

ALGORITHM 1: Prediction at fetch cycle

1 begin
2 cindex = an index of the Choice predictor, calculated using GBHR
3 chCtr = 2-bit counter stored at cindex in the Choice predictor
4 gpred = prediction from the global predictor
5 lpred = prediction from the local predictor
6 pred = final prediction
7 if chCtr = 00 or chCtr = 01 then
8 pred = gPred
9 else

10 /*chCtr = 10 or chCtr = 11*/
11 pred = lP red

Accessing the prediction values for the predictors

We explain first the working of the global component. As discussed earlier, the shared PHT

stores a WHO bit for each entry to record which predictor updated this entry most recently.

Based on the current value of the WHO bit, the global prediction is taken. Algorithm 2

shows the detailed steps of extracting a global prediction. Initially all WHO bits are 0

and all 2-bit counters are initialized to 00. Hence, 0 as the WHO bit for a PHT entry is

interpreted to be one of the following situations:

• No predictor has accessed this PHT entry as yet

• The global predictor owns this entry, i.e. it recorded a value here in its last access

If a predictor finds an entry there with WHO bit 0, it takes the MSB of the current 2-

bit counter value as the global prediction. Since the 2-bit counter is initialized as 00, its
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MSB also gives the default prediction as not-taken. The detailed steps of how the predictor

components generate their predictions are shown in Figure 4.6 . In this flow diagram, steps

for the global predictor are shown with dashed lines that follow each step of Algorithm 2

as discussed below. The step numbers of Algorithm 2 are written within brackets.

• For a branch instance, the global predictor looks up the corresponding gindex (gindex

= GBHR) entry of the shared PHT (Steps 5 and 6).

• If it finds an entry there with WHO bit 0, it takes the MSB of the current 2-bit

counter value as the global prediction gPred (Steps 7 and 8).

• If the WHO bit of this particular PHT entry is 1, it indicates that this is owned by

the local component (Step 9). In such a case, the global component looks up all the

entries of the side cache whose VALID bits are 1 with the same gindex (Steps 9 and

10) to check for a valid match. The side cache being content addressable, this search

is quite efficient.

• If an entry is found in the side cache, the MSB of the 2-bit counter stored in that

entry is considered as the global prediction (Steps 11 and 12),

• If no entry is found in the side cache, 00 is taken as the prediction (Step 14) for the

global component.

A similar activity is carried out for the local predictor as well, except that in this case, the

shared PHT is accessed with the LBHR and the side cache is looked up when the WHO

bit is 0. The working methodology of the local predictor is described in Algorithm 3 and

the overall flow is described in Figure 4.6. The solid lines of this flow diagram represent the

detailed steps of Algorithm 3.
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ALGORITHM 2: global Prediction at fetch cycle

1 begin
2 T : Shared PHT
3 Side cache : S
4 GBHR : Global BHR
5 gindex = an index of the shared PHT table (T)/* gindex is calculated using the

indexing function of the global predictor (GBHR) */
6 Access the T [gindex] entry and find the WHO bit stored in that entry.
7 if WHO = 0 then
8 gpred = MSB of the T [gindex].2BitCounter
9 else

10 Search the side cache (S) for GBHR
11 if Side cache entry available for that GBHR with V ALID = 1 at sindex then
12 gpred = MSB of S[sindex].2BitCounter
13 else
14 gPred = 0. /*side cache entry not present, take default as not-taken */
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Figure 4.6: Steps for predictions at fetch stage

Branch retire and update stage

Creation of an entry in the side cache and updation of prediction information occur at the

branch retire stage, when the outcome of the branch is known. The predictions from the



4.4. Overall working principle of our design 75

ALGORITHM 3: Local Prediction at fetch cycle

1 begin
2 L1 : local BHT
3 T : Shared PHT
4 Side cache : S
5 Addr = Lower 10 bits of PC
6 LBHR = L1[Addr] /*Local BHR */
7 lindex = LBHR
8 Access T [lindex] entry and find the WHO bit stored in that entry.
9 if WHO = 1 then

10 lpred = MSB of the T [lindex].2BitCounter
11 else
12 /* WHO = 0*/
13 if T [lindex].2BitCounter = 00 then
14 lpred = MSB of T [lindex].2BitCounter /* No predictor has accessed this

entry before */
15 else
16 Search S for LBHR
17 if Side cache entry available for that LBHR at sindex with V ALID = 1

then
18 lpred = MSB of S[sindex].2BitCounter
19 else
20 lP red = 0. /*side cache entry not present, take default as not-taken*/

global prediction gpred and local predictor lpred are known previously from the fetch stage.

The state of the choice counter stored in the Choice predictor (indexed by global BHR)

indicates the predictor chosen for the final prediction in the corresponding fetch stage and

the corresponding update method is called. The working steps of the Choice predictor

are described in Algorithm 4, the corresponding flow is shown in Figure 4.7 and discussed

below. The numbers written within brackets represent the line numbers of Algorithm 4.

• The state of the choice counter is checked. If that state is 00 or 01 (Step 7), the global

predictor gave the final prediction and the corresponding update method (Algorithm

5) is invoked (Step 8).

• If this state is 10 or 11, the local predictor gave the final prediction for the branch
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and the corresponding update method (Algorithm 6) is invoked (Step 10).

• The state of the choice counter is updated if and only if the predictions provided by

the two predictors are different (Step 11).

• The state of the choice counter is decremented if the actual branch outcome is same

as gpred (Steps 12 and 13), and incremented if the actual branch outcome is same as

lpred (Steps 14 and 15).

00/01
?

yes

No

Prediction taken from
global predictor

(gpred)

Prediction taken from
local predictor

(lpred)

gpred=lpred
?

outcome
=gpred?

Decrement choice
predictor

Increment choice
predictor

yesNo

No

Comparator

Choice
Predictor

Figure 4.7: Steps for the Choice predictor

Cache entry creation and PHT / cache update

Algorithm 5 describes the steps to update the shared PHT entry / cache entry associated

with the global predictor. The overall flow of this predictor corresponding to line numbers

shown in Algorithm 5 is shown in Figure 4.8 using dashed lines and discussed below. Con-

sider gindex as the index of the shared PHT for the global predictor. The numbers inside

brackets represent line numbers of Algorithm 5.

• With the gindex, the shared PHT is accessed (Step 2).

• If the WHO bit of the accessed PHT entry is 0 (Step 3), the 2-bit counter of the entry

is now updated according to the branch outcome (Step 4). If the branch outcome is



4.4. Overall working principle of our design 77

ALGORITHM 4: Updation at retire stage

1 begin
2 cindex = an index of the Choice predictor, calculated using GBHR
3 chCtr = 2-bit counter stored at cindex in the Choice predictor
4 gpred = prediction from the global predictor from fetch stage
5 lpred = prediction from the local predictor from fetch stage
6 actual = actual branch outcome resolved at retire stage
7 if chCtr = 00 or chCtr = 01 then
8 update using Algorithm 5 - ”Side cache entry creation and global Update

retire stage”
9 else

10 update using Algorithm 6 - ”Side cache entry creation and local Update retire
stage”

11 if gpred 6= lpred then
12 if gpred = actual then
13 Decrement chCtr
14 else
15 Increment chCtr

taken, the 2-bit counter value is incremented, otherwise it is decremented as shown in

Figure 4.8 (c).

• If the WHO bit at this entry is 1 (Step 5), the side cache is searched with the GBHR

pattern (Step 6).

• If a valid entry is found for that GBHR, we update the 2-bit counter value stored in

that entry according to the branch outcome (Step 8).

• If no valid entry is found in the cache for that GBHR, an empty location is searched

for in the cache to store the prediction information for the global predictor (since local

predictor stored the prediction information in the shared PHT) (Step 10). The overall

flow of this step is shown in Figure 4.8 (b) and discussed below.

– If an empty entry is found (Step 11), we first mark the VALID bit of that entry

as 1 (Step 12), insert the GBHR (Step 13), initialize the 2-bit counter stored as
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Figure 4.8: Steps for Cache entry creation and PHT / cache update

00 there (Step 14) and finally update the 2-bit counter value according to the

branch outcome (Step 15).

– If no empty entry is found indicating that the side cache is full, replacement of an

existing valid entry is needed. Replacement can be done using any replacement

policies like LRU, FIFO etc (Step 17). After replacement of an entry, the GBHR

(Step 18) and the default value 00 of the 2-bit counter are inserted into that

entry (Step 19). After that, the 2-bit counter is updated according to the branch

outcome (Step 20).
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• Finally, the GBHR is updated according to the actual branch outcome (Step 21).

ALGORITHM 5: Side cache entry creation and global updation at retire stage

1 begin
2 Find PHT entry T with GBHR
3 if WHO bit of T is 0 then
4 Update 2-bit counter of PHT entry with actual outcome
5 else
6 Search the side cache (S) for GBHR
7 if side cache entry S available for that GBHR with V ALID = 1 then
8 Update 2-bit counter of S with the actual outcome
9 else

10 Search for an empty location /*side cache entry for that GBHR is not
present, Insert new entry in side cache*/

11 if An empty entry E is found then
12 Set V ALID bit of E as 1
13 Insert GBHR at E
14 Initialize 2-bit counter of E as 00
15 Update 2-bit counter of E with the actual outcome

16 else
17 Replace an entry R
18 Insert GBHR at R
19 Initialize 2-bit counter of R as 00
20 Update 2-bit counter of R with the actual outcome

21 GBHR is updated according to the actual branch outcome

A similar activity is carried out for the local component, as described in Algorithm 6 except

for the following: a) the PHT is indexed with the LBHR, b) the side cache creation or

update is done when the WHO bit of the particular PHT entry is 0 and c) both the GBHR

and the LBHR are updated with the actual outcome when a branch retires. In this case,

GBHR update is needed since the Choice predictor works on the GBHR. Additionally, if

the local component finds that the WHO bit of the PHT entry is 0 and the prediction

stored therein is 00 (either due to initialization or as stored by the global component), we

transfer ownership to the local component by setting the WHO bit of the PHT entry as

1. This does not harm the global component even though it might have stored 00 in this
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PHT entry, since when it returns with the same PHT entry and finds the WHO bit as set,

it does not get a side cache entry and hence, restarts with the default prediction as 00.

The detailed flow diagram is shown in Figure 4.8 (solid lines), the numbers correspond to

the line numbers shown in Algorithm 6. Example 4.2 shows how the first touch allocation

policy works on our shared PHT design.

ALGORITHM 6: Side cache entry creation and local updation at retire stage

1 begin
2 Find PHT entry T with LBHR
3 if WHO bit of T is 1 then
4 Update 2-bit counter of PHT entry with actual outcome
5 else
6 if T [lindex].2BitCounter = 00 then
7 /* No predictor uses this location, transfer ownership to Local */
8 Update 2-bit counter of PHT entry with actual outcome
9 T [lindex].WHO = 1

10 else
11 Search the side cache (S) for LBHR
12 if Side cache entry S available for that LBHR with V ALID = 1 then
13 Update 2-bit counter of S with the actual outcome
14 else
15 Search for an empty location /*side cache entry for that LBHR is not

present, Insert new entry in side cache*/
16 if An empty entry E is found then
17 Set V ALID bit of E as 1
18 Insert LBHR at E
19 Initialize 2-bit counter of E as 00
20 Update 2-bit counter of E with the actual outcome

21 else
22 Replace an entry R
23 Insert LBHR at R
24 Initialize 2-bit counter of R as 00

25 LBHR is updated according to the actual branch outcome

Example 4.2 We revisit Example 4.1 where interference occurred since the local and the

global predictor accessed the same shared PHT index for Branch 1 and 2 respectively. In
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our methodology, an extra WHO bit is stored in each entry of the shared PHT to indicate

the predictor ownership. We now explain the working of our method. �

Final prediction = global
prediction
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Figure 4.9: Fetch and Retire stage of Branch 1
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Figure 4.10: Fetch and Retire stage of Branch 2

Fetch stage of Branch 1 : We present a detailed walk through of the fetch stage. We

begin with Branch 1. Let us assume the local predictor searches the shared PHT with a

LBHR 100010111100. The WHO bit stored at this entry is 1, hence the local prediction will
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be taken from the MSB of the 2-bit counter stored in it. Now the 2-bit counter value stored

in it is 01, hence the local prediction for Branch 1 is not-taken. Further assume for the same

branch, the global predictor is called with the GBHR value - 100010100011. The WHO bit

stored at the shared PHT index - 100010100011 is 1, hence the side cache entry is searched

with the GBHR. In this design, the side cache is fully associative and each entry stores a

VALID bit, a BHR (GBHR/LBHR) as tag bit and a 2-bit counter. But no valid side cache

entry is found whose BHR field matches with 100010100011. Hence, the default prediction

(00) is taken as the global prediction. MSB of the 2-bit counter stored in the choice predictor

table at index 100010100011 selects the global predictor for the final prediction. Hence, the

final prediction for Branch 1 is not-taken. Figure 4.9 shows the fetch stage of Branch 1.

Fetch stage of Branch 2 : For Branch 2, the local predictor accesses the BHT with the

lower 10 bits of the branch address. Let us assume that the LBHR stored at this entry is

100000100111 and the shared PHT at index 100000100111 is accessed by the local predictor.

The WHO bit at this shared PHT entry is 1, hence the local prediction is taken from this

entry as shown in Figure 4.10. The global predictor accesses the shared PHT index with the

GBHR value 100010111100 and finds WHO bit at this entry as 1 which indicates that this

entry is owned by the local predictor. Hence, the global predictor searches the side cache

entry with the GBHR. Let us assume that it finds a valid entry stored earlier, as shown in

Figure 4.10. The MSB of the counter value gives the prediction for the Branch 2 as taken.

The state of the choice predictor at index 100000100111 is 01, which implies that the final

prediction will be taken from the global predictor.

Retire and update stage of Branch 1 : Let us assume that the branch outcome of

Branch 1 is resolved as not-taken. For this branch, the global predictor was selected for the

final prediction. During prediction, no side cache entry was available for the GBHR value

- 100010100011, hence default prediction was taken. Now an empty entry is searched in
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the side cache to store the prediction information for the global predictor and it is found as

shown in Figure 4.10. In that entry, VALID bit is kept as 1, GBHR value - 100010100011

is kept as BHR and 00 is kept as the 2-bit counter value since branch outcome is not-taken.

In this case, choice predictor updation is not needed since both the local and the global

predictions have the same prediction, as explained earlier.

Retire and update stage of Branch 2 : The global predictor was selected for the final

prediction and the final prediction was taken from a valid side cache entry as in Figure

4.10. Now the branch outcome is resolved as taken, hence the 2-bit counter value stored at

this cache entry is incremented by 1. Since the local and global predictions are different and

branch outcome is same as the global prediction, the 2-bit counter value stored at the choice

predictor table index 100010111100 is decremented by 1 as shown in Figure 4.10. �

The methodology described in this section creates a side cache entry whenever an inter-

ference occurs on a PHT entry, so that the two predictors can keep their own data in

separate locations (PHT or cache). Thus, all instances of PHT interference are eliminated

and as expected, there is an improvement in prediction accuracy, over the shared PHT

two-component design. In the following, we describe two optimizations on top of this.

4.4.2 Eliminating negative interferences only and allowing positive ones

(Methodology-2)

We analyse the interference a little more closely. We classify inter-predictor interference

into two different types: positive interference and negative interference as defined below.

Definition 4.1 Positive and Negative Interference

An instance of positive interference for a shared PHT entry occurs when the prediction
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given by the current predictor and the state of the 2-bit counter stored at that shared PHT

entry by the other component owning the entry are aligned in the same direction (either

both taken or both not taken). A negative interference occurs when they are not aligned in

the same direction. �

Example 4.3 Consider that the branch direction predicted by the current predictor is taken

and the 2-bit counter stored by the other predictor owning the entry at a particular PHT

entry is 10 or 11. In this case, a positive interference occurs. A negative interference occurs

when the branch direction predicted by the other component is taken and the 2-bit counter

stored by the owning component at that particular PHT entry is 00 or 01. �

In this methodology, we avoid creation of an additional side cache entry for instance of

positive interference and allow both the components to operate on the same PHT entry. In

the previous method outlined in Subsection 4.4.1, we disallow any interference, hence the

benefit of positive interference is lost as well. We now propose another methodology that

eliminates only negative interferences and allows the components to work on the same PHT

entry as long as their predictions match. In such a case, a lesser number of cache entries are

expected to be created. We now describe the modifications needed in the fetch and retire

stages to incorporate this enhancement.

Fetch Stage

For a branch instance, in the fetch stage, when the global predictor is invoked for prediction

and the WHO bit of the corresponding PHT entry is 1, the side cache is looked up. If

a valid side cache entry is available for that PHT index, the MSB of the 2-bit counter

stored in the entry gives the prediction. If no valid side cache entry is available for that

PHT index, it indicates either no interference occurred till that point or only instances



4.4. Overall working principle of our design 85

of positive interference occurred between the components for that entry. At the time of

positive interference, the 2-bit counter of the PHT index was updated. Hence, to get the

benefit of the positive interference, the MSB of the 2-bit counter stored at that PHT index

is taken as the global prediction. Similarly, the 2-bit counter of the shared PHT gives the

local prediction if the WHO bit of that entry is 0 and no side cache entry is available for

that entry.

Branch retire and update stage

The methodologies for creating an entry in the side cache and corresponding prediction

information update for a branch instance are different as compared to the previous method-

ology outlined in Subsection 4.4.1 for both the global and the local predictor components.

If the current state of the choice counter stored in the Choice predictor (indexed by global

BHR) is 00 or 01, the global predictor was selected for final prediction and the correspond-

ing update method is invoked as shown in Algorithm 7. If this state is 10 or 11, the local

predictor was selected for final prediction for that branch and the corresponding update

method is invoked. The Choice Predictor update is similar as in the earlier case.

Global predictor and side cache updation

Let us first examine the action taken for the global component in the retire stage. As

earlier, if the WHO bit of the corresponding entry is 0, the shared PHT is looked up with

the GBHR, and the action is exactly as outlined in the first case. However, if the WHO

bit is 1, it indicates that the global component does not own the entry and there is an

interference. This interference can be positive or negative. We first check for a valid side

cache entry for the GBHR. If found, we update the 2-bit counter of that entry according

to the actual branch outcome. If the side cache entry for this GBHR is not available, we
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check for the interference type. We create a new side cache entry only if the interference is

negative. To create a new side cache entry, as earlier, we first check for an available side

cache entry. If the cache is full, we use a replacement policy as discussed. The new side

cache entry is updated with the GBHR, default value of the 2-bit counter (00) and 1 as

the VALID bit. Finally, the GBHR is updated according to the actual branch outcome.

The detailed steps are shown in Algorithm 7. For the local component, the methodology is

similar as in Algorithm 7) except for the following: a) the PHT is indexed with the LBHR,

and b) the side cache creation / update is done when the WHO bit of the particular PHT

entry is 0 and c) both the GBHR and LBHR entries are updated with the actual outcome

when a branch retires.

Example 4.4 In the previous example, for Branch 1, the global predictor searched the side

cache since the WHO bit stored at that shared PHT index was 1 and a default prediction

was taken as the global prediction since the side cache entry was not available. Now in

Methodology 2, side cache lookup is not needed for the global predictor. The MSB of the

2-bit counter stored at that entry gives the global prediction. At the retire stage, branch

outcome is not-taken and it is aligned to the 2-bit counter value stored at this entry, hence

no side cache entry is created to store the prediction information for the global predictor. �

4.4.3 A further optimization (Methodology-3)

We now propose another optimization that can lead to further consolidation of the side cache

entries, and allow the predictors to benefit from each other, even though their predictions are

in separate locations. In our previous scheme, at the retire stage, the 2-bit counter of only

one entry (either the PHT or the cache) corresponding to the component that was chosen

for final prediction is updated according to the actual branch outcome. As an example, if

the global predictor was chosen for the final prediction from the side cache entry in the fetch
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ALGORITHM 7: Side cache entry creation and global updation at the retire stage

1 begin
2 Find PHT entry T with GBHR
3 if WHO bit of T is 0 then
4 Update 2-bit counter of PHT entry with actual outcome

5 if WHO bit of T is 1 then
6 /* search the side cache (S) for GBHR */
7 if side cache entry S available for that GBHR then
8 Update 2-bit counter of S with the actual outcome
9 else

10 /*side cache entry for that GBHR is not present */
11 if Positive interference then
12 Update 2-bit counter of S with the actual outcome
13 else
14 /* Negative interference, create separate entry */
15 if An empty entry E is found in side cache then
16 Insert GBHR at E
17 Set V ALID bit of E as 1
18 Initialize 2-bit counter of E as 00 and then update it with the

actual outcome
19 else
20 Replace an entry R
21 Keep GBHR at R
22 Set V ALID bit of R as 1
23 Initialize 2-bit counter of R as 00 and then update it with the

actual outcome

stage, only the 2-bit counter of that side cache entry is updated according to the actual

branch outcome in the retire stage. We propose a further optimization over the single entry

update method. In this proposal, we strengthen the state of the other three 2-bit counters.

We suggest to update the states of the other three entries if the actual branch outcome is

aligned with the states of the two-bit counters stored in these entries. Results shown in

Section 4.6 present the effect of this optimization.

Example 4.5 According to Example 4.2, for Branch 2, the global predictor accesses the

side cache to get the prediction since the WHO bit of the corresponding shared PHT entry
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is 1 which signifies that the local predictor owns that particular entry. Now consider that

the global predictor was chosen for the final prediction from the side cache entry in the

fetch stage and branch outcome is not-taken. As obvious, the side cache entry is updated

according to the actual branch outcome. Now, if the two bit counter stored in the shared

PHT entry is 01 (kept by the local predictor), it indicates that it is aligned with the actual

branch outcome (MSB of 01 is 0, hence branch direction is not-taken). In this case, we

strengthen the state of this counter and make it as 00. Similarly, we check the states of the

2-bit counters stored at the shared PHT and the side cache entry of the local predictor and

update their states if they are 01. �

4.5 Implementation

To compare the prediction accuracy, we implement our predictor design along with 2 others,

on top of the CBP-2 [33] predictor evaluation infrastructure. After execution, it reports

the performance statistics in terms of Mispredictions Per Kilo Instructions (MPKI). We

implement the following for evaluating the efficiency of our design.

