

Study on Equal Length Cellular Automata with

Cost Efficient Pseudo-Random Number

Generator Targeting Distributed Applications

 Thesis submitted by

Arnab Mitra

Doctor of Philosophy (Engineering)

Department of Information Technology

Faculty Council of Engineering & Technology

Jadavpur University

Kolkata, India

2017

JADAVPUR UNIVERSITY
KOLKATA-700032, INDIA

INDEX NO. 46/14/E

1. Title of the Thesis:

Study on Equal Length Cellular Automata with Cost Efficient Pseudo-Random Number

Generator Targeting Distributed Applications

2. Name, Designation & Institution of the Supervisors:

• Dr. Anirban Kundu

Associate Professor, Department of Information Technology

Netaji Subhash Engineering College, Kolkata, PIN-700152, India

• Dr. Matangini Chattopadhyay

Director and Professor, School of Education Technology

Jadavpur University, Kolkata, PIN-700032, India

• Dr. Samiran Chattopadhyay

Professor, Department of Information Technology

Jadavpur University, Kolkata, PIN-700098, India

3. List of publications:

a) Papers published in journals

➢ Mitra, A., Kundu, A., Chattopadhyay, M., & Chattopadhyay, S., (2018). On

the exploration of equal length cellular automata rules targeting a MapReduce design in

cloud, International Journal of Cloud Applications and Computing, 8(2), 1-26. IGI Global.

➢ Mitra, A., Kundu, A., Chattopadhyay, M., & Chattopadhyay, S. (2017). A

cost-efficient one time password-based authentication in cloud environment using equal

length cellular automata. Journal of Industrial Information Integration, 5, 17-25. Elsevier.

➢ Mitra, A., & Teodorescu, H. N. (2016). Detailed analysis of equal length

cellular automata with fixed boundaries. Journal of Cellular Automata, 11(5-6), 425-448.

Old City Publishing.

➢ Mitra, A., Kundu, A., Chattopadhyay, M., & Chattopadhyay, S. (2015). An

analysis of equal length cellular automata (ELCA) generating linear rules for applications

in distributed computing. Journal of Cellular Automata, 10(1-2), 95-117. Old City

Publishing.

➢ Mitra, A., Kundu, A., Chattopadhyay, M., & Chattopadhyay, S. (2014). A

novel design with cellular automata for system-under-test in distributed

computing. Journal of Convergence Information Technology, 9(6), 55-68. AICIT.

➢ Mitra, A., Kundu, A., & Das, C. (2014). Random number generators:

performance comparison of ELCA and MaxCA. CSI transactions on ICT, 2(2), 117-127.

Springer.

➢ Mitra, A., & Kundu, A. (2012). Cost optimized design technique for

pseudo-random numbers in cellular automata. International Journal of Advanced

Information Technology, 2(3), 21-36. AIRCC Publishing.

b) Paper published as book chapter

➢ Mitra, A., & Kundu, A. (2014). Cost optimized random sampling in cellular

automata for digital forensic investigations. Computational Intelligence in Digital

Forensics: Forensic Investigation and Applications: Studies in Computational Intelligence,

555, 79-95. Springer.

c) Papers published in international conferences

➢ Mitra, A., Kundu, A., & Chattopadhyay, M. (2014, December). Energy

efficient task-pull scheduling using equal length cellular automata in distributed

computing. In Proceedings of the Emerging Applications of Information Technology

(EAIT), 2014 Fourth International Conference on (pp. 40-45). IEEE.

➢ Mitra, A., Kundu, A., Chattopadhyay, M., & Chattopadhyay, S. (2014,

August). Dynamics computation of equal length cellular automata (ELCA) rules.

In Proceedings of the Electronics Engineering & Computer Science, (IEMCON), 2014

Fifth International Conference on (pp. 214-220). Elsevier.

➢ Mitra, A., Kundu, A., & Das, C. (2014, February). Cost effective PRNG

using ELCA: a BIST application. In Proceedings of the Automation, Control, Energy and

Systems (ACES), 2014 First International Conference on (pp. 1-6). IEEE.

➢ Mitra, A., & Kundu, A. (2013, September). Cost optimized set of primes

generation with cellular automata for stress testing in distributed

computing. In Proceedings of the Computational Intelligence: Modeling Techniques and

Applications (CIMTA), 2013 First International Conference on (pp. 365-372). Elsevier.

➢ Mitra, A., & Kundu, A. (2012, September). CA based cost optimized PRNG

for Monte-Carlo simulation of distributed computation. In Proceedings of the CUBE

International Information Technology Conference on (pp. 332-337). ACM.

➢ Mitra, A., & Kundu, A. (2012, May). Cost optimized approach to random

numbers in cellular automata. In Proceedings of the Computer Science, Engineering and

Applications (ICCSEA), 2012 Second International Conference on (pp. 609-618).

Springer.

4. List of Patents: Nil.

5. List of Presentations in National/International/Conferences/Workshops:

➢ Energy efficient task-pull scheduling using equal length cellular automata

in distributed computing; Fourth International Conference on Emerging Applications of

Information Technology (EAIT)-2014.

➢ Dynamics computation of equal length cellular automata (ELCA) rules;

Fifth International Conference on Electronics Engineering & Computer Science-2014

(IEMCON-2014).

➢ Cost Effective PRNG using ELCA: a BIST Application; First International

Conference on Automation, Control, Energy & Systems (ACES)-2014.

➢ Cost optimized set of primes generation with cellular automata for stress

testing in distributed computing; First International Conference Computational

Intelligence: Modeling, Techniques and Applications (CIMTA)-2013.

JADAVPUR UNIVERSITY

KOLKATA-700032, INDIA

CERTIFICATE FROM THE SUPERVISORS

This is to certify that the thesis entitled “Study on Equal Length Cellular Automata with

Cost Efficient Pseudo-Random Number Generator Targeting Distributed

Applications” submitted by Shri Arnab Mitra, who got his name registered on

24th November, 2014 (Index. No. 46/14/E) for the award of Ph. D. (Engg.) degree of

Jadavpur University is absolutely based upon his own work under the supervision of

Dr. Anirban Kundu, Dr. Matangini Chattopadhyay and Dr. Samiran Chattopadhyay

and that neither his thesis nor any part of the thesis has been submitted for any

degree/diploma or any other academic award anywhere before.

1.

Signature of the Supervisor and date with Office Seal

Dr. Anirban Kundu

Associate Professor, Department of Information Technology

Netaji Subhash Engineering College, Kolkata 700152, India

2.

Signature of the Supervisor and date with Office Seal

Dr. Matangini Chattopadhyay

Director and Professor, School of Education Technology

Jadavpur University, Kolkata 700032, India

3.

Signature of the Supervisor and date with Office Seal

Dr. Samiran Chattopadhyay

Professor, Department of Information Technology

Jadavpur University, Kolkata 700098, India

Dedicated to

My Mother & Father

Acknowledgement

First and foremost, I wish to express my sincere gratitude to my supervisors

Dr. Anirban Kundu, Dr. Matangini Chattopadhyay, and Dr. Samiran Chattopadhyay for

their supervisions, encouragements and constant supports that enabled me to complete this

thesis. It is their alluring personalities that have changed my approach towards academics

during this age. They have also educated me to be regimented in research. I express my

sincere appreciation to Dr. Chandra Das, Netaji Subhash Engineering College. I also

acknowledge supervisions and guidance from Prof. Horia-Nicolai Teodorescu, Faculty of

Electronics, Telecommunications and Information Technology, “Gheorghe Asachi”

Technical University of Iasi, Romania where I have completed Erasmus Mundus sponsored

‘cLink’ Ph.D. mobility.

I would like to express my deepest gratitude to my mother, and my father. It is their

encouragement and blessings that enabled me to cross the hurdle. My deepest gratitude

goes to all my family members, and friends for their encouragements during the progress.

I have received uncountable supports in all respects from my family members, and friends

who are anxiously waiting for the successful completion of my Ph.D degree.

I am also thankful to all those personalities whose names have not been mentioned here as

it is impracticable to bring up all their names.

Dated: July, 2017

Kolkata, India. Arnab Mitra

i

Contents

List of Figures ……………………..………………………………………….……………………….. iv
List of Tables………………………………………………………….….……………………………. vi

1. Introduction
1.1. Introduction to dissertation …...….………………..………..……………………………3
1.2. Studies on ELCA ..………...………………………….…………………………..……...3
1.3. ELCA based models targeting Distributed Computing Applications ……………………5
1.4. Organization ………….….………………………….…………………………..………..7

2. Preliminary concepts
2.1. Cellular Automata
 2.1.1. Introduction.….….…………………….……………………………………….…...9
 2.1.2. Application fields of CA .……………………………….……….……………..…12
 2.1.3. Summary …………………………………………….…………….…….………..13

 2.2. Randomness
 2.2.1. Random numbers ………….…………….…...……..……………………………14
 2.2.1.1. Pseudo-random number ..………..…...……………………...………...…14
 2.2.1.2. True-random number …...........…..….....…...…………….……...……....14
 2.2.2. Comparison of PRNGs and TRNGs …….……......………………………………14
 2.2.3. Summary ..………..……………………………………………………………….15

 2.3. MaxCA - discussion
 2.3.1 Mathematical foundation ……………….…………..………………………….….16
 2.3.2 CA rule combinations for maximum length cycle ..….…...………………….……16
 2.3.3 Degree of randomness found in MaxCA generated patterns ……..………….……17
 2.3.4 Summary .……………....……………….………………...……………………….18

3. Cost optimized CA PRNG
 3.1 Cost optimized design technique for pseudo-random number generator with ELCA
 3.1.1 Introduction ..…………..…………….……………………………………………20
 3.1.2 Proposed approach ..…….……………..…………………………….……….…...21
 3.1.3 Experimental observations & result analysis ..…………...………….……………24
 3.1.4 Summary ..…………….……..………………….…………………….…………..26

 3.2 CA PRNG in Monte-Carlo simulation
 3.2.1 Introduction ……………………………….……………………….………………27
 3.2.2 Proposed approach ..………………………….……...……………….……..……..27
 3.2.3 Experimental observations & result analysis ……………...……….……...………29
 3.2.4 Summary …......……………….….………………………………………………..30

 3.3 Cost effective PRNG in BIST application
 3.3.1 Introduction ……………….…..…………………………………………………...31
 3.3.2 Proposed approach ………………………………………….……………………..32
 3.3.3 Experimental observations & result analysis …..…….…..………………….……33
 3.3.4 Summary …………………………..………………………………...…….……..35

ii

 3.4 Design of a CA based System-under-test
 3.4.1 Introduction …………………………………………….…………………...……..36
 3.4.2 Proposed approach …………..………………….………….………………...……37
 3.4.3 Experimental observations & result analysis ………...……………………...…….39
 3.4.4 Summary ……………..……...………………………………………...….………42

4. Performance comparison among RNGs

 4.1 Random number generators: performance comparison
 4.1.1 Introduction …………………………………………………………..……………44
 4.1.2 Proposed approach …..…….……………….…………………………….………..45
 4.1.3 Experimental observations & result analysis ..…………….……...………….……50
 4.1.4 Summary ...……..……………….…………………….…………………………...55

 4.2 Set of primes generation with Cellular Automata
 4.2.1 Introduction …..………………………………….…………….……………..……56
 4.2.2 Proposed approach ..……….……….…………….….…………………...………..57
 4.2.3 Experimental observations & result analysis ..………..…...………………………59
 4.2.4 Summary …………………………..………………..……………………………..63

5. ELCA synthesis and analysis

 5.1 CA rules exploration for ELCA generation
 5.1.1 Introduction ………………………………………………………………………..65
 5.1.2 Proposed approach ……………….………………………………………………..65
 5.1.3 Analytical studies …….…………...………………..…………………..…………73
 5.1.4 Experimental results ….…………….....…………….…………..…………………77
 5.1.5 Summary ……………………..……………………………..……………………..79

 5.2 Analysis of ELCA generating linear rules
 5.2.1 Introduction ……………………… ….………………………....…..…………80
 5.2.2 ELCA generating linear and complemented linear rules.…... …….…...….……...83
 5.2.3 Formal analysis on ELCA generating rules ……….…….………….……….……83
 5.2.4 Experimental observations & results….……..……………....…………...98
 5.2.5 Summary………………………………….… ………….…...………..…..100

 5.3 ELCA formulation using discrete mathematics
 5.3.1 Introduction ….…….……………….…….………….……….……………….…101
 5.3.2 ELCA formulation …..….……………….……...……………..………………...103
 5.3.3 Experimental results ….…....…………..……..……………..………….….…….105
 5.3.4 Summary..........……..………………………………….....……………..……….107

 5.4 Energy efficient task-pull scheduling using ELCA
 5.4.1 Introduction …..………………………..…………….……..……………………108
 5.4.2 Proposed approach ..……………………………….………...…………………..108
 5.4.3 Experimental observations & result analysis ..………...…….…………………..113
 5.4.4 Summary …….………......………………………………………………….117

6. Equal Length Cellular Automata dynamics

 6.1 Dynamics of ELCA rules
 6.1.1 Introduction.……………………………………………………..… ……………119
 6.1.2 Computation of λ-parameter for ELCA rule ……………………..….…….…….120
 6.1.3 Analysis of ELCA dynamics ..…….……………………………..… ……….…..121

iii

 6.1.4 Summary ….………………………….…………………….……….…………...122

 6.2 OTP based authentication using ELCA
 6.2.1 Introduction ……...…………………………………..….………….……………123
 6.2.2 Preliminary concepts of authentication ……………..…………..…..…………..124
 6.2.3 Proposed design……………………….……….…...………………..…………..124
 6.2.4 Experimental results .………….............................…………….…..…………….129
 6.2.5 Summary ...…………………….….........…..…………………..………………..130

7. Conclusions and future scope ………..…………..……………..…………………………...132

References ….…………..………………………....……..….…………………………..…………….134
Appendix ………………………………………………………………………………..…….………144
Author’s biography……………………………………………………………………..………..……147

iv

List of Figures
Figure Figure caption Page

Fig. 2.1.1 A typical hardware implementation of CA 9
Fig. 2.1.2 Typical n-cell null boundary CA structure 10
Fig. 2.1.3 Typical structure of 3-cell null boundary CA 10

Fig. 2.1.4 (a) Transition diagram of group CA for <90, 90, 150> 11
Fig. 2.1.4 (b) Transition diagram of non-group CA for <1, 2, 10> 11

Fig. 2.3.1 MaxCA pattern for <90, 90, 150> 16
Fig. 3.1.1 Flowchart of proposed CA PRNG system 21

Fig. 3.1.2(a) Typical PPS exclusion in maximum length CA cycle 23
Fig. 3.1.2(b) Typical PPS exclusion in proposed equal length CA of

smaller cycle size
23

Fig. 3.1.3 Typical cycle structure of an n-cell maximum length CA 24
Fig. 3.2.1 Flowchart of the proposed reliability assessment system 28

Fig. 3.2.2(a) Randomness quality for different PRNGs 29
Fig. 3.2.2(b) Randomness quality for different PRNGs 30

Fig. 3.3.1 Typical BIST architecture 31
Fig. 3.3.2 Flowchart of proposed BIST pattern generation system 32
Fig. 3.3.3 Screenshot for fault coverage in “ISCAS89 s1488”

benchmark circuit
33

Fig. 3.3.4 Screenshot for fault coverage in “ISCAS89 s1494”
benchmark circuit

34

Fig. 3.3.5 Screenshot for fault coverage in “ISCAS89 s208”
benchmark circuit

34

Fig. 3.4.1 Proposed SUT architecture in distributed computing
environment

37

Fig. 3.4.2 Fault injection client-server architecture 37
Fig. 3.4.3 Proposed flowchart of SUT using ELCA BIST 38
Fig. 3.4.4 Screen shot for “t3.agm” benchmark circuit 40
Fig. 3.4.5 Screen shot of SAF test coverage graph for “t3.agm” 41
Fig. 3.4.6 Screen shot of fault coverage for “t3.agm” 41
Fig. 4.1.1 Flowchart for pseudo-random number generation by

recursion
44

Fig. 4.1.2(a) MaxCA cycle for n=5 for <90, 90, 90, 90,150> 46
Fig. 4.1.2(b)

Proposed 4 ELCA of cycle size 8 for

<153,153,153,153,153>
46

Fig. 4.1.2(c) Proposed 8 ELCA of cycle size 4 for <60, 60,195,102,153> 47
Fig. 4.1.3 Binary representation of rule “51” 48
Fig. 4.1.4 Randomness quality graph for five different RNGs 50
Fig. 4.1.5 Diehard test performance graph 51

Fig. 4.1.6(a) MaxCA cycle structure with PPS 52
Fig. 4.1.6(b) ELCA cycle structure with PPS 52

Fig. 4.1.7 Randomness quality graph for different CA-PRNGs 53
Fig. 4.2.1 Proposed flowchart of the system for stress testing 57
Fig. 4.2.2 Transition diagram for <110,110,204> 59

Fig. 4.2.3(a) Transition diagram for <110,110,110,110> 59
Fig. 4.2.3(b) Transition diagram for <110,110,110,204> 60

Fig. 4.2.4 Randomness of generated pattern of primes 61

v

Fig. 4.2.5 Different sets of primes obtained with varying number of
cell size

62

Fig. 4.2.6

Equivalency of degree of randomness in different applied
methods

62

Fig. 4.2.7 Graphical representation of prime finding performance 63
Fig. 5.1.1 Proposed method for all possible ELCA rule construction 66
Fig. 5.1.2 State transition diagram for <204,204,204,204> 67
Fig. 5.1.3 State transition diagram for <51, 51, 51, 51> 67
Fig. 5.1.4 State transition diagram for <153,153,153,153> 67
Fig. 5.1.5 HbP/LbP structure of rule “204” 68
Fig. 5.1.6 All lexicographical order 69
Fig. 5.1.7 All ELCA generating rule synthesis methodology 71