• Classical multi-component predictor with separate PHT: local one with a BHT of size

1024 X 12 bits, accessed by a 10 bit PC value and a 4096 X 2 bit PHT, accessed by a

12 bit LBHR. The global keeps a PHT of 4096 X 2 bits, accessed by the 12 bit GBHR,

and a 4096 X 2 bit choice predictor. We refer to this as (a).

• Shared PHT multi-component predictor: local predictor with a BHT of size 1024 X 12

bits, a shared PHT of 4096 X 2 bits is used for both the local and global components.

The choice predictor size is as earlier. We refer to this as ( b).

• The enhanced multi-component shared-PHT predictor with side cache: BHT size is

same as before. PHT size is increased to 4096 X 3 bits, since we keep an extra



4.6. Experimental Results 89

WHO bit along with the 2-bit counter. In addition to this, we keep a fully associative

cache, each entry stores a 12-bit tag value, 2-bit saturating counter and a valid bit. To

replace an entry in the side cache, we use the Least Recently Used (LRU) replacement

policy [79]. In this work, we use the side cache at different size points of 32-entry,

64-entry, 128-entry and 256-entry. We refer to this as (c).

To replace an entry in the side cache, we use the Least Recently Used (LRU) replacement

policy [79]. We perform our experiments on all the CBP-2 program trace categories and

record the MPKI and hit ratio for all sizes discussed. For each program category in CBP-

2, we record the MPKI and hit ratio for each individual program in that category, and

compute the average for each category for each cache size, as depicted in our results below.

4.6 Experimental Results

Table 4.2 presents the detail of positive and negative interferences with respect to the total

number of PHT accesses, recorded in the shared PHT implementation that we started with.

The negative interferences reduce to 0 in our implementation scheme, since we eliminate all

instances of negative interference.

Figure 4.11: Average MPKI for different methodologies
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CBP-2 Programs Positive Interferences(%) Negative Interferences(%)
CLIENT01.bz2 2.99 0.35
CLIENT03.bz2 4.66 0.86
CLIENT04.bz2 48.19 0.24
CLIENT05.bz2 3.89 0.53
CLIENT06.bz2 1.04 0.08
CLIENT07.bz2 6.61 0.39
CLIENT08.bz2 6.45 0.50
CLIENT10.bz2 4.71 0.70
CLIENT11.bz2 14.13 0.44
CLIENT12.bz2 4.75 0.67
CLIENT13.bz2 15.22 1.26
CLIENT14.bz2 5.84 0.42
CLIENT15.bz2 9.66 0.70
CLIENT16.bz2 16.51 0.86

INT01.bz2 12.61 1.10
INT05.bz2 8.013 1.22
INT06.bz2 10.93 1.18
MM01.bz2 5.90 0.33
MM02.bz2 11.70 0.57
MM03.bz2 13.13 0.55
MM04.bz2 29.17 0.90

SERVER02.bz2 2.72 0.47
SERVER03.bz2 3.16 0.58
SERVER04.bz2 20.77 1.81
SERVER05.bz2 19.25 1.74

WS02.bz2 3.78 0.40
WS05.bz2 24.31 1.32
WS06.bz2 21.06 1.05

Table 4.2: Interference statistics for CBP-2 program traces

Figure 4.12: Average MPKI for different cache size with Methodology-1 & Methodology-2

4.6.1 MPKI comparison between shared / non-shared designs

We first present results on both Methodology-1 and Methodology-2. Recall that lower the

value of MPKI, better is the performance, since MPKI records the mispredictions. Figure
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4.11 shows the average MPKIs of (a), (b) and (c) with a 32-entry side cache. Evidently,

MPKIs increase in the shared PHT over the non-shared implementation. However, the

MPKIs reduce when a side cache is used along with the shared PHT, when compared to the

MPKI of the shared PHT design without the side cache. Even with a 32-entry side cache,

the MPKIs reduce for both Methodology-1 and Methodology-2 as shown in these Figures.

Additionally, it may be noted that for some of the cases, our side cache implementation

achieves comparable average MPKI when compared with the non-shared implementation.

Hence, we conclude that our proposal helps to get almost similar prediction accuracy for a

less storage budget (since we do away with one PHT and replace it with a small side cache)

over the baseline multi-component predictor implementation, which supports our objective.

4.6.2 MPKI with different cache sizes

Figure 4.12 reports the average MPKIs for a 32-entry, 64-entry, 128-entry and 256-entry

side cache for both the methodologies. It can be observed that the MPKIs decrease with

increase in size of the side caches for all the traces. This is as expected since the number of

replacements is less.

4.6.3 Comparing Methodologies 1 and 2

We now compare the MPKI values achieved using the two methodologies. As discussed

in Section 4.3, in Methodology-1, we create a side cache entry for each interference and

eliminate all interferences. However, in Methodology-2, we eliminate only the negative

interferences to preserve the benefits of positive interferences. Hence the obvious expectation

is that the number of cache entries created is usually the highest in Methodology-1 without

the optimization proposed in Methodology-3, while it is the lowest in the second with

optimization. The other two schemes (Methodology 1 with optimization and Methodology
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2 with optimization) lie in between, as shown in Table 4.3.

CBP-2 Methodology-1 Methodology-2 Methodology-1 Methodology-2
Programs without without with with

optimization optimization optimization optimization
CLIENT07.bz2 21417 19183 20789 6127
CLIENT08.bz2 5783 3834 5666 1662

INT01.bz2 53767 33252 52116 19293
INT06.bz2 11683 10790 9888 4006
MM01.bz2 17012 14825 16483 5211

SERVER04.bz2 53387 29065 50538 9073
SERVER05.bz2 58143 30567 50662 8509

WS02.bz2 19982 25373 19774 4882
WS06.bz2 50679 29850 44210 9885

Table 4.3: Cache entry creation statistics

Figures 4.13 and 4.14 show the average hit ratios of different side cache sizes for both the

methodologies. It is noticed that the hit ratio increases with increase in the size of the side

cache, since a lesser number of replacements are needed.

Finally, we present the results of the optimization proposed in Subsection 4.4.3, on all

side cache sizes for Methodology-1 and Methodology-2. Figure 4.15 compares the MPKIs

achieved in the side cache implementation with and without the proposed optimization for

Methodology-1. Figure 4.16 reports the same for Methodology-2.

Figure 4.13: Average hit ratio for different side cache implementations using Methodology-1
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Figure 4.14: Average hit ratio for different side cache implementations using Methodology-2

Figure 4.15: Average MPKI for different side cache implementations (with and without
optimization) using Methodology-1

Figure 4.16: Average MPKI for different side cache implementations (with and without
optimization) using Methodology-2

4.6.4 Evaluating our First-Touch allocation method

In this work, we use a first touch allocation policy for PHT ownership, wherein the ownership

of the PHT, though assigned to the global by default, can be overridden by the local
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component if it accesses a PHT entry and finds the pattern 000 (0 for WHO bit and 00 for

2-bit counter value). This requires us to keep an additional WHO bit to record and arbitrate

the ownership of each PHT entry. To get more storage benefits by doing away with the

WHO bit, we also experiment with a static PHT ownership assignment method where every

even PHT index is assigned to the global predictor and every odd index is assigned to the

local one. A loop branch’s local predictor entry almost always maps to powers of two minus

1 - this leads to the motivation for giving only odd entries to local predictors. To index the

PHT, the global and local predictor use GBHR and LBHR respectively, as in the first touch

allocation policy. When the global predictor needs to retrieve / store prediction information

with an odd GBHR, no PHT index is available for that. In this case, the side cache is used.

Similarly, for the local predictor, the side cache is accessed to retrieve / store the prediction

information when LBHR is even.

Figure 4.17 compares the average MPKIs obtained from this method with the First-Touch

allocation method for different storage budgets of the side cache. It can be seen that the

First-Touch allocation policy performs better (less MPKI) than the Static method for all

the cases since in general it is hard to foresee the PHT entry pattern that the predictors

will map to. An in depth analysis reveals that MPKIs in the Static method increase since

the number of different indices accessed by the two predictors become half and a fixed PHT

index assignment is done for these two. However, for an arbitrary program, equal number

of PHT indices may not be created by these two predictors and it is also quite rare that all

GBHRs are even and LBHRs are odd (or vice versa). Hence, this static assignment causes

more side cache accesses. Since the side cache size is small, more side cache replacements

occur. Replacement of a side cache entry loses the prediction information stored at the

entry and this leads to decrease in prediction accuracy (increase in MPKI). As a result of

this, MPKIs of the Static method tend to decrease with increase in the size of the side cache

as shown in Figure 4.17.
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In the previous static method, we store the prediction information for the local predictor in

the shared PHT if LBHR is odd and for the global predictor in the shared PHT if GBHR is

even. It is obvious that both can ask for odd and even entries depending on the LSB of the

history register. For loop branches, LBHR is always odd, however it is not valid for other

types of branches such as alternating branches. Hence, we consider another static method

where two alternate consecutive PHT entries are assigned to global and local predictors.

For example, the first two consecutive PHT entries (even and odd indices) are assigned

to the global predictor, the next two consecutive shared PHT entries are assigned to the

local predictor, again the next two consecutive entries are assigned to the global predictor

and so on. In this case, the second least significant bit (LSB) determines which predictor

will store the prediction information in the shared PHT. If the second LSB is 0, the global

predictor will store the prediction information into that PHT entry, otherwise the local

predictor will store the prediction information there. This makes the WHO bit redundant

since the ownerships are fixed apriori, as opposed to our first touch method. Results (Figure

4.17) show MPKI increases for this static method as well when compared to the first touch

allocation policy.

Figure 4.17: Average MPKI for First Touch versus Static Methods
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4.7 Synthesis Results

To evaluate the area and power benefits, we develop RTL designs in Verilog [4] for both the

non-shared design and the shared design with a 32 entry side cache. We use the Veriwell

simulator [13] to verify all the designs. The Synopsys Design Compiler (DC) [40] is used

to synthesize our designs with TSMC 90nm libraries [12]. Table 4.4 shows the area results

of our shared PHT implementation over the non-shared implementation. The 2 PHTs in

the classical design (a) are synthesized as 2 single-port SRAMs, while in our proposals (b)

and (c), the shared PHT is synthesized as a dual-port SRAM [1] to enable simultaneous

access by the 2 components in the fetch and retire stages. The synthesis of the BHT and

the choice tables are similar in all the 3 designs, while the cache in (c) leads to a fully

associative SRAM. Results indicate a 8.27% improvement in total area with our design.

This is as per our expectation since we do away with one of the PHT tables and replace it

with a small side cache. The PHT table is synthesised as a SRAM while the side cache is

a fully associative one. The PHT and the side cache are looked up in parallel.

Design Total cell area Total net area Total area
Non-shared PHT 797207 197987 995194.2

Shared PHT with side cache 763244 149635 912879.3

Table 4.4: Area report of the design compiler

We also present our analysis on using a Verilog module to measure per access read energy

for both the SRAM and the side cache. As earlier, in our implementation, the synthesised

netlist contains a fully associative memory as the side cache and a direct mapped memory

for the PHT SRAM table. We collect the total number of read and write accesses for

all the designs from the CBP-2 program traces and multiply these numbers with the per

access energy obtained from DC to obtain the total power consumption for each CBP-2

program. Figure 4.18 shows the average % power improvement for our design over the

non-shared implementation for each CBP-2 program category. It can be seen that there is
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an improvement in power as well.

Figure 4.18: Average improvement in power over non-shared implementation

4.8 Summary

In this work, we propose a storage efficient design for two-component branch predictors, that

have been the defacto choice in modern processors. We show that it is possible to attain

significant prediction accuracy, without investing too much on storage space. The main

highlight of our design is to enable the predictor components work on a shared prediction

table, while maintaining a tiny dealiasing cache to resolve entries on which the predictors

collide. Experimental results are quite encouraging and we believe that our proposal will

have important consequences going forward to harness the full power of sophisticated branch

prediction techniques for resource constrained embedded compute devices.





Chapter 5

A multi-component dynamic

predictor design with interference

control

5.1 Introduction

In the previous chapter, we proposed a two-component predictor design suitable for resource

constrained environments. It is interesting to note that different predictors that are used

in practice today, have quite varying prediction strategies, and often designed to cater to

branches of a particular type [45]. A single predictor or even a two-component predictor,

therefore, may not just be enough for all branches in a program, thereby necessitating

the idea of multi-component branch prediction. It is interesting to note that different

predictors that are used in practice today have quite varying prediction strategies, often

specifically designed to branches of a specific type. A multi-component predictor uses

multiple components. For each branch, it uses the best predictor that provides maximum

99
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prediction accuracy and leads to minimum mis-prediction for that branch. Similar to the

two-component predictor discussed in the last chapter, multi-component hybrid predictors

also consume more space in comparison to a single predictor since separate predictor tables

are kept by individual predictor components. Therefore a multi-component predictor design

is not suitable for low resource budget processors. The objective of this chapter is to

study the problem of designing multi-component hybrid prediction techniques for resource

constrained environments.

Our experimental findings on employing a multi-component hybrid predictor with individual

predictor components sharing the same predictor table on the SPEC 2006 benchmarks [52]

reveal a similar finding as in case of our initial shared-table 2-component predictor design

- the accuracy gain expected with the hybrid scheme is often not achieved, as in the case

of our initial observations for the two-component design. This happens due to extensive

interference on the shared predictor table, due to frequent switching between the predictors.

The prediction information of one predictor is overwritten by another predictor during its

prediction. This negative interference often leads to an incorrect direction for prediction,

and therefore, accuracy degradation. In this chapter, we revisit the multi-component hybrid

predictor design and study the accuracy versus storage perspective.

Contributions of this work

• We revisit the multi-component hybrid predictor design that combines more than

one dynamic branch predictor for prediction at run-time based on the best predictor

information. We study this multi-component predictor design for low resource budget

processors where the individual predictor components are made to share the predictor

table structures. Our experiments reveal that this sharing often leads to a loss of

prediction accuracy due to the extensive interference between the predictors on the

shared data structures they operate on.
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• We propose a heuristic that attempts to improve a classical hybrid multi-component

prediction mechanism by minimizing the number of context switches to different pre-

dictor components, with an objective of interference reduction.

• We show results of using our heuristic on top of the shared table implementation. Our

heuristic attempts to control the amount of predictor interference by controlling the

number of instances of new predictors being employed for prediction. We show an

average prediction accuracy improvement of 3-4% on the SPEC 2006 benchmarks.

This chapter is organized as follows. Section 5.2 presents a baseline architecture of a multi-

component predictor. We present our shared table architecture for multi-component pre-

dictors in Section 5.3. Section 5.4 presents a detailed analysis of the complete solution

space of multi-component predictor designs, along with our proposal. Section 5.5 discusses

the proposed architectural modification to handle the interference. Section 5.6 presents

experimental results. Section 5.7 concludes this discussion.

5.2 A baseline multi-component branch predictor

Architectural details of a baseline multi-component predictor that combines multiple dy-

namic predictors together is shown in Figure 5.1. In this design, all the predictors are

available to the program. However, for a branch only one predictor which is the best ac-

cording to prediction accuracy, is invoked to give the prediction. For every branch of a

program, the best predictor information is collected and recorded using static analysis and

is kept as part of the corresponding branch instruction using some additional bits. Dur-

ing execution of a branch, these additional bits of the branch instruction are checked to

invoke the corresponding predictor. This is done using the predictor enable signal. Here,

each individual predictor keeps its own predictor table and therefore the total storage re-
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quired increases with the number of predictors included. Such a multi-component design is

therefore, not suitable for low resource processors.

Predictor table-1 Predictor table-2 Predictor table-n

Predictor -1 Predictor -2 Predictor -n

Predictor enable signal

Static analysis
Report : best
predictor for
each branch

branch 1  Predictor 2
branch 2 Predictor 4

...
branch n Predictor 3

<predictor info>br <address>

<predictor info>br <address>
...

n X1 MUX

Figure 5.1: A baseline multi-component branch predictor

5.3 Shared table multi-component predictor predictor design

Multi-component prediction improves the prediction accuracy over single and two-component

prediction strategies. The only drawback is the size of the predictor that increases with the

number of predictors combined. It is observed most of the times that the predictors that are

included in the multi-component design can use the same predictor table structure, hence

motivating the idea of sharing the same predictor tables as shown in Figure 5.2. This shows

our proposal of a shared predictor table design for multi-component predictor realization.
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Predictor -1 Predictor -2 Predictor -n

Shared Predictor table

Predictor enable signal

Static analysis
Report : best
predictor for
each branch

branch 1  Predictor 2
branch 2 Predictor 4

...
branch n Predictor 3

<predictor info>br <address>

<predictor info>br <address>
...

n X1 MUX

Figure 5.2: Multi-component branch predictor with Shared PHT

In this work, we use only those dynamic predictors that can share the predictor tables.

However, this shared predictor table design has a major drawback, it greatly reduces the

prediction accuracy of a multi-component predictor in comparison to any single component

predictor. As noted earlier, this occurs due to extensive interference among the predictors

involved when they try to access the same PHT entry for different branch instances and

modify the prediction information stored by one another.

In this section, we illustrate an overview of the interference problem on a fragment of the mcf

program of the SPEC2006 [52] benchmark, as shown in Figure 5.3. All figures and tables

used here are generated by running mcf with different predictors on a small framework

designed on top of the Tejas [94] architectural simulator. We first explain the performance
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of GAg and GShare [78].

long read_min( network_t *net )

{

...

if(( in = fopen( net->inputfile, "r")) == NULL )

//branch 1

return -1;

... /*Non-branch statements*/

if( sscanf( instring, "%ld %ld", &t, &h ) != 2 )

//branch 2

return -1;

... /*Non-branch statements*/

if( net->n_trips <= MAX_NB_TRIPS_FOR_SMALL_NET )

//branch 3

{

net->max_m = net->m;

net->max_new_m = MAX_NEW_ARCS_SMALL_NET;

}

... /*Non-branch statements*/

if( !( net->nodes && net->arcs && net->dummy_arcs ) )

//branch 4, 5,6

{

printf( "read_min(): not enough memory\n" );

getfree( net );

return -1;

}

... /*Non-branch statements*/

if( sscanf( instring, "%ld %ld", &t, &h ) != 2 || t > h )

//branch 7

return -1;

... /*Non-branch statements*/

}

Figure 5.3: A fragment of the mcf program

Table 5.1 presents the misprediction rate obtained, averaged over multiple simulation runs

on the standard simulation data provided as part of the benchmarks, for 7 branches of the

mcf program [52] shown in Figure 5.3 when a single dynamic predictor is used for branch

prediction. GAg provides lowest misprediction rate for branches 1, 2, 4 and 6, whereas

GShare provides the same for branches 3, 5 and 7. Quite evidently, the misprediction rate /

prediction accuracy for a particular branch varies for different predictors which substantiates

the fact that no single predictor performs best for all the branches. This motivates use

of a hybrid predictor (HP). For each branch, HP selects the predictor with the lowest

misprediction rate / maximum prediction accuracy (we call it the best predictor) for that
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branch, as obtained from Table 5.1. The last column of this table presents the predictor

selected for each branch. HP switches to a different predictor when the current active

predictor is not the best for that branch. As an example, HP selects GAg for branch 6 and

switches to GShare for branch 7. Figure 5.5 presents the prediction accuracy degradation

for shared PHT table implementation with respect to GAg, GShare and Bimodal predictors.

Branch Branch BHR Misprediction rate(%) Predictor
Address Pattern GShare GAg Hybrid Invoked (HP)

Branch1 401999 110101010 12.0 10.0 10.0 GAg
Branch2 4019d6 101010101 7.0 6.0 6.0 GAg
Branch3 401a17 010101010 3.6 4.0 10.0 GShare
Branch4 401a91 101010101 11.0 10.0 15.0 GAg
Branch5 401a9a 010101011 0.10 3.0 0.10 GShare
Branch6 401aa3 101010111 10.3 10.0 10.0 GAg
Branch7 401cd9 010101110 2.0 5.0 7.0 GShare

Table 5.1: Branch profile for mcf program branches

Figure 5.4: Predictor table interference between two predictors

We further experiment with a single shared PHT to be used by both GShare and GAg, as

summarized in Figure 5.4. Table 5.1 Column 6 shows the result for the 7 branches run with

a hybrid predictor that combines GShare and GAg together. It is observed, there is a loss

in prediction accuracy in some cases due to the interference between predictors.

We present interference statistics on some SPEC 2006 benchmarks in Table 5.2. For a hybrid
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predictor with a shared 32KB PHT, Column 2 shows the percentage of entries suffering from

interference (access and modification by the different components) with respect to all PHT

accesses. Figure 5.5 shows the difference in average prediction accuracy between three

single stream predictors (GAg, GShare and Bimodal) and the shared table hybrid predictor

implementation. It is seen, for most of the cases the bars are in the positive direction, i.e.

there is an accuracy fall with the shared implementation. These observations motivate us

to address this interference.

Figure 5.5: Accuracy comparison: hybrid and single predictors

5.4 Selective Switching based Interference Control

In this section, we present our proposal in greater detail. We begin by illustrating the solu-

tion complexity of the problem space, from the perspective of designing a hybrid predictor

scheme that can maximize the overall end-to-end prediction accuracy for a given program.

For ease of illustration and simplicity of explanation, we consider a hybrid predictor that

combines 4 individual predictors: GShare (P1), GAg (P2), TAGE (P3) and PAp (P4) to-

gether and a program P with 4 branches: Branch1, Branch2, Branch3 and Branch4 (in this

order of their occurrence in P ), any of which can be predicted using any of the 4 predictors

as shown in Figure 5.6.
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Figure 5.6: Predictor Sequence Tree

Figure 5.6 shows a level-ordered 4-ary tree that shows all possible predictor combinations

for all the four branches in the way the branches are ordered in the original program. In

this case, this tree has 4 levels, where each level represents an individual branch of this

program (and the different predictor choices for that branch) and 256 different paths to

represent 256 different predictor sequences. Intuitively, this tree captures all the possible

ways a hybrid predictor scheme can be designed using individual predictors. The path

marked in red is the predictor sequence generated by the traditional hybrid predictor which

works by selecting the best predictor for every branch based on prediction accuracy for that

branch. As illustrated in the previous section, a hybrid scheme with shared PHT table,

that picks the best predictor for each branch is not necessarily the best choice in terms of

overall prediction accuracy for the entire program, and hence, the need for this exhaustive

enumeration. A hybrid predictor should ideally explore all the paths of this tree to get

all possible predictor sequences, compute the average prediction accuracy of each path and

choose the best that maximizes it. Thus, all possible interleavings of the predictors (and the

resulting interferences) would be automatically considered, and a choice can be made that
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minimizes the negative interference as much as possible, while also maximizing prediction

accuracy. The exhaustive enumeration described above is however, beyond scope for any

realistic implementation. The following subsection presents our proposal for interference

reduction, which is a different approach to address this problem.