Fig. 5.1.8(a) Rule “51” 72
Fig. 5.1.8(b) Rule “240” 72
Fig. 5.2.1(a) Transition diagram for <51, 51, 51, 51> 92
Fig. 5.2.1(b) Transition diagram for <204, 204, 204, 204> 93
Fig. 5.2.1(c) Transition diagram for <153, 153, 153, 153> 93
Fig. 5.2.1(d) Transition diagram for <90, 150, 90, 150> 93
Fig. 5.2.2(a) Transition diagram of R11=<51, 204, 51, 204, 51> 96
Fig. 5.2.2(b) Transition diagram of R12=<204, 60, 51, 60, 51> 96
Fig. 5.2.2(c) Transition diagram of R13=<153, 51, 102, 51,102> 97
Fig. 5.2.2(d) Transition diagram of R14=<153, 60, 153, 195, 51> 97

Fig. 5.2.3 ELCA cycle length 100
Fig. 5.3.1. (a) Injective & non-surjective (one-to-one) 102
Fig. 5.3.1. (b) Non-injective & surjective (onto) 102
Fig. 5.3.1. (c) Non-injective & non-surjective 102
Fig. 5.3.1. (d) Injective & surjective (bijective) 102
Fig. 5.3.2(a). Randomness for generated patterns for 4-cell CA 106
Fig. 5.3.2(b). Randomness for generated patterns for 5-cell CA 106
Fig. 5.3.2(c). Randomness for generated patterns for 6-cell CA 106
Fig. 5.4.1(a)

Proposed 2 equal length cycles of cycle size 8 for

<153, 153, 153, 153>
110

Fig. 5.4.1(b) Proposed 8 equal length cycles of cycle size 2 for
<51, 51, 51, 51>

110

Fig. 5.4.2

Proposed flowchart for task scheduling in distributed
computing environment

111

Fig. 5.4.3 Screenshot of task-pull execution in client-server
architecture in GridMatrix

114

Fig. 5.4.4(a) Simulation result for total task size of 256 tasks 115
Fig. 5.4.4(b) Simulation result for total task size of 512 tasks 115
Fig. 5.4.4(c) Simulation result for total task size of 1024 tasks 116

Fig. 5.4.5 Task pull compliance graph 117
Fig. 6.1.1 Typical scale for λ-parameter values and system behaviors 120
Fig. 6.2.1 ELCA classification procedure 125
Fig. 6.2.2 Proposed flowchart of ELCA based OTP authentication 128
Fig. 6.2.3 Four ELCA structures for <51, 51, 51> 129

vi

List of Tables
Table Table caption Page

Table 1.1.1 CA classification by S. Wolfram 3
Table 2.1.1 Truth table for rule ‘150’, ‘170’ and ‘204’ 12
Table 2.2.1 RNG performance 15
Table 2.3.1 Typical MaxCA configurations 17
Table 2.3.2 Degree of randomness for MaxCA patterns in Diehard tests 17
Table 3.1.1 Comparison of fault coverage procedures 24
Table 3.1.2 Performance result through Diehard for different CA random number generators 25
Table 3.1.3 Complexity comparison between MaxCA and proposed methodology 25
Table 3.3.1 Fault coverage for different pattern generators 33
Table 3.4.1 Fault table for “t3.agm” 40
Table 3.4.2 Fault coverage table for ‘t’ benchmark circuits 42
Table 4.1.1 ELCA rule information 47
Table 4.1.2 Performance results using Diehard for different RNGs 50
Table 4.1.3 Comparison of fault coverage procedures 53
Table 4.1.4 Complexity comparison among different pattern generators 54
Table 4.2.1 Rule details for prime number computation 59
Table 4.2.2 Prime finding performance 60
Table 4.2.3 Generation of different sets of primes 61
Table 4.2.4 Class rule selection for primes 63
Table 5.1.1 Primary CA rules for ELCA generation 66
Table 5.1.2 Categorization of ELCA generating rules 68
Table 5.1.3 Rule “102” in binary representation 73
Table 5.1.4 Rule “153” in binary representation 74
Table 5.1.5 Rule “201” in binary representation 75
Table 5.1.6 Rule “54” in binary representation 75
Table 5.1.7 Different equal length cycles generated by primary rules 77
Table 5.1.8 Class rule selection for uniform ELCA 78
Table 5.1.9 Class rule selection for hybrid ELCA 78
Table 5.1.10 Special cases for class rule selection for hybrid ELCA 78
Table 5.1.11 Special cases for class rule selection for hybrid ELCA 78
Table 5.2.1 ELCA generating linear and complemented linear rules 83
Table 5.2.2 ELCA generation table using a combination of rule “204”, “51” and “153” 98
Table 5.2.3 ELCA cycle length table for rule “204” 98
Table 5.2.4 ELCA cycle length table for rule “51” 99
Table 5.2.5 ELCA cycle length table for rule “153” 99
Table 5.2.6 ELCA cycle length calculation table for rule “153” 99
Table 5.2.7 ELCA generation table for other ELCA generating linear rules 100
Table 5.3.1 RUNs test results 107
Table 5.4.1 Simulation time 116
Table 6.1.1 Typical ‘λ’ values and observed system dynamics 119
Table 6.1.2 Degree of randomness as a measurement of inherent chaotic dynamics for

ELCA
121

Table 6.2.1 Uniform CA scenario for ELCA generation 126
Table 6.2.2 Complexity comparison 129

Abstract

Major concern of engineering and scientific applications is to reduce the computing
cost in distributed computing by introducing low cost physical design, reduced energy
consumption and reusable model. Cheap and generalized Equal Length Cellular
Automata (ELCA) based model is a good choice for modelling of several distributed
computing applications. ELCA is of special interest for its characteristics. ELCA is a
special classification of Cellular Automata (CA) where all generated CA subspaces
(cycles) are of equal lengths. A detailed study on ELCA characteristics, synthesis,
analysis and classification along with potential applications of ELCA in distributed
computing have been described in this thesis. Inherent strengths of ELCA based models
in random pattern generation have also been described. ELCA based simple solutions
enhance cost efficiencies in terms of time complexity, space complexity, design
complexity and searching of Prohibited Pattern Set (PPS). Three neighbourhood based
CA structures in null boundary scenario have been considered for generation of ELCA
cycles. A cost-efficient pseudo-random number generator in CA is presented in this
thesis. A new approach towards exclusion of Prohibited Pattern Set (PPS) from
randomness generating patterns is discussed. An effective approach for set of primes
generation in null boundary CA scenario is presented. A complete set of CA rules for
ELCA generation and synthesis of ELCA rules are described. Set of necessary and
sufficient conditions of CA rules for generation of ELCA cycles are described. An
analysis on ELCA linear rules is carried out to investigate the properties of the
characteristics matrix and characteristics polynomials. Presence of primitivity or,
recursive primitivity in ELCA characteristics polynomial is confirmed, which is a
prerequisite criterion for generation of randomness. Mapping in ELCA generated
patterns is explored using discrete mathematics representations. Detailed analysis on
the dynamics of ELCA rules is presented. All the properties of CA and ELCA so
developed have been used to design a cost-efficient solution for different distributed
applications such as test pattern generation for reliability assessment, built-in self-test
(BIST), system-under-test (SUT), set of primes generation, energy efficient job
scheduling, and one time password (OTP) generation in cloud environment.

1

CHAPTER
1

INTRODUCTION

2

1.1. Introduction

Cellular Automata (CA) are used as a tool for modelling of any dynamic complex
system [1, 2]. CA are discrete over space and time. Several researchers have carried out
investigations on CA rules. S. Wolfram classified CA into four groups based on their
behaviors [1] which is described in Table 1.1.1.

Table 1.1.1. CA classification by S. Wolfram

CA Class Observations
I. Homogeneous state spaces are evolved to limit points.
II. Simple separated periodic structures are evolved to limit cycles.
III. Chaotic aperiodic patterns are produced; chaotic behaviors of the kind

associated with strange attractor are evolved.
IV. Complex patterns of localized structures are evolved.

In this thesis, we have first explored the set of CA rules responsible for generation of
Equal Length Cellular Automata (ELCA), their detailed characteristics and dynamics
and some uses in selected Distributed Computing Applications.

Distributed Computing [3, 4] is a new computing technique that solves a problem
through collaboration of geographically distant computing units by performing specific
tasks in less time. In such computing, a single algorithm is parallelized in a
sophisticated manner and then executed by several computing units. All the partial
solutions of these tasks are combined to form a single solution. Several distributed
applications are required to be processed in a cost-effective and reliable manner.

Studies with CA in recent years explore that they are also capable of modelling different
applications in distributed computing as they are elegant mathematical structures which
can have a low cost, and simple VLSI (very large-scale integration) implementation. In
this thesis, we have focussed on CA based solutions for some chosen distributed
applications.

1.2. Studies on ELCA
In the past, many researchers have worked on several aspects of group, and nongroup
CA. S. Nandi et al. have introduced non-maximal length CA for applications in
cryptosystems [5]. P. P. Chaudhuri et al. have discussed about maximum length CA,
theory and applications of several additive CA rules [2]. N. Ganguly et al. have
presented a detailed survey on CA, and its potential applications [6]. S. Ghosh et al.
have presented invertible CA, and equal length cycle CA as a special case of invertible
CA for potential application in protein synthesis [7, 8]. I. Aguiar et al. have presented
CA dynamics for rule ‘26’, and ‘154’ at different boundary conditions [9]. We have
observed that few detailed studies on equal length cycles generated by group CA and

3

their detailed characteristics, dynamics at different boundary were available in the
literature which may be beneficial for modeling a number of distributed applications.

We have studied Equal Length Cellular Automata (ELCA) and their properties. An
n-cell CA produces all ‘2n’ states in the form of equal length cycles. Mathematically,
generation of ELCA is described in following Equation 1.1 [10].

2௡ = 2௠ ∗ 2௡ି௠ for n ≥ 1 and m = 1,2,3, … , (n − 1) (1.1)

where, ‘ n2 ’ is total number of states of an n-cell CA, ‘ m2 ’ is total number of equal
length cycles and ‘ nm2 ’ is length of cycles.

We have found that ELCA structures are produced from balanced CA rules at null
boundary scenario. We have explored Linear CA rules and Complemented linear rules
for ELCA generation. We have also shown that fixed length cycles are produced with
rule 51, and 204; variable length cycles are found with rule 153. It was further
concluded that generation of equal length cycles is not dependent on boundary values
of CA. We have developed a characteristics matrix for uniform ELCA, and
characteristics matrices for a number of hybrid ELCA.

We have also shown that the following properties hold for ELCA [10, 11].

 Minimal polynomials for an n-cell uniform CA using rule ‘204’ and ‘51’ are the
same.

 Characteristic polynomials for an n-cell uniform CA using rule ‘204’ and ‘51’
are same.

 Variable length ELCA can be generated from hybrid CA if the characteristic
matrix has a form of tri-diagonal matrix with all ‘1’ in diagonal positions, and
on-diagonal or off-diagonal positions are occupied by “1, 0” pattern sequence.
Corresponding determinant of the characteristic matrix is equal to one.

 Variable length ELCA can be generated from hybrid CA if characteristic matrix
has a form of tri-diagonal matrix with all ‘1’ in diagonal positions, and on-
diagonal or off-diagonal positions are occupied by “1, 1, 0” pattern sequence.
Corresponding determinant of characteristic matrix is equal to one.

 ELCA cannot be generated from hybrid CA if characteristic matrix has a form
of tri-diagonal matrix with all ‘1’ in diagonal positions, and on-diagonal and
off-diagonal positions are occupied by “1, 0” or “1, 1, 0” pattern sequence.
Corresponding determinant of characteristic matrix is equal to zero.

Following pair of necessary and sufficient conditions are found for group CA to
distinguish between the generation of Maximum-length CA (MaxCA) and ELCA [10].

4

 Necessary condition for ELCA and MaxCA generation: determinant of
[݊×݊] characteristic matrix should be equal to one.

 Sufficient condition for ELCA generation: trace of [݊×݊] characteristic
matrix should be equal to ‘n’.

 Sufficient condition for MaxCA generation: trace of [݊×݊] characteristic

matrix should be equal to ‘
2
n ’.

1.3. ELCA based models targeting Distributed Computing
Applications
We have considered the following distributed applications in which group CA
specifically ELCA can be effectively used.

 Pseudo-random pattern generation in Monte-Carlo simulation for
assessment of reliability

 System-Under-Test (SUT)

 Equally populated task pull allocation for job scheduling

 Set of Primes generation for Stress testing

 OTP based authentication in cloud environment

In the past, several researchers have worked on CA based reliability assessment. E. Zio
has focused on solutions of advanced network reliability problems by means of CA and
Mont Carlo sampling [12]. E. Jio et al. have focused on combinational usage of CA and
Monte-Carlo simulator for computing the availability of complex network systems
[13]. B. Canizes et al. have focused on hybrid fuzzy monte-carlo method towards
reliability assessment [14]. In all these above-mentioned works, we have observed that
heterogeneous models have been considered. Moreover, cost effectiveness has not been
focused in randomness generation. We have developed a CA based cost optimized
PRNG for Monte-Carlo simulation in distributed computation [15].

Several researchers have worked on built-in self-test (BIST) pattern generation. I.
Kokolakis, et al. have focused on competitive results for CA patterns with reference to
linear feedback shift register (LFSR) generated patterns in built-in self-test (BIST) [16].
S. Das et al. focused on non-linear CA based PPS free BIST test pattern generation [17,
18]. S. Jamuna has focused on VHDL and LFSR uses in BIST architecture [19]. After
going through these research papers, we have found out that LFSR based models or
heterogeneous CA models have primarily been considered. Moreover, cost
effectiveness has not been focused in randomness generation and it must be noted that

5

PPS exclusion process is crucial. We have developed a cost effective PRNG using
ELCA and have applied that towards BIST generation [20-24].

In terms of past works in System-under-test (SUT), efficiencies for fault insertion (FI)
usage in SUT have been examined by M. Cukier et al. [25]. C. Tr¨odhandl et al. have
focused on conceptual FI framework based on hybrid hardware-software method of
fault injection for distributed system [26]. I. Hsu. et al. have focused on combined usage
of software-implemented FI and virtualization for an automated validation and analysis
of distributed SUT [27]. A.W. Ulrich et al. have focused on system test architecture for
distributed computing [28, 29]. We have observed that CA models have not been used.
Besides, randomness for test cases in SUT architecture has not been assured, and PPS
exclusion has not been focused for test case generation. We have presented CA based
SUT for Distributed Computing in [30].

CA based Job Scheduling has been another area of active research. F. Seredynski et al.
have proposed a CA based genetic algorithmic approach for multi-processor scheduling
in distributed environment [31]. Co-evolutionary genetic algorithm has been introduced
for the definition of a program graph neighbourhood for determining rules in distributed
scheduling problems by M.S. Laghari et al. [32, 33]. P. Agrawal et al. have discussed
periodic boundary CA based optimal scheduling in distributed computing [34]. We
have observed that heterogeneous models, and scheduling with nonlinear CA rules have
been introduced. Besides, randomness has not been focused in generated job pulls.
Generation of equal length task pull has also not been focused. We have presented an
energy efficient task-pull scheduling for Distributed Computing using ELCA [35].

Prime generation has been another interesting research topic. Generation of Primes by
a one-dimensional real-time iterative array has been focused by P. C. Fischer [36].
Signals in one-dimensional cellular automata has been introduced by J. Mozoyer
targeting prime generation [37]. Prime generation with CA has been described by H.
Umeo et al [38-40]. We have observed that individual prime number generation has
been attempted but a set of random prime generation has not been properly dealt with.
Moreover, cost effectiveness of the generation algorithm has not been considered. We
have designed a cost optimized algorithm for generating set of primes using Cellular
Automata which can be applied in stress testing of distributed applications [41].

Lots of research works on CA based authentication and one time password (OTP)
generation have gained importance. S. Nandi et al. have presented group CA based data
security and authentication [5]. M. Mukherjee et al. have presented CA based
authentication [42]. J. C. Jeon et al. have presented non-group CA based one time
password (OTP) authentication scheme in wireless networks [43]. R. Yampolskiy et al.
have presented CA rule 30 based data security and authentication [44]. We have
observed that controllable generation of multiple OTP sets was not considered.
Generation of equally populated OTP sets was also not discussed. We have explored

6

ELCA dynamics and designed a cost efficient One Time Password-based authentication
in cloud environment using ELCA [45, 46].

1.4. Organisation of dissertation
Organisation of this dissertation is as follows. A brief introduction to CA, randomness
and MaxCA are presented in Chapter 2. Design of a novel CA based PRNG and its
potential application in reliability assessment, BIST, and SUT are explored in Chapter
3. Performance comparison among several random number generators (RNGs) is
presented in Chapter 4. CA based set of primes generation targeting stress testing in
distributed computing is also described in Chapter 4. A set of CA rules responsible for
generation of ELCA are explored in Chapter 5 along with a detailed analysis of ELCA
generating rules and its finite state machine (FSM) representation using discrete
mathematics. A potential application (energy efficient task-pull allocation in distributed
computing) using ELCA model is also presented in Chapter 5. The dynamics of ELCA
rules and its potential application in OTP based authentication are presented in Chapter
6. Concluding remarks and future scope are presented in Chapter 7. Literature survey
of the related topics have been reported in each of these chapters.