We propose to reduce predictor interference using selective switching as described in Al-

gorithm 8. The philosophy of Algorithm8 is to find the best predictor R that has the

best overall prediction accuracy for a program and the best predictor Pi for each branch

i, obtained from previous simulation runs or earlier phases of execution. We start with R

as the current predictor C. Let AC denote the prediction accuracy of C, and APi likewise

denote the prediction accuracy of predictor Pi. We elaborate on our choice of these in the

following section. For each branch, if the best predictor is not C, it checks whether the

prediction accuracies of the current predictor and Pi differ beyond a threshold value (say

θ). If this condition is true, it selects that best predictor for prediction and updates the

current predictor accordingly. Otherwise, it continues with the predictor C for prediction.

ALGORITHM 8: Selective Switching

1 begin
2 Find the predictor R with maximum prediction accuracy for a program Q
3 Initialize currentPredictor C = R
4 for each branch i in Q do
5 Let Pi be its best predictor if available, or else Pi = R.
6 if |AC −APi | < θ then
7 Select C for prediction of i
8 else
9 Select Pi for prediction of i

10 Update C = Pi

Example 5.1 Consider the mcf program (Figure 5.3) and a threshold θ of 0.5. Let us

assume GAg is the overall best predictor to start with. From the information given in

Table 5.1, for branch 1, the best predictor is the same, and we continue with GAg as
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the current best predictor and use it for prediction of this branch. A similar thing hap-

pens for branch 2 as well. For branch 3, the best predictor is GShare, however the gain

in prediction accuracy is less than our threshold. Hence, we continue with GAg for pre-

diction. For branch 4, the best predictor is GAg as well. For branch 5, the best pre-

dictor is GShare and the difference in accuracy gain is beyond 0.5, hence we change the

current best predictor and switch to GShare. For branch 6, the best predictor is GAg,

however, we do not switch to GAg since the accuracy gain is less than θ. We continue

using the same predictor for branch 7 as well, since GShare is the best for it. The num-

ber of predictor switches (GAg→GAg→GAg→GAg→GShare→GShare→GShare) in our pro-

posal is 1, while in a classical hybrid scheme (as shown in Column 7 of Table5.1), it is 5

(GAg→GAg→GShare→GAg→GShare→GAg→GShare). Thus the total number of inter pre-

dictor interferences is less than the classical scheme. This also helps in reducing the number

of interferences on a shared-table implementation, which is the main motivation behind this

work. It may be noted that the worst case number of predictor switches in our case is upper

bounded by the number of switches in a classical scheme. �

Figure 5.7: Split table Architecture for Multi-component Predictor
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5.5 Architectural Modifications to reduce interference

We define an instance of PHT interference when two unrelated branches of a program are

mapped to the same PHT entry by the predictor’s indexing function. This phenomenon,

as discussed earlier, is known as PHT interference, since the outcome of one branch is

interfering with the subsequent prediction of another completely unrelated branch. Three

different types of interference can occur as explained below.

In the first case, the interference does not change the direction of the prediction and we term

this as a neutral interference. In the second case, this interference causes a correct prediction

where there would be a mis-prediction otherwise and is termed a positive interference.

In the third case, this interference causes a mis-prediction, which would not have been

a mis-prediction otherwise and is referred as negative interference, since it has a negative

impact on performance. It has been acknowledged that negative interference is a substantial

contributor to the number of branch mis-predictions [106] and it is worthwhile to attempt

to reduce it.

In a two-level branch predictor, this interference is unavoidable since the number of PHT

entries is finite. A global predictor that shares the same data structure across all branches

suffers from the interference problem, since it has only one global PHT which is shared by

all branches. Hybrid branch prediction introduces an additional PHT interference along

with this. In hybrid prediction, multiple global predictors are appointed for prediction and

they use the same PHT table as well as the BHR. The negative effect resulting out of this

scheme has already been illustrated earlier.

To avoid this type of interference, we propose to keep a separate PHT for each individual

global predictor appointed for prediction. Figure 5.7 shows an architectural overview of our

proposed architecture for a hybrid predictor. Here, PHT-1 is kept for Global Predictor-

1, PHT-2 is kept for Global Predictor-2, and so on. Hence, PHT-n will be accessed and
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updated only when Global Predictor-n is active for prediction. This implies that branch

information collected by one predictor for a specific branch history pattern is not interfered

with, by a different predictor for a different branch history pattern. However, this imple-

mentation loses the full flavor of branch correlation, since a PHT table is not updated always

for all branches, it is updated only when its corresponding predictor is on. Our architecture

increases the number of PHT tables according to the number of different global predictors

appointed for prediction. The estimated hardware cost of our proposed hybrid predictor is

S + (L− 1) ∗ 2n ∗ 2, where L is the number of mutually interfering predictors, S is the size

of a traditional hybrid predictor and n is the BHR size. Since, one PHT is already kept

in the hybrid predictor, an additional (L-1) PHTs are needed for this. Size of each PHT

is 2n and size of each PHT entry is 2 bits (contains a two bit saturating counter). In our

experiments, we implement our selective switching mechanisms on top of this split PHT

architecture and the accuracy improvements are encouraging. We explain the idea through

an example below.

Example 5.2 Consider the mcf program (refer Table 5.1). The same PHT entry PHT1 is

accessed three times: first time, it is accessed by the GAg predictor for branch 2 and pattern

101010101, and updated according to the actual outcome of this branch by this predictor;

the second time for branch 3, it is accessed by GShare for a completely different pattern

010101010 and updated according to the actual outcome of this branch, and finally, the third

time for branch 4, it is again accessed by GAg for a pattern same as in branch 2. However,

this time, GAg cannot find the actual prediction information which was stored by it last time

for this pattern, since this information was incorrectly interfered and updated by GShare for

another pattern. In our architecture, GShare keeps a separate PHT to store the entries

for all its BHR patterns and GAg also keeps another separate PHT to store the entries

for the same. Hence, when branch 2 comes with a pattern 101010101, the PHT of GAg is

accessed to get the prediction the and state of its corresponding two-bit saturating counter
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gets updated accordingly for future reference. This PHT is accessed only when both the GAg

predictor is active and pattern 101010101 occurs. This PHT can not be accessed or updated

for any different pattern for any other predictor. Hence, GShare cannot access or interfere

the PHT of GAg. �

5.6 Implementation and Results

We now present details of our experiments. All simulations are run on top of the Tejas [94]

architectural simulator. To mimic an embedded resource constrained environment, we take

a pipeline depth of 5, with a PHT table size of 32 KB. Additionally, we disable the out-of-

order-execution, VLIW features. We modify the Tejas simulator source code to implement

a hybrid predictor that includes a combination of three predictors (GShare, GAg and Bi-

modal). We use 2-bits (00 for GShare, 01 for GAg, 10 for Bimodal) to mask the predictor

to be chosen for each branch based on our algorithm. Thus, each branch instruction in the

generated code is prefixed with 2 additional bits, corresponding to the predictor choice. In

this work, execution driven simulation is done for the SPEC 2006 benchmarks [52]. Tejas is

used to record the branch behaviors for the benchmark programs across all test cases pro-

vided and we record the average performance numbers. Each program is run with different

branch predictors and the prediction accuracy for all the branches of the program on every

predictor is recorded. For each branch, we mark a best predictor and for the overall pro-

gram in terms of prediction accuracy. Our predictor selection algorithms are implemented

on top of the hybrid prediction method that shares the PHT table among the predictors to

improve the overall performance of a processor. As input, these methods take the branch

profile information for all branches from the profile generation stage as discussed above.

The simulation of the new selection mechanism is done using Tejas. For each execution,

prediction accuracy, energy expenditure and latency are recorded for comparing against
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other hybrid prediction techniques (without selective switching) that either share the PHT

table among interfering predictors or split the PHT table for them.

Benchmark Interference Interference
(in shared implementation) (using switching algorithm)

(%) (%)
403.gcc 3.7 2.2

400.perlbench 4 3.3
429.mcf 1.2 0.5

458.sjeng 1 0.2
456.hmmr 1.1 0.05
447.dealII 1 0.1

464.h264ref 2 0.7
450.soplex 2.5 1.2
401.bzip2 3.4 0.4

Table 5.2: PHT interference statistics with our method

We now report the results of our methods obtained with a threshold of 0.5. Column 3 of

Table 5.2 presents the percentage interference counts with our proposed switching method,

with respect to the original shared table implementation. It can be seen that there is a

reduction in interferences for almost every program used here. Figures 5.8, 5.9 and 5.10

respectively present the differences in average prediction accuracy, energy and execution

time with respect to the original 32KB shared PHT table implementation for :

• A shared 32KB PHT hybrid predictor implementation with selective switching.

• A split PHT table of size 16KB for every individual predictor.

It can be observed from Figure 5.8 that the original shared PHT table implementation

performs much worse than each of the above schemes, hence the differences are positive.

For most of the programs, the prediction accuracy obtained from the shared PHT table

implementation is even lower than the accuracy of any single predictor. Our experiments

show that our proposed switching algorithm that works on a shared PHT table can improve

the prediction accuracies as expected. Although the average accuracy improvement is not

so high, around 2%-3%, however, a single misprediction can increase a significant amount



114 5. A multi-component dynamic predictor design with interference control

of processor cycles as well as extra instruction fetches. Figure 5.9 shows that there is an

increase in energy expenditure in the shared implementation and our switching method can

reduce the energy expenditure for all the benchmark programs. Figure 5.10 presents the

same detail with respect to execution time. It may be noted that a lower value of execution

time is more desirable, and our heuristic indeed achieves comparable or marginally less at

times. From the experiments, it can also be seen that our selective switching method when

employed on top of a shared-table implementation produces better accuracy than the split

table implementation for all the performance metrics discussed here.

Figure 5.8: Prediction accuracy comparison

Figure 5.9: Processor core energy comparison
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Figure 5.10: Execution time comparison

5.7 Summary

In this work, we examine the effect of predictor table interference on prediction accuracy of

a hybrid predictor for resource constrained environments. We propose a predictor selection

method to improve prediction accuracy by controlling the interference. Experimental results

show the improvement.

We utilize a static profile based selection scheme to select the overall best predictor with

highest average prediction accuracy for a program and also for each branch. We use this

profile information to control the number of predictor switches. This requires a good set of

representative test-cases that can exercise the different branches with different conditions,

and help us collect the required information about the predictors. Also, since this is an

offline step, we need to somehow store this information for use at run-time, which can be

considered as a significant overhead. In addition to this, we need to track during execution,

whether there is a better choice than the current predictor, and whether that choice is better

by a sufficiently high amount to cross the threshold. This extra overhead may lead to higher

energy cost per prediction. Another obvious limitation of our proposed switching algorithm

is the fact that along with the negative interferences, it also reduces the instances of positive

interference (since we limit the number of uses of different predictors) and thereby, lose the

benefit of it. However, as evident from our results, the gain in being able to reduce negative
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interference outweighs the benefit that we may have received from positive interference

between predictors, since the number of instances of negative interference for a program is

much more than their positive counterparts.



Chapter 6

Branch predictor selection with

aggregation on multiple parameters

6.1 Introduction

In the last few chapters, we have discussed our work on new techniques for branch predictor

design, mostly considering a single parameter as the primary objective. The objective

of this chapter is to present a framework for branch predictor selection, that takes into

account multiple performance parameters. The most widely explored direction of research

in predictor design has been around the objective of prediction accuracy maximization,

with an expectation of energy reduction due to lesser mis-predictions. However, it has often

been the case that the energy gain expected has been nullified by the energy footprint of

the sophisticated runtime data structures that these schemes need to store and manipulate.

An additional parameter of interest is the latency of program execution, which varies as

well across different predictor designs. As evident from our experiments, a predictor design

that performs the best in terms of prediction accuracy, does not always excel in terms of

117
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latency and energy. A similar trend is often observed for the other parameters as well. This

necessitates the development of a framework for branch predictor design and evaluation

that can simultaneously optimize multiple parameters. To the best of our knowledge, the

trade-off between accuracy, latency and energy has been mostly studied empirically through

workload simulations. This motivated us to consider a systematic optimization framework

that examines all the parameters in a mathematical setting for branch predictor designs.

Contributions of this work

• We present a rank aggregation based predictor selection framework that considers the

different parameters of concern (e.g. latency, energy, accuracy) and determines the

aggregate rank of predictors such that individual parameters are well captured.

• We propose an extended rank aggregation method for predictor selection with param-

eters associated with user specific priorities [50] considering the fact that the parame-

ters of consideration in our problem context are incomparable and uncorrelated, and

therefore, not suitable candidates for averaging-based aggregation.

• We perform experiments on the Siemens [38] and the SPEC 2006 [52] benchmark

programs, with multiple state-of-the-art predictor designs and a variety of parameters

to show the benefits of our framework. We also report comparative performance

details on the aggregation methods used, along with their aggregation outcomes.

The framework proposed in this work may have multiple applications in the branch predictor

design context. On one hand, our framework can be used to systematically evaluate and

compare the performance of a new predictor design with respect to existing ones, considering

different parameters of interest. In the current process, designers typically carry out this

benchmarking by examining the performance of the new design individually with respect

to the different parameters, along with a comparison with other off-the-shelf predictors. An
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important use of our framework can be in the choice of the components to be used in a

hybrid predictor design. Our framework can be used to decide the predictors to use, based

on all parameters.

This chapter is organized as follows. Section 6.2 presents an overview of this work. In

Section 6.3, we discuss the predictor ranking framework as well as our methodology behind

predictor selection. Section 6.4 describes the implementation details, experimental set-up

used as well as the results of our experiments, while Section 6.5 concludes the chapter.

6.2 Motivating Example

To establish the motivation of this work, we adopt a similar philosophy as used in the pop-

ular Championship Branch Prediction (CBP) [33] configuration. We keep the total storage

available to the predictors as constant, and carry out experiments on accuracy, energy

and latency on the Siemens benchmarks, with different predictors being used for predic-

tion. While TAGE [96][97] and its variants dominate when accuracy is the sole standpoint

of comparison, our findings reveal widely varying predictor performance when the other

parameters are considered, as shown in Table 6.1.

A close analysis of the results show that it is often the case that the predictor with the best

prediction accuracy, consumes more energy than the one which is ranked second according to

prediction accuracy or a predictor which ensures lowest latency. Table 6.1 shows 3 different

parameter values, namely, the average prediction accuracy, processor core energy, and the

time taken for program execution with six contemporary predictors (GShare, GAg, TAGE,

PAp, GAp and Bimodal) [107][64][78][97] on 3 Siemens benchmark programs [38]. As is

evident from Table 6.1, the performances vary widely across predictors for every program.

As an example, for the tcas, schedule2 and printtokens programs, though TAGE ranks

first according to prediction accuracy, it is not the best according to the total time and
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Benchmark Predictor Average Prediction Core Time
Programs Accuracy Energy Taken

(%) (nanojoule) (micro second)

tcas Bimodal 86 95922 208
GAg 83 96046 200
GAp 79 95899 205

GShare 84 95933 212
PAp 78 95829 203

TAGE 87 95956 203

schedule2 Bimodal 85 146136 320
GAg 84 145949 354
GAp 82 146088 322

GShare 83 146088 320
PAp 79 145899 339

TAGE 87 145906 333

printtokens Bimodal 85 149627 344
GAg 83 149678 361
GAp 81 149690 351

GShare 83 149728 337
PAp 78 149721 339

TAGE 87 149740 322

Table 6.1: Performance variation on Siemens benchmarks

energy expenditure and falls behind compared to the other predictors. It is therefore quite

a non-trivial task to select the best predictor for a given application, since the performances

often vary widely, considering the different parameters. This motivated us to examine the

problem of parameter-driven predictor selection in a multi-objective optimization setting.

6.3 The multi-parameter predictor selection framework

In this section, we describe our predictor ranking and selection framework. Our framework

takes in the following inputs:

• A set of predictors P1,P2, . . . ,Pn
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Figure 6.1: The overall system architecture

• A set of performance parameters K1,K2, . . . ,Kr (accuracy, energy, latency etc.).

• The predictor profiles R1,R2, . . . ,Rn, where each Ri corresponds to a predictor Pi

for i = 1, . . . , n. Each Ri represents a tuple < K(i)
1 ,K(i)

2 , . . . ,K(i)
r > containing the

values of the parameters for the predictor Pi, for a given application program.

• For each predictor Pi, each parameter may as well be optionally associated with a

weight / priority value W(i)
1 ,W(i)

2 , . . . ,W(i)
r . It may be the case that while prediction

accuracy has the highest priority for one program, energy consumption may have the

highest priority for another. This can be tuned by setting priority values appropriately.

Figure 6.1 shows the overall architecture of our framework. For a given program, the average

performance outputs (the values of the parameters of interest) are monitored and stored in

a profile database when run with different predictors on a set of designated test inputs.

Once the execution profiles are generated through simulation and the parameter values

recorded, they are passed on to the aggregation block. We begin by generating the individual

parameter based rankings ρ1, ρ2, . . . , ρr of the predictors, where ρi corresponds to the rank

of the predictor based on the parameter Ki for i = 1, 2, . . . , r. This is achieved by a
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Parameters Rank list for predictors

Parameter-1 TAGE (P4) GAp (P3) GAg (P2) GShare (P1) PAp (P5)

Parameter-2 PAp (P5) GAg (P2) GShare (P1) GAp (P3) TAGE (P4)

Parameter-3 PAp (P5) TAGE (P4) GShare (P1) GAp (P3) GAg (P2)

Parameter-4 GShare (P1) GAg (P2) TAGE (P4) PAp (P5) GAp (P3)

Table 6.2: Rank lists on 4 parameters for 5 predictors

sorted ordering of the predictor set based on each parameter. The next step generates an

aggregate ranking ρA of the predictors considering the individual parameter based rankings

ρ1, ρ2, . . . , ρr obtained above with the parameters associated with priority values if any. We

discuss the two major building blocks of the aggregator and the analysis carried out therein.

6.3.1 Predictor Rank Generator

This is the first building block of our framework. This block takes as input the parame-

ter values (e.g., prediction accuracy, energy expenditure, latency etc.) of the predictors.

The ranking of the predictors with respect to a parameter Ki is generated by sorting the

predictors based on their values of Ki either in ascending order or in descending order de-

pending on the ordering objective of Ki. As an example, we sort the predictors based on

the values of the prediction accuracy in descending order. In other words, a predictor with

higher prediction accuracy should come earlier in the ranking (and therefore, have a lower

rank value) than a predictor with comparatively lower prediction accuracy. On the other

hand, predictors are sorted in ascending order with respect to the energy expenditure. The

output of this block is a set of ranked lists ρ1, ρ2, . . . , ρr for each parameter K1,K2, . . . ,Kr,

as shown in Table 6.2 for an example benchmark program. For ease of illustration in the

following discussion, we have used P1 for GShare, P2 for GAg, P3 for GAp, P4 for TAGE

and P5 for PAp, as shown in Table 6.2.
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6.3.2 Aggregation

This is the next stage of our framework. The objective of this block is to analyze and

select the best predictor from the individual parameter based rankings. The number of

parameters may be many in number, and hence, generate many ranked lists. To add to

this, a predictor may have widely varying rank positions in the different rank lists, thus

making the aggregation task even harder. A predictor Pl for example, may have a very

high rank position in some rank list ρi, but a very low rank position in another rank list

ρj . The objective of this stage is to come up with an aggregate ranking considering the

individual predictor based rankings. In this work, we propose two different formulations to

achieve this aggregation, as explained below.

6.3.2.1 Predictor ranking based on the Kemeny method

This method based on [68] generates an aggregate rank list that minimizes the number of

pair-wise disagreements between predictor pairs between the individual rank lists. Intu-

itively, if a predictor Pi is ranked before a predictor Pj in most of the individual rank lists,

the aggregate list should reflect this. Consider two distinct predictors Pi and Pj . A binary

variable ZPiPj is defined as:

ZPiPj =


1, if the aggregate list positions Pi before Pj

0, otherwise.

Consider another variable nPiPj which denotes the number of individual parameter rank

lists that rank Pi ahead of Pj and nPjPi has a similar interpretation. Such variables are

defined for each predictor pair. The objective of aggregation is to come up with an aggregate

list that minimizes the number of disagreements with the individual parameter rank lists.
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This is expressed by the following optimization formulation.

Minimize
∑

Pi 6=Pj

(nPiPj × ZPjPi), subject to

ZPiPj ∈ {0, 1} (6.1)

ZPiPj + ZPjPi = 1 (6.2)

(∀Pi, Pj , Pk : Pi 6= Pj , Pi 6= Pk, Pj 6= Pk),

ZPiPj + ZPjPk
+ ZPkPi ≤ 2 (6.3)

The first constraint states that the ZPiPj variables are binary. Constraint 2 expresses for

any predictor pair Pi, Pj , one of them has to be ranked ahead of the other, thus both the

binary variables cannot be 0 or 1. The third constraint is the transitivity constraint between

predictor triplets. Without this, the aggregate ranking may assign values to the binary vari-

ables with a cyclic majority: Pi ahead of Pj , Pj ahead of Pk, and Pk ahead of Pi. The output

of the optimization is a value (0 / 1) for each binary variable ZPiPj , that leads to the mini-

mum value of the objective, subject to the constraints, and a final aggregate rank list. The

top position in the list is the predictor our framework finds to be most suitable, considering

all the parameters. In general, predictors in the lower rank values of this list are more suit-

able candidates than ones in the higher rank values, when all the parameters are considered.

Example 6.1 Consider the example in Table 6.2, with 4 rank lists. We apply rank ag-

gregation on these with all parameters using Equation 6.1 to Equation 6.3. This creates

an aggregate rank list that minimizes the number of pair-wise disagreements between the
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individual rank lists. The nPiPj values are:

nP1P2 = 2, nP2P1 = 2, nP1P3 = 3, nP3P1 = 1, nP1P4 = 2, nP4P1 = 2, nP1P5 = 2, nP5P1 = 2,

nP2P3 = 2, nP3P2 = 2, nP2P4 = 2, nP4P2 = 2, nP2P5 = 2, nP5P2 = 2, nP3P4 = 1, nP4P3 = 3,

nP3P5 = 1, nP5P3 = 3, nP4P5 = 2, nP5P4 = 2.

Using Equations 6.1 to 6.3, the final aggregate list is P2, P5, P4, P1, P3. This shows that P2

is the best predictor, when all the parameters are taken into consideration. �

6.3.2.2 Predictor ranking based on weighted Kemeny

We now discuss the aggregate ranking computation of predictors with the individual param-

eters having priority values. In this case, each parameter has a relative normalized priority

value associated with each rank list. To compute the aggregate ranking, we incorporate

the priority on each parameter ranking. We modify the definition of nPiPj as the priority

induced sum of the parameter values for which Pi comes earlier than Pj in the ranking

based on those parameters. To formalize, we define a variable L
(p)
PiPj

as:

L
(p)
PiPj

=


1 , if Pi is positioned ahead of Pj

in parameter p

0 , Otherwise

(6.4)

The variable nPiPj is defined as:

nPiPj =

r∑
p=1

WpL
(p)
PiPj

(6.5)

where,Wp is the priority on the parameter Kp. The remaining constraints and the objective

remain same as earlier.
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Our formulation for aggregation with priorities is generic in nature. If we need to consider

only a single parameter, we can put the other priorities to 0. Similarly, we can use our

framework to focus only on a subset of the parameters as well. In summary, our framework

provides the flexibility to evaluate multiple different parameters in a systematic way with

appropriate priorities assigned. As an example, if we wish to perform an analysis with

accuracy only as the factor for consideration, we can assign it the maximum priority of

1, and the rest to 0. However, if we wish to consider the other parameters as well, while

treating accuracy as most important, we can adjust the weights to assign maximum value

to accuracy and distribute the remaining weights among the other parameters (e.g. energy,

latency etc.). Our framework can thus take care of different priorities and analysis objectives

that a designer may have.

Example 6.2 Consider the same example as above with normalized priority values of

Parameter-1, Parameter-2, Parameter-3 and Parameter-4 as 0.4, 0.3, 0.2 and 0.1 respec-

tively. The values of the nPiPj variables are computed as:

nP1P2 = 0.2 + 0.1 = 0.3, nP2P1 = 0.4 + 0.3 = 0.7,

nP1P3 = 0.3 + 0.2 + 0.1 = 0.6, nP3P1 = 0.4, nP1P4 = 0.3 + 0.1 = 0.4,

nP4P1 = 0.4 + 0.2 = 0.6, nP1P5 = 0.4 + 0.1 = 0.5,

nP5P1 = 0.3 + 0.2 = 0.5, nP2P3 = 0.3 + 0.1 = 0.4,

nP3P2 = 0.4 + 0.2 = 0.6, nP2P4 = 0.3 + 0.1 = 0.4,

nP4P2 = 0.4 + 0.2 = 0.6, nP2P5 = 0.4 + 0.1 = 0.5, nP5P2 = 0.3 + 0.2 = 0.5,

nP3P4 = 0.3, nP4P3 = 0.4 + 0.2 + 0.1 = 0.7, nP3P5 = 0.4,

nP5P3 = 0.3 + 0.2 + 0.1 = 0.7, nP4P5 = 0.4 + 0.1 = 0.5, nP5P4 = 0.3 + 0.2 = 0.5

In this case, the final aggregate list is P5, P4, P3, P2, P1.

Consider a different set of priority values of Parameter-1, Parameter-2, Parameter-3 and
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Parameter-4 as 0.1, 0.2, 0.3 and 0.4 respectively. The nPiPj values are as below.

nP1P2 = 0.4 + 0.3 = 0.7, nP2P1 = 0.1 + 0.2 = 0.3,

nP1P3 = 0.4 + 0.3 + 0.2 = 0.9, nP3P1 = 0.1, nP1P4 = 0.2 + 0.4 = 0.6,

nP4P1 = 0.1 + 0.3 = 0.4, nP1P5 = 0.1 + 0.4 = 0.5,

nP5P1 = 0.3 + 0.2 = 0.5, nP2P3 = 0.2 + 0.4 = 0.6,

nP3P2 = 0.3 + 0.5 = 0.8, nP2P4 = 0.4 + 0.2 = 0.6,

nP4P2 = 0.3 + 0.1 = 0.4, nP2P5 = 0.1 + 0.4 = 0.5, nP5P2 = 0.3 + 0.2 = 0.5,

nP3P4 = 0.2, nP4P3 = 0.1 + 0.4 + 0.3 = 0.8, nP3P5 = 0.1,

nP5P3 = 0.3 + 0.2 + 0.4 = 0.9, nP4P5 = 0.4 + 0.1 = 0.5, nP5P4 = 0.3 + 0.2 = 0.5

In this case, the final aggregate list becomes P1, P2, P4, P5, P3. �

The above creates an aggregate rank list that reflects the different priorities assigned to the

different parameters, based on the classical Kemeny aggregation.

6.3.2.3 Computational Hardness of Aggregation:

The disagreement minimization problem is known to be NP-hard [24] [41] in the case of

4 or more complete lists. The reduction can be shown from the feedback edge set prob-

lem [104]. Further, the Kemeny Method is expected to be computationally inefficient for

a large number of parameters, due to its reliance on the optimization. We therefore, dis-

cuss a lightweight aggregation method inspired by the Borda count [28] [114]. The Borda

count method can be implemented in linear time [92]. In Subsection 6.3.2.4 below, we show

how the Borda count method improves the computation time with respect to the Kemeny

method. The aggregation methods are different in the aggregation definition as well. On

one side, the Kemeny method is concerned more about creating the aggregation list as

close as possible to the ordering in the rank lists, however, in doing so, it does not give
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importance to the relative positions of the predictors in the constituent lists in which a

predictor defeats the other. The Borda count ranks the predictors based on the position in

each list. In a generic setting, based on user priorities on latency or accuracy, any of the

aggregation methods can be adopted. We thus build both the methods in our predictor

ranking framework.

6.3.2.4 Predictor ranking based on Borda count

Borda’s method [39] [44] is a positional method, it assigns a score corresponding to the

positions in which a predictor appears within each individual ranked list, and the predictors

are sorted by their total score. A primary advantage of positional methods is that they are

computationally lightweight and can be implemented in linear time. This method first finds

the score of every predictor Pi for every individual rank list Rj as:

SPiRj = number of predictors ranked below Pi in Rj

Further, it calculates the total score of Pi by summing up all its scores from all rank lists

as:

ScorePi =
k∑

j=1

SPiRj (6.6)

The final aggregated rank list is created by sorting predictors in decreasing order of total

Borda score.

Example 6.3 Consider the example in Table 6.2, with 4 rank lists R1, R2, R3 and R4,

based on 4 parameters. We apply rank aggregation on these with all parameters using

Equation 6.6. The values of the SPiRj and ScorePi variables are shown below.

SP1R1 : 1, SP1R2 : 2, SP1R3 : 2, SP1R4 : 4
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SP2R1 : 2, SP2R2 : 3, SP2R3 : 0, SP2R4 : 3

SP3R1 : 3, SP3R2 : 1, SP3R3 : 1, SP3R4 : 0

SP4R1 : 4, SP4R2 : 0, SP4R3 : 3, SP4R4 : 2

SP5R1 : 0, SP5R2 : 4, SP5R3 : 4, SP5R4 : 1

Hence, ScoreP1 = 9, ScoreP2 = 8, ScoreP5 = 9, ScoreP4 = 9, ScoreP3 = 5

This creates an aggregate rank list that sorts the predictors according to their scores in

decreasing order. The final aggregated list for the above has 4 choices, resolving ties arbi-

trarily:

P1, P4, P5, P2, P3 / P4, P1, P5, P2, P3 / P1, P5, P4, P2, P3 / P5, P4, P1, P2, P3 / P5, P1, P4, P2, P3

/ P4, P5, P1, P2, P3. �

6.3.3 Predictor ranking on weighted Borda count

We now calculate the aggregate ranking of predictors using the Borda count method with

the individual parameters having priority values [71]. In this case, as earlier, each parameter

has a relative normalized priority value associated with each rank list. Considering priorities

for each rank list, Eqn. 6.6 can be rewritten as :

ScorePi =
k∑

j=1

WRjSPiRj (6.7)

WRj is the priority on the parameter Kj for rank list Rj .

Example 6.4 Consider the same example as above with normalized priority values of

Parameter-1, Parameter-2, Parameter-3 and Parameter-4 as 0.4, 0.3, 0.2 and 0.1 respec-

tively. The values of the SPiRj and ScorePi variables are computed as shown below. We



130 6. Branch predictor selection with aggregation on multiple parameters

apply rank aggregation on these with all parameters using Equations 6.6 and 6.7. The

values of the SPiRj and ScorePi variables are computed as shown in the following.

SP1R1 : 1, SP1R2 : 2, SP1R3 : 2, SP1R4 : 4

SP2R1 : 2, SP2R2 : 3, SP2R3 : 0, SP2R4 : 3

SP3R1 : 3, SP3R2 : 1, SP3R3 : 1, SP3R4 : 0

SP4R1 : 4, SP4R2 : 0, SP4R3 : 3, SP4R4 : 2

SP5R1 : 0, SP5R2 : 4, SP5R3 : 4, SP5R4 : 1

ScoreP1 = 1*0.4 + 2*0.3+ 2*0.2+4*0.1= 1.8,

ScoreP2 = 2*0.4+3*0.3+0*0.2+3*0.1 = 2.0,

ScoreP3 = 3*0.4+1*0.3+1*0.2+0*0.1= 1.7,

ScoreP4 = 4*0.4+0*0.3+3*0.2+2*0.1= 2.4,

ScoreP5 = 0*0.4+4*0.3+4*0.2+1*0.1=2.1

Hence, the final aggregated list for the above is: P4, P5, P2, P1, P3. �

6.4 Implementation and Results

The proposed predictor ranking framework has been implemented in Python [7] using the

lpsolve [15] optimization library. Figure 6.2 shows the internal architecture of our predictor

aggregation framework. For each program, predictor rank lists are first created for each

performance parameter in stage 1. Each performance parameter has user defined priority /

weight values that may be same or may vary across the programs. In the second stage, we

take the predictor rank lists and weight vectors as inputs and produce the aggregated rank

lists, using Borda, Kemeny, weighted Borda and weighted Kemeny methods. The Kemeny

and weighted Kemeny methods internally call lpsolve to produce the aggregated lists. The

output from lpsolve is used to produce the final aggregated list by our framework.
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Figure 6.2: Predictor rank aggregator

6.4.1 Experimental setup

In this work, we use 6 dynamic branch predictors: GShare, GAg, GAp, PAp, TAGE and

Bimodal implemented on top of the Tejas architectural simulator [11]. We fix the storage

budget for all these predictors as given in the Championship Branch Prediction competi-

tions (CBP) [33]. We use a maximum storage budget of 32KB and modify the predictor

designs present inside the simulator codebase to perform with this constraint. We report

our experiments of running Tejas simulations on the Siemens benchmark programs [38]

and SPEC 2006 [52] benchmarks. In this work, we use only C/C++ programs of these

benchmarks since Tejas can simulate only C/C++ executables.
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6.4.2 Results on Siemens benchmarks

We now discuss our results on the Siemens benchmark programs. Table 6.3 shows the 4

different rank lists generated by the Predictor Rank Generator component for 6 predictors.

For every individual predictor, these rank lists are prepared based on 4 different parameter

values - the average prediction accuracy, processor core energy expenditure, latency / time

taken and branch predictor energy expenditure. It is interesting to note that the rank

lists are sometimes quite different. The aggregated rank list for each program is generated

by the aggregator component using Kemeny and Borda count methods based on all the 4

parameters, both with and without priorities as shown in Tables 6.3 - 6.5.

It is observed that the TAGE predictor performs best according to prediction accuracy

across all the programs of this benchmark. However, TAGE is not the best every time

while considering the other three parameters, namely core energy, branch predictor energy

and execution time. Hence, TAGE can not be the best predictor for all the programs

when all the parameters are taken care of. For this reason, TAGE does not appear on

top of all the aggregated lists generated by the Kemeny or the Borda methods. Table 6.3

also shows that the aggregated list for each program computed using the two aggregation

methods, differ significantly as well, even when priorities are not considered. For example,

in case of the Tcas program, the predictor GAg is on the top of the aggregated list that

is computed using the Kemeny method and TAGE is behind GAg. However, TAGE is

on top of the aggregated list that is computed using the Borda count and GAg is behind.

If we compare these lists, we can see that GAg is behind TAGE in the two rank lists

based on accuracy and core energy, and ahead of TAGE in other rank lists (time taken and

branch predictor energy). This shows the variation in predictor performance when different

metrics are considered for selection and the results also vary across benchmarks. In case

of the Replace program, GAg is not the best in any rank list, however it is selected as

the best predictor by both the Kemeny and Borda methods. For our experiments, we use
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seven combinations of normalized relative priority values to see the change in the aggregate

lists, and the results are shown in Table 6.4 and Table 6.5. These results show, if we set

the priority such that only the average prediction accuracy is considered (assigned weight

as 1.0), it generates the same aggregated list as the rank list generated by considering the

average prediction accuracy. Similarly, for the other three parameters as well, we have

the same results as shown in Table 6.3. In another case, when equal priority is assigned

to processor energy expenditure and branch predictor energy and no priority is assigned

to average prediction accuracy and execution time, we do not have TAGE on the top of

the aggregated list for all programs though TAGE gives the maximum average prediction

accuracy for all programs compared to all the predictors used in this work. For the rest of

the experiments, we modify the priority ordering for all parameters in different ways. For

one case, equal priority is assigned to average prediction accuracy and execution time and

no priority is assigned to the processor energy expenditure and branch predictor energy

expenditure. For another case, by assigning equal priority to average prediction accuracy

and execution time with no priority value assigned to processor energy and branch predictor

energy expenditure, we obtain a different set of predictor orderings. We also perform an

experiment with the weight assigned to average prediction accuracy as 0.4 (dominating

parameter), 0.3 each to the core energy and branch predictor energy and no priority to

the execution time parameter. It can be observed that the aggregate lists generated vary

quite widely for each benchmark program across the experiments. This shows the utility

of our framework in helping an architect decide and evaluate the crucial components in a

predictor setup. For each benchmark program, the top position in the aggregated list in

each table is the predictor our framework recommends to be most suitable, considering all

the parameters. In all the tables shown in the following, Pred. Acc. stands for Prediction

Accuracy, Acc. stands for Average Prediction Accuracy (%), CE stands for Core Energy

in nanojoule, TT stands for Time taken in seconds, and bPred stands for branch predictor

energy in nanojoule.
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6.4.3 Results on SPEC 2006 benchmarks

For the SPEC 2006 benchmark programs, the first 1 billion instructions from each bench-

mark are simulated. Tables 6.6 and 6.7 show different rank lists generated by the Predictor

Rank Generator component of our framework for the six predictors for the SPEC 2006

integer and floating point benchmark programs respectively. These tables also show the

aggregated lists generated by the Kemeny and Borda count methods without considering

the priorities on the parameters. For these benchmark programs, no predictor consistently

performs best in any of the rank lists and the programs have different rank lists as well, as

can be seen from the tables. The same combination of normalized relative priority values

as used for the Siemens simulations are also used here to see the change in the aggregate

lists, and the results are shown in Tables 6.8, 6.9, 6.10 and 6.11.

It is interesting to observe that with respect to our experiments, the findings of [88] is not

supported. In [88], the authors have examined all the different testcases in the SPEC 2006

benchmarks and came to a conclusion that a subset of 6 integer and 8 floating pont tests are

sufficiently representative of the entire test-suite. This is important since an architecture

research now no longer needs to run experiments on the entire suite, but can conclude the

findings based on only the subsets. However, for our case, this does not hold since all the

benchmarks show distinct variation in performance. In this case as well, the top position

in the aggregated list is the predictor our framework finds to be most suitable, considering

all the parameters.

To show the relative computational efficiency of the two methods for aggregation, we show

in Figure 6.3, a comparative plot of the run-times of these two procedures. Computation

time taken by all the methods are in milliseconds. As expected, Borda fares better in
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terms of run-time, this being a lightweight procedure. In our experiments, the number of

parameters is restricted to 4, hence the Kemeny-based method often achieves a comparable

run-time performance. These aggregated lists are generated statically, hence do not impact

the overall system performance.

Figure 6.3: Comparative analysis of time taken by Kemeny and Borda methods
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Benchmark Predictor Rank Lists Aggregated List
Programs Average Core Execution bPred Kemeny Borda

Pred. Accu. Energy time Energy Method Method
(%) (nanojoule) (second) (nanojoule)

replace TAGE TAGE GAp GAp GAg GAg
Bimodal GAg GAg GAg GAp GAp

GAg GAp Bimodal PAp Bimodal TAGE
GShare PAp PAp Bimodal PAp Bimodal

GAp GShare TAGE TAGE TAGE PAp
PAp Bimodal GShare GShare GShare GShare

tcas TAGE PAp GAg GAg GAg TAGE
Bimodal GAp TAGE PAp PAp GAg
GShare Bimodal PAp TAGE TAGE PAp

GAg GShare GAp GAp GAp GAp
GAp TAGE Bimodal Bimodal Bimodal Bimodal
PAp GAg GShare GShare GShare GShare

totinfo TAGE Bimodal TAGE TAGE TAGE TAGE
GShare GAp PAp PAp Bimodal Bimodal

GAg GAg GAp Bimodal GAp GAp
Bimodal GShare Bimodal GAp GShare PAp

GAp PAp GShare GShare GAg GShare
PAp TAGE GAg GAg PAp GAg

schedule TAGE TAGE PAp PAp PAp TAGE
Bimodal GAp GShare GShare GShare GShare
GShare PAp TAGE TAGE TAGE PAp

GAg GShare GAp Bimodal Bimodal GAp
GAp GAg Bimodal GAp GAp Bimodal
PAp Bimodal GAg GAg GAg GAg

schedule2 TAGE PAp Bimodal Bimodal Bimodal Bimodal
Bimodal TAGE GShare GAp GShare TAGE

GAg GAg GAp GShare GAp GAp
GShare GAp TAGE TAGE TAGE GShare

GAp GShare PAp PAp PAp PAp
PAp Bimodal GAg GAg GAg GAg

printtokens TAGE Bimodal TAGE TAGE TAGE TAGE
Bimodal GAg GShare GShare GShare Bimodal

GAg GAp PAp PAp PAp GShare
GShare PAp Bimodal GAp Bimodal PAp

GAp GShare GAp Bimodal GAp GAp
PAp TAGE GAg GAg GAg GAg

printtokens2 TAGE Bimodal TAGE TAGE TAGE Bimodal
Bimodal GAg PAp PAp Bimodal TAGE

GAg GAp Bimodal Bimodal GAg GAg
GShare GShare GAg GAg GShare PAp

GAp TAGE GAp GShare GAp GAp
PAp PAp GShare GAp PAp GShare

Table 6.3: Aggregated rank lists for Siemens benchmarks
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Benchmark Aggregated List
Programs Weighted Kemeny Method

Acc:0.5 Acc:0.0 Acc:0.4 Acc:1.0 Acc:0.0 Acc:0.0 Acc:0.0
CE:0.0 CE:0.5 CE:0.3 CE:0.0 CE:1.0 CE:0.0 CE:0.0
TT:0.5 TT:0.0 TT:0.0 TT:0.0 TT:0.0 TT:1.0 TT:0.0

bPred:0.0 bPred:0.5 bPred:0.3 bPred:0.0 bPred:0.0 bPred:0.0 bPred:1.0

replace TAGE GAp TAGE TAGE TAGE GAp GAp
GAg GAg GAg Bimodal GAg GAg GAg

Bimodal PAp GAp GAg GAp Bimodal PAp
GShare Bimodal PAp GShare PAp PAp Bimodal

GAp TAGE Bimodal GAp GShare TAGE TAGE
PAp GShare GShare PAp Bimodal GShare GShare

tcas TAGE GAg PAp TAGE PAp GAg GAg
Bimodal PAp TAGE Bimodal GAp TAGE PAp
GShare GAp Bimodal GShare Bimodal PAp TAGE

GAg Bimodal GShare GAg GShare GAp GAp
GAp GShare GAg GAp TAGE Bimodal Bimodal
PAp TAGE GAp PAp GAg GShare GShare

totinfo TAGE PAp TAGE TAGE Bimodal TAGE TAGE
GAp Bimodal Bimodal GShare GAp PAp PAp
PAp GAp GAp GAg GAg GAp Bimodal

GShare GAg GShare Bimodal GShare Bimodal GAp
GAg GShare GAg GAp PAp GShare GShare

Bimodal TAGE PAp PAp TAGE GAg GAg

schedule GShare PAp TAGE TAGE TAGE PAp PAp
TAGE GShare GShare Bimodal GAp GShare GShare

Bimodal TAGE Bimodal GShare PAp TAGE TAGE
GAg Bimodal GAp GAg GShare GAp Bimodal
GAp GAp PAp GAp GAg Bimodal GAp
PAp GAg GAg PAp Bimodal GAg GAg

schedule2 Bimodal TAGE TAGE TAGE PAp Bimodal Bimodal
GShare PAp Bimodal Bimodal TAGE GShare GAp

GAp GAg GAg GAg GAg GAp GShare
TAGE Bimodal GAp GShare GAp TAGE TAGE
PAp GAp GShare GAp GShare PAp PAp
GAg GShare PAp PAp Bimodal GAg GAg

printtokens TAGE TAGE TAGE TAGE Bimodal TAGE TAGE
Bimodal PAp Bimodal Bimodal GAg GShare GShare

GAg Bimodal GAg GAg GAp PAp PAp
GShare GAg GShare GShare PAp Bimodal GAp

GAp GAp GAp GAp GShare GAp Bimodal
PAp GShare PAp PAp TAGE GAg GAg

printtokens2 TAGE Bimodal TAGE TAGE Bimodal TAGE TAGE
Bimodal GAg Bimodal Bimodal GAg PAp PAp