7

CHAPTER
2

PRELIMINARY CONCEPTS

8

2.1. Cellular Automata

2.1.1. Introduction

A Cellular Automaton (pl. Cellular Automata, in short CA) is a discrete mathematical
model. CA is referred to as a collection of ‘valued’ cells on a grid of specified shape
(dimension). CA evolves through several discrete time steps according to a set of rules;
each of the cells is in one of a finite number of states, such as either value “1 (ON)” or
value “0 (OFF)”. A typical hardware implementation of CA cell using flip flop is
presented in Fig. 2.1.1 [2].

Fig. 2.1.1. A typical hardware implementation of CA [2]

A one-dimensional CA is defined as Equation 2.1.1 [37].

(,#,)L,CA QM 
 (2.1.1)

here “Q” is the finite set of all states; “#” is a special border state, but never contained
in “Q”;

“L” is another state such that δ (L, L, L) = δ (#, L, L) = L (the quiescent state);

and transition function “δ” is a mapping as defined in Equation 2.1.2 [37].

 : # * *Q U Q Q Q  (2.1.2)

Null boundary and periodic boundary CA- If leftmost and rightmost cell are
grounded, then it is referred to as null boundary CA. In periodic boundary condition,
the leftmost cell and rightmost cell of the CA are connected instead of being grounded.

A typical N-cell null boundary CA is presented in Fig. 2.1.2 [2].

Cl
 Flip flop
D Q

Combinational logic

From right neighbor From left neighbor

Clock

9

Fig. 2.1.2. Typical n-cell null boundary CA structure [2]

Schematic diagram of 3-cell null boundary CA scenario is presented in Fig. 2.1.3.

Fig. 2.1.3. Typical structure of 3-cell null boundary CA

Mathematically CA has defined by J. M. Baetens et al. as a function of sextuples as
described in Equation 2.1.3 [47].

0, , s, s , ,CA S N   (2.1.3)

where, countably infinite tessellation of an n-dimensional Euclidean Space ܴ௡ is
represented by Γ, consisting of cells ܿ௜ such that ݅ ∈ ℕ ;

finite set of ݇ states referred to as ܵ where often ܵ ⊂ ℕ;

output mapping function ݏ: ℕ×߁ → ܵ produces the state value of cell ܿ௜ at the ݐ௧௛
discrete time step denoted by ݏ(ܿ௜, ;(ݐ

initial condition for every cell ܿ௜ i.e., ݏ(ܿ௜, (ݐ = :଴ݏ ଴(ܿ௜) is assigned by functionݏ ߁ →
ܵ;

every cell ܿ௜ is mapped to a finite sequence ܰ(ܿ௜) = (ܿ௜௝)௝ୀଵ
|ே(௖೔)| by neighborhood

function ܰ:߁ → ⋃ ௉ஶ߁
௉ୀଵ and |ܰ(ܿ௜)| is the number of all distinct cells ܿ௜௝ ;

ɸ = (߶௜)௜∈ℕ is a family of functions ߶௜: ܵ|ே(௖೔)| → ܵ such that each ߶௜ is responsible
for the dynamics of cell ܿ௜, i.e., ݏ(ܿ௜, ݐ + 1) = ߶௜(ௌ~(ܰ(ܿ௜), ,as (ௌ~(ܰ(ܿ௜) ,((ݐ ((ݐ =
(ௌ~(ܰ(ܿ௜), ௝ୀଵ((ݐ

|ே(௖೔)|.

Following definitions as found in [2] are presented to understand the CA basics.

In Out

 Cell 1

In Out

 Cell i-1

In Out

 Cell i

In Out

 Cell i+1

In Out

 Cell n

10

Uniform CA- If same rule is applied in all the CA cells, it is titled Uniform CA, and
otherwise it is titled as a hybrid CA.

Group CA- If produced subspaces in the transition diagram of a CA are form of
circular queue only, it is entitled as Group CA; else it is mentioned as Non-group CA.

Linear CA- If a rule of a CA cell involves only XOR logic then it is a linear rule. A CA
with all linear rules is a linear CA.

Complemented CA rule- All rules involving XNOR logic is said complemented rule.

Additive CA- A CA having a combination of XOR and XNOR rules is called an
Additive CA.

Non-additive CA rule- Rules with AND-OR logic is called non-additive rules.

Group CA and non-group CA- If produced subspaces of the transition diagram of a
CA are of a form of circular queue only, it is referred to as Group CA; else it is referred
to as Non-group CA.

Group CA and non-group CA have been described in Fig. 2.1.4.

Fig. 2.1.4 (a).

Fig. 2.1.4 (b).

Fig. 2.
Fig. 2.1.4 (a). Transition diagram of group CA for <90, 90, 150>
Fig. 2.1.4 (b). Transition diagram of non-group CA for <1, 2, 10>

Total 23 (8) possible patterns are possible for three cell three-neighborhood CA
configuration as described in Fig. 2.1.3. Next state function of the ith cell of CA is
expressed as a truth table (refer Table 2.1.1). Decimal equivalent of the eight outputs is

called ‘Rule’ Ri [6, 13- 17]. In any three-neighborhood CA (refer Fig. 1), total [
322]

(256) rules are possible in space. Generally, these 256 rules are referred with their
Wolfram code, which gives each rule a distinct number from 0 to 255. For example,

3

1 6 0 4

7 5

2
0

1 3 6 7

5 2 4

11

rules ‘247’, ‘135’ and ‘100’ are mentioned in Table 2.1.1. The first row of the table
enlists the possible 23 (8) combinations of the present states of ‘(i − 1)th’, ‘ith’ and ‘(i +
1)th’ cells at time ‘t’.

Table 2.1.1. Truth table for rule ‘150’, ‘170’ and ‘204’

Present State 111 110 101 100 011 010 001 000 Rule
(RMT) (7) (6) (5) (4) (3) (2) (1) (0) (Decimal

Equivalent)
(i) Next State 1 0 0 1 0 1 1 0 150

(i) Next State 1 0 1 0 1 0 1 0 170
(i) Next State 1 1 0 0 1 1 0 0 204

The set of rules R = <R1, R2,… , Rn> in charge for the arrangement of the cells of a CA
is called the rule vector. If identical rule is followed in all the CA cells, then the CA is
supposed to be a uniform CA; otherwise it is a non-uniform/hybrid CA. If the next-state
logic is employed with only XOR then it is called a linear rule and if it is employed
with XNOR logic, then it is said complemented linear rule. CA with a combination of
XOR and XNOR rules is called additive CA (ACA) and associated rules are defined as
additive rules. CA with a combination of additive rule(s) and non-linear rule(s) are
referred to as non-linear CA. If all the states of a CA in its transition diagram are in
some cycles are referred to as group CA [2].

2.1.2. Application fields of CA

Potential applications of CA are found in:

 VLSI circuit testing,

 Pattern classification,

 Bio-informatics,

 Image processing,

 Mobile computing,

 Distributed computing,

 Cryptography and authentication,

 Search Engine Optimization (SEO),

 Ontology,

 Information processing and retrieval,

12

 Modelling of Artificial Life,

 Synthesis of Artificial Music, etc.

2.1.3. Summary

CA preliminary concepts are discussed. Potential applications of CA are reported.

13

2.2. Randomness

2.2.1. Random numbers

Random numbers are defined as homogeneously distributed values over a well
specified interval. Prediction for the next values is unfeasible for a random sequence
[48, 49]. Random patterns are achieved based on the following recursive PRNG
Equation 2.2.1 [48].

Xn+1=P1Xn +P2 (Mod N) (2.2.1)

where, ‘P1’ and ‘P2’ are two prime numbers;

‘N’ is range of random numbers;

‘Xn’ is calculated recursively using the value of ‘X0’ as base value;

‘X0’ is termed as seed and it is also a prime number;

2.2.1.1. Pseudo-random number

If ‘X0’ (seed) (refer Equation 2.2.1) is same all time, then it produces pseudo-random
number.

Pseudo-random numbers are produced using approaches such as, recursive algorithm
based computer program, Monte-Carlo (M-C) number generator, Linear Feedback Shift
register (LFSR) based random number generator or, CA based random number
generator.

2.2.1.2. True-random number

Non-deterministic method is primarily required in ‘seed’ selection for generation of
true-random numbers (TRNs). ‘Seed’ is fetched from physical procedures such as
radioactive decay, photon emissions or atmospheric noise [48].

Rest of the section is organized as follows: comparison of PRNG and TRNG is
described in Sub-section 2.2.2; finally, summary is reported in Sub-section 2.2.3.

2.2.2. Comparison of PRNGs and TRNGs

Comparative data among PRNG and TRNG as discussed in [48] is reported in Table
2.2.1.

14

Table 2.2.1. RNG Performance

Characteristics PRNGs TRNGs
Efficiency Excellent Poor

Determinism Deterministic Nondeterministic
Periodicity Periodic Aperiodic

2.2.3. Summary

PRNGs are better choice over TRNGs for real life applications. PRNG generated
random sequences are efficient, reproducible, periodic and thus easy to implement in
physical systems.

15

2.3. MaxCA - discussion

2.3.1. Mathematical foundation

An n-cell MaxCA is characterized by presence of a cycle of length (2n-1). Randomness
is found in generated maximum length pattern of MaxCA. Characteristics polynomial
for MaxCA is primitive [6, 49].

Consider, CA size of ‘n’;

Then, 2n= (2n -1) + 20 (2.3.1)

where, ‘(2n -1)’ is referred to as ‘MaxCA’ cycle and ‘20’ is referred to as single length
cycle;

MaxCA pattern is shown in Fig. 2.3.1.

Fig. 2.3.1. MaxCA pattern for <90, 90, 150>

Rest of the section is organized as follows: CA rule combinations for MaxCA
generation are presented in Sub-section 2.3.2; degree of randomness for MaxCA pattern
is reported in Sub-section 2.3.3; finally, summary is in Sub-section 2.3.4.

2.3.2. CA rule combinations for MaxCA

Rule “90” and “150” in a unique combination are responsible for generation of MaxCA
[2, 6, 50]. MaxCA length over different combinations of rule “90” and “150” are
presented in Table 2.3.1. Rule “90” is referred to as 0 and rule “150” is referred to as 1
in Table 2.3.1 [2].

0

1 3 6 7

5 2 4

16

Table 2.3.1. Typical MaxCA configurations [2]

Number of cells MaxCA Rule Vector MaxCA Cycle Length
3 001 7
4 0101 15
5 11001 31
6 010101 63
7 1101010 127
8 11010101 255
9 110010101 511

10 0101010101 1,023
11 11010101010 2,047
12 010101010101 4,095
13 1100101010100 8,191
14 01111101111110 16,383
15 100100010100001 32,767
16 1101010101010101 65,535
17 01111101111110011 131,071
18 010101010101010101 262,143
19 0110100110110001001 524,287
20 11110011101101111111 1,048,575
21 011110011000001111011 2,097,151
22 0101010101010101010101 4,194,303
23 11010111001110100011010 8,388,607
24 111111010010110101010110 16,777,215
25 1011110101010100111100100 33,554,432
26 01011010110100010111011000 67,108,863
27 000011111000001100100001101 134,217,727
28 0101010101010101010101010101 268,435,455
29 10101001010111001010001000011 229-1
30 111010001001101100101000111101 230-1
31 0100110010101101111101110011000 231-1

A unique rule combination is available for MaxCA generation for each fixed length CA
size.

2.3.3. Degree of randomness found in MaxCA generated patterns

High degree of randomness is reported for MaxCA generated patterns. Maximum
degree of randomness is found in the generated maximum length cycle containing non-
zero states only. Diehard results for MaxCA are followed in Table 2.3.2 [2, 6, 17, 18,
51].

Table 2.3.2. Degree of randomness for MaxCA patterns in Diehard tests

Serial number CA cell size Number of passes in Diehard tests
1. 23 10
2. 63 13
3. 64 14

17

2.3.4. Summary

Rule vector for generation of MaxCA for different cell sizes are reported in Table 2.3.1
and results in DieHard Tests for MaxCA generated patterns are reported in Table 2.3.2.
No generalized method has been found to determine rule vector for generation of
MaxCA patterns.

18

CHAPTER

3

COST OPTIMIZED CA PRNG

19

3.1. Cost optimized design technique for pseudo-random number

generator with ELCA

3.1.1. Introduction

Random numbers play a fundamental role in the field of research work varying from

computer science, mathematics or statistics to cutting edge VLSI Circuit testing. Random

numbers [49, 52-54] are also used in cryptographic key generation and game playing.

Mathematicians describe that this random numbers happen in a sequence where the values

are homogeneously distributed over a well-defined interval, and it is unfeasible to predict

the next values based on its past or present ones. The most common way to generate

pseudo-random number (using structured programming language) is to use a combination

of “randomize” and “rand” functions. Random patterns are achieved based on the following

recursive PRNG Equation 3.1.1.1 [58].

)(211 NmodPXPX nn +=+ (3.1.1.1)

where ‘P1’, ‘P2’ are prime numbers; ‘N’ is the range for random numbers; ‘Xn’ is calculated

recursively using the base value ‘X0’; ‘X0’ is a prime number and referred to as ‘seed’; if

X0 (seed) is same all time or, selected in a deterministic way, then pseudo-random number

is produced [58]. Random numbers over a specified boundary are essentially normalized

with some distributions. Power-law distribution for random number is described in

Equation 3.1.1.2 [58].

nCXxP =)(for X є [x0, x1] (3.1.1.2)

where ‘P(x)’ is power-law distribution and ‘C’ is a constant;

The quality of randomness generated by a random number generator is needed to be

verified. The diehard tests are a battery of statistical tests for measuring the quality of a

random number generator. This statistical test suit was developed by George Marsaglia

over several years and first published in 1995 on a CD-ROM [55].

CA based random pattern generation have been in focus of researchers’ due to its low cost

physical implementation capability, and high degree of randomness [1, 2, 17, 18, 51, 56,

57, 69, 70]. It is important to remeber that PPS refers to the noncomputability state for a

digital circuit caused by a particular input pattern. Thus, PPS exclusion is important

towards random test pattern generation. PPS exclusion from randomness generating

patterns were described in [51, 56, 57]. In our studies, we have not found a simple, cost

effective, and easy PPS exclusion feature in CA based PRNG. Hence a simple and cost-

20

effective ELCA based PRNG has been introduced, which may be advantageous towards

several cost-effective daily life applications.

Rest of the section is organized as follows: proposed work is described in sub-section 3.1.2;

experimental results and analysis are discussed in Sub-section 3.1.3; finally, summary is in

Sub-section 3.1.4.

3.1.2. Proposed approach

A cost effective and simple method targeting flexible exclusion of prohibited pattern set

(PPS) is proposed in CA for generation of random numbers. Prohibited pattern is referred

to as a bit configuration found in a digital circuit for noncomputability state. The cost

efficiency refers to the space, time, searching of PPS and design complexity of an

algorithm. A one dimensional Equal Length Cellular Automata is proposed over the

existing Maximum Length Cellular Automata for random pattern generation. The

decomposition of the larger cycle into more relevant sub-cycles is proposed where the

concerning complexities cost can be reduced. The proposed PRNG system is described in

Fig. 3.1.1.

Fig. 3.1.1. Flowchart of proposed CA PRNG system

Start

Finish

Initialize CA size

Decompose the CA into small size

Exclude the CA cycles containing PPS

Allow remaining cycles for random pattern generation

Check whether PPS is

covered by smaller

cycles

Yes

No

21

A new mathematical approach is proposed to obtain randomization in low cost with respect

to various complexities and hardware implementation.

Several equal length sub-cycles are considered in proposed approach instead of one cycle

of maximum length cycle. The sub-cycles together are capable to generate all the states of

the n-cell CA. The following Algorithm 3.1.1 is used for the generation of randomness in

proposed approach.

Algorithm 3.1.1. Cycle_Decomposition

Input: CA size (n), PPS Set

Output: m-length cycles excluding PPS

Step 1: Start

Step 2: Initialize the number of n-cell CA to generate random patterns using n-cell CA

Step 3: Decompose the cell number (n) into two equal numbers (m) such that n=2*m

Step 4: Check each PPS whether it belongs to a single smaller cycle CA

Step 5: Repeat Step 3 and Step 4 until each PPS belongs to separate smaller cycles

Step 6: Allow m-length cycles of n-cell CA after excluding all the PPS containing cycles

Step 7: Stop

The primary concern in proposed approach is to exclude the PPS. The occurrence of every

prohibited pattern is ensured in some of the smaller sub-cycles. Remaining prohibited

patterns free cycles may be allowed to generate random patterns.

Proposed methodology implies a better cost effective approach. The proposed

methodology simplifies the design complexity and empowers the searching complexity.

The terminology design complexity refers to the implementation procedure for generation

of random pattern and empowering searching complexity means the zero overhead for

keeping track for PPS for random pattern generation. In comparison with an n-cell

maximum length CA, more number of smaller cycles instead of one MaxCA are available.

Assume, for an n-length CA, the total number of states is ‘2n’. By Equation 1.1, we have,

2n = 2n-1+2n-1

22

 = 21*(2n-1) (two number of equal length cycles)

 = 22*(2n-2) (four number of equal length cycles)

 = 2m * (2n-m) (2m number of equal length cycles) for n≥1 and m=1, 2, 3… (n-1).

Thus ‘m’ is always less than ‘n’.

PPS containing part is excluded from the MaxCA cycle [51, 56, 57]. PPS is completely

removed in proposed approach. Random pattern generation in this scenario is followed in

Fig. 3.1.2. Fig. 3.1.2(a) shows one maximum length cycle with prohibited patterns and

Fig. 3.1.2(b) shows several equal length smaller cycles where some of the cycles contain

prohibited set. The PPS in Fig. 3.1.2 is denoted as {PS0, PS1……PS9}.

 Fig. 3.1.2(a).

 Fig. 3.1.2(b).

Fig. 3.1.2.

Fig. 3.1.2(a). Typical PPS exclusion in maximum length CA cycle

Fig. 3.1.2(b). Typical PPS exclusion in proposed equal length CA of smaller cycle size

23

Assume that n-numbers of prohibited patterns are present in the maximum length cycle.

Let the prohibited patterns are {PS0,…,PSn }. The minimum length of arc (Arcmin) between

the prohibited pattern PS1 and PSn should be measured in the scenario of MaxCA so that

remaining cycle arc i.e. effective arc (Earc) may be utilized for random number generation.

Earc is typically free from PPS. This scenario is shown in Fig. 3.1.3.

Fig. 3.1.2(a) and Fig. 3.1.3 are inspired from [57].

Fig. 3.1.3. Typical cycle structure of an n-cell maximum length CA

Arcmin- The minimum length of arc (Arcmin) is the minimum distance between the first and

last prohibited pattern in an n-cell maximum length CA cycle.

Earc- The effective arc (Earc) is the remaining arc length of an n-cell maximum length CA

cycle which excludes Arcmin from the corresponding CA cycle of states and it is responsible

for generating pseudo-random patterns of integers.

3.1.3. Experimental observations & result analysis

PPS containing arc is excluded from the maximum length cycle. On the other hand, the

PPS containing cycles are totally removed for generation of random sequences in proposed

approach. Concerns to calculate Earc and Arcmin are totally absent in proposed methodology.

The following Table 3.1.1 compares the procedures of maximum length cycle and

proposed equal length cycle based approaches.

Table 3.1.1. Comparison of fault coverage procedures

 Maximum length CA Equal length CA
Earc Computation policy required N/A

Arcmin Computation policy required N/A

24

The p-value analysis in Diehard test helps to decide whether the test data set passes or fails

the diehard test. Diehard test returns the p-value, which should be uniform over [0, 1) if

the input file contains truly independent random bits. The p-values are obtained by p=F(x),

where F is the assumed distribution of the sample random variable ‘x’, which is often

normal. The value p<0.025 or p>0.975 means the RNG has “failed the test at the 0.05 level”

[55]. Comparison results for proposed CA-PRNG with reference to MaxCA PRNG [51,

56, 57] are presented in Table 3.1.2.

Table 3.1.2. Performance result through Diehard for different CA random number generators

Serial

Number Name of the test

MaxCA Proposed approach

n=23 n=64 n=23 n=64

1 Birthday Spacings Pass Pass Pass Pass

2 Overlapping Permutations Pass Pass Pass Pass

3 Ranks of 31x31 and 32x32 matrices Pass Pass Pass Pass

4 Ranks of 6x8 Matrices Pass Pass Pass Pass

5 The Bitstream Test Fail Fail Fail Fail

6 Monkey Tests OPSO,OQSO,DNA Fail Pass Fail Pass

7 Count the 1`s in a Stream of Bytes Pass Pass Pass Pass

8 Count the 1`s in Speci_c Bytes Fail Pass Fail Pass

9 Parking Lot Test Pass Pass Pass Pass

10 Minimum Distance Test Pass Pass Pass Pass

11 The 3DSpheres Test Pass Pass Pass Pass

12 The Sqeeze Test Fail Pass Fail Pass

13 Overlapping Sums Test Fail Pass Fail Pass

14 Runs Test Pass Pass Pass Pass

15 The Craps Test Pass Pass Pass Pass

Total Number of Diehard Test Passes 10 14 10 14

Competitive degree of randomness is found in Table 3.1.2. Several complexities for the

two CA based methodologies are in Table 3.1.3.

Table 3.1.3. Complexity comparison between MaxCA and proposed methodology

Name of the Complexity Comparison Result

Space Same

Time Slightly Improved

Design Improved

Searching for PPS Improved

Space complexity for both approaches is same as total length of an n-cell CA are same.

Some changes in other complexities are found in Table 3.1.3. Other complexities are

improved in case for proposed methodology. The proposed methodology is allowed only

to generate random patterns from smaller cycles that exclude PPS. The PPS exclusion

25

feature from the main cycle improves the design complexity and search of PPS process.

3.1.4. SUMMARY

Results based on Table 3.1.1, Table 3.1.2 and Table 3.1.3 conclude that proposed

methodology is capable to produce pseudo-random sequences at low cost.

26

3.2. CA PRNG in Monte-Carlo simulation

3.2.1. Introduction

Distributed computing is a reliable solution in modern days computing requirement.

Monte-Carlo simulator is highly effective in assessing the reliability of a distributed

system. Monte-Carlo (M-C) random number generator (RNG) found with Monte-Carlo

simulator is alternatively used for generation of pseudo-random numbers [58, 59]. The term

‘Monte-Carlo’ was introduced by Von Neumann and Ulam during World War II. M-C

method was applied to problems related to the atomic bomb. The mean values of stochastic

variables are expressed as integral of variables in M-C method as described in Equation

3.2.1 [58, 59].

=
D

dxxfxhI)()((3.2.1)

where ‘D’ is high dimensional domain with coordinates ‘x’ and ‘f(x)’ is a non-negative

function.

Equation 3.2.2 [58, 59] is satisfied by ‘f(x)’.

 =
D

dxxf 1)((3.2.2)

Past research explores that CA based PRNG may be used in Monte-Carlo simulation [12-

14]. Thus, CA based PRNG may be used in reliability assessment.

Rest of the section is organized as follows: proposed work is described in Sub-section

3.2.2; experimental results and analysis are in Sub-section 3.2.3; finally, summary is in

Sub-section 3.2.4.

3.2.2. Proposed approach

Monte-Carlo simulation is used to evaluate reliability of a complex and distributed system.

Monte-Carlo test cases are produced using pseudo-random numbers. A default recursive

PRNG is available along with the Monte- Carlo simulator. CA-PRNGs are considered to

generate pseudo-random numbers in Monte Carlo simulator. Flowchart of the proposed

system is in Fig. 3.2.1.

27

Fig. 3.2.1. Flowchart of the proposed reliability assessment system

A novel low cost approach is introduced in the flowchart of the proposed system to achieve

randomization in the resulting Monte-Carlo simulation. Algorithm 3.2.1 is used in

proposed approach. Algorithm 3.2.1 is based on Algorithm 3.1.1.

Algorithm 3.2.1. Monte-Carlo_Simulation_Generation

Input: Choice for PRNG, CA size (n), PPS Set

Output: Pseudo-random number based Monte-Carlo Simulation

Step 1: Start

Step 2: If selected PRNG is based on CA then follow Step 3 else follow Step 10

Step 3: Initialize the number of n-cell CA for generating random patterns using n-cell CA

Step 4: If PRNG is based on maximum length CA then follow Step 9 else follow Step 5

28

Step 5: Decompose the cell number (n) into two equal numbers m) such that n=2*m

Step 6: Verify for each PPS whether the PPS belongs to a single smaller cycle CA or not

Step 7: Repeat Step 3 and Step 4 until each of the PPS belongs to separate smaller cycles

Step 8: Permit m-length cycles of n-cell CA after excluding all the PPS containing cycles

Step 9: Exclude PPS present in maximum length cycle and follow Step 11

Step 10: Select Monte-Carlo default random number generator

Step 11: Generate random number sequence

Step 12: Generate pseudo-random number based Monte-Carlo Simulation

Step 13: Stop

3.2.3. Experimental observations & result analysis

Degree of randomness for the two CA-RNGs and default Monte-Carlo simulator RNG are

shown in Fig. 3.2.2.

Fig. 3.2.2(a) Randomness quality for different PRNGs

29

Fig. 3.2.2(b) Randomness quality for different PRNGs

Fig. 3.2 2. Monte-carlo simulation result using different PRNGs

Randomness for a part of pattern from the PRNGs used in Monte-Carlo simulation is

shown in Fig. 3.2.2. CA length 8 is applied for Fig. 3.2.2(a), and in CA length 10 is applied

in Fig. 3.2.2(b). A better quality of randomness is found for CA-PRNGs compared to

Monte-Carlo in Fig. 3.2.2(a) and Fig. 3.2.2(b). Competitive randomness is found for both

CA-PRNGs in Fig. 3.2.2.

3.2.4. Summary

Competitive randomness is found in Fig. 3.2.2 for both CA-PRNGs. Associated costs for

proposed equal length CA PRNG are much lower compared to MaxCA (refer Sub-section

3.1). Hence proposed CA-PRNG is capable of low cost test case generation in Monte-Carlo

simulation.

30

3.3. Cost effective PRNG in BIST application

3.3.1. Introduction

The advancements of Information Technology are realized in the modern age chip

fabrication techniques. The size of a complete electronic system is now reduced to a scale

that is harder to view with bare eyes. The impact of minimization initiated a strong

necessity for testing of minimized systems, circuit boards and chip components.

Built-In Self-Test (BIST) [60-63] is typically used for testing purpose in design-for-

testability (DFT) technique. A section of the circuit under test (CUT) is verified and tested

to recognize the behavior of the total circuit. A typical BIST architecture is presented in

Fig. 3.3.1 [60].

Fig. 3.3.1. Typical BIST architecture [60]

Pattern generator, response analyzer and test controller are essential to continue BIST in

digital circuit. Patterns are stored in Read Only Memory (ROM). LFSR is used as a pattern

generator. LFSR is also used as a response analyzer. Pseudo-random sequences are needed

for pattern generation in BIST applications [60-63].

Linear Feedback Shift Register (LFSR) is a popular choice as pseudo-random pattern

generation for Built-In Self-Test (BIST) application [11-13]. LFSR has some advantages

as it possesses fewer XOR gates and a good internal feedback policy. Better quality of

Test manager

BIST pattern generator

Circuit under test

Response analyzer

System

Board

Chip

Test manager

Test manager

31

randomness and cost effective physical implementation was described for the CA based

PRNG compared to the LFSR based PRNG [16]. Several CA based PRNG in BIST

applications were described in [17, 18, 51, 56, 57]. In our studies, we have not found a

simple, cost effective and easy PPS exclusion feature in CA based PRNG. Hence a simple

and cost-effective ELCA based PRNG has been introduced, which may be advantageous

towards cost-effective BIST application.

Rest of the section is organized as follows: proposed work is described in Sub-section

3.3.2; experimental results and analysis are in Sub-section 3.3.3; summary is in Sub-section

3.3.4.

3.3.2. Proposed approach

ELCA based PRNG is proposed for BIST test pattern generation. Flowchart of our

proposed ELCA based BIST pattern generator is followed in Fig. 3.3.2.

Fig. 3.3.2. Flowchart of proposed BIST pattern generation system

Start Initialize CA size

Initialize balanced

CA rule
Generate ELCA

Remove prohibited

pattern containing

ELCA

Allow remaining

ELCA without PPS

as PRPG

Generate

BIST random

pattern

Circuit under

test

Response Analyzer Stop

Each prohibited pattern

is covered by generated

ELCA?

No

Yes

32

Flowchart of Fig. 3.3.2 is implemented for ELCA based BIST pattern generation using

Algorithm 3.1.1 of Sub-section 3.1.2. Cost effective PRNG is obtained from Algorithm

3.1.1. PPS exclusion policy in proposed method is same as described in Sub-section 3.1.2.

3.3.3. Experimental observations & result analysis

Fault coverages for several benchmark circuits with ELCA, MaxCA, and LFSR BIST

pattern generator are presented in Table 3.3.1. Fault coverages for several “ISCAS 85” and

“ISCAS 89” benchmark circuits in “BISTAD” [64] are presented in Table 3.3.1.

Table 3.3.1. Fault coverage for different pattern generators

Circuit

name

Feed

back

Seed Coverage by

LFSR

Coverage by

MaxCA

Coverage by

ELCA

s386 2 15 93.17 % 96.67% 100.00%

s298 2 15 93.30% 100.00% 100.00%

s1488 2 15 98.92% 97.72% 98.68%

s1494 2 15 98.11% 96.87% 97.87%

s208_1 2 15 95.18% 96.93% 99.56%

s27 2 15 100.00% 100.00% 100.00%

c17 2 15 100.00% 100.00% 100.00%

Fig. 3.3.3. Screenshot for fault coverage in “ISCAS89 s1488” benchmark circuit

33

Fig. 3.3.4. Screenshot for fault coverage in “ISCAS89 s1494” benchmark circuit

Fig. 3.3.5. Screenshot for fault coverage in “ISCAS89 s208” benchmark circuit

34

Competitive results in fault coverages of several “ISCAS 85” and “ISCAS 89” circuits are

shown in Fig. 3.3.3, Fig. 3.3.4 and Fig. 3.3.5.

3.3.4. Summary

Competitive results for ELCA-PRNG in several “ISCAS 85” and “ISCAS 89” benchmark

circuits are found in Table 3.3.1. Cost-effectiveness of ELCA over MaxCA is described in

Section 3.1. Hence ELCA is a cost-effective choice for BIST application.

35

3.4. Design of a CA based System-Under-Test

3.4.1. Introduction

Distributed computing is the present trend for efficient resource utilization and processing

in networked architecture. An inherent requirement to enhance the distributed computing

is satisfied with the design of a fault tolerance in distributed system. Several aspects are

focused for the enhancements of distributed computing. Researches were carried out on

virtualization to enhance fault tolerance in distributed systems [25-27, 65-67]. Testing

algorithms for distributed systems often require fault injection (FI) to assess reliability in

distributed system. Faults are considered as elements of the applicable input data for fault-

tolerant distributed. An infrastructure was presented by I. Hsu et al. [27] to support the

analysis of the behavior of distributed system-under-test (SUT). Software-implemented

fault injector (FI) and virtualization were combined in [25] for an automated validation and

analysis of distributed SUT. Hybrid fault injection for distributed SUT was introduced by

C. Trödhandl et al. [26]. Validation of fault tolerant distributed system requires a flexible

infrastructure for the execution of injected faults. Three key requirements for the

infrastructures as identified in [27] are as follows.

i) Boundary conditions across multiple system components (nodes) should be

tested at randomized test values;

ii) initial system state for each test must be at “error free” state;

iii) a log file should be available for off-line analysis of fault injections, system

responses, and resource uses.

FIs are categorized into Simulation based FI [65], hardware FI [66] and software FI [67].

Timing behavior of the complete system-under-test (SUT) is adversely affected by

injection of faults. Hardware FI is preferred over software FI. Hardware FI is primarily

used on the chip-level [65-68]. BIST may be used as a choice for testing purpose in SUT.

Thus, a simple ELCA based BIST architecture is proposed towards SUT in distributed

computing, which may be advantageous as a cost-effective solution in distributed

computing.

ELCA based infrastructure in SUT is projected in this section. Cost optimized performance

of ELCA in BIST applications in Sub-section 3.3.1 initiates the potential application of

ELCA in SUT.

Rest of the section is organized as follows: proposed work has been described in Sub-

section 3.4.2; experimental results and analysis have been reported in Sub-section 3.4.3;

finally, summary has been reported in Sub-section 3.4.4.

36

3.4.2. Proposed approach

ELCA based design for testing of hardware components in system-under-test (SUT) is

proposed. Faults injected by FI in a target component of a SUT are tested with ELCA based

design. Proposed ELCA based design in SUT is presented in Fig. 3.4.1.

Fig. 3.4.1. Proposed SUT architecture in distributed computing environment

Proposed SUT architecture may be incorporated over existing Client-Server based FI

hardware as shown in [26]. Client-Server based FI hardware is presented in Fig. 3.4.2 [26].

Fig. 3.4.2. Fault injection client-server architecture [26]

FI Server

Local

FI

Targ

-et

Control Ethernet Network

Fault Injection Network

Node-1 Node-2 Node-n

FI

Interface

Local

FI

Targ

-et FI

Interface

Local

FI

Targ

-et FI

Interface

Tester-1

Tester-2

Tester-n

System-Under-Test (SUT)

CUT

Test Controller (TC) Circuit Testing

Output Response

Analyzer (ORA)

ELCA pseudo-random pattern generation

Distributed Computing

Environment

BIST

Fault

Insertion

37

Flowchart of proposed SUT design is presented in Fig. 3.4.3.

Fig. 3.4.3. Proposed flowchart of SUT using ELCA BIST

PPS free pseudo-random pattern generation in SUT is same as described in Sub-section

3.1.1 and Sub-section 4.1.1. Algorithm 3.4.1 is used to perform CUT in SUT.

Algorithm 3.4.1. ELCA_based_Built-In Self-Testing_ for_System-Under-Testing

Input: SUT components

Output: Checked error free system components for reliable computation

Step 1: Start

Step 2: Initialize the circuit-under-test (CUT) area to be tested by server side

Step3: Inject faults by Fault Injector (FI) in target circuit of the client side

Step 4: Initialize the Built-in self-test (BIST) at client side

Step 5: Generate PPS free pseudo-random test patterns using Algorithm 3.1.1

Step 6: Perform testing on target circuit

Start

Stop

Initialize CUT

at client side

Initialize CA size

and balanced rules

Fault injection for target

circuit at client side

Generate equal

length cycles

Prepare pseudo-random test

cases for BIST applications

Generate pseudo-

random patterns

Perform BIST in

target circuit

Send test report to

server

Check PPS is completely

contained by generated some

of the equal length cycles

Initialize balanced

rules

Analyze signature after

BIST

Yes

No

38

Step 7: Analyze the signature generated in BIST

Step 8: Report circuit status for fault inspection at server side

Step 9: Report SUT tester about component status for processing of reliable computation

Step 10: Stop

3.4.3. Experimental observations & result analysis

Several functional fault models for BIST [68] are as follows.

i) Stuck_at_faults (SAF): A cell/line is stuck to logical zero/one state. SAF is

thus categorized into Stuck_at_1 and Stuck_at_0 fault.

ii) Transition_faults (TF): It is not possible to retain previous state value since

the memory value is changed once. It is similar to SAF.

iii) Coupling_faults (CF): Coupling between two adjacent cells is focused with CF

during a transition from “zero to one” or, “one to zero”. Neighbouring cell is

forced to change its value during transition of target cell.

iv) Neighborhood_pattern_sensitive_faults (NPSF): Center cell of a nine-

neighbourhood configuration is bound to change its value influenced by its

neighbourhood.

v) Data_retention_faults (DF): It is not possible by memory cell to retain its

value over time after a memory write/read operation.

vi) Address_decoder_faults (AF): No cell or, multiple cells are accessed

simultaneously with an address or, a single cell is accessed by multiple

addresses.