GAg GAp GAg GAg GAp Bimodal Bimodal
GAp GShare GShare GShare GShare GAg GAg

GShare TAGE GAp GAp TAGE GAp GShare
PAp PAp PAp PAp PAp GShare GAp

Table 6.4: Aggregated rank lists for Siemens benchmarks with weighted Kemeny
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Benchmark Aggregated List
Programs Weighted Borda Method

Acc:0.5 Acc:0.0 Acc:0.4 Acc:1.0 Acc:0.0 Acc:0.0 Acc:0.0
CE:0.0 CE:0.5 CE:0.3 CE:0.0 CE:1.0 CE:0.0 CE:0.0
TT:0.5 TT:0.0 TT:0.0 TT:0.0 TT:0.0 TT:1.0 TT:0.0

bPred:0.0 bPred:0.5 bPred:0.3 bPred:0.0 bPred:0.0 bPred:0.0 bPred:1.0

replace GAg GAp TAGE TAGE TAGE GAp GAp
Bimodal GAg GAg Bimodal GAg GAg GAg

GAp PAp GAp GAg GAp Bimodal PAp
TAGE Bimodal Bimodal GShare PAp PAp Bimodal
GShare TAGE PAp GAp GShare TAGE TAGE

PAp GShare GShare PAp Bimodal GShare GShare

tcas TAGE PAp TAGE TAGE PAp GAg GAg
GAg GAp Bimodal Bimodal GAp TAGE PAp

Bimodal GAg PAp GShare Bimodal PAp TAGE
GAp TAGE GAg GAg GShare GAp GAp

GShare Bimodal GAp GAp TAGE Bimodal Bimodal
PAp GShare GShare PAp GAg GShare GShare

totinfo TAGE Bimodal TAGE TAGE Bimodal TAGE TAGE
GShare GAp Bimodal GShare GAp PAp PAp

GAp TAGE GShare GAg GAg GAp Bimodal
Bimodal PAp GAp Bimodal GShare Bimodal GAp

PAp GAg GAg GAp PAp GShare GShare
GAg TAGE PAp PAp TAGE GAg GAg

schedule TAGE TAGE TAGE TAGE TAGE PAp PAp
GShare PAp GShare Bimodal GAp GShare GShare
Bimodal GShare PAp GShare PAp TAGE TAGE

PAp GAp Bimodal GAg GShare GAp Bimodal
GAp Bimodal GAp GAp GAg Bimodal GAp
GAg GAg GAg PAp Bimodal GAg GAg

schedule2 Bimodal GAp TAGE TAGE PAp Bimodal Bimodal
AGE TAGE Bimodal Bimodal TAGE GShare GAp

GShare PAp GAp GAg GAg GAp GShare
GAp Bimodal GAg GShare GAp TAGE TAGE
GAg GShare GShare GAp GShare PAp PAp
PAp GAg PAp PAp Bimodal GAg GAg

printtokens TAGE Bimodal TAGE TAGE Bimodal TAGE TAGE
GShare GAp Bimodal Bimodal GAg GShare GShare
Bimodal GShare GAg GAg GAp PAp PAp

GAg TAGE GShare GShare PAp Bimodal GAp
PAp PAp GAp GAp GShare GAp Bimodal
GAp GAg PAp PAp TAGE GAg GAg

printtokens2 TAGE Bimodal Bimodal TAGE Bimodal TAGE TAGE
Bimodal GAg TAGE Bimodal GAg PAp PAp

GAg TAGE GAg GAg GAp Bimodal Bimodal
PAp PAp GShare GShare GShare GAg GAg
GAp GAp GAp GAp TAGE GAp GShare

GShare GShare PAp PAp PAp GShare GAp

Table 6.5: Aggregated rank lists for Siemens benchmarks with weighted Borda
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Benchmark Predictor Rank Lists Aggregated List
Programs Average Core Execution bPred Kemeny Method Borda Method

Pred. Accu. Energy time Energy
(%) (nanojoule) (seconds) (nanojoule)

403.gcc TAGE PAp PAp PAp PAp PAp
PAp TAGE TAGE TAGE TAGE TAGE

Bimodal GAp GAp GAp GAp GAp
GAp Bimodal Bimodal Bimodal Bimodal Bimodal

GShare GShare GAg GAg GAg GAg
GAg GAg GShare GShare GShare GShare

400.perlbench TAGE PAp TAGE GAp GAp TAGE
Bimodal GAp GAp TAGE TAGE GAp

GAp TAGE Bimodal PAp GShare PAp
GShare GAg GShare GShare GAg GShare

GAg GShare GAg GAg PAp Bimodal
PAp Bimodal PAp Bimodal Bimodal GAg

429.mcf TAGE GAp TAGE GAp GAp GAp
Bimodal GShare GAp GShare Bimodal TAGE

GAp Bimodal Bimodal Bimodal TAGE Bimodal
GShare TAGE GShare TAGE GShare GShare

PAp PAp GAg PAp PAp PAp
GAg GAg PAp GAg GAg GAg

456.hmmer GShare GShare GShare Bimodal GShare GShare
GAg GAg GAg PAp GAg GAg

TAGE GAp PAp GShare Bimodal Bimodal
Bimodal Bimodal Bimodal TAGE PAp PAp

PAp PAp TAGE GAp TAGE TAGE
GAp TAGE GAp GAg GAp GAp

458.sjeng TAGE GAp GAp Bimodal GAp Bimodal
GAg GShare GShare PAp GShare GAp
PAp Bimodal Bimodal GAg Bimodal PAp

Bimodal PAp PAp TAGE PAp GAg
GAp GAg GAg GShare GAg GShare

GShare TAGE TAGE GAp TAGE TAGE

401.bzip2 GAp PAp GAg Bimodal Bimodal PAp
TAGE GAg Bimodal PAp PAp Bimodal

Bimodal GShare GShare GShare GShare GAg
PAp GAp PAp TAGE GAg GShare

GShare TAGE TAGE GAg GAp TAGE
GAg Bimodal GAp GAp TAGE GAp

401.libquantum2 GAg GShare Bimodal PAp GAg GShare
GShare GAg GAg TAGE GShare GAg

PAp PAp GShare GShare PAp PAp
Bimodal TAGE GAp GAp TAGE Bimodal
TAGE GAp PAp Bimodal GAp TAGE
GAp Bimodal TAGE GAg Bimodal GAp

Table 6.6: Aggregated rank lists for SPEC 2006 Integer benchmarks
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Benchmark Predictor Rank Lists Aggregated List
Programs Average Core Execution bPred Kemeny Method Borda Method

Pred. Accu. Energy time Energy
(%) (nanojoule) (seconds) (nanojoule)

447.dealII Bimodal GShare Bimodal Bimodal Bimodal Bimodal
TAGE TAGE GAg TAGE TAGE TAGE
GAp GAp TAGE GShare GAp GAp
PAp Bimodal GAp GAp GAg GShare
GAg GAg GShare GAg GShare GAg

GShare PAp PAp PAp PAp PAp

444.namd GShare GAp GShare PAp GShare GShare
GAg PAp GAg GAp GAg Bimodal

Bimodal TAGE Bimodal Bimodal PAp PAp
TAGE Bimodal TAGE TAGE GAp GAp
PAp GShare PAp GAg Bimodal GAg
GAp GAg GAp GShare TAGE TAGE

453.povray GShare GAp GShare GAg GShare GAg
GAg Bimodal GAg TAGE GAg TAGE

TAGE PAp TAGE Bimodal TAGE GShare
Bimodal TAGE Bimodal PAp Bimodal Bimodal

PAp GShare PAp GAp PAp PAp
GAp GAg GAp GShare GAp GAp

470.lbm PAp TAGE PAp TAGE TAGE PAp
GAg PAp GAg PAp PAp GAg

GShare Bimodal GShare GAg GAg TAGE
Bimodal GAp GAp Bimodal GShare Bimodal

GAp GAg Bimodal GShare Bimodal GShare
TAGE GShare TAGE GAp GAp GAp

450.soplex TAGE GAp GAp TAGE PAp TAGE
PAp GAg PAp PAp TAGE PAp

Bimodal GShare TAGE Bimodal Bimodal GAp
GAp Bimodal Bimodal GAg GAp Bimodal
GAg PAp GAg GShare GAg GAg

GShare TAGE GShare GAp GShare GShare

482.sphinx3 GShare PAp GShare TAGE GShare TAGE
GAg GAp GAg Bimodal TAGE GAg

TAGE Bimodal TAGE GAp Bimodal Bimodal
Bimodal TAGE Bimodal GAg GAp GShare

GAp GAg GAp PAp GAg GAp
PAp GShare PAp GShare PAp PAp

433.milc PAp Bimodal TAGE TAGE TAGE TAGE
Bimodal GAg Bimodal GAg Bimodal Bimodal
TAGE TAGE GShar Bimodal GAg PAp
GAg GShare PAp PAp GShare GAg
GAg PAp GAp GAp PAp GShare

GShare GAp GAg GShare GAp GAp

Table 6.7: Aggregated rank lists for SPEC 2006 Floating Point benchmarks
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Benchmark Aggregated List
Programs Weighted Kemeny Method

Acc:0.5 Acc:0.0 Acc:0.4 Acc:1.0 Acc:0.0 Acc:0.0 Acc:0.0
CE:0.0 CE:0.5 CE:0.3 CE:0.0 CE:1.0 CE:0.0 CE:0.0
TT:0.5 TT:0.0 TT:0.0 TT:0.0 TT:0.0 TT:1.0 TT:0.0

bPred:0.0 bPred:0.5 bPred:0.3 bPred:0.0 bPred:0.0 bPred:0.0 bPred:1.0

403.gcc TAGE PAp PAp TAGE PAp PAp PAp
PAp TAGE TAGE PAp TAGE TAGE TAGE
GAp GAp GAp Bimodal GAp GAp GAp

Bimodal Bimodal Bimodal GAp Bimodal Bimodal Bimodal
GAg GAg GShare GShare GShare GAg GAg

GShare GShare GAg GAg GAg GShare GShare

400.perlbench TAGE PAp GAp TAGE PAp TAGE GAp
GAp GAp TAGE Bimodal GAp GAp TAGE

Bimodal TAGE PAp GAp TAGE Bimodal PAp
GShare GShare GShare GShare GAg GShare GShare

GAg GAg GAg GAg GShare GAg GAg
PAp Bimodal Bimodal PAp Bimodal PAp Bimodal

429.mcf TAGE GAp GAp TAGE GAp TAGE GAp
Bimodal GShare GShare Bimodal GShare GAp GShare

GAp Bimodal Bimodal GAp Bimodal Bimodal Bimodal
GShare TAGE TAGE GShare TAGE GShare TAGE

PAp PAp PAp PAp PAp GAg PAp
GAg GAg GAg GAg GAg PAp GAg

458.sjeng GAp GAp Bimodal TAGE GAp GAp Bimodal
GShare Bimodal PAp GAg GShare GShare PAp
Bimodal PAp GAg PAp Bimodal Bimodal GAg

GAg GAg TAGE Bimodal PAp PAp TAGE
PAp TAGE GAp GAp GAg GAg GShare

TAGE GShare GShare GShare TAGE TAGE GAp

401.bzip2 GAp PAp GAp GAp PAp GAg Bimodal
Bimodal GAg TAGE TAGE GAg Bimodal PAp
GShare GShare Bimodal Bimodal GShare GShare GShare

PAp GAp PAp PAp GAp PAp TAGE
GAg TAGE GShare GShare TAGE TAGE GAg

TAGE Bimodal GAg GAg Bimodal GAp GAp

401.libquantum Bimodal GShare GShare GAg GShare Bimodal PAp
GAg GAg GAg GShare GAg GAg TAGE

GShare PAp PAp PAp PAp GShare GShare
PAp TAGE TAGE Bimodal TAGE GAp GAp

TAGE GAp GAp TAGE GAp PAp Bimodal
GAp Bimodal Bimodal GAp Bimodal TAGE GAg

462.h264ref GShare GAp GShare GShare Bimodal GShare GAp
GAg GShare GAg GAg TAGE GAg PAp
PAp TAGE PAp PAp GShare Bimodal GShare

Bimodal Bimodal Bimodal Bimodal GAg TAGE TAGE
TAGE GAg TAGE TAGE PAp PAp Bimodal
GAp PAp GAp GAp GAp GAp GAg

Table 6.8: Aggregated rank lists for SPEC 2006 Integer benchmarks with weighted Kemeny
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Benchmark Aggregated List
Programs Weighted Kemeny Method

Acc:0.5 Acc:0.0 Acc:0.4 Acc:1.0 Acc:0.0 Acc:0.0 Acc:0.0
CE:0.0 CE:0.5 CE:0.3 CE:0.0 CE:1.0 CE:0.0 CE:0.0
TT:0.5 TT:0.0 TT:0.0 TT:0.0 TT:0.0 TT:1.0 TT:0.0

bPred:0.0 bPred:0.5 bPred:0.3 bPred:0.0 bPred:0.0 bPred:0.0 bPred:1.0
447.dealII Bimodal GShare Bimodal Bimodal GShare Bimodal Bimodal

GAg TAGE TAGE TAGE TAGE GAg TAGE
TAGE GAp GShare GAp GAp TAGE GShare
GAp Bimodal GAp PAp Bimodal GAp GAp

GShare GAg GAg GAg GAg GShare GAg
PAp PAp PAp GShare PAp PAp PAp

444.namd GShare PAp PAp GShare GAp GShare PAp
GAg GAp GAp GAg PAp GAg GAp

Bimodal TAGE Bimodal Bimodal TAGE Bimodal Bimodal
TAGE Bimodal TAGE TAGE Bimodal TAGE TAGE
PAp GShare GShare PAp GShare PAp GAg
GAp GAg GAg GAp GAg GAp GShare

453.povray GShare GAp GAg GShare GAp GShare GAg
GAg Bimodal TAGE GAg Bimodal GAg TAGE

TAGE PAp Bimodal TAGE PAp TAGE Bimodal
Bimodal TAGE PAp Bimodal TAGE Bimodal PAp

PAp GShare GAp PAp GShare PAp GAp
GAp GAg GShare GAp GAg GAp GShare

470.lbm PAp TAGE TAGE PAp TAGE PAp TAGE
GAg PAp PAp GAg PAp GAg PAp

GShare GAg GAg GShare Bimodal GShare GAg
GAp Bimodal Bimodal Bimodal GAp GAp Bimodal

Bimodal GShare GShare GAp GAg Bimodal GShare
TAGE GAp GAp TAGE GShare TAGE GAp

450.soplex TAGE TAGE TAGE TAGE GAp GAp TAGE
PAp GAp PAp PAp GAg PAp PAp

Bimodal PAp Bimodal Bimodal GShare TAGE Bimodal
GAp GAg GAp GAp Bimodal Bimodal GAg
GAg GShare GAg GAg PAp GAg GShare

GShare TAGE GShare GShare TAGE GShare GAp

482.sphinx3 GShare GAp TAGE GShare PAp GShare TAGE
GAg TAGE Bimodal GAg GAp GAg Bimodal

TAGE Bimodal GAp TAGE Bimodal TAGE GAp
Bimodal GAg GAg Bimodal TAGE Bimodal GAg

GAp PAp PAp GAp GAg GAp PAp
PAp GShare GShare PAp GShare PAp GShare

433.milc TAGE Bimodal Bimodal PAp Bimodal TAGE TAGE
Bimodal GAg TAGE Bimodal GAg Bimodal GAg
GShare TAGE GAg TAGE TAGE GShare Bimodal

PAp GShare PAp GAp GShare PAp PAp
GAp PAp GAp GAg PAp GAp GAp
GAg GAp GShare GShare GAp GAg GShare

Table 6.9: Aggregated lists for SPEC 2006 Floating Point benchmarks with weighted Ke-
meny
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Benchmark Aggregated List
Programs Weighted Borda Method

Acc:0.5 Acc:0.0 Acc:0.4 Acc:1.0 Acc:0.0 Acc:0.0 Acc:0.0
CE:0.0 CE:0.5 CE:0.3 CE:0.0 CE:1.0 CE:0.0 CE:0.0
TT:0.5 TT:0.0 TT:0.0 TT:0.0 TT:0.0 TT:1.0 TT:0.0

bPred:0.0 bPred:0.5 bPred:0.3 bPred:0.0 bPred:0.0 bPred:0.0 bPred:1.0
403.gcc TAGE PAp PAp TAGE PAp PAp PAp

PAp TAGE TAGE PAp TAGE TAGE TAGE
GAp GAp GAp Bimodal GAp GAp GAp

Bimodal Bimodal Bimodal GAp Bimodal Bimodal Bimodal
GAg GAg GShare GShare GShare GAg GAg

GShare GShare GAg GAg GAg GShare GShare
400.perlbench TAGE GAp TAGE TAGE PAp TAGE GAp

GAp PAp GAp Bimodal GAp GAp TAGE
Bimodal TAGE PAp GAp TAGE Bimodal PAp
GShare GAg GShare GShare GAg GShare GShare

GAg GShare Bimodal GAg GShare GAg GAg
PAp Bimodal GAg PAp Bimodal PAp Bimodal

429.mcf TAGE GAp GAp TAGE GAp TAGE GAp
GAp GShare Bimodal Bimodal GShare GAp GShare

Bimodal Bimodal GShare GAp Bimodal Bimodal Bimodal
GShare TAGE TAGE GShare TAGE GShare TAGE

GAg PAp PAp PAp PAp GAg PAp
PAp GAg GAg GAg GAg PAp GAg

458.sjeng GAp Bimodal Bimodal TAGE GAp GAp Bimodal
GAg PAp PAp GAg GShare GShare PAp

TAGE GAp GAg PAp Bimodal Bimodal GAg
Bimodal GShare TAGE Bimodal PAp PAp TAGE

PAp GAg GAp GAp GAg GAg GShare
GShare TAGE GShare GShare TAGE TAGE GAp

401.bzip2 Bimodal PAp PAp GAp PAp GAg Bimodal
GAp GShare Bimodal TAGE GAg Bimodal PAp
GAg GAg GAp Bimodal GShare GShare GShare

TAGE Bimodal TAGE PAp GAp PAp TAGE
GShare TAGE GShare GShare TAGE TAGE GAg

PAp GAp GAg GAg Bimodal GAp GAp
libquantum GAg GShare GShare GAg GShare Bimodal PAp

GShare PAp PAp GShare GAg GAg TAGE
Bimodal TAGE GAg PAp PAp GShare GShare

PAp GAg TAGE Bimodal TAGE GAp GAp
GAp GAP Bimodal TAGE GAp PAp Bimodal

TAGE Bimodal GAp GAp Bimodal TAGE GAg
462.h264ref GShare GShare GShare GShare Bimodal GShare GAp

GAg TAGE PAp GAg TAGE GAg PAp
Bimodal Bimodal Bimodal PAp GShare Bimodal GShare

PAp GAp GAg Bimodal GAg TAGE TAGE
TAGE PAp TAGE TAGE PAp PAp Bimodal
GAp GAg GAp GAp GAp GAp GAg

Table 6.10: Aggregated rank lists for SPEC 2006 Integer benchmarks with weighted Borda
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Benchmark Aggregated List
Programs Weighted Borda Method

Acc:0.5 Acc:0.0 Acc:0.4 Acc:1.0 Acc:0.0 Acc:0.0 Acc:0.0
CE:0.0 CE:0.5 CE:0.3 CE:0.0 CE:1.0 CE:0.0 CE:0.0
TT:0.5 TT:0.0 TT:0.0 TT:0.0 TT:0.0 TT:1.0 TT:0.0

bPred:0.0 bPred:0.5 bPred:0.3 bPred:0.0 bPred:0.0 bPred:0.0 bPred:1.0

447.dealII Bimodal GShare Bimodal Bimodal GShare Bimodal Bimodal
TAGE TAGE TAGE TAGE TAGE GAg TAGE
GAp Bimodal GAp GAp GAp TAGE GShare
GAg GAp GShare PAp PAp GAp GAp
PAp GAg GAg GAp GAg GShare GAg

GShare PAp PAp GShare GShare PAp PAp

444.namd GShare GAp PAp GShare GAp GShare PAp
GAg PAp GAp GAg PAp GAg GAp

Bimodal TAGE Bimodal Bimodal TAGE Bimodal Bimodal
TAGE Bimodal GShare TAGE Bimodal TAGE TAGE
PAp GAg TAGE PAp GShare PAp GAg
GAp GShare GAg GAp GAg GAp GShare

453.povray GShare Bimodal GAg GShare GAp GShare GAg
GAg GAp TAGE GAg Bimodal GAg TAGE

TAGE TAGE Bimodal TAGE PAp TAGE Bimodal
Bimodal GAg GShare Bimodal TAGE Bimodal PAp

PAp PAp PAp PAp GShare PAp GAp
GAp GShare GAp GAp GAg GAp GShare

470.lbm PAp TAGE PAp PAp TAGE PAp TAGE
GAg PAp TAGE GAg PAp GAg PAp

GShare Bimodal GAg GShare Bimodal GShare GAg
GAp GAg Bimodal Bimodal GAp GAp Bimodal

Bimodal GAp GShare GAp GAg Bimodal GShare
TAGE GShare GAp TAGE GShare TAGE GAp

450.soplex TAGE GAg TAGE TAGE GAp GAp TAGE
PAp GAp PAp PAp GAg PAp PAp
GAp TAGE Bimodal Bimodal GShare TAGE Bimodal

Bimodal Bimodal GAp GAp Bimodal Bimodal GAg
GAg PAp GAg GAg PAp GAg GShare

GShare GShare GShare GShare TAGE GShare GAp

482.sphinx3 GShare GAp TAGE GShare PAp GShare TAGE
GAg TAGE Bimodal GAg GAp GAg Bimodal

TAGE Bimodal GAp TAGE Bimodal TAGE GAp
Bimodal PAp GAg Bimodal TAGE Bimodal GAg

GAp GAg GShare GAp GAg GAp PAp
PAp GShare PAp PAp GShare PAp GShare

433.milc TAGE GAg Bimodal PAp Bimodal TAGE TAGE
Bimodal TAGE TAGE Bimodal GAg Bimodal GAg

PAp Bimodal PAp TAGE TAGE GShare Bimodal
GAp PAp GAg GAp GShare PAp PAp

GShare GShare GAp GAg PAp GAp GAp
GAg GAp GShare GShare GAp GAg GShare

Table 6.11: Aggregated lists for SPEC 2006 Floating Point benchmarks with weighted Borda
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6.5 Summary

The motivation behind this work is to develop a systematic framework that can consider

multiple performance parameters and find the aggregated rank of each predictor for a pro-

gram. When a new predictor comes in, it is possible to know the exact position of this

predictor with respect to the already existing ones. This knowledge can be of great help to

decide whether this new predictor can give any benefit when implemented in real hardware.

We believe that our framework can be of great value for evaluating a new prediction policy.

Given the fact that our framework is purely a pre-processing step, and can be done prior

to program execution, there are no additional performance slowdowns due to our mech-

anism. We expect our framework to be an important useful piece for designing efficient

combinations of predictors, which have been popular in literature.





Chapter 7

Performance attacks on branch

predictors in Simultaneous

Multithreading Processors

7.1 Introduction

This chapter extends our study on branch predictors to execution environments with con-

currency support. While our previous contributions outlined in the preceding chapters

have been around efficient strategies for predictor design and evaluation, the objective of

this chapter is to present a new direction of research on predictor attacks.

Different side channel attacks on branch prediction buffers have been well studied in lit-

erature [17][19][30]. Mitigation of covert channels through branch predictor has also been

studied in [47]. A fine-grained attack Branchscope is shown on the directional branch predic-

tor in [48]. In this case, the attack targets complex hybrid branch predictors with unknown
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organization. This work demonstrates how an attacker can force these predictors to switch

to a simple 1-level mode to simplify the direction recovery. In this work. in particular, we

study performance slowdown attacks in Simultaneous Multithreading processors, executing

multiple concurrent threads, and show how the presence of the predictor can be detrimental

to performance, in a low resource budget environment.

In modern processor architectures, Simultaneous Multi-Threading (SMT) [43] is used to

improve overall performance of program execution. It allows multiple threads of execution

working simultaneously on a processor to better utilize the processor resources. The oper-

ating system scheduler and the hardware thread dispatcher underneath seamlessly manage

the multiple threads of execution with context switches between the threads at runtime.

Indeed, most modern processors today utilize the benefits of SMT with multiple threads

working on the different cores with individual predictor components and using separate

predictor history tables for individual threads to avoid inter-thread interference[91]. How-

ever, in a resource constrained embedded environment (e.g. a mobile processor), managing

separate predictor tables is often infeasible, and a single shared table [47] turns out to be

the only choice to mitigate concerns on high resource usage and energy dissipation.

The setup we consider in this work is an embedded processor with SMT support, and

we study performance attacks on these shared structures. The main motivation behind our

attack exploitation is the observation that most embedded processors with shared structures

suffer significantly in terms of accuracy of prediction, and in turn, performance slowdown

due to the resulting pipeline activity that has to be performed as a mis-prediction penalty,

as discussed earlier.

Our analysis of context switching performance for SMT execution on the popular Siemens

software benchmarks [52], with multiple independent applications running in different threads

mapped to a single core implemented with shared predictor tables, reveals an interesting

finding – there is usually a decrease in branch prediction accuracy (and increase in mispredic-
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tion) in concurrent execution, in comparison to the accuracy achieved when the applications

are run in isolation as shown in Figure 7.1. While pollution effects on the shared cache in

multi-threaded execution have been studied in literature [113], effects on branch prediction

have been relatively less examined [47] [91], to the best of our knowledge. In our setup,

our findings reveal that the expected overall performance gain in program execution is re-

duced as well, due to the extra overhead of handling branch mis-predictions, often leading

to a performance slowdown. An in-depth analysis reveals that this is a result of extensive

interference on the shared predictor tables and registers on which the branch predictors

operate, resulting out of the frequent switching between the different applications running

in multiple threads, leading to performance slowdown. The prediction information of one

application running in one thread stored in some shared table is used and overwritten by

another application running in a different thread, once context switches during execution.

This often leads to a negative interference among the threads, thereby leading to an in-

correct direction for prediction, and therefore, accuracy degradation and slowdown. This

motivates us to study the interference phenomenon on the predictor tables in a concurrent

multithreaded environment. In particular, we work on a strategy to slowdown application

performance by carefully crafting threads that can mimic the execution of an ongoing ap-

plication, and alter its predictor table contents. This main contribution of this work is

outlined below.

7.1.1 Contributions of this work

• We show how to exploit the negative interference between threads in a shared-table

SMT single-core processor to slow down the performance of a benign application.

• We propose an attack methodology that can automatically create variants of a benign

application, which when dispatched in a concurrently executing thread, can defini-

tively induce negative interference on the benign one. Our methodology exploits the
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Figure 7.1: Misprediction rate for Siemens benchmark programs

control flow structure of a given benign application to create the variant. Section 7.3

presents the details of the attack methodology.

• We perform experiments on the Siemens benchmarks [38] to demonstrate the effect

of such performance attacks. Experimental results show that the prediction accuracy

degrades leading to performance slowdowns with our proposed attack policy.

The rest of the chapter is organized as follows: Section 7.2 presents an overview of the inter-

ference phenomenon that may occur for a predictor in SMT mode. Section 7.3 elaborates

our method of attack construction for negative interference. In Section 7.4, we show the

performance effects that result due to such attacks, while Section 7.5 concludes the work.

7.2 Predictor table interference in SMT execution

We use a simple Bimodal predictor to illustrate our attack methodology, on a SMT proces-

sor with a shared predictor table configuration, and the same Bimodal components being

used for branch prediction for multiple threads. The architectural overview of the bimodal

predictor is already discussed in Chapter 2, we revisit the structure once again for better
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Figure 7.2: Bimodal branch predictor

understanding of our attack methodology. We choose this predictor for simplicity of illus-

tration and ease of demonstration, attacks with other predictors can similarly be worked

out. A bimodal predictor is a simple dynamic predictor that maintains a two bit satu-

rating counter for every branch of a program for prediction. The main data structure of

this predictor is a prediction table that stores the two-bit counter state for each branch, as

shown in Figure 7.2. The counter maintains four different states 00 (strongly not-taken),

01 (weakly not-taken), 10 (weakly taken) and 11 (strongly taken) defined by the 2 bits of

it, as shown in Figure 7.2. The counter transitions from one state to another in response to

a taken (T) or not-taken (NT) outcome resulting from the execution of one or more branch

instructions. Each bit of the two-bit counter plays a different role. The most significant bit,

called the direction bit is used to track the direction of branches. If the counter is in states

01 or 00, the branch is predicted as NT. When it is in states 10 or 11, the prediction is T.

The least significant bit provides a hysteresis which prevents the direction bit from imme-

diately changing when a mis-prediction occurs. When a branch instruction is encountered

during program execution, its address is used to index into the appropriate location in the

predictor table, and the state of the 2-bit counter is used for predicting the direction of the

branch. We now explain the working of this predictor in the context of SMT execution, and

the interference generated.
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We consider two programs of the Siemens software benchmarks, printokens and tcas. Con-

sider a situation where branch n of printokens comes with an address 101010101 (i.e. the

program counter PC value), and a predictor table entry X is accessed with the 5 LSB bits

(10101), shown with a dotted line in Figure 7.3. X gives the final prediction according to

the current state of the two-bit counter stored in it and updates the state with the actual

outcome after the branch gets resolved and the actual outcome is known.

Figure 7.3: Predictor table interference of two programs

Consider the present state of the two bit counter stored in X is 10, hence it predicts the

branch direction as taken since the most significant bit (MSB) is 1. If the actual outcome

of branch n is 1, its state changes to 11 to give the predicted direction as taken, otherwise

it changes to 01 to give the predicted direction as not-taken. Consider the actual outcome

as 0, which implies that the current state of this two bit counter becomes 01, and when this

table entry is accessed in future, it provides the prediction as not-taken. Now, due to SMT,

branch m from the tcas program is selected with the current PC value as 110010101. If we

take the least significant five bits from it to index the table, we point to the same entry X

for this different program counter (shown with a solid line). Hence, the predicted direction

for branch m is not-taken, since the current state of the two bit counter is 01. Now, the

actual outcome of this branch m, which is 1, changes the counter state to 10 to give the
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prediction as taken. Hence, the branch behavior stored for printtokens for a specific pattern

is incorrectly altered with, and updated by tcas for another branch. Now, when the same

branch of printtokens occurs again in future, the same PHT entry X is accessed again for

prediction. It predicts the branch direction as taken - which is incorrect and cannot give

the expected result, since a not-taken direction was stored for that pattern, when branch n

of printtokens was processed, but overwritten when branch m of tcas was processed.

Context switching between threads generates significant negative interference that ulti-

mately has an impact on overall prediction accuracy as well as overall performance, since

increase in mis-prediction rate has an adverse effect on energy consumption due to increase

in the number of wrong path executions. This phenomenon of negative interference is what

we utilise to attack a benign application by creating a carefully crafted variant, as explained

in the following.

7.3 Attack Methodology

We now present the details of our proposed attack creation and execution. Our proposal is

based on some assumptions on the underlying architecture model, as outlined below.

7.3.1 Assumptions

In a context-switched SMT execution model, we assume that the two programs (benign and

the variant created by us) run concurrently, with one instruction or a block of instructions

from each, taking turns in a round robin schedule. Round Robin schedulers are quite

popularly used for handling tasks in real time embedded environments, due to the simplicity

of implementation and the property of no starvation. Further, we assume that the programs
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are co-located on the same core, this assumption is needed since the branch predictor unit is

shared on the same physical core, but not across the different cores of a multi-core processor

architecture [47]. In this work, our branch predictor uses a shared configuration that shares

the predictor table [91] and branch history register (BHR) among all the threads as shown

in Figure 7.4. For the shared configuration, we consider a simple bimodal predictor that

takes only the address to index the branch predictor table.

Figure 7.4: Branch Predictor Configuration for SMT

7.3.2 Attack creation

For a program P , we create a variant P ′ (we also call it a clone) that is dispatched in a

concurrent thread to spoil the prediction information kept by the predictor for P . This

variant program is a replica of the actual one except that all the corresponding branch

conditions are flipped. In the illustration below, only conditional branches are considered.

The variant creation process has three major steps, as shown in Algorithm 9. We illustrate

each step using the printtokens program fragment, shown in Figure 7.5.

• MakeClone: It is the main method. It takes the benign program P and for each

statement of P , creates the variant P ′ by calling the following functions.

• CopyOnClone: This method takes every statement of P and checks if it is a con-

ditional statement. For any statement other than a branch, it simply copies it into

program P ′. Hence, statements 1, 2 and 3 of program P are just copied into the

variant program P ′ (corresponding statements 1, 2 and 3 are created), as shown in

Figure 7.5. For every branch statement, it calls the function IfInversion to generate
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Program P(actual program)

1: static int next_state(state,ch)
2: int state;
3: char ch;
{
4:    if(state < 0)    //branch 1
5:     return(state);
    
6:   if(base[state]+ch >= 0)     { //branch 2
7:        if(check[base[state]+ch] == state)
                                              //branch 3 
8:             return(next[base[state]+ch]);
9:       else             
10         return(next_state(default1[state],ch)); 
    }
11:  else
12:        return(next_state(default1[state],ch));
}

Program P'(clone program)

1:static int next_state(state,ch)
2:int state;
3:char ch;
{
4:    if(!(state < 0)){}  //branch 1
5:    else
6:      return(state);
7:    if(!(base[state]+ch >= 0)) { //branch 2
8: return(next_state(default1[state],ch));
     }  
9:    else{
10: if(!(check[base[state]+ch] == state))
                                               //branch 3 
11:              return(next_state(default1[state],ch));
12:             else
13:               return(next[base[state]+ch]);

}
 }

Figure 7.5: Program fragment of printokens and its variant

a corresponding branch with the condition flipped and inserts it into P ′.

• IfInversion: This is the most important function of this variant creation process. It

flips the condition of every branch of P and writes it into P ′. Since we do not want to

change the control flow of the actual program in P ′, we interchange the content of the

if block with the else block of each branch of P in P ′. Figure 7.5 shows the interchange

of the if and else blocks of branch 2 of program P (statement 6) in program P ′ (branch

2, statement 7). This interchange also happens for branch 3 of program P and it can

be seen that statement 8 which is within the if block of this branch in P is copied into

the else block (statement 13) of the same branch in P ′. For every branch of P that

has no else block, it creates a dummy else block in P ′ and copies all the statements

within the if block in P into the corresponding dummy else block in P ′. Figure 7.5

shows the else created for branch 1 (statement 4) of program P in P ′ (statement 5).

Statement 5 of P, that is within the if block of this branch is copied into this newly

created dummy else block in P’ (statement 6).
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ALGORITHM 9: CloneCreation

1 Input: Program P
2 Output: Clone program P ′

3 Method MakeClone()
4 begin
5 for each statement S in application P do
6 CopyOnClone(S)

7 Method CopyOnClone(S)
8 begin
9 if S contains a branch then

10 IfInversion(S)
11 else
12 Copy S onto variant

13 Method IfInversion(S)
14 begin
15 flip the condition of S and write it on P ′

16 if else block of S is present in P then
17 for each statement S1 in true path of S do
18 call CopyOnClone(S1) on corresponding else block of P ′

19 for each statement S2 in else path of S do
20 call CopyOnClone(S2) on corresponding if block of P ′

21 else

22 Create else block of S in P ′

23 for each statement S′ of S do
24 call CopyOnClone(S′) on the created else block

The above algorithm recursively goes inside if and else blocks and creates the correspond-

ing statements, with the conditions flipped and the statement blocks interchanged. We

now explain how this program P ′, when dispatched as a concurrent thread, can spoil the

prediction information for P when both are running on the same input.
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7.3.3 Attack execution

In SMT mode, the two programs P and P ′ are made to run on the same inputs with a round

robin scheduler context switching between the two threads. Since the programs are almost

identical to each other except in the branch conditions (flipped in the clone program), the

same address value (program counter PC) will be generated for both the programs. Note

that PC is a virtual address and the same is used for indexing the predictor tables. Now

we illustrate how our clone program causes negative interference for every branch of the

benign program for this branch predictor configuration. In this configuration, the branch

predictor table and the branch history register are shared by the running threads. The

bimodal predictor uses only the PC value to index the predictor table entry for prediction.

The prediction information stored by the actual program is flipped by the clone program

since the branch condition of the two programs are opposite to each other. Thus, when the

two programs are made to run on the same input, the outcome in P will be opposite to the

one in P ′.

Example 7.1 Figure 7.6 shows that for the branch at line 2 of program P , PHT entry

PHT1 is accessed (marked as 1 in Figure 7.6) and the current state of the two bit counter

that is stored in that entry gives the prediction (2). If the current state is 10, the prediction

is taken. Now, this state is modified according to the actual outcome of the branch. Consider

the actual outcome is not-taken and the current state becomes 01 to give the prediction as

not-taken. In future, for the same branch, this state is stored in that entry (3). Now in

SMT mode, for the same branch (branch 2) of our variant program P ′, this entry is accessed

since the PC value for both are same. As before, its current value is used for prediction and

this value is modified and stored according to the actual outcome (steps are marked as 1’,

2’ and 3’). The outcome of this branch is taken for program P’ (as opposite to P) and so

the state of the counter is changed to 10. Hence, a mis-prediction occurs for branch 2 of P
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in future since its prediction information is destructively modified by its variant. �

Figure 7.6: Negative interference caused by the variant on a benign application

7.4 Experimental setup and Evaluation

To demonstrate the effect on branch prediction accuracy for a benign application with its

variant, we run our experiment on the GEM5 architectural simulator [27]. In Gem5, multiple

user specific programs can run simultaneously in simultaneous multi-threading (SMT) mode

where each program is provided a unique thread id with a round-robin scheduler as the

default scheduler. After execution, it generates statistics that records data like branch

prediction accuracy, energy expenditure, time taken etc. We modify the source code of this

simulator to support SMT mode for two threads where the same predictor table is shared

by them for prediction. We now report our experience in using our methods on the Siemens

software programs. Table 7.1 presents the benchmark details. The third column of this

table presents the number of branches in each program that are flipped for creating the

variant program.
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Programs Lines of code Number of branches

replace 565 94

schedule 415 30

schedule2 311 41

totinfo 407 45

printtokens 727 40

printtokens2 564 78

Table 7.1: Benchmark Detail

Figure 7.7 presents the mis-prediction rate for each benchmark program when it is run alone

and run with our created variant program for attack. It can be seen that in each case, the

presence of the variant program increases the mis-prediction rate. It may be noted that

the accuracy degradation shown in Figure 7.7 is around 2%. This is quite a significant

percentage in modern processors with deep pipelines.
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Figure 7.7: Mis-prediction Rate of Siemens benchmark programs

We perform another experiment adopting a non-shared predictor table configuration, as is

the case with many desktop processors today. However, as mentioned earlier, storage is a

concern in the embedded / mobile world, and hence, an alternative solution proposed in

literature to curb interference is to split the predictor table into individual compartments

and allocate each smaller compartment to each running thread. Thus, the chance of an

attack with the variant program goes away. However, due to the fact that each thread now
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Figure 7.8: Mis-prediction Rate of Siemens benchmark programs with split prediction table

receives a much lesser space to store its working set of branches, a significant intra-thread

interference is generated. Figure 7.8 presents the mis-prediction rate recorded for such a

split predictor table configuration with the bimodal predictor. We present a comparative

plot of the mis-prediction rates of the benchmark program when run a) alone, b) with the

variant program in SMT mode with a shared table and c) with the variant in a SPLIT

table configuration. It may be observed that even the SPLIT table cannot improve the

mis-prediction rate beyond a certain level.

7.5 Summary

In this work, we observe how predictor table interference affects the performance of a branch

predictor in SMT mode. We propose an attack method that jeopardises the prediction

accuracy by polluting the predictor tables stored for a benign application using a malicious

variant. Examining the results generated using our proposed attack method as well as the

extent of performance compromised, we can conclude that our approaches can effectively

slow down the performance promise expected from a SMT processor.



Chapter 8

An empirical study on predictor

storage and fault sensitivity

8.1 Introduction

As discussed in the previous chapters, branch predictors typically function based on the

history information stored in the corresponding prediction tables. Evidently, accuracy of

branch predictors is sensitive to the storage they are allowed to use, more history information

usually has been seen to generate more accuracy of prediction. For a program with even

a moderate number of branches, it is not possible to store the history information of all

branch outcomes in the predictor table individually, due to constraints on cost and resource

size. As a result, each entry of the table has to be used for more than one branch to store

history information. This phenomenon, formalized as interference in our earlier discussions,

may manifest in either a constructive (positive) or a destructive (negative) way. When the

information stored for one branch is accessed and modified for some other branch that shares

the same predictor entry for prediction, it is termed as negative interference. However, in

161
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the case of positive interference, the information stored by one branch has often been seen

to help the other branches for correct prediction. Prediction accuracy degrades largely due

to the negative interference since it has been observed that negative interferences occur

much more frequently than their positive counterparts [121]. Evidently, the amount of

negative interference is expected to increase if the available predictor table storage is less,

and more number of branch instructions access the same address for prediction, leading to

performance and accuracy degradation.

The issue of storage for predictor tables is even more important for a resource constrained

embedded environment with low storage budgets, since there is a more acute trade-off

that needs to be worked out. On one hand, increased storage budget for the predictor

tables, can lead to better accuracy of prediction. However, the cost and other overheads

associated with predictor tables increase. On the other hand, having a lower sized table for

predictors reduces cost, however, increases mis-prediction and manifests in terms of wasted

instructions, latency and energy. Selecting an appropriate branch predictor structure for an

embedded environment is therefore, quite a crucial task. A branch prediction unit charges

a significant amount of power consumption in modern processor designs, and consumes

a significant amount of storage and becomes a major issue for relatively small embedded

processors. In this chapter, we present an empirical study on the prediction accuracy and

latency of different branch predictors for different storage budgets. The motivation behind

this empirical exploration is to highlight the storage sensitivity of branch predictors that

are available in contemporary literature. The objective of our study is to examine the

common predictor designs available in literature, and characterize their accuracy versus

storage performance. As our results show, many of the predictors which are known to have

high accuracy in general, lose out on performance when exercised in low storage scenarios.

In addition to the storage sensitivity analysis of different branch predictors, in this chapter,

we also study through experiments, the resilience of these predictors against faults in the
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predictor table and history registers. A fault in the contents of a register or a table entry,

which a predictor uses for keeping information can alter the number of correct predictions,

and thereby, increase the mis-prediction rate, and affect the overall performance of execution

of a given user program.

Contributions of this work

• We present an empirical evaluation of different branch predictors at various storage

points and the resulting effect on processor performance in terms of prediction accu-

racy and latency. We present results of our experiments using the branch predictors

and the traces of the Championship Branch Predictor-2 benchmarks [33].

• We perform a detailed empirical study on the effect of a fault in the branch predictor

on a processor’s performance.

– We consider a number of contemporary branch predictors and identify the amount

of information needed at runtime (which the processor needs to store) for these

predictors to work correctly. We change these registers in a controlled fashion,

and show the resulting change in prediction and performance.

– We observe the performance variations for different branch predictors using an

architectural simulator. Specifically, we alter the register contents inside the

simulator and observe the outcomes. The simulation outputs are measured in

terms of performance in respect of prediction accuracy, number of processor

cycles needed and power consumption for that processor.

The rest of the chapter is organized as follows: Section 8.2 reports the storage sensitivity

analysis of predictors. Section 8.3 discusses different types of faults on different branch

predictors. Section 8.4 describes the experimental set-up used as well as the results of our

experiments while Section 8.5 concludes the chapter.
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8.2 Storage requirement analysis of predictors

In this section, we highlight the elements of storage that are intrinsically used by these

prediction units, with a discussion on why the predictor design may lose on accuracy if

subjected to lower resources.

Gshare Predictor

The GShare predictor [78] uses two main data structures - a Pattern History Table (PHT)

and Branch History Register (BHR) as discussed in Chapter 2. For this predictor, storage

size actually depends on the size of the PHT. A small PHT is able to store less number of

prediction related information and uses less number of PC and BHR bits. On one hand,

lesser PC bits and small sized PHT increases the chances of negative interference. On the

other hand, since the BHR gives the flavor of branch correlation, lesser number of BHR bits

loses the correlation to some extent. Hence, a smaller storage size increases the chances

of negative interference and increases the number of mis-predictions. GShare is thus quite

sensitive to storage size, as evident from our experiments as well.