39

Coverage of SAF is considered in proposed SUT design. “BISTAD” is used for testing the

fault coverages of “t3.agm” benchmark circuits [64].

Fig. 3.4.4. Screen shot for “t3.agm” benchmark circuit

Simulation results for “t3.agm” benchmark circuit are presented in Table 3.4.1, Fig. 3.4.5

and Fig. 3.4.6. Fault Table used for “t3.agm” circuit testing in “BISTAD” [62, 63] is

followed in Table 3.4.2.

Table 3.4.1. Fault table for “t3.agm”

Vectors % (Total) % F A U L T T A B L E

10101 28.0 28.0 0 1 X X 0 0 X 1 X X X 1 X X 0 1 1 1 X X X 1 1 1 1

01101 38.0 28.0 1 0 X X 0 X 0 X 1 X 1 X X X 0 1 1 1 X X X 1 1 1 1

00011 44.0 20.0 X X 1 X X X X X X 1 X X X X X 1 1 1 1 X X 1 1 1 1

11111 56.0 24.0 0 0 0 X X X X X X X 0 0 0 X X X 0 X 1 X X 1 1 1 0

11011 58.0 20.0 X X 1 X X X X X X X X X 1 X X 1 1 1 1 X X 1 1 1 1

00110 78.0 34.0 1 1 0 0 1 1 1 0 0 0 X X X 0 X 0 X X X X 1 1 1 1 0

10000 90.0 16.0 X X X 1 1 X X X X X X X X 1 1 X X 0 X X X 0 X 0 0

00111 98.0 34.0 1 1 0 0 0 1 1 0 0 0 X X X X X 0 X X 0 0 0 X 0 0 0

00101 100.0 34.0 1 1 0 1 0 1 1 0 0 0 X X X X 0 0 X X X 1 X 1 1 1 0

 &

40

Fig. 3.4.5. Screen shot of SAF test coverage graph for “t3.agm”

Fig. 3.4.6. Screen shot of fault coverage for “t3.agm”

Stuck-at-faults (SAF) coverage for “t3.agm” is shown in Fig. 3.4.5 and fault coverage of

“t3.agm” is shown in Fig. 3.4.6.

41

Fault coverages for several combinational circuits obtained in “BISTAD” are presented in
Table 3.4.2. Each “t.agm” combinational circuit contains 5 inputs and 2 outputs, and
behaves as an independent system [64]. Fault coverage is described in Equation 3.4.1 [68].

no_of_faults_noticedfault_coverage=
total_no_of_faults (3.4.1)

Table 3.4.2. Fault coverage table for ‘t’ benchmark circuits

Serial No. Model No. Fault coverage

1 t1.agm 100%
2 t2.agm 100%
3 t3.agm 100%
4 t4.agm 100%
5 t5.agm 100%
6 t6.agm 100%
7 t7.agm 100%
8 t8.agm 100%
9 t9.agm 100%
10 t10.agm 100%

High fault coverage for different “t.agm” benchmark circuits is found in Table 3.4.2.

3.4.4. Summary

High fault coverage for ELCA based PRNG is obtained for “ISCAS 85”, “ISCAS 89” and
“t.agm” circuits. Therefore, ELCA PRNG is an efficient test pattern generator for BIST,
SUT applications in distributed computing.

42

CHAPTER

4

PERFORMANCE COMPARISON

AMONG RNGs

43

4.1. Random number generators: performance comparison

4.1.1. Introduction

Random numbers [48, 49, 58] are considered in research works varying from Computer

Science to Mathematics. Random numbers are homogeneously distributed over a well-

defined interval and it is unfeasible to predict the next values for a random pattern. ‘Seed’

is used as a specification of an initial number for generation of a random pattern. RNGs

are classified into several groups based on the difference in generation procedures of

random numbers. Pseudo-random number (PRN) and true-random number (TRN) are most

commonly used in scientific works.

Random numbers or, random-patterns [48, 49, 58] obtained with a computer program is

based on recursive algorithm. Deterministic way for selection of the ‘seed’ makes the

pattern generation procedure as ‘Pseudo-random’ [48]. Several efforts are found in

literature to produce quality random numbers [17, 18, 48, 51, 56, 57, 69, 70]. Few popular

techniques for generation of pseudo-random sequences are described briefly in the

following sub-sections.

Recursive algorithm based computer program which is most frequently used as a source of

pseudo-random sequence is considered in this section. Generation of pseudo-random

numbers by recursive algorithm is shown in Fig. 4.1.1.

Fig. 4.1.1. Flowchart for pseudo-random number generation by recursion

Start

Stop

Initialization of the range for generation of random integer

Selection of seed using randomize function

For loop counter = 0 to (range -1)

Generate random integer

44

Algorithm 4.1.1 is used to prepare pseudo-random number.

 Algorithm 4.1.1. Recursive_Pseudo-Random_Pattern_Generation

Input: Upper limit for random numbers to be generated (n)

Output: Random pattern of integers

Step 1: Start

Step 2: Initialize the range for which random integers to be generated

Step 3: Setting up of randomize seed

Step 4: Repeat Step 5 until required number of iteration has been achieved

Step 5: Generate random number using the random seed

Stop 6: Stop

M-C PRNG (found with Monte-Carlo Simulator) is another option to produce pseudo-

random numbers within a specific boundary [13]. Pseudo-random sequence generation

using CA specifically MaxCA is briefly described in Section 4.1.2.

Rest of the section is organized as follows: proposed work is described in Sub-section

4.1.2; experimental results and analysis are described in Sub-section 4.1.3; finally,

summary is in Sub-section 4.1.4.

4.1.2. Proposed approach

Few popular RNGs are considered in search of a cost-efficient RNG along with flexible

prohibited pattern set (PPS) exclusion process. Prohibited pattern is referred to as a bit

configuration found in a digital circuit for noncomputability. Recursive Random Number

Generator (RRNG), True Random Number Generator (TRNG) [48], Monte-Carlo Random

Number Generator (M-C RNG), MaxCA PRNG, and ELCA PRNG are considered for this

comparison.

All states of an n-cell CA may be generated as a collection of several equal length cycles.

Flowchart (Fig. 3.1.1) and algorithm (Algorithm 3.1.1) presented in Section 3.1 are used

in the following sub-section. An n-cell CA is divided into two or more equal sub-cycles

instead of taking the full cycle. Generated sub-cycles together produce all the states of the

n-cell CA.

45

Example 4.1.1.

Consider, CA size 5. 5-cell CA might be decomposed into some equal length smaller cycles

instead of one maximum length cycle. CA size 5 in Example 4.1.1 is decomposed into 4

cycles of length 8 (Refer 4.1.2(b)); or, it is decomposed into 8 smaller cycles of length 4

(Refer Fig. 4.1.2(c)). Maximum length cycle is shown in Fig. 4.1.2(a); Fig. 4.1.2(a) is

based on Null Boundary 5 cell CA having rules in specified sequence < 90, 90, 90, 90, 150

>. The synthesis of this example in Fig. 4.1.2(b) and Fig. 4.1.2(c) Equal Length CA

(ELCA) are achieved for a combination of balanced CA rules [2] such as “60”, “102”,

“153”, “195” for CA size n=5.

Fig. 4.1.2(a)

Fig. 4.1.2(b)

46

Fig. 4.1.2(c)

Fig. 4.1.2

Fig. 4.1.2(a). MaxCA Cycle for n=5 for <90, 90, 90, 90,150>

Fig. 4.1.2(b). Proposed 4 ELCA of cycle size 8 for < 153,153,153,153,153 >

Fig. 4.1.2(c). Proposed 8 ELCA of cycle size 4 for < 60, 60,195,102,153 >

Set of balanced CA rules for generation of ELCA as presented in Fig. 4.1.2 are: “51”, “60”,

“102”, “153”, “195” and “204”. Few details of ELCA generating rules are presented in

Table 4.1.1

Table 4.1.1. ELCA rule information

Serial

no.

CA rule Binary

equivalent

of CA rule

Combinatorial binary logic for

next state =i(t+1)

1 51 00110011 NOT i(t)

2 204 11001100 i (t)

3 60 00111100 i-1(t) XOR i(t)

4 195 11000011 i-1(t) XNOR i(t)

5 102 01100110 i(t) XOR i+1(t)

6 153 10011001 i(t) XNOR i+1(t)

Binary representations of ELCA rules explore that all CA rules are balanced in nature.

A pair of necessary and sufficient conditions are found for ELCA rules.

Necessary Condition for ELCA: Higher bits partition (HbP) and lower bits partition

(LbP) in binary representation for the CA rule, is balanced, i.e., HbP and LbP both

individually contains two numbers of 0’s and two numbers of 1’s.

47

Sufficient Condition for ELCA: 8 bit binary representation for the CA rule, is balanced,

i.e., the binary representation contains four numbers of 0’s and four numbers of 1’s.

Example 4.1.2.

Consider an ELCA generating balanced rule “51”. Rule “51” are represented in 8 bit binary

format as presented in Fig. 4.1.3.

 Fig. 4.1.3. Binary representation of rule “51”

Binary representation for rule “51” is shown in Fig. 4.1.3. HbP (Higher bits partition) and

LbP (lower bits partition) section show that they are individually balanced and rule “51”

itself is balanced CA rule [2].

Corollary 4.1.1. All the balanced CA rules, whose HbP and LbP positions are not

balanced, are not responsible for generating ELCA.

Proof:

All the rules at their binary equivalent are having equal numbers of 0’s and 1’s in its HbP

and LbP positions (Table 4.1.1). Total two numbers of 0’s and two numbers of 1’s are

present at HbP and LbP positions for each ELCA rule. It indicates that all the ELCA rules

are balanced at their HbP and LbP positions.

An unbalanced situation at HbP and LbP position never satisfy the necessity and

sufficiency conditions. Hence no rule with unbalanced condition at HbP and LbP position

is bound to produce ELCA cycles.

(End of Proof.)

48

Theorem 4.1.1. Space complexity is at least same for proposed methodology with respect

to MaxCA.

Proof:

Space complexity increases with the increased number of cells in a CA. Increased numbers

of CA cells require more hardware component for implementation. Memory space required

to process a fixed length of an n-cell CA is always same.

(End of Proof.)

Theorem 4.1.2. Design cost of proposed ELCA system is less than MaxCA.

Proof:

Proposed methodology is allowed only to generate random patterns from smaller cycles

that do not contain PPS. The PPS exclusion feature from the main cycle, which is

responsible for generating random patterns, improves the design complexities. The logic

behind this simplicity is that the proposed methodology simply discards the equal length

cycles containing prohibited patterns. So there is no need to keep track of Arcmin length in

cycles. Concept of Arcmin and Earc is only applicable for MaxCA based design only.

Let the time taken for calculating Arcmin and Earc are Tarc and TE respectively in MaxCA.

There is no concept of calculating Tarc and TE in ELCA. All the PPS containing smaller

cycles are discarded from pattern generation process. Time consumed for pattern

generation TELCA. TELCA is free from the overhead of calculation of Tarc and TE. Hence the

design complexity of ELCA is simpler compared to MaxCA.

(End of Proof.)

Theorem 4.1.3. Time complexity is less in proposed methodology with respect to MaxCA.

Proof:

Random pattern is only allowed to generate in proposed approach from PPS free equal

length CA cycles which are smaller in size. So, execution time for smaller cycles are much

less with respect to MaxCA. The time complexity of an n-length MaxCA is O (n). Time

complexity for m-length ELCA is O (m). We have “m” is smaller than “n” by Equation

3.1.1.

Hence the time complexity of equal length is less than the time complexity of MaxCA.

(End of Proof.)

49

4.1.3. Experimental observations & result analysis

Data sets generated by different RNGs (i.e., Recursive PRNG, M-C PRNG, TRNG,

MaxCA PRNG and ELCA PRNG) have been reported in Fig. 4.1.4 visualizing randomness

of corresponding RNGs. The graph describes that the Recursive PRNG is having the least

degree of randomness whereas CA PRNGs are better compared to all other RNGs.

Fig. 4.1.4. Randomness quality graph for five different RNGs

The degree of randomness achieved by different random number generators in Diehard

tests is presented in Table 4.1.2. Detailed Diehard result for TRNG has been described in

[48].

Table 4.1.2. Performance results using Diehard for different RNGs

Serial Name of the test Recursive PRNG M-C PRNG TRNG

1 Birthday Spacings Fail Fail Pass

2 Overlapping Permutations Fail Fail Fail

3 Ranks of 31x31 and 32x32 matrices Fail Fail Fail

4 Ranks of 6x8 Matrices Fail Fail Pass

5 The Bitstream Test Fail Fail Fail

6 Monkey Tests OPSO, OQSO, DNA Fail Fail Pass

7 Count the 1`s in a Stream of Bytes Fail Fail Pass

8 Count the 1`s in Specific Bytes Fail Fail Pass

9 Parking Lot Test Fail Fail Pass

10 Minimum Distance Test Fail Fail Pass

11 The 3DSpheres Test Fail Fail Pass

12 The Sqeeze Test Fail Fail Fail

13 Overlapping Sums Test Fail Fail Pass

14 Runs Test Fail Fail Pass

15 The Craps Test Fail Fail Pass

 Total No. of Passes 0 0 11

50

Results obtained for different RNGs (Table 3.1.2 and Table 4.1.2) are illustrated

graphically in Fig. 4.1.5.

Fig. 4.1.5. Diehard test performance graph

The results obtained in Fig. 4.1.5 have ensured maximum degree of randomization in CA

based design.

PPS exclusion policy in CA based PRNGs are briefly described as follows. PPS containing

arc in random pattern generating cycle is excluded from the cycle in MaxCA (Refer Fig.

4.1.6). On the other hand, the PPS containing cycles are totally removed to generate the

random sequences. There is no overhead to calculate Earc and Arcmin in proposed ELCA

methodology. Table 4.1.3 compares the procedures of MaxCA and ELCA based random

pattern generators (Refer Fig. 4.1.6).

51

Fig. 4.1.6(a)

Fig. 4.1.6(b)

Fig. 4.1.6

Fig. 4.1.6(a). MaxCA cycle structure with PPS

 Fig. 4.1.6(b). ELCA cycle structure with PPS

Fig. 4.1.6 is based on an arbitrarily drawn scenario where total number of prohibited

patterns is 5 and let an arbitrary PPS is {5, 3, 11, 12, 16}. In worst case scenario, every

single prohibited pattern is found in five independent cycle as illustrated in Fig. 4.1.6(b).

52

Comparison result between MaxCA and ELCA on this given set of PPS have been enlisted

in Table 4.1.3.

Table 4.1.3. Comparison of fault coverage procedures

 MaxCA ELCA

CA size(n) 5 5

Earc 7 N/A

Arcmin 24 N/A

Advantages of the proposed methodology over MaxCA are presented in Table 4.1.2. No

overhead for Earc and Arcmin are found for ELCA. PPS exclusion policies for Recursive

PRNG, M-C PRNG, TRNG are not available.

Complete data from MaxCA and ELCA PRNGs are shown in Fig. 4.1.7. Fig. 4.1.7 is based

on MaxCA for <90, 90, 90, 90, 90, 150> and ELCA for <153,153,153,153,153,153>.

Fig. 4.1.7. Randomness quality graph for different CA-PRNGs

Hardware, time, design, and searching complexities for the said PRNGs are presented in

Table 4.1.4. Required number of flip-flops for physical implementation of concerned

PRNG system is referred to as hardware complexity. Time required for generation of a

pseudo-random pattern by RNG is referred to as time complexity. The inherent design

methodology dealing with problems of PPS is considered as design complexity. The

complexity associated with searching PPS free pseudo-random patterns is referred to as

searching complexity.

0

20

40

60

80

100

120

140

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Data Range

No. of Data

Degree of Randomness

MaxCA ELCA

53

Table 4.1.4. Complexity comparison among different pattern generators

Name of the

Complexity

Recursive M-C TRNG MaxCA ELCA Remarks

Hardware Not

available

Not

available

Not

available

O(n) O(n) CA PRNGs are

feasible for

implementation

using flip flops

Time O (n)

Here ‘n’

denotes

number of

iteration

required in

the

concerned

program.

O (n)

Here ‘n’

denotes

number of

iteration

required in

the

concerned

program.

O (n)

Here ‘n’

denotes

number of

iteration

required in

the

concerned

method.

O(n)

Here ‘n’

denotes

length of

cycle.

∑O (mi)

Here

‘m’

denotes

length

of cycle

and ‘i’

denotes

number

of

ELCA.

Single cycle in

ELCA has less

time

complexity.

Design Require

randomize ()

for random

seed

selection

and no such

particular

method to

deal with

PPS.

Require

specific

mechanism

for random

seed

selection

and no

such

particular

method to

deal with

PPS.

Require

natural

source for

random

seed

selection

and no

such

particular

method to

deal with

PPS.

Requirements

for

Calculation

of Arcmin to

deal with

PPS.