Local history based Two-level predictor

In dynamic branch prediction, two types of histories are mainly used - global branch history

and local branch history, as discussed in Chapter 2. A local history based predictor is

popularly used in many processors since it can detect the control structures like the loop

structure more effectively than the global one. However, these predictors are more resource

intensive. In this discussion, we highlight the main features of a popular local history based

branch predictor, namely PAp [119]. It is a combination of multiple per-address BHRs with

multiple per-address PHT as shown in Chapter 2. In PAp, each branch has its own BHR as
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well as its own PHT [119]. The BHR content is used to select the index in a PHT whereas a

PHT is selected by the branch instruction address. For this predictor, storage size depends

on BHR size and per address PHT size. A small BHR size contains less number of entries

that implies lesser number of per address PHT. This increases the chances of inter-branch

interference since more number of branches now access the same PHT table. Similarly,

smaller sized per address PHT can increase the chances of intra-branch interference since

the same PHT entry has to be used for more number of different BHR patterns. It is quite

expected that the number of mis-predictions due to negative interferences will increase with

smaller storage size.

Perceptron Predictor

The perceptron predictor discussed in Section 2, provides better prediction accuracy com-

pared to other popular predictors even at lower resource budget. In a perceptron predictor,

the best performance can be achieved by tuning the history length, the number of bits used

to represent the weights, and the threshold. A smaller predictor size affects the number of

bits of these three parameters, thereby degrading the prediction accuracy in turn.

LTAGE Predictor

LTAGE [97] is widely recognized as the most popular state-of-the-art branch predictor that

exploits several different history lengths to capture correlation between very remote branch

outcomes as well as very recent branch history. This predictor combines a TAGE [99]

predictor and a loop predictor as presented in Chapter 2. For this predictor, storage size

depends on the size of storage for the loop predictor as well as the TAGE predictor. The

size of the TAGE predictor is calculated using the size of the base predictor, the number

of components and the size of each tagged component. A lesser number of tag components
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loses the correlation from very remote branch outcomes. A smaller sized tagged component

and the base predictor also increases the chances of negative interferences. Similarly, a

smaller sized loop predictor may fail to identify the loop behavior of all branches correctly.

ISL-TAGE Predictor

ISL-TAGE [98] is also considered as a state-of-the-art branch predictor and is extensively

used in modern pipelined processors. This predictor combines a TAGE predictor, a loop

predictor, a Statistical Corrector predictor and an Immediate Update Mimicker (IUM),

discussed in Chapter 2. In this case, storage size depends on all the components associated.

Similar to the LTAGE predictor discussed above, smaller sized components as well as lesser

number of components causes increased negative interference and increases misprediction.

8.3 Fault sensitivity analysis on tables and history registers

For branch prediction, almost every branch predictor uses the two-bit saturating counter,

the BHR, the PC and the PHT, as discussed in Chapter 2. This gives us the motivation

to explore how a branch prediction policy gets affected if these structures have faults. We

consider permanent faults for ease of analysis. In the following, we discuss the source of the

fault and how it affects the prediction structures.

• Source of a fault: two-bit saturating counter

The two bit counter is very crucial for branch prediction since it provides the final

prediction for branch direction. Some of the possible ways in which this counter can

be affected are as described below.
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Figure 8.1: Impacts on branch prediction (MSB reversed)

– Most Significant Bit (MSB) of all states flipped :

The MSB provides the direction for a branch prediction. The bit flip actually

inverts the predictions for all branches and as a result, earlier taken predictions

for branches become not-taken and vice versa (Figure 8.1). As a result of this,

the GShare predictor begins to mis-predict the branches for which it did the

correct predictions before. This significantly degrades the performance, as we

show through results.

– Least Significant Bit (LSB) of all states flipped :

The LSB, when paired with the direction bit, provides a hysteresis which pre-

vents the direction bit from immediately changing when a mis-prediction oc-

curs. If we flip this bit, it changes the current state of this two-bit counter

and a strongly taken:00 (strongly not-taken:01) state becomes a weakly taken:01

(weakly not-taken:10) state and vice versa. As a result, states which used to take

two consecutive mis-predictions to alter the branch direction, now take only one

mis-prediction. This again has an impact on prediction accuracy.

– Counter length changed :

If the two-bit counter is changed to a 1-bit counter due to the fault, the number of

states gets reduced and it becomes two (either taken or not-taken). According to

the principle of a saturating counter, now only one mis-prediction always changes
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Figure 8.2: Impacts on branch prediction (Two-bit counter becomes 1-bit counter)

the prediction for a branch direction whereas, the two-bit counter usually uses two

consecutive wrong predictions to alter the direction for the state:00 (strongly not-

taken) and state:11 (strongly taken), refer Figure 8.2. This naturally increases

the number of incorrect predictions. Experimental results show the performance

degradation due to this fault.

• Source of fault: Branch History Register (BHR)

As noted earlier, BHR is a n-bit shift register which stores the history of the last

n branches (global history) or the last n outcomes of the same branch instruction

(local history). GShare and TAGE predictors use the global history whereas the PAp

predictor uses the local history. The BHR is used to address an entry in a PHT which

keeps a two-bit counter to give the final prediction. If this BHR entry has a fault, the

branch predictor will index a wrong PHT entry to get the final prediction. This BHR

can be affected by its content or its length as discussed below:
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– MSB or LSB of BHR is flipped:

This flip changes the original value of the BHR and a different PHT entry is

accessed by the predictor to get the final prediction for branch direction. For

example, a 4-bit BHR with a value 1001 becomes 0001, if MSB is flipped. Now

in a PAp predictor, instead of an entry at location 1001, the location 0001 will be

accessed to get the prediction for a branch, which can vary prediction accuracy.

– Length of BHR is changed:

If BHR length is changed, the indexing used to address an entry in PHT can differ

and as a result a wrong PHT entry will be picked up for the final prediction. For

example, consider a 8-bit BHR with a value 11101001. In a PAp predictor, this

8-bit is used to index an entry in a 2
8

entry PHT. If we select only the lower 4

bits of this BHR i.e. 1001 to index a PHT entry, then instead of 11101001, the

00001001 entry will be accessed for prediction. So this can alter the prediction

accuracy as well.

• Source of fault: Program Counter (PC)

The program counter contains the branch address and is used by different prediction

mechanisms. In PAp, each PC corresponds to an individual BHR as well as individual

PHT. If the number of bits of a PC which are taken to select this Branch History

Table (BHT) and PHT is changed, a different BHT entry (or BHR) as well as a

different PHT entry will be accessed to get the final prediction. However, in case

of the GShare predictor, this PC value is used as one input of an indexing function

to find an entry in the PHT. So this length change of PC is expected to result in a

different output for the same indexing function and as a result, a wrong PHT entry

can be chosen to give the prediction. Similarly, for the case of the TAGE predictor, a

wrong predictor component or incorrect entry of the base predictor may be accessed

for branch prediction.
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Along with these, the TAGE predictor also has tagged components whose signed counter

(sign bit) is used to make the prediction. Any change on this counter (e.g. flipping of sign

bit) is expected to have an impact on the prediction accuracy.

8.4 Implementation and Results

8.4.1 Storage sensitivity analysis of branch predictors

To support our study discussed above, we carry out experiments with different predictor de-

signs available in literature, and record their accuracy and latency performance at different

storage points. The objective of this study is to show that indeed many of these predictors

are quite sensitive to storage, and often fail to perform as per expectations when subjected

to low resources. Our experiments indeed support our intuition, as detailed below.

In this work, we use the five different predictor implementations, namely, GShare, a local

history based Two-Level predictor, ISL-TAGE, LTAGE and Perceptron from the Champi-

onship Branch Prediction-2 (CBP-2) [32] benchmarks. In CBP-2, all predictors are designed

for a fixed storage budget. For our experiments, we modify the predictor codes to work

with 6 different storage budgets, namely, 2 KB, 4 KB, 8 KB, 16 KB, 32 KB and 64 KB.

The storage value mentioned here is the total storage allocated to a predictor for managing

all data structures that it needs internally to store and manipulate history information.

We perform our experiments on the CBP-2 traces and record the Mis-prediction Per Kilo

Instructions (MPKI) and latency.

Figure 8.3 and 8.4 present the MPKIs for the five predictors at the different storage points.

Results show that the mis-prediction rates for different predictors vary with different storage

budget. It is interesting to note that a predictor that has the lowest MPKI at a particular

storage point can have the highest MPKI for some other storage point. For example,
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(a) 2 KB

(b) 4 KB

(c) 8 KB

Figure 8.3: MPKI for CBP2 Benchmark Programs

LTAGE has the highest MPKI for all the cbp traces with 2 KB storage size as shown in

Figures 8.3 and 8.4, whereas, performance changes for other storage sizes presented here.

Indeed, LTAGE has the lowest MPKI for almost all the cbp traces with 64 KB storage

size. Additionally, it can be seen that the two state of art predictors, namely, LTAGE
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(d) 16 KB

(e) 32 KB

(f) 64 KB

Figure 8.4: MPKI for CBP2 Benchmark Programs

and ISL-TAGE, perform well for storage sizes more than 16 KB. For a low storage budget,

performances of the Two level predictor and Perceptron are better, as compared to LTAGE

and ISL-TAGE. Thus we see that predictors included in modern processors may not always
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(a) 2 KB

(b) 4 KB

(c) 8 KB

Figure 8.5: Latency plot for CBP2 Benchmark Programs

be the best choice for embedded processors with less storage.

Figures 8.5, 8.6 present the latency plot for different predictors at different storage points. It

is interesting to observe that the latency does not vary largely across the points. The Two-
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(d) 16 KB

(e) 32 KB

(f) 64 KB

Figure 8.6: Latency plot for CBP2 Benchmark Programs

level predictor has the highest latency compared to the other predictors for all the predictor

sizes considered here. From Figures 8.3, 8.4, 8.5 and 8.6, it can be observed that though

the Two-level predictor gives better prediction accuracy than LTAGE and ISL-TAGE in a
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resource constrained environment, it does not fare well in terms of latency. In this case, the

perceptron predictor has the lowest MPKI as well as latency among other predictors.

8.4.2 Fault sensitivity analysis

We now report our findings on fault effect analysis on the GShare, PAp and TAGE pre-

dictors on the SPEC 2006 benchmark programs [52]. Performances are shown in terms of

prediction accuracy, number of processor cycles and energy consumption. In all the tables,

the column labeled as energy shows the dynamic energy expenditure in nanojoules measured

by Tejas [11]. We present below the results of our experiments for the different predictors

using the different fault sources discussed on different registers. We inject faults in these

structures to study the resulting effect.

Benchmark Prediction Accuracy(%) Clock Cycles Energy
Original Reversed Original Reversed Original Reversed

MSB MSB MSB MSB MSB MSB

403.gcc 66.27 33.6931 86754099 96932134 2454452.3728 2635708.1682
400.perlbench 63.75 36.2364 11766325 12867838 339602.8584 359208.8278

458.sjeng 99.92 0.0706 283822066 497448050 5526430.3942 9328972.9094
470.lbm 79.86 20.1389 62229116 144180 2800.2948 2898.889

456.hmmer 74.75 25.1446 56861420 70659713 1567938.3322 1716351.0124
429.mcf 64.98 35.0133 138641 69470610 2146057.1238 2370500.5134

482.sphinx23 62.51 37.4833 633511 684469 16608.3024 17515.1624
462.libquantum 79.64 20.3525 144808 151364 2916.0318 3032.7286

444.namd 78.7 21.2907 157919 164554 3160.5668 3277.9002
464.h264ref 77.31 22.6808 271338 278370 5300.637 5425.8066

Table 8.1: Performance Effects for GShare Predictor (MSB Reversed)
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Benchmark Prediction Accuracy(%) Clock Cycles Energy
Original Reversed Original Reversed Original Reversed

MSB MSB MSB MSB MSB MSB
403.gcc 75.346 24.6208 83385248 99911660 2394376.5798 2688633.8706

400.perlbench 69.8519 30.1486 11389779 13426984 332899.9548 369160.4722
458.sjeng 99.947 0.053 283502111 497505905 5520735.1952 9330002.7284
470.lbm 76.5046 23.4954 138832 142940 2803.6946 2876.817

456.hmmer 92.1533 7.8592 60383424 73268920 1534589.5846 1764230.9706
429.mcf 86.4782 13.6234 47692804 78868239 1982855.5666 2537777.9248

482.sphinx23 81.372 18.6287 599968 722759 16011.0446 18196.532
462.libquantum 76.9756 23.0244 146579 149118 2947.5556 2992.7498

444.namd 75.8411 24.4505 159852 165329 3194.2046 3293.042
464.h264ref 74.7855 25.3573 270799 279657 5291.0428 5449.1

Table 8.2: Performance Effects for PAp Predictor (MSB of Counter Reversed)

Benchmark Prediction Accuracy(%) Clock Cycles Energy
Original Reversed Original Reversed Original Reversed

MSB MSB MSB MSB MSB MSB
403.gcc 85.93 88.0023 80209030 79442840 2337946.489 2324347.3642

400.perlbench 83.23 86.4732 10589517 10720538 318653.5596 320985.7334
458.sjeng 99.93 99.9307 283196974 283122778 5515303.7566 5513983.0678
470.lbm 77.31 84.838 140637 138519 2835.8236 2798.1232

456.hmmer 93.08 93.1131 59931808 59113058 1525384.6834 1511650.3746
429.mcf 82.95 91.5021 49226385 45601483 2010152.9236 1945629.668

482.sphinx23 84.25 79.7979 591041 603252 15851.9516 16069.3074
462.libquantum 80.5 85.0483 144364 142846 2908.1286 2881.1082

444.namd 79.42 84.011 156810 157717 3141.4038 3157.5484
464.h264ref 78.87 83.0543 273337 268542 5336.604 5251.253

Table 8.3: Performance Effects for TAGE Predictor (MSB of Counter Reversed)

Benchmark Prediction Accuracy(%) Clock Cycles Energy
Original Reversed Original Reversed Original Reversed

LSB LSB LSB LSB LSB LSB
403.gcc 66.27 64.0966 86754099 87023273 2454452.3728 2459165.9404

400.perlbench 63.75 63.0858 11766325 11796034 339602.8584 340131.2938
458.sjeng 99.92 0.2276 283822066 497415305 5526430.3942 9328390.0484
470.lbm 79.86 53.2407 62229116 140879 2800.2948 2840.1312

456.hmmer 74.75 46 56861420 67806143 1567938.3322 1665543.0364
429.mcf 64.98 70.6935 138641 54436258 2146057.1238 2102889.0478

482.sphinx23 62.51 52.1742 633511 654797 16608.3024 16987.0008
462.libquantum 79.64 53.0984 144808 146188 2916.0318 2940.5958

444.namd 78.7 52.9509 157919 157431 3160.5668 3151.1108
464.h264ref 77.31 53.4941 271338 274159 5300.637 5350.8508

Table 8.4: Performance Effects for GShare Predictor (LSB Reversed)
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Benchmark Prediction Accuracy(%) Clock Cycles Energy
Original Reversed Original Reversed Original Reversed

LSB LSB LSB LSB LSB LSB
403.gcc 75.346 64.0929 83385248 87046670 2394376.5798 2459550.2762

400.perlbench 69.8519 63.1424 11389779 11781463 332899.9548 339871.3528
458.sjeng 99.947 0.2631 283502111 497379990 5520735.1952 9327761.4414
470.lbm 76.5046 56.4236 138832 140684 2803.6946 2836.6602

456.hmmer 92.1533 46.0458 60383424 67441662 1534589.5846 1658839.2094
429.mcf 86.4782 71.0449 47692804 54179141 1982855.5666 2098312.3652

482.sphinx23 81.372 53.8234 599968 654465 16011.0446 16981.0912
462.libquantum 76.9756 56.1114 146579 147273 2947.5556 2959.9088

444.namd 75.8411 56.6464 159852 161126 3194.2046 3216.8818
464.h264ref 74.7855 57.5398 270799 273818 5291.0428 5344.781

Table 8.5: Performance Effects for PAp Predictor (LSB of Counter Reversed)

Benchmark Prediction Accuracy(%) Clock Cycles Energy
Original Reversed Original Reversed Original Reversed

LSB LSB LSB LSB LSB LSB
403.gcc 85.93 86.3175 80209030 79715714 2337946.489 2329132.7562

400.perlbench 83.23 84.1727 10589517 10636708 318653.5596 319495.6758
458.sjeng 99.93 99.9299 283196974 283338969 5515303.7566 5517831.2676
470.lbm 77.31 79.6875 140637 139479 2835.8236 2815.2112

456.hmmer 93.08 93.0844 59931808 60526201 1525384.6834 1538361.4132
429.mcf 82.95 84.0822 49226385 48799739 2010152.9236 2002559.202

482.sphinx23 84.25 75.9527 591041 609505 15851.9516 16180.9956
462.libquantum 80.5 80.1592 144364 144169 2908.1286 2904.6576

444.namd 79.42 78.7012 156810 156423 3141.4038 3133.938
464.h264ref 78.87 78.586 273337 272572 5336.604 5322.6022

Table 8.6: Performance Effects for TAGE Predictor (LSB of Counter Reversed)

Benchmark Prediction Accuracy(%) Clock Cycles
1-bit 2-bit 3-bit 4-bit 1-bit 2-bit 3-bit 4-bit

403.gcc 61.96 66.27 67.92 68.62 87517041 86754099 86322007 85356433
400.perlbench 58.8 63.75 66.27 66.4 11660939 11766325 11357031 11593328

458.sjeng 99.89 99.92 99.92 99.92 283320350 283822066 283552210 283606701
470.lbm 78.58 79.86 79.22 76.04 137526 138641 138090 137120

456.hmmer 59.09 74.75 75.64 76.19 65918003 62229116 63056889 63761834
429.mcf 56.39 64.98 69.75 70.73 60473999 56861420 54817421 54247867

482.sphinx23 48.37 62.51 64.91 65.41 663205 633511 629030 629257
462.libquantum 78.28 79.64 78.68 76.23 144729 144808 143712 143936

444.namd 76.72 78.7 77.22 75.06 156908 157919 158193 157375
464.h264ref 75.72 77.31 76.46 74.04 273733 271338 273181 270123

Table 8.7: Performance Effects for GShare Predictor (Counter Length Changed)
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Benchmark Energy
1-bit 2-bit 3-bit 4-bit

403.gcc 2454452.3728 2446727.0804 2429563.9132
400.perlbench 337726.9876 339602.8584 332318.0024 336524.089

458.sjeng 5517499.8494 5526430.3942 5521626.9574 5522596.8972
470.lbm 2780.4478 2800.2948 2790.487 2773.221

456.hmmer 1634169.4476 1567938.3322 1581324.16 1595889.1102
429.mcf 2210361.03 2146057.1238 2109673.9416 2099535.8804

482.sphinx23 17136.8556 16608.3024 16528.5406 16532.5812
462.libquantum 2914.6256 2916.0318 2896.523 2900.5102

444.namd 3142.571 3160.5668 3165.444 3150.8836
464.h264ref 5343.268 5300.637 5333.4424 5279.01

Table 8.8: Performance Effects for GShare Predictor (Counter Length Changed)

Benchmark Prediction Accuracy(%) Clock Cycles
1-bit 2-bit 3-bit 4-bit 1-bit 2-bit 3-bit 4-bit

403.gcc 69.8066 75.346 76.9188 76.85 85849140 83385248 82786622 83092197
400.perlbench 65.244 69.8519 72.3361 72.6049 11326321 11389779 11121986 11252867

458.sjeng 99.9348 99.947 99.9416 99.9338 283460925 283502111 283202229 283268135
470.lbm 77.2569 76.5046 74.4792 71.5856 139735 138832 139343 141121

456.hmmer 85.9031 92.1533 92.3705 92.3344 61361536 60383424 60180651 60039036
429.mcf 77.6357 86.4782 87.449 87.5607 51472783 47692804 47355941 47230854

482.sphinx23 77.5252 81.372 81.8159 80.3623 604026 599968 599247 598155
462.libquantum 77.0324 76.9756 74.4741 71.9159 145244 146579 146189 144458

444.namd 75.7308 75.8411 73.7452 71.3734 158178 159852 155382 155052
464.h264ref 74.5403 74.7855 73.1508 70.5762 270863 270799 269808 274275

Table 8.9: Performance Effects for PAp Predictor(Counter Length Changed)

Benchmark Energy
1-bit 2-bit 3-bit 4-bit

403.gcc 2438333.713 2394376.5798 2383780.681 2389245.1204
400.perlbench 331770.4024 332899.9548 328132.6622 330462.344

458.sjeng 5520002.0844 5520735.1952 5515397.2956 5516570.4224
470.lbm 2819.768 2803.6946 2812.7904 2844.4388

456.hmmer 1552125.6154 1534589.5846 1529994.3676 1528588.9634
429.mcf 2050139.1928 1982855.5666 1976859.4052 1974633.049

482.sphinx23 16083.277 16011.0446 15998.2108 15978.9656
462.libquantum 2923.7926 2947.5556 2940.6136 2909.8018

444.namd 3164.4074 3194.2046 3114.6386 3108.7646
464.h264ref 5292.182 5291.0428 5273.403 5352.9156

Table 8.10: Performance Effects for PAp Predictor(Counter Length Changed)
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Benchmark Prediction Accuracy(%) Clock Cycles
1-bit 2-bit 3-bit 4-bit 1-bit 2-bit 3-bit 4-bit

403.gcc 79.83 85.93 87.44 87.6 82189182 80209030 79472066 79754141
400.perlbench 74.9 83.23 85.97 86.56 11175555 10589517 10754710 10422707

458.sjeng 99.91 99.93 99.93 99.93 283681764 283196974 283581362 283144095
470.lbm 73.84 77.31 78.93 75.63 140633 140637 139459 140076

456.hmmer 92.38 93.08 93.1 93.14 60054884 59931808 59553481 59503474
429.mcf 63.52 82.95 84.25 88.47 57288500 49226385 46952993 48633091

482.sphinx23 55.97 84.25 83.51 83.43 648968 591041 593805 595462
462.libquantum 74.18 80.5 75.09 76.52 143713 144364 146949 145676