Does

not

require

to

calculate

any

Arcmin to

deal

with

PPS.

ELCA is

simpler design

to deal with

PPS.

Searching for

PPS

No such

particular

method to

deal with

PPS.

No such

particular

method to

deal with

PPS.

No such

particular

method to

deal with

PPS.

Requirements

for

calculation of

Earc.

Does

not

require

to

calculate

Earc..

ELCA has

simpler

searching to

deal with PPS.

54

Advantages of ELCA based PRNG over other RNGs are described in Table 4.1.4.

4.1.4. Summary

Quality of randomness achieved from the various samples of random data sets are verified.

Good quality and cheap implementation are advantages for ELCA PRNG.

55

4.2. Set of Primes generation with CA

4.2.1. Introduction

Prime numbers [36-40, 71, 72] are used in cryptography [5, 73, 74] and stress testing.

S. Wolfram focused on generation of primes in CA. CA rule “110” is used as the basis for

some of the smallest universal Turing machines [75]. Several researches were carried out

towards CA based primes generation [36-40, 76]. P. C. Fischer focused on the generation

of primes in real-time by a single-dimensional iterative array [36]. J. Mazoyer presented

prime generation in one-dimensional CA [37]. CA based prime number generation in

several scenarios were described in [38-40]. In our studies, we have not found a cost

effective and easy generation of set of primes in null boundary ECA scenario. Hence a

simple and cost-effective set of primes generation may be advantageous towards cost-

effective application.

Stress testing (torture testing) is an intense or thorough testing used to determine the

stability of a distributed computing entity. Beyond normal operational capacity is often

involved in stress testing, often to its breaking point to monitor the results [77].

The unique primality property of a prime number ensures that the prime number has exactly

two divisors, one and the number itself. A number is decided to be a prime or composite

number depending upon the result of successful pass or failure in primality test. Probability

theory based Fermat primality testing [78] is used in primality testing. High degree of

confidence in declaration of prime or composite number, low error ratios and faster

execution are found in Fermat’s Hypothesis for primes. Fermat Theory for primality is

illustrated in Equation 4.2.1 and Equation 4.2.2 [78].

(mod)P AA P (4.2.1)

where “P” is a prime number and “A” is a natural number.

Furthermore, if P*A (“A” is not divisible by “P”), then there is some minimum exponent

“ P ” where

1 1(mod)PA P−  (4.2.2)

and “
1 1PA − − ” is divisible by “ P ”.

Example 4.2.1.

An example is followed for illustration of Fermat Primality Hypothesis.

56

Let a number “220” should be checked whether it is prime or composite.

For convention, let us consider a randomly choice value of “a” where, 1 ≤ a< 220, say

a = 37. Now by definition,

an-1= 37219≡ 1 (mod 220).

Now, either 220 is prime, or 37 is a Fermat liar, so another value of ‘a’, say 29 is considered.

an-1= 29219≡ 1 (mod 220).

Therefore, 220 is composite and 37 is indeed a Fermat liar.

Rest of the section is organized as follows: proposed work is described in

Sub-section 4.2.2; experimental results and analysis are in Sub-section 4.2.3; finally,

summary is in Sub-section 4.2.4.

4.2.2. Proposed approach

ELCA generating rule along with rule “110” are proposed for cost effective generation

procedure of set of maximum numbers of primes. Primality for produced number is verified

using Fermat Hypothesis as described in Equation 4.2.2. Proposed system flowchart is

described in Fig. 4.2.1.

Fig.4.2.1. Proposed flowchart of the system for stress testing

Proposed set of maximum number of primes generation is performed using Algorithm

4.2.1.

57

Algorithm 4.2.1. Stress_testing_for_distributed_computing_using_CA

Input: Cell size (n), rule “110”, balanced ELCA rule(s)

Output: Stress test passed distributed system

Step1: Start

Step2: Initialize CA size and a combination of rule “110” and balanced ELCA rule(s)

Step3: Consider maximum length sub space for possible set of primes

Step4: Generate possible primes using Algorithm 2

Step5: Perform stress testing

Step6: Follow Step 2 for new prime set, else follow Step7

Step7: Stop

Algorithm 4.2.2. Possible_primes_set_generation

Input: Decimal state values for maximum length sub space

Output: A maximum length set of prime numbers (S)

Step1: Start

Step2: For every decimal values of state follow Step 3

Step3: Perform Fermat Primality testing as reported in Equation 2 and follow Step 4

Step4: If state value satisfies Fermat Primality then follow Step 5 else follow Step 6

Step5: update set of primes (S) with this state value and follow Step 6

Step6: Stop

Example 4.2.1.

Set of primes generation for <110,110,204> in null-boundary CA is presented in Fig. 4.2.2.

The maximum length subspace is of length four and contains larger numbers of primes as

compared to other subspaces. The maximum length subspace is considered in proposed

approach as source of primes.

58

Fig. 4.2.2. Transition diagram for <110,110,204>

4.2.3. Experimental observations & result analysis

A combination of rule “110” and ELCA generating rule “204” are considered for

generation of prime numbers. Detailed studies on these rules are presented in Table 4.2.1.

Table 4.2.1. Rule details for prime number computation

Serial

no.

Rule Binary equivalent Next state computing function

1. 110 01101110 NOT i-1(t) AND i(t) AND i+1(t) XOR i(t) XOR i+1(t)

2. 204 11001100 i(t)

ELCA rule “204” along with “110” are responsible for length reduction in maximum length

state space. ELCA rule “51” and “204” is not much efficient in length reduction in

maximum length state space, but are capable to generate set of primes. Experimental results

obtained for a data set generated using Algorithm 4.2.1 and Algorithm 4.2.2 are illustrated

in Fig. 4.2.3. Data shown in Fig. 4.2.3(a) is based on <110, 110, 110, 110> and Fig. 4.2.3(b)

is based on <110, 110, 110, 204 > in null boundary condition.

Fig. 4.2.3(a).

59

Fig. 4.2.3(b).

Fig. 4.2.3

Fig. 4.2.3(a). Transition diagram for <110,110,110,110>

 Fig. 4.2.3(b). Transition diagram for <110,110,110,204>

State transitions are shown in Fig. 4.2.3. Algorithm 4.2.2 is applied on the maximum length

state space as shown in Fig. 4.2.3. Performance of finding maximum number of primes in

proposed methodology is reported in Table 4.2.2.

Table 4.2.2. Prime finding performance

Serial

No.

No.

of

Cells

in

CA

(n)

No. of

States in

generated

maximum

subspace

(s1)

No. of

Primes

found

(p1)

Performance

=

(p1/s1)*100%

No. of States

in generated

maximum

subspace

(s2) in

proposed

method

No. of

Primes

found

(p2) in

proposed

method

Performance

=

(p2/s2)*100%

in proposed

method

1. 6 15 5 33.33% 14 5 35.71%

2. 7 17 7 41.18% 16 7 43.75%

3. 8 22 7 31.82% 21 7 33.33%

Proposed design methodology for obtaining maximum number of primes is found better in

Table 4.2.2 as compared to existing method. Experimental results on different CA sizes are

presented in Table 4.2.3.

60

Table 4.2.3. Generation of different sets of primes

Serial no. No. of cells in

CA (n)

No. of states in generated maximum

length subspace (s2)

No. of primes found

(p2)

1. 3 3 3

2. 4 8 4

3. 5 8 4

4. 6 14 5

5. 7 16 7

6. 8 21 7

7. 9 23 9

8. 10 29 10

Observation 4.2.1. Number of primes in generated maximum length state space is often

equal to the CA size.

Observation 4.2.2. Number of primes in produced set almost increases with increased

number of CA size.

Observation 4.2.3. Distribution of primes in generated state space is of random pattern.

Randomness in generated set of primes is reported in Fig. 4.2.4.

Fig. 4.2.4. Randomness of generated pattern of primes

Degree of randomness for set of primes as reported Series1, Series2 and Series3 in

Fig. 4.2.4 are achieved for CA size 3, 4 and 5 respectively. Here first four members of the

set are presented. Result obtained in Table 4.2.3 is illustrated in Fig. 4.2.5.

3
7

13 11

3
7 5 7

3
7

13

31

0
5

10
15
20
25
30
35

Data range

Set member

Randomness of generated primes

Series1 Series2 Series3

61

Fig. 4.2.5. Different sets of primes obtained with varying number of cell size

Observation 4.2.4. Same degree of randomness is found for both methodology. Graphical

representation of equivalent randomness for CA size 4 is described in Fig. 4.2.6. Members

of prime set are already shown in Fig. 4.2.3.

Fig. 4.2.6. Equivalency of degree of randomness in different applied methods

Observation 4.2.5. Performance for finding primes is increased with proposed approach.

Prime finding performance based on data reported in Table 4.2.2 is shown in Fig. 4.2.7

0

5

10

15

n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

No. of primes

Cell Size (n)

Size of set of primes

No. of Primes

0

5

10

15

1st

Member

2nd

Member

3rd

Member

4th

Member

Value

No. of Data

Comparison of randomness

Conventional Method Proposed method

62

Fig. 4.2.7. Graphical representation of prime finding performance

Selection of rule for set of primes generation in null boundary CA is in Table 4.2.4.

Table 4.2.4. Class rule selection for primes

First rule Intermediate rule Last rule

110 110 204

110 110 51

110 110 153

4.2.4. Summary

Larger set of primes is produced from generated maximum length subspace. Length

reduction for maximum length CA subspace without decreasing the number of primes

present in that string is only possible with proposed methodology. Random distribution and

cost-effectiveness in set of primes generation are found in proposed approach. Hence

proposed method has a potential of uses in stress testing in distributed computing.

0
10
20
30
40
50

n=6 n=7 n=8

Performance for

finding primes

CA size (n)

Note: X-axis has been drawn using curve trend for values of Y-axis

Comparison of prime finding performances

Performance in

conventional approach

Performance in proposed

approach

63

CHAPTER

5

ELCA SYNTHESIS AND ANALYSIS

64

5.1. CA rules exploration for ELCA generation

5.1.1. Introduction

Detailed studies with group CA in ECA scenario targeting several engineering applications
were presented by researchers [2, 5-8]. Studies of group CA include maximum length [2],
nonmaximal length [5], invertible CA [7, 8], and also equal length cycle CA (a special case
of invertible CA) [8]. Nonmaximal length group CA is available in uniform CA scenario
only [5] and ELCCA, as a special case of invertible CA with length 8 and 16 only is
available in [8]. CA together with GA [79] based approach are considered towards
modelling of complex and large systems including cryptosystems [2, 5, 73, 80, 81]. GA
based CA rule synthesis [80, 81], pattern classification [73] were found in literature. CA
based crypto system involving CA rule “51”, “195” and “153” was described in [5, 74].
Unfortunately, we have not found complete set of CA rules for generation of equal length
cycles both in uniform, and hybrid CA scenario, and easy synthesis of ELCA rules.

Motivations for this work are i) to explore the complete set of CA rules for ELCA
generation, ii) to categorize the set of ELCA rules into linear and non-linear rules for
detailed analysis of ELCA, and iii) to provide an easy synthesis of ELCA rules for
generation of equal length cycles. Complete knowledge of ELCA rules is an essential
criterion to explore the potential applications of ELCA in different scientific and
engineering trends.

Rest of the section is organized as follows: proposed work is followed in Sub-section 5.1.2;
analytical studies are in Sub-section 5.1.4; experimental results are presented in Sub-
section 5.1.4; finally, summary is presented in Sub-section 5.1.5.

5.1.2. Proposed approach

Set of necessary and sufficiency conditions for ELCA generating rules are explored in Sub-
section 4.1. Studies on ELCA generating rules in Sub-section 4.1 explored that balanced
‘HbP’ and ‘LbP’ configurations of balanced CA rule are responsible for generation of
ELCA rules.

Cartesian product using all identical combinations [92] of balanced HbP and balanced LbP
structures of linear ELCA rule, is proposed for exploring all ELCA generating balanced
CA rules. Proposed Cartesian product is described in Fig. 5.1.1.

65

Fig. 5.1.1. Proposed method for all possible ELCA rule construction

Total thirty-six number of balanced CA rules is achieved with proposed method as
described in Fig. 5.1.1. All the thirty-six numbers of balanced CA rules satisfy both
sufficiency and necessity conditions is described in Fig. 4.1.3 (in Sub-section 4.1). A few
CA rules are found to produce ELCA cycles at uniform CA scenario (referred as primary
rules for equal length cycle generation). Other rules are found to produce of equal length
cycles in hybrid CA scenario. Primary rules for equal length cycle generation are presented
in Table 5.1.1.

Table 5.1.1. Primary CA rules for ELCA generation

Serial CA rule Binary equivalent of CA rule
1 204 11001100
2 51 00110011
3 153 10011001

Observation 5.1.1. Table 5.1.1 consists of three balanced rules among them there is one
pair of rules which is complement to each other (rule “204” and “51”).

Observation 5.1.2. HbP and LbP for each primary ELCA generating rules are identical
with reference to their image property.

Observation 5.1.3. All the primary rules are self-reproductive in nature in terms of their
HbP and LbP format.

Equal length cycles are shown in Fig. 5.1.2, Fig. 5.1.3 and Fig. 5.1.4. State transition
diagrams of Fig. 5.1.2, Fig. 5.1.3 and Fig. 5.1.4 are obtained for a 4-cell null boundary
uniform CA using primary rules of Table 5.1.1.

66

Fig. 5.1.2. State transition diagram for <204,204,204,204>

Fig. 5.1.3. State transition diagram for <51, 51, 51, 51>

Fig. 5.1.4. State transition diagram for <153,153,153,153>

All ELCA generating rules are classified into some classes. Rule “204” and its
complemented rule “51” can generate ELCA cycles by their own. Besides, this rule set is
capable of synthesizing rule “195” and rule “60”. Henceforth these two rules are kept
together in a separate class. Remaining ELCA rules are categorized into different classes.
Overviews for all ELCA generating rules along with their appropriate classes are presented
in Table 5.1.2.

67

Table 5.1.2. Categorization of ELCA generating rules

Class ELCA generating rules Remarks

A 204, 51 Both of rules are capable of generating
ELCA by their own, hence considered as

primary rule set.

B

153, 102
Only Rule 153 is capable of generating

ELCA by its own. Hence it is also a
primary rule. Rule 102 is capable of

generating ELCA only with a
combination of primary rules.

C

195, 60

Rule 195 is achieved from Class A by a
methodology discussed in Method 1. Rule

60 is complemented rule of Rule 195.
This class is capable of generating ELCA
with a combination of primary rules and

also with a combination among
themselves.

D

53, 54, 57, 58, 83, 85, 86, 89, 90, 92, 99,
101, 105, 106, 108, 147, 149, 150, 154,
156, 163, 165, 166, 169, 170, 172, 197,

198, 201, 202

All the rules are achieved from Class A,
Class B, and Class C by a methodology as
described in Method 1 and Method 2. All
the rules are capable of generating ELCA

with a combination of CA rules under
Class A and Class B.

Rule “204” is the unique rule which is generating all single length CA cycle and is capable
of synthesis of other balanced CA rules responsible for ELCA generation. Two different
algorithms are followed to regenerate all other ELCA generating rules from rule “204”. An
intra-crossover based design is reported in Sub-section 5.1.2.1. and an inter-crossover
based design is reported in Sub-section 5.1.2.2.

5.1.2.1. Intra-Crossover Design (bit wise crossing over at HbP / LbP)

An identical structure with reference to the HbP and LbP is found for ELCA generating
primary rules. Identical HbP and LbP is observed for rule “204”. Therefore, it is easy to
implement same operation at both partitions of the rule “204”. HbP / LbP structure for rule
“204” is presented in Fig. 5.1.5.

Fig. 5.1.5. HbP/LbP structure of rule “204”

Lexicographical order [82] is used to synthesize other rules from the HbP / LbP structure
of rule “204”. Proposed approach is presented in Fig. 5.1.6.

68

Fig. 5.1.6. All lexicographical order

Six different HbP structures are generated in Fig. 5.1.6. All six different HbP structures
have successfully generated thirty-six balanced ELCA rules (Fig. 5.1.1). Described
approach of Fig. 5.1.6 is used in following Sub-section 5.1.2.2.

5.1.2.1. Intra-Crossover based Algorithm

Algorithm 5.1.2.1. Intra_crossing_over_for_ELCA_rule_synthesis

Input: HbP or, LbP of primary rule

Output: All balanced CA rules responsible for ELCA generation

Step1: Start

Step2: Initialize with binary value of HbP or, LbP and store it as parent

Step3: If consecutive 0 and 1 are found in parent then goto Step4 else goto Step2

Step4: Perform complementation operation for both of the position

Step5: If generated child is balanced then follow Step6 else follow Step 8

Step6: If generated child is not in existing parent database then follow Step7 else follow
 Step9

Step7: Store it into class ‘A’ as future parent and goto Step3

Step8: Discard the child and goto Step3

Step9: Make one clone class ‘B’ for all generated valid parents of class ‘A’ and follow
 Step10

69

Step10: Perform Cartesian production operation on class ‘A’ and class ‘B’ and follow
 Step11

Step11: Store all results in class ‘C’

Step12: Stop

5.1.2.2. Inter-crossover Design (bit wise crossing over between HbP and LbP)

All HbPs along with their complemented structures of the primary rules are crossed over
with all LbPs along with their complemented structures of the primary rules. All the
resulting child rules are ELCA generating rules satisfying both necessity and sufficiency
conditions. Described approach is developed in Sub-section 5.1.2.2.

5.1.2.2 Inter-crossover based Algorithm

Algorithm 5.1.2. Inter_crossing_over_for_ELCA_rule_synthesis

Input: Binary form of Class ‘A’ and Class ‘B’ rules

Output: All balanced CA rules responsible for ELCA generation

Step1: Start

Step2: Initialize class ‘A’ with binary value of Class ‘A’ and Class ‘B’ rules

Step3: Decompose each rule into HbP and LbP

Step4: Perform all possible HbP and LbP positional crossing over for data stored in
 class ‘A’ and update class ‘A’ if it is not already contained in class ‘A’

Step5: Perform bit-wise complementation operation for all of the HbP and LbP positions
 stored in class ‘A’

Step6: Perform all possible HbP and LbP positional crossing over for data stored in
 class ‘A’

Step7: If the rule is not existing into class ‘A’ then update class ‘A’ with it and follow Step8

Step8: Stop

Proposed synthesis methodology for ELCA rules as described in Algorithm 5.1.2.2 is
presented diagrammatically in Fig. 5.1.7.

70

Fig. 5.1.7. All ELCA generating rule synthesis methodology

Motivation of Theorem 5.1.1 is to find out the mathematics behind exploration of the
complete set of ELCA rules.

Theorem 5.1.1. Maximum numbers of ELCA generating balanced rules are thirty-six
only.

Proof:

ELCA generating CA rules are balanced and at the same time, HbP and LbP structures of
the balanced CA rule are also balanced by the set of necessity and sufficiency condition.
Hence, the maximum number of combinations satisfying both the necessity and sufficiency
conditions is 4C2 (=6). So, the maximum number of balanced rules with 4C2 number of
balanced configurations in HbP or, LbP position is, 4C2* 4C2=36.

Therefore, maximum number of ELCA generating rules is 4C2* 4C2=36.

(End of proof.)

Corollary 5.1.1. All equal length cycle generating CA rules are balanced CA rules.
Reverse is not true.

Proof:

All ELCA generating rules are balanced as well as they are balanced at their HbP and LbP
positions (the necessity and sufficiency conditions).

On the contrary it may happen that certain balanced CA rule contains equal number of 0’s
and 1’s in its binary representation but it’s HbP and LbP individually contains unequal

Class A Class C

Class A Class B Class C

Class D

Crossing over at HbP and LbP

All possible Combinatorial at HbP and
LbP

71

distribution of 0’s and 1’s. Therefore, this type of CA rule violates the necessity and
sufficiency conditions. Henceforth, ELCA generation is not confirmed.

(End of proof.)

Example 5.1.1.

Let rule “51” and rule “240” for explanation of Corollary 5.1.1. Both of the rules are
balanced. But only rule “51” is responsible for generating ELCA. Rule “240” does not
satisfy necessity and sufficiency conditions. Binary representation structure for rule “51”
is shown in Fig. 5.1.8(a) and Binary representation of rule “240” is described in Fig.
5.1.8(b).

5.1.8(a). Rule “51”

5.1.8(b). Rule “240”

Fig. 5.1.8. Binary representation of Rules

Motivations of Theorem 5.1.2 and Corollary 5.1.2 are to categorize the ELCA rules
appropriately into linear and non-linear CA rules using basic binary operation.

Theorem 5.1.2. If the bit-wise OR/AND operation among balanced HbP and balanced
LbP of a balanced rule results an even number of 0’s in result, then it is a linear rule or
complemented rule.

Proof:

Binary representations of balanced ELCA rules explore that a bit wise OR/AND operation
among HbP and LbP produce a result containing even number of 0’s. The next state
calculating binary functions for these rules employ XOR/XNOR logic only. Hence the
statement is true.

(End of Proof.)

72

Corollary 5.1.2. If the bit-wise OR/AND operation among balanced HbP and balanced
LbP of a balanced rule results an odd number of 0’s in result, then it is a non-linear
rule.

Proof:

Binary representations of balanced ELCA rules explore that if the bit wise OR/AND
operation among HbP and LbP of a concerned balanced rule does not produce a result
containing even number of 0’s then the next state calculating binary functions for these
rules employ AND-OR logic only. Hence the statement is true.

(End of Proof.)

Let ELCA rule “102”, “153”, “201”, and “54” for explanation of Theorem 5.1.2 and
Corollary 5.1.2. Bit wise AND/OR operation among HbP and LbP of the concerned rule
has been described in Sub-section 5.1.3.

5.1.3. Analytical studies

5.1.3.1. Binary representation for rule “102”

Table 5.1.3. Rule “102” in binary representation

Rule HbP LbP
102 0 1 1 0 0 1 1 0

Bit-wise OR operation for rule “102”

0 1 1 0

0 1 1 0

--

0 1 1 0

Bit-wise AND operation for rule “102”
0 1 1 0

0 1 1 0

--

0 1 1 0

73

Next state calculating binary function for rule “102”

i(t+1)=i(t) XOR i+1(t) (5.1.1)

Both bit-wise OR/AND operation among HbP and LbP of rule “102” results two number
of 0’s in the outcome and the next state calculating function employs XOR logic. Hence
rule “102” is a linear rule.

5.1.3.2. Binary representation for rule “153”

Table 5.1.4. Rule “153” in binary representation

Rule HbP LbP
153 1 0 0 1 1 0 0 1

Bit-wise OR operation for rule “153”
1 0 0 1

1 0 0 1

1 0 0 1

Bit-wise AND operation for rule “153”
1 0 0 1

1 0 0 1

1 0 0 1

Next state calculating binary function for rule “153”

i(t+1)=i(t) XNOR i+1(t) (5.1.2)

Both bit-wise OR/AND operation among HbP and LbP of rule “153” results even number
of 0’s in the outcome and the next state calculating function employs XNOR logic. Hence
rule “153” is a complemented rule.

74

5.1.3.3. Binary representation for rule “201”

Table 5.1.5. Rule “201” in binary representation

Rule HbP LbP
201 1 1 0 0 1 0 0 1

Bit-wise OR operation for rule “201”
1 1 0 0

1 0 0 1

1 1 0 1
Bit-wise AND operation for rule “201”

1 1 0 0

1 0 0 1

1 0 0 0

Next state calculating binary function for rule “201”

i(t+1)=(NOT (i-1(t) OR i+1(t))) OR i(t) (5.1.3)

Both bit-wise OR/AND operation among HbP and LbP of rule “201” results odd number
of 0’s in the outcome and the next state calculating function does not employ any
XOR/XNOR logic. Combination of OR logic have been considered. Hence rule “201” is a
non-linear rule.

5.1.3.4. Binary representation for rule “54”

Table 5.1.6. Rule “54” in binary representation

Rule HbP LbP

54 0 0 1 1 0 1 1 0

75

Bit-wise OR operation for rule “54”
0 0 1 1

0 1 1 0

--

0 1 1 1

Bit-wise AND operation for rule “54”
0 0 1 1

0 1 1 0

--

0 0 1 0

Next state calculating binary function for rule “54”

i(t+1)= (i-1(t) OR i+1(t)) OR i(t) (5.1.4)

Both bit-wise OR/AND operation among HbP and LbP of rule “54” results odd number of
0’s in resultant. Furthermore, next state calculating function of rule “54” does not employ
any XOR/XNOR logic; only combination of OR logic is found. Hence rule “54” is a non-
linear rule.

Motivations of Theorem 5.1.3 and Corollary 5.1.3 are to establish class-relationships
among the specified classes as referred in Table 5.1.3 and Table 5.1.4.

Theorem 5.1.3. In ELCA rule synthesis, an evolutionary approach with intra-
combination to class ‘A’ always produces another additive CA class rules.

Proof:

Intra-combination among balanced HbP and balanced LbP of a “class A” rule produces a
balanced class rule which is also balanced at its HbP and LbP. Class A rules are additive
in nature and they also satisfy another property that their HbP and LbP is image to each
other.

The pair of rules in class A is complemented rule to each other. Therefore, the intra-
combination among the HbP and LbP generates a set of balanced rules with balanced HbP

76

and LbP where the HbP and LbP is mirror image to each other. The next state function for
these rules simply imply the implementation of XOR/XNOR logic.

Hence the new derived class is additive CA class rules.

(End of Proof.)

Corollary 5.1.3. An evolutionary approach with inter combination between two additive
classes mostly produces non-additive CA class rules.

Proof:

Inter combination among balanced HbP and balanced LbP of different class rules produce
a balanced class rule which is balanced at its HbP and LbP, but their HbP and LbP is mostly
different i.e., they do not satisfy any image or mirror image property.

The inter combination among the HbP and LbP generates a set of balanced rules with
balanced HbP and LbP where the HbP and LbP is neither image or mirror image to each
other. The next state function for these rules simply imply the implementation of AND-OR
logic instead of XOR/XNOR logic.

Hence the new derived class is non-additive CA class rules.

(End of Proof.)

5.1.4. Experimental results

Detailed experimental results obtained in computer simulation are reported in Sub-section
5.1.4.1, and Sub-section 5.1.4.2.

5.1.4.1. Real time activities

ELCA pattern generation is presented in Table 5.1.7.

Table 5.1.7. Different equal length cycles generated by primary rules

Serial Number Rule Cell Size (n) Cycle
Length

(m)
1 204 331 1
2 51 331 2

3

153

3 4
47 8

815 16
1631 32

77

Different uniform and hybrid ELCA scenarios and corresponding rule selection have
been reported in Sub-section 5.1.4.2.

5.1.4.2. Efficient Usage

Class rule selection for uniform CA is presented in Table 5.1.8 and class rule selection for
hybrid CA is in Table 5.1.9, Table 5.1.10 and Table 5.1.11.

Table 5.1.8. Class rule selection for uniform ELCA

Class of Ri Ri Class of Ri+1 Ri+1
A 204 A 204
A 51 A 51
B 153 B 153

Table 5.1.9. Class rule selection for hybrid ELCA

First
rule
class

First rule
Ri-1

Intermediate
rule class

Intermediate rules
Ri

Last rule
class

Last rule
Ri+1

A 204 A, B, C 51,60,102,195 A, B 51,204
A 51 A, B, C 51,60,102,153,195,204 A, B, C 51,102,153,204
B 153 A, B, C 102,153 A, B, C 51,60,204
B 102 A, B, C 51,60,102,153,195,204 A, B 51,153
C 195 A, B, C 60,195 A, B, C 60,102,153,195
C 60 A, B, C 60,102,153,195 A, B, C 51,60,153

Table 5.1.10. Special cases for class rule selection for hybrid ELCA

Cell size (n) First rule Intermediate rules in alternative selection Last rule

Odd 204 153/204 204
Even 204 153/204 153

Table 5.1.11. Special cases for class rule selection for hybrid ELCA

Cell size (n) First rule Intermediate rules in alternative selection

 204 99/204
 204 57/204
 51 57/51
 51 99/51

n>=4 99 204/99
 99 204/51
 57 204/57
 57 51/57

78

5.1.5. Summary

All balanced CA rules, uniform and hybrid scenario responsible for generation of equal
length cycles are explored. Synthesis for all reported ELCA rules from primary ELCA rule
and hierarchical relationship among ELCA rules are described.

79

5.2. Analysis of ELCA generating linear rules

5.2.1. Introduction

An n-cell CA with linear rules is characterized by an [݊×݊] square matrix. Construction of
characteristics matrix M [i,j] is defined as Equation 5.2.1 [73].

M [i,j]=

1,

 0,

if the next state of the i th cell is dependent
on the present state of the j th cell
otherwise

 






 (5.2.1)

Example 5.2.1.

Let R=<102, 150, 170, 204>

1

4 4

1 1 0 0
1 1 1 0
0 0 0 1
0 0 1 0

M



 
 
 
 
 
 

Characteristics Polynomial of matrix is obtained by constructing the matrix [M] + x [I] and
computing the corresponding determinant [M+xI]; where [I] is identity matrix.

State transition of a linear CA is defined as Equation 5.2.2 [73].

Y=M(x) (5.2.2)

where, CA input is denoted by an n-bit vector ‘x’;

‘Y’ denotes the output bit vector of the CA;

Construction of Characteristics polynomial from characteristics matrix has been illustrated
in Example 5.2.2.

80

Example 5.2.2.

 

1 1 0 0
1 1 1 0
0 0 1
0 0 1

1 1 0 0
1 1 1 0

(
0 0 1
0 0 1

x
x

M xI
x

x

x
x

x
x




 




 0 1

2

1 0 1

swap C and C)

1 0 0 0
1 (1) +1 1 0

(C = C *(1+x)+ C)
0 0 1
0 0 1

x x
x

x

 


2
2 2

1 0 1

1 0 0 0
0 1 0 (R = R *(1+x)+ R) and (1) +1)
0 0 1
0 0 1

1

x x x
x

x

  


2

1 2

 0 0 0
0 1 0 (swap C and C)
0 0 1
0 1 0

x
x

x

81

2
2 1 23

2

1 0 0 0
0 1 0 0

(C =C *x +C)
0 1
0 1

1 0 0

x x
x x



 2 1 2 3 1 33

2

 0
0 1 0 0

(R =R *x+R) and (R =R +R)
0 0 1
0 0

1 0 0 0
0

x
x x

 3 23

2

 1 0 0
(swap C and C)

0 0 1
0 0

1 0 0 0
0 1 0

x
x x

 3
3 2 3

4 2

 0
(C = C *)

0 0 1 0
0 0

1 0 0 0
0 1 0 0
0 0

x C

x x x





 3 2 3

4 2

(swap R = R *)
 1 0

0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0

x R

x x





 3
3 2 3

4 2

(C = C *)

 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0

x C

x x x





 3 2 3

4 2

(R = R *)

x R

x x





82

Minimal polynomial for given matrix is (x4+x2).

Therefore, the characteristic polynomial is 1.1.1.(x4+x2).

Characteristics Polynomial is given by Equation 5.2.3.

4 2Y x x  (5.2.3)

Aim of this section is to explore the algebraic properties of ELCA generating linear CA
rules and to find out the mathematical relationship between cell length and cycle length.

Rest of the section is organized as follows: ELCA generating linear and complemented
linear rules are reported in Sub-section 5.2.2; formal analysis on ELCA generating linear
and complemented linear rules are presented in Sub-section 5.2.3; experimental
observations are reported in Sub-section 5.2.4 and finally summary is in Sub-section 5.2.5.

5.2.2. ELCA generating linear and complemented linear rules

ELCA generating linear and complemented linear rules are reported in Table 5.2.1.

Table 5.2.1. ELCA generating linear and complemented linear rules

Serial
number

Rule Binary
representation

Next state function Cell dependency

1. 60 00111100 i-1(t) XOR i(t) Left & self
2. 90 01011010 i-1(t) XOR i+1(t) Left & right
3. 102 01100110 i(t) XOR i+1(t) Self & right
4. 150 10010110 i-1(t) XOR i(t) XOR i+1(t) Left, self & right
5. 170 10101010 i+1(t) Right
6. 204 11001100 i(t) Self
7. 195 11000011 i-1(t) XNOR i(t) Left & self
8. 165 10100101 i-1(t) XNOR i+1(t) Left & right
9. 153 10011001 i(t) XNOR i+1(t) Self & right

10. 105 01101001 i-1(t) XNOR i(t) XNOR i+1(t) Left, self & right
11. 85 01010101 NOT i+1(t) Right
12. 51 00110011 NOT i(t) Self

5.2.3. Formal analysis on ELCA generating rules

Characteristic matrix for ELCA generation using linear rule ‘204’ (in an n-cell uniform
CA) is shown in Equation 5.2.4. Equation 5.2.2 and cell dependencies (refer Table 5.2.1)
are utilized for construction of characteristic matrix.

83

1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
.
.
.
0 0 0 ... 1

linearn

n n

T



 
 
 
 
 
 
 
 
 
  

 (5.2.4)

Characteristic polynomial for given matrix is shown in Equation 5.2.5.

Y204= (x+1) (5.2.5)

Characteristic matrix for ELCA generation using complemented linear rule ‘51’ is shown
in Equation 5.2.6. Equation 5.2.6 and cell dependencies (refer Table 5.2.1) are used for
construction of characteristic matrix.

1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
.
.
.
0 0 0 ... 1

complementedLinn

n n

T 



 
 
 
 
 
 
 
 
 
  

 (5.2.6)

Characteristic polynomial for given matrix is shown in Equation 5.2.7.

Y51= (x+1) (5.2.7)

Observation 5.2.1. Minimal polynomials for an n-cell uniform CA using rule ‘204’ and
‘51’ are same.

Observation 5.2.2. Characteristic polynomials for an n-cell uniform CA using rule ‘204’
and ‘51’ are same.

Theorem 5.2.1. Fixed length ELCA is generated from uniform CA, only if characteristic
polynomial has a form of (x+1).

Proof:

All single length ELCA are produced using linear rule ‘204’ and all double length ELCA
are generated using complemented linear rule ‘51’ in null-boundary uniform CA. Rules

84

‘204’ & ‘51’ have next state dependency on self-cell only. Other linear ELCA rules do not
have next state dependency on self-cell only (refer Table 5.2.1 and Table 5.2.2).

Therefore, characteristic polynomial (x+1) (refer Equation 5.2.4 and Equation 5.2.6) only
produces fixed length ELCA.

(End of proof.)

Characteristic matrix for linear rule ‘153’ in an n-cell uniform CA is illustrated in
Equation 5.2.8. Equation 5.2.8 and cell dependencies (refer Table 5.2.1) are used for
construction of characteristic matrix.

1 1 0 ... 0
0 1 1 ... 0
0 0 1 ... 0
.
.
.
0 0 0 ... 1

complementedLinn

n n

T 



 
 
 
 
 
 
 
 
 
  

 (5.2.8)

Characteristic polynomial for given matrix is shown in Equation 5.2.9.