444.namd 73.52 79.42 74.84 75.34 157164 156810 157275 155027
464.h264ref 73.39 78.87 76.95 74.98 268874 273337 272225 269070

Table 8.11: Performance Effects for TAGE Predictor(Counter Length Changed)

Benchmark Energy
1-bit 2-bit 3-bit 4-bit

403.gcc 2373177.2254 2337946.489 2324840.8434 2329799.6332
400.perlbench 329085.036 318653.5596 321593.995 315684.3416

458.sjeng 5523933.0186 5515303.7566 5522145.863 5514362.5104
470.lbm 2835.7524 2835.8236 2814.8552 2825.8378

456.hmmer 1529230.2686 1525384.6834 1519055.4648 1518348.8898
429.mcf 2153658.5706 2010152.9236 1969686.546 1999592.2904

482.sphinx23 16883.0522 15851.9516 15901.1508 15930.6454
462.libquantum 2896.5408 2908.1286 2954.1416 2931.4822

444.namd 3147.705 3141.4038 3149.6808 3109.6664
464.h264ref 5257.1626 5336.604 5316.8104 5260.6514

Table 8.12: Performance Effects for TAGE Predictor(Counter Length Changed)

Benchmark Prediction Accuracy(%) Clock Cycles Energy
Original Reversed Original Reversed Original Reversed

LSB LSB LSB LSB LSB LSB
403.gcc 75.346 75.3677 83385248 83209708 2394376.5798 2391358.1726

400.perlbench 69.8519 69.853 11389779 11589839 332899.9548 336459.2912
458.sjeng 99.947 99.9478 283502111 283267955 5520735.1952 5516567.2184
470.lbm 76.5046 77.7199 138832 140458 2803.6946 2832.6374

456.hmmer 92.1533 92.2117 60383424 60085459 1534589.5846 1528565.2696
429.mcf 86.4782 86.3769 47692804 47700080 1982855.5666 1982984.6946

482.sphinx23 81.372 81.4399 599968 599026 16011.0446 15994.0846
462.libquantum 76.9756 77.7146 146579 146870 2947.5556 2952.7354

444.namd 75.8411 76.3736 159852 156677 3194.2046 3139.0364
464.h264ref 74.7855 75.3777 270799 271578 5291.0428 5305.2938

Table 8.13: Performance Effects for PAp Predictor(LSB of BHR is Reversed)
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Benchmark Prediction Accuracy(%) Clock Cycles
N=1 N=4 N=6 N=8 N=1 N=4 N=6 N=8

403.gcc 61.4186 66.2913 71.474 77.2345 87836252 85920228 84338856 82805824
400.perlbench 59.9311 63.7636 68.0441 74.5646 11628160 11707093 11614214 10895872

458.sjeng 99.893 99.9294 99.9446 99.947 283844580 283662570 283586056 283160120
470.lbm 78.4722 79.8611 78.4722 75.4051 138623 137200 138562 138684

456.hmmer 61.9252 74.7882 82.8806 89.4284 64661537 63050504 61814183 60022723
429.mcf 66.5272 64.9867 76.8345 88.178 56036438 56892071 51886792 47053821

482.sphinx23 49.7708 62.5167 77.3303 82.6531 663687 635351 606062 597494
462.libquantum 61.1711 79.6475 79.9886 77.0324 147930 144478 145354 144540

444.namd 75.6205 78.7093 75.6044 75.0689 158166 156920 158512 158252
464.h264ref 63.5063 77.3192 75.7662 73.3551 273652 269361 270481 273043

Table 8.14: Performance Effects for GShare Predictor(Length PC and BHR Changed)

Benchmark Energy
N=1 N=4 N=6 N=8

403.gcc 2473697.9574 2439608.3146 2411368.8878 2384063.4098
400.perlbench 337143.1366 338547.5668 336894.8978 324107.833

458.sjeng 5526831.1434 5523591.3654 5522229.4162 5514647.7554
470.lbm 2799.9744 2774.645 2798.8886 2801.0602

456.hmmer 1610135.4752 1581438.8858 1560079.4132 1527856.8416
429.mcf 2131372.2518 2146602.5192 2057508.553 1971481.6692

482.sphinx23 17145.2428 16640.862 16119.5178 15967.0074
462.libquantum 2971.6034 2910.1578 2925.7506 2911.2614

444.namd 3164.1938 3142.015 3171.6994 3165.7246
464.h264ref 5341.8262 5265.4464 5285.3824 5330.986

Table 8.15: Performance Effects for GShare Predictor(Length PC and BHR Changed)

Benchmark Prediction Accuracy(%) Clock Cycles
N=1 N=4 N=6 N=8 N=1 N=4 N=6 N=8

403.gcc 64.7491 75.346 84.8665 89.1641 86674276 83385248 80058058 79309951
400.perlbench 61.8533 69.8519 78.422 81.6467 11425903 11389779 11202170 11097707

458.sjeng 99.9186 99.947 99.9448 99.9358 283590215 283502111 283416167 283659748
470.lbm 78.7037 76.5046 72.8009 71.2963 139222 138832 141343 140344

456.hmmer 78.785 92.1533 92.7776 91.4749 63257847 60383424 59909206 60805164
429.mcf 68.2992 86.4782 95.4074 98.9042 55449779 47692804 43777778 42320472

482.sphinx23 54.0616 81.372 84.5477 86.7417 654764 599968 589927 586189
462.libquantum 78.7948 76.9756 72.7118 71.2337 143444 146579 146005 147250

444.namd 77.3304 75.8411 72.7523 70.9873 157825 159852 158601 156834
464.h264ref 76.134 74.7855 70.7397 69.2685 268864 270799 273908 269579

Table 8.16: Performance Effects for PAp Predictor(Length PC and BHR Changed)
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Benchmark Energy
N=1 N=4 N=6 N=8

403.gcc 2452949.1762 2394376.5798 2335240.717 2321893.436
400.perlbench 333542.962 332899.9548 329560.5146 327701.0732

458.sjeng 5522303.4464 5520735.1952 5519205.392 5523541.1338
470.lbm 2810.6366 2803.6946 2848.3904 2830.6082

456.hmmer 1585173.4584 1534589.5846 1525869.7166 1543013.7274
429.mcf 2120929.7216 1982855.5666 1913168.1038 1887228.057

482.sphinx23 16986.4134 16011.0446 15832.3148 15765.7784
462.libquantum 2891.7526 2947.5556 2937.3384 2959.4994

444.namd 3158.124 3194.2046 3171.9368 3140.4842
464.h264ref 5256.5998 5291.0428 5346.383 5269.3268

Table 8.17: Performance Effects for PAp Predictor (Length PC and BHR Changed)

Benchmark Prediction Accuracy(%) Clock Cycles
N=1 N=4 N=6 N=8 N=1 N=4 N=6 N=8

403.gcc 85.5172 85.9951 87.2236 89.0868 80540126 80209030 79766975 79398784
400.perlbench 83.3496 83.4818 85.5783 87.907 10651077 10589517 10557308 10612129

458.sjeng 99.9283 99.9319 99.9462 99.9463 283492972 283196974 283262647 283022446
470.lbm 81.713 77.3148 79.3403 77.0255 138652 140637 140824 139641

456.hmmer 93.0952 93.1 93.096 93.1306 59531475 59931808 60875177 59048582
429.mcf 86.7186 82.9504 91.2512 94.692 47556022 49226385 45789343 44224024

482.sphinx23 68.969 84.262 89.939 90.1519 623613 591041 581248 584310
462.libquantum 81.9215 80.5003 79.9886 79.1927 146694 144364 142359 146793

444.namd 80.695 79.5055 79.9779 77.6613 157711 156810 159720 156401
464.h264ref 79.2808 78.8485 78.4226 75.3984 271309 273337 268291 271122

Table 8.18: Performance Effects for TAGE Predictor (Length PC and BHR Changed)

Benchmark Energy
N=1 N=4 N=6 N=8

403.gcc 2343866.1642 2337946.489 2330080.9884 2323536.6162
400.perlbench 319750.482 318653.5596 318081.971 319057.7848

458.sjeng 5520572.521 5515303.7566 5516472.736 5512197.1582
470.lbm 2800.4906 2835.8236 2839.1522 2818.0948

456.hmmer 1519042.9784 1525384.6834 1542194.9296 1509875.093
429.mcf 1980420.847 2010152.9236 1948973.9608 1921111.2826

482.sphinx23 16431.9256 15851.9516 15677.8286 15732.3322
462.libquantum 2949.6026 2908.1286 2872.4396 2951.3648

444.namd 3156.0948 3141.4038 3191.855 3132.7768
464.h264ref 5300.1208 5336.604 5246.4004 5296.7922

Table 8.19: Performance Effects for TAGE Predictor(Length PC and BHR Changed)
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Benchmark Prediction Accuracy(%) Clock Cycles Energy
Original Reversed Original Reversed Original Reversed
Sign-bit Sign-bit Sign-bit Sign-bit Sign-bit Sign-bit

403.gcc 85.93 43.4541 80209030 94350717 2337946.489 2589703.342
400.perlbench 83.23 48.7298 10589517 12224435 318653.5596 347757.7936

458.sjeng 99.93 98.5902 283196974 283495606 5515303.7566 5520619.4062
470.lbm 77.31 31.1343 140637 143603 2835.8236 2888.6184

456.hmmer 93.08 20.3876 59931808 71600194 1525384.6834 1733288.9766
429.mcf 82.95 45.2229 49226385 64970633 2010152.9236 2290401.1152

482.sphinx23 84.25 49.3216 591041 663913 15851.9516 17149.458
462.libquantum 80.5 31.552 144364 150317 2908.1286 3014.092

444.namd 79.42 31.8657 156810 163379 3141.4038 3257.7548
464.h264ref 78.87 37.8831 273337 277100 5336.604 5403.2006

Table 8.20: Performance Effects for TAGE Predictor (Sign Bit for Prediction component is
Reversed)
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Benchmark Prediction Accuracy(%) Clock Cycles Energy
Original Reversed Original Reversed Original Reversed

LSB LSB LSB LSB LSB LSB
403.gcc 66.27 66.2889 86754099 86186566 2454452.3728 2444335.47

400.perlbench 63.75 63.7644 11766325 11508252 339602.8584 335007.04
458.sjeng 99.92 99.9294 283822066 283616519 5526430.3942 5522771.65
470.lbm 79.86 79.8611 62229116 138790 2800.2948 2802.947

456.hmmer 74.75 74.8021 56861420 63252613 1567938.3322 1584946.19
429.mcf 64.98 64.9865 138641 57036506 2146057.1238 2149173.07

482.sphinx23 62.51 62.5117 633511 634257 16608.3024 16621.19
462.libquantum 79.64 79.6475 144808 143428 2916.0318 2891.46

444.namd 78.7 78.1868 157919 157242 3160.5668 3149.09
464.h264ref 77.31 77.1335 271338 268490 5300.637 5250.32

Table 8.21: Performance Effects for GShare Predictor(LSB of BHR is Reversed)

As can be seen from the experimental records, a significant amount of performance and

prediction accuracy changes are observed when these faults are in place.

8.5 Summary

In the first work proposed in this chapter, we empirically study the variation in prediction

accuracy at different storage points. We analyze the designs of some popular state-of-the-

art predictors that are used in modern pipeline processors and show that they are often not

well suited in resource constrained environments. We also present our findings in terms of

latency for different predictors for different storage sizes. We believe that our study can

help a designer select an appropriate predictor for a specific storage budget. We further

examine the resiliency of the predictors against faults on their storage structures.





Chapter 9

Conclusion and Future Directions

The objective of this thesis is to revisit the problem of branch predictor design for low

storage processors. On one side, we propose new strategies for storage consolidation that

allow us to come up with predictor components that can work on shared predictor tables.

On the other side, we combine the benefits of static program analysis to better synthesize

strategies for prediction. This gives us a unique advantage, as we demonstrate through

extensive experiments on architecture workloads.

In this thesis, we begin our study on using software evolution in predictor design. Software

evolution involves addition, deletion and modification of functionality in program source

code between different program versions. The change may range from a simple bug fix

patch to addition of a new feature. Our objective is to explore if we can use the features

of software evolution to improve branch prediction performance. As witnessed from a

number of software repositories, the behaviour of a significant number of branches remains

unchanged across program versions. This motivates us to explore the idea of using branch

outcome profiles from previous versions of the software for enhancing branch prediction

for future versions. With our approach, we are able to achieve significant improvement in
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predictor energy with limited compromise in prediction accuracy.

Our next study is around designing multi-component predictors. Motivated by the obser-

vation that complex programs typically have branches of diverse types, prediction of which

require manipulation on history information widely varying in nature, researchers have de-

veloped the designs of predictor blocks, which include multiple components. Depending

on the nature of the branch under consideration, a single or multiple components may be

involved in deriving a prediction. Indeed, these multi-component predictors have proved

to be quite successful in the context of server class workloads, and have led to significant

accuracy improvements, however, at the cost of more storage required to store the histories

of the multiple components. Our objective is to examine these multi-component designs and

port them to low storage environments, with appropriate modifications. To this effect, we

study an effective 2-component predictor design, and follow it up with a multi-component

one, with a static analysis step beforehand. Our contributions are demonstrated on public

domain workloads at low storage points, and the results are quite encouraging. This is

outlined in Chapters 4 and 5 of this thesis.

The following chapters of the thesis are more around evaluation of branch predictors, a

direction that has not been that well studied in architecture literature, to the best of

our knowledge. While prediction accuracy has been the metric of paramount concern for

branch predictor design, other performance metrics like latency of execution, energy and

area footprint have received comparatively less attention. However, in an embedded setting,

depending on the context and the application at hand, it may as well be worth exploring

the effects of the other metrics, while keeping accuracy losses within a desired limit. Our

contribution in Chapter 6 of the thesis outlines our efforts in this direction. In particular, we

propose a framework for branch predictor selection, that simultaneously considers multiple

performance metrics. Our experiments reveal interesting findings, contrary to expectations

since many of the promising predictor designs in terms of accuracy fare badly when the
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other metrics are examined. We believe that our framework and mechanism for predictor

component selection is an important piece in the landscape of predictor research.

In Chapter 7, we examine the performance of branch predictor designs a little more closely,

more specifically, in a concurrent execution environment. In particular, the objective of

our study is to explore how the latency of execution can be compromised by forcing the

predictor to mis-predict, by crafting clone threads with negated branch conditions that are

dispatched in parallel with a given application. Once we move to an embedded environment

where storage is of paramount concern, a natural design choice as adopted by others and

us as well, is a design with shared predictor tables to save storage. We show that such

a design can be easily compromised by clone threads leading to performance slowdowns.

Experimental results are quite surprising, given that the amount of performance compromise

is significant, while the clone creation is a simple automated activity not requiring much

effort. We demonstrate that our study applies readily to any application for which handle

to the source is available, thereby allowing one to create the clone application, with a

little handle to the system scheduler and the dispatcher to create the concurrent execution

environment needed for the exploit.

In the final chapter, we study the issue of storage and fault sensitivity of contemporary

predictor designs. In particular, we study through workload simulations at different storage

points, how these predictors fare, and the results justify our intuition that sophisticated

predictor algorithms require more storage for full performance. In fact, as we witness in our

simulations, simple predictor designs often surpass sophisticated predictors significantly at

low storage points. Our final study is to study the resilience of predictor designs against

faults in the predictor table entries and register cells. In particular, we demonstrate em-

pirically that the correctness and performance of these prediction strategies are not quite

resilient to faults, their performance fluctuates considerably.

This thesis opens up a lot of avenues for future exploration around predictor design. We
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outline some of the directions below.

9.1 Branch prediction for indirect branches

With increasing use of runtime polymorphism and reliance on runtime type interpretation,

the presence and importance of indirect branches has seen a considerable rise in recent

workloads. Evidently, accurate target prediction for indirect branches has emerged as an

important problem. While direction prediction of direct branches has received considerable

research attention leading to efficient prediction policies and hardware structures imple-

mented inside modern processors, proposals for target prediction for indirect branches has

been relatively few. The problem of accurate target prediction for indirect branches is sig-

nificantly tough since these transfer control to an address stored in a register that is known

only at runtime. Unlike conditional direct branches, indirect branches can have more than

two targets to be resolved at runtime, for which prediction requires a full 32-bit / 64-bit ad-

dress to be predicted, in contrast to just a taken or not-taken decision as needed for direction

prediction of direct branches. Recent research shows indirect branches, being mispredicted

more frequently, can start to dominate the overall branch misprediction cost. In modern

processors, the only hardware structure available to facilitate target address prediction for

indirect branches is a fixed-size Branch Target Buffer (BTB). BTB is often designed as a

set associative cache for storing recent target addresses for branch instructions encountered

during execution, with a motivation of being able to reuse the same addresses for future

instances, thereby saving latency cycles. Evidently, designing efficient indexing schemes and

replacement mechanisms for BTB structures is crucial, more so, for indirect branches, since

these serve as the only prediction handle. We wish to take up the problem of BTB design

and associated mechanisms that are particularly suited for prediction of indirect branches.
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9.2 Analyzing predictability of branches

Branch predictors often use different lengths of branch outcome history and path history

for prediction. We can think of 1-bit, 2-bit, 3-bit... m-bit histories as random variables

and find the entropy of each of these distributions. Using the entropy, we aim to find the

randomness of the branch history and thereby, identify the hard to predict or easy to predict

branches. Additionally, we can check the dependence of a branch decision on its past history

by evaluating the autocorrelation of a N-bit history at different time lags. Auto correlations

of a binary sequence provides the DPI (Degree of Pattern Irregularity) values and can be

used to evaluate the DPI and EPL (effective pattern length) of the branch history. We plan

to use these information to identify the hard to predict and easy to predict branches as well

as the effective length of history for prediction.

9.3 Predictor design for multi-core embedded processors

Modern embedded processors today have multiple cores that facilitate concurrent workloads

of execution simultaneously, thereby generating performance benefits. For such multi core

designs, having individual branch predictors inside each core is the design of choice today,

with each predictor having its isolated predictor table. While this helps in maintaining iso-

lation between cores and nullifies interference, the benefit of cross core learning is ruled out.

Modern neural workloads today often employ an initial training phase, wherein the same

neural code is executed on multiple training tests to train the network. For multi-threaded

programs as well, one thread executing in one core can benefit from history information

from the peer threads executing in the other cores. We wish to examine a hierarchical BTB

design for multicores with total size comparable to what exists today, with a motivation to-

wards possible improvement of prediction accuracy by facilitating collaborative constructive

learning between programs executing in different cores that encounter similar histories.
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9.4 Branch prediction with approximate computing

Approximate computing is now an accepted model of computation today in a wide variety

of application domains, starting from image processing to machine learning. The key idea

of approximate computing is to trade off correctness within acceptable tolerance limits,

thereby saving on latency, energy and resource. For resource constrained embedded proces-

sors, approximate computing has found widespread acceptance since this paves the way for

a wide variety of sophisticated algorithms to be realized on these cores, with marginal cor-

rectness degradations but often significant performance benefits. Most modern embedded

processors today employ speculative execution, by which latency sensitive operations (e.g.

memory access, branch resolution) are allowed to execute with predicted values, and later

compensated for, when the actual outcome is known. We have made some initial progress

on strategies to connect speculative execution with approximate computing. For branch

instructions that are known to be approximable without affecting program output beyond

a threshold, we have proposed a novel scheme by which in case of a misprediction, a rollback

can be avoided. We have designed the hardware interface through which this can be made

possible, and shown through extensive simulations the benefits in terms of latency that has

been achieved. We believe this will make approximate computing more effective today for

modern embedded processors in the market. We believe this idea can be extended to more

complex workloads and domains, with suitable modifications across the execution stack.
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[60] D. A. Jiménez. Fast path-based neural branch prediction. In Microarchitecture, 2003. MICRO-36. Proceedings.

36th Annual IEEE/ACM International Symposium on, pages 243–252, Dec 2003.
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[109] R. St Amant, D. A. Jiménez, and D. Burger. Low-power, high-performance analog neural branch prediction.

In Proceedings of the 41st annual IEEE/ACM International Symposium on Microarchitecture, pages 447–458.

IEEE Computer Society, 2008.

[110] X. Su, H. Wu, and Q. Yang. An efficient wcet-aware hybrid global branch prediction approach. In Embedded

and Real-Time Computing Systems and Applications (RTCSA), 2016 IEEE 22nd International Conference on,

pages 195–201. IEEE, 2016.

[111] N. Tasher, V. Teper, D. C. Cheng, and B. Tabachnik. Protection against side-channel attacks on non-volatile

memory, May 17 2016. US Patent 9,343,162.

[112] K. Thangarajan, W. Mahmoud, E. Ososanya, and P. Balaji. Survey of branch prediction schemes for

pipelined processors. In Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (Cat.

No. 02EX540), pages 324–328. IEEE, 2002.

[113] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maximizing on-chip parallelism. In

ACM SIGARCH Computer Architecture News, volume 23, pages 392–403. ACM, 1995.

[114] M. Van Erp and L. Schomaker. Variants of the borda count method for combining ranked classifier hypotheses.

In Seventh International Workshop on Frontiers in Handwriting Recognition. Citeseer, 2000.

[115] L. Vintan and M. Iridon. Towards a high performance neural branch predictor. In Neural Networks, 1999.

IJCNN ’99. International Joint Conference on, volume 2, pages 868–873, Jul 1999.

[116] C. A. Waldspurger. Memory resource management in vmware esx server. ACM SIGOPS OSR, 36(SI):181–194,

2002.

[117] Y. Wang and L. Chen. Dynamic branch prediction using machine learning. ECS-201A, Fall, 2015.

[118] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. In MICRO, pages 51–61. ACM, 1991.

[119] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch prediction. ACM SIGARCH

Computer Architecture News, 20(2):124–134, 1992.

[120] T.-Y. Yeh and Y. N. Patt. A comparison of dynamic branch predictors that use two levels of branch history.

ACM SIGARCH Computer Architecture News, 21(2):257–266, 1993.

[121] C. Young, N. Gloy, and M. D. Smith. A comparative analysis of schemes for correlated branch prediction,

volume 23. ACM, 1995.

[122] C. Young and M. D. Smith. Improving the accuracy of static branch prediction using branch correlation. In

ACM Sigplan Notices, volume 29, pages 232–241. ACM, 1994.