Y153= (x+1)n (5.2.9)

Theorem 5.2.2. Variable length ELCA is generated from uniform CA, only if
characteristic polynomial has a form of (x+1)n.

Proof:

ELCA are produced using linear rule ‘153’ in null-boundary uniform CA. Next state
dependency for rule ‘153’ is on self-cell and right cell only (refer Table 5.2.1).
Characteristic polynomial only produces a polynomial (x+1)n (refer Equation 5.2.9).

(End of proof.)

Example 5.2.3.

Let, R = <153, 153, 153, 153>.

Characteristic matrix is considered as follows.

85

153

4 4

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

T 



 
 
 
 
 
 

All elements in main-diagonal and on-diagonal are ‘1’.

Characteristic matrix for ELCA generation using an n-cell hybrid CA is shown in
Equation 5.2.10 for given rule set “R = <204, Ri…..Ri>” having “Ri = <60, 195, 51>”.

1 0 0 ... 0 0
1 1 0 ... 0 0
0 1 1 ... 0 0
0 .. 0 1 ... 0 0
.
0 ... 1 0
0 0 0 ... 0 1

nT

 



 



 n n











 (5.2.10)

Characteristic polynomial for given hybrid matrix is shown in Equation 5.2.11.

Yhybrid= (x+1) (5.2.11)

Different characteristic matrices for ELCA generation using n-cell hybrid CA are presented
in Equation 5.2.12, Equation 5.2.13, Equation 5.2.14, and Equation 5.2.15.

1

1 0 0 ... 0 0
1 1 0 ... 0 0
0 0 1 ... 0 0
0 .. 1 1 ... 0 0
.
0 ... 1 0
0 0 0 ... 0 1

nT





 



 n n












 (5.2.12)

86

2

1 0 0 ... 0 0
1 1 0 ... 0 0
0 1 1 ... 0 0
0 .. 0 1 ... 0 0
.
0 ... 1 0
0 0 0 ... 0 1

nT





 



 n n












 (5.2.13)

3

1 1 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
0 .. 0 1 ... 0 0
.
0 ... 1 0
0 0 0 ... 0 1

nT





 



 n n












 (5.2.14)

4

1 1 0 ... 0 0
0 1 1 ... 0 0
0 0 1 0.. 0 0
0 .. 0 1 ... 0 0
.
0 ... 1 0
0 0 0 ... 0 1

nT





 



 n n











 

 (5.2.15)

Equation 5.2.12 is generated for “R = <204, Rn1,….Rn1>” having “Rn1 = <60, 51>”.

Equation 5.2.13 is generated for “R = <153, Rn2,…Rn2>” having “Rn2 = <60, 195, 51>”.

Equation 5.2.14 is generated for “R = <153, Rn3…. Rn3>” having “Rn3 = <51, 102>”.

Equation 5.2.15 is generated for “R = <153, Rn4………. Rn4, 51>” having “Rn4 = <102, 51,
60>”.

Observation 5.2.3. Variable length ELCA is generated in hybrid CA scenario, if
characteristic matrix forms a tri-diagonal matrix with all ‘1’ in diagonal positions, and on-
diagonal or off-diagonal positions are occupied by “1, 0” pattern sequence. Corresponding
determinant of characteristic matrix is equal to one.

87

Observation 5.2.4. Variable length ELCA is generated from hybrid CA, if characteristic
matrix forms a tri-diagonal matrix with all ‘1’ in diagonal positions, and on-diagonal or
off-diagonal positions are occupied by “1, 1, 0” pattern sequence. Corresponding
determinant of characteristic matrix is equal to one.

Observation 5.2.5. ELCA could not be generated from hybrid CA, if characteristic matrix
forms a tri-diagonal matrix with all ‘1’ in diagonal positions, and on-diagonal & off-
diagonal positions are occupied by “1, 0” or “1, 1, 0” pattern sequence. Corresponding
determinant of characteristic matrix is equal to zero.

Example 5.2.4.

Let, R11 = <51, 204, 51, 204, 51>, R12 = <204, 60, 51, 60, 51>,

R13 = <153, 51, 102, 51, 102>, and, R14 = <153, 60, 153, 195, 51>.

11

5 5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

RT 



 
 
 
 
 
 
  

determinant = 1;

capable to produce ELCA = yes;

characteristic polynomial = (x+1).

12

5 5

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

RT 



 
 
 
 
 
 
  

determinant = 1;

capable to produce ELCA = yes;

characteristic polynomial = (x+1).

88

 13

5 5

1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

RT 



 
 
 
 
 
 
  

determinant = 1;

capable to produce ELCA = yes;

characteristic polynomial = (x+1).

14

5 5

1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

RT 



 
 
 
 
 
 
  

determinant = 0;

capable to produce ELCA = no;

Characteristic polynomial = (x+1).

Corollary 5.2.1. Variable length ELCA is generated from hybrid CA, if characteristic
polynomial has a form of (x+1)n, and corresponding determinant of characteristic matrix
is equal to one.

Proof:

ELCA cycles are generated using linear rule ‘153’ in null-boundary uniform CA scenario.
Next state dependency for rule ‘153’ is on self-cell and right cell only (refer Table 5.2.1).
Therefore characteristic polynomial only produces a polynomial (x+1)n (refer Equation
5.2.9).

(End of proof.)

5.2.3.2. Algebraic Properties

5.2.3.2.1. Algebraic operations, performed on [݊×݊] characteristic matrix as reported in
Equation 7 and Equation 9, are mentioned as follows.

89

rank = n;

determinant = 1;

trace = n;

signature = (n,0).

5.2.3.2.2. Algebraic operations, performed on [݊×݊] characteristic matrix as reported in
Equation 11, are mentioned as follows.

rank = n;

determinant = 1;

trace = n;

not a symmetric matrix, hence no signature.

Example 5.2.5.

Let, R1 = <51, 51, 51, 51>, R2 = <204, 204, 204, 204>, R3 = <153, 153, 153, 153>, and, R4

= <90, 150, 90, 150>.

1

4 4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

RT 



 
 
 
 
 
 

rank = 4;

determinant = 1;

trace = 4;

signature = (4,0).

2

4 4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

RT 



 
 
 
 
 
 

rank = 4;

90

determinant = 1;

trace = 4;

signature = (4,0).

3

4 4

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

RT 



 
 
 
 
 
 

rank = 4;

determinant = 1;

trace = 4.

not a symmetric matrix, hence no signature.

4

4 4

0 1 0 0
1 1 1 0
0 1 0 1
0 0 1 1

RT 



 
 
 
 
 
 

rank = 4;

determinant = 1;

trace = 2;

signature = (2, 2).

Theorem 5.2.3. An n-cell CA is responsible for ELCA generation, iff determinant of
characteristic matrix is one, and, trace of characteristic matrix is equal to ‘n’.

Proof:

Algebraic properties as reported in 3.2.1 and 3.2.2 prove the statement for an n-cell CA.

(End of proof.)

91

Lemma 5.2.1. An n-cell CA is responsible for fixed length ELCA generation, iff
determinant of characteristic matrix is equal to one, and, trace is equal to ‘n’ and
signature is (n, 0).

Proof:

Algebraic properties as reported in 3.2.1 and 3.2.2 prove the statement for an n-cell CA.
Illustrations related to Lemma 5.2.1 are in Example 4 (refer R1 and R2 in Example 5.2.5).

(End of proof.)

Lemma 5.2.2. An n-cell CA is responsible for variable length ELCA generation, iff
determinant of characteristic matrix is equal to one, and, trace is equal to ‘n’ and there
is no signature for characteristic matrix.

Proof:

Algebraic properties as reported in 3.2.1 and 3.2.2 prove the statement for an n-cell CA.
Illustrations related to Lemma 5.2.2 are in Example 4 (refer R3 in Example 5.2.5).

(End of proof.)

Lemma 5.2.3. An n-cell CA is responsible for maximum length CA (MaxCA) generation,
iff determinant of characteristic matrix is equal to one, and, trace is equal to ‘

2
n ’ and

signature of characteristic matrix is (
2
n ,

2
n).

Proof:

Illustrations related to Lemma 5.2.3 are in Example 5 (refer R4 in Example 5.2.5). MaxCA
is generated for this rule set in null-boundary CA.

(End of proof.)

Transition diagrams for Example 5.2.5 have been shown in Fig. 5.2.1.

Fig. 5.2.1(a). Transition diagram for <51, 51, 51, 51>

0 15

11 4

14 1

10 5

12

9 6

12 3

8 7

92

Fig. 5.2.1(b). Transition diagram for <204, 204, 204, 204>

Fig. 5.2.1(c). Transition diagram for <153, 153, 153, 153>

Fig. 5.2.1(d). Transition diagram for <90, 150, 90, 150>
Fig. 5.2.1. Transition diagrams using 51, 204, 153, 90, 150

Eight equal length cycles of length two are shown in Fig. 5.2.1(a). Sixteen equal length
cycles of length one are presented in Fig. 5.2.1(b). Two equal length cycles of length eight
are shown in Fig. 5.2.1(c). One MaxCA of length fifteen is shown in Fig. 5.2.1(d). A set of
necessary and sufficient conditions are achieved using Lemma 1, Lemma 2, and Lemma 3.

Necessary condition for ELCA and MaxCA generation: Determinant of [݊×݊]
characteristic matrix should be equal to one.

Sufficient condition for ELCA generation: Trace of [݊×݊] characteristic matrix should
be equal to ‘n’.

1 0 2 3 4 5 6 7

8 10 11 12 13 14 15 9

0 15

6 5

13 14

8 7

12 1

3 10

2 11

9 4

1 3

1
0

11 6

15 1
0

5 2

4 14

9 13

7 8

0

93

Sufficient condition for MaxCA generation: Trace of [݊×݊] characteristic matrix should
be equal to ‘

2
n ’.

Discussions on characteristic matrix of Example 5.2.4 are provided in Example 5.2.6.

Example 5.2.6.

11

5 5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

RT 



 
 
 
 
 
 
  

rank = 5;

determinant = 1;

trace = 5;

signature = (5, 0);

capable to produce ELCA = yes.

 12

5 5

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

RT 



 
 
 
 
 
 
  

rank = 5;

determinant = 1;

trace = 5;

not a symmetric matrix, hence no signature;

capable to produce ELCA = yes.

94

11

5 5

1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

RT 



 
 
 
 
 
 
  

rank = 5;

determinant = 1;

trace = 5;

not a symmetric matrix, hence no signature;

capable to produce ELCA = yes.

 11

5 5

1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

RT 



 
 
 
 
 
 
  

rank = 3;

determinant = 0;

trace = 5;

signature = (3, 0);

capable to produce ELCA = no.

Transition diagrams for Example 5.2.6 are shown in Fig. 5.2.2.

95

Fig. 5.2.2(a). Transition diagram of R11=<51, 204, 51, 204, 51>

Fig. 5.2.2(b). Transition diagram of R12=<204, 60, 51, 60, 51>

0 21

17 4

20 1

16 5

23 2

19 6

22 3

18 7

8 29

25 12

28 9

24 13

31 10

27 14

30 11

26 15

0 5

2 7

4 1

3 6

13 8

10 15

12 9

11 14

16 29

18 31

28 17

19 30

27 20

22 25

26 21

23 24

96

Fig. 5.2.2(c). Transition diagram of R13=<153, 51, 102, 51,102>

Fig. 5.2.2(d). Transition diagram of R14=<153, 60, 153, 195, 51>
Fig. 5.2.2. Transition diagrams using 51, 204, 60, 153, 102, 195

0 26

20 14

27 1

21 15

28 2

22 8

29 3

23 9

4 30

16 10

31 5

17 11

24 6

18 12

25 7

19 13

8

2

23

0

30

21

15

14

24

27
1

22

25

7

19

4

20

26 16

10

31

3

6

11

29

9
18

12

28

5 17

13

97

Equal length cycles are observed in Fig. 5.2.2(a), Fig. 5.2.2(b), and, Fig. 5.2.2(c). No equal
length cycle is found in Fig. 5.2.2(d) (refer Theorem 5.2.1, Lemma 5.2.1, Lemma 5.2.2,
and, Lemma 5.2.3).

5.2.4. Experimental observations & results

ELCA patterns are generated in simulation. Intel Pentium Dual CPU E2180 @ 2.00 GHz
processing support was availed in execution of computer simulation. Equal length cycles
generated with ELCA generating linear and complemented linear rules in three-
neighborhood null-boundary scenario are reported in Table 5.2.2.

Table 5.2.2. ELCA generation table using a combination of rule “204”, “51” and “153”

Serial
Number

Rule n-cell CA
 Uniform Hybrid

1. 204 Capable for producing ELCA Capable for producing ELCA
2. 51 Capable for producing ELCA Capable for producing ELCA
3. 153 Capable for producing ELCA Capable for producing ELCA

Rule “51”, “153” and “204” are capable of generation of ELCA patterns both in uniform
and hybrid CA conditions. Cycle lengths in generated ELCA patterns are enlisted in Table
5.2.3, Table 5.2.4 and Table 5.2.5.

Table 5.2.3. ELCA cycle length table for rule “204”

Serial Number Cell Size Cycle Length
1. 3 1
2. 4 1
3. 5 1
4. 6 1
5. 12 1
6. 23 1
7. 63 1

All single length ELCA patterns are achieved in Table 5.2.3. Hence a conclusion is drawn
using that all single length ELCA patterns are generated for rule “204” in uniform CA
scenario.

98

Table 5.2.4. ELCA cycle length table for rule “51”

Serial Number Cell Size Cycle Length
1. 3 2
2. 4 2
3. 5 2
4. 6 2
5. 12 2
6. 23 2
7. 63 2

All double length ELCA patterns are achieved in Table 5.2.4. Hence a conclusion is drawn
that all double length ELCA patterns are generated for rule “51” in uniform CA scenario.

ELCA length is found as varying over different cell sizes for null boundary uniform CA
with rule “153”. Different cycle lengths have been reported in Table 5.2.5.

Table 5.2.5. ELCA cycle length table for rule “153”

Serial
Number

Cell Size range Minimum number of bits required
to represent in binary

equivalent(n)

Cycle Length

1. 3 2 4
2. 47 3 8
3. 815 4 16
4. 1631 5 32

 5. 3263 6 64

Generalized relationship among cell size of CA and generated ELCA cycle length for rule
“153” in uniform CA scenario is reported in Table 5.2.6.

Table 5.2.6. ELCA cycle length calculation table for rule “153”

Cell Size range Cell Size range
(in decimal

value)

Minimum number of bits
required to represent in binary

equivalent(n)

Cycle Length

(2n)(2n+1-1) 2n2n+1-1 n+1 2n+1

Equation 5.2.15 is presented based on Table 5.2.6.

 2 number of minimum bits required to represent in equivalent binary form for given cell numbers in decimalCycle length 
(5.2.15)

Results obtained in Table 5.2.2, Table 5.2.3 and Table 5.2.4 are graphically shown in
Fig. 5.2.3.

99

Fig. 5.2.3. ELCA cycle length

ELCA cycle length in uniform CA scenario is shown in Fig. 5.2.3 for rule “204”, “51” and
“153”. A trend for corresponding graph is shown with Power Curves (refer Fig. 5.2.3). A
linear growth in power curve is achieved for ELCA patterns with constant cycle length
(refer Table 5.2.3 and Table 5.2.4). Stepped growth is only been observed for rule “153”
(refer Table 5.2.5 and Equation 5.2.15).

Discussions for all other ELCA rules (refer Table 5.2.2 and Table 5.2.3) are reported in
Table 5.2.7.

Table 5.2.7. ELCA generation table for other ELCA generating linear rules

CA rules n-cell CA

Uniform condition Hybrid condition
60, 85, 90, 102, 105, 150, 165, 170, 195 Not Capable for producing

ELCA
Capable for producing

ELCA

ELCA generating capability by ELCA generating balanced rules in different CA scenarios
(i.e. uniform, and hybrid scenario) are explored in the experiments. Lengths of generated
ELCA cycles in different experimental results strengthen the analysis (refer Sub-section
5.2.3).

5.2.5. Summary

A formal analysis on linear CA rules in null boundary scenario is presented for ELCA
generation. Algebraic approach is focused in the Sub-section. General form of
characteristics matrix, relationship between ELCA cycle and CA size are shown.

0
10
20
30
40

ELCA cycle length

CA size

CA length vs. ELCA cycle length

"204" "51" "153" Power ("204") Power ("51") Linear ("153")

100

5.3. ELCA formulation using Discrete Mathematics

5.3.1. Introduction

Discrete Mathematics [83] is referred to as the study of mathematical configurations that
are essentially disconnected rather than continuous in character. Set of finite or infinite
number of stuffs is considered for theoretical discrete mathematics. Finite mathematics is
applied to parts of discrete mathematics field that deals with finite sets for the physical
implementation of the computation. Tessellation concept is introduced for efficient
designs. Tessellation is referred as a tiling of plane (flat surface) using one/multiple
geometric shapes (tiles) with no overlapping and gap between two consecutive tiles.
Aperiodic tiling is referred as a non-periodic tiling with a restricted property that arbitrarily
large periodic patches are excluded from concerned tile [84].

Repeating arrangement of points in a graph (tile) is described with the help lattice theory.
Lattice is described as an algebra over a non-empty set and a pair of binary operations
(“And operation” and “Or operation”) on that non-empty set [85]. Mapping is required for
better understanding of computation. Mapping is referred as a relationship among elements
of domain and range. Injection, surjection and bijection mapping as found in [86-89] are
briefly discussed below.

Injective- A function :f A B is referred as injective (one-to-one) iff each member
elements of the 'domain'(A) is exactly mapped with at-most one-member element of the
'range' (B).

Surjective- A function :f A B is referred as surjective (onto) iff each member elements
of the 'domain'(A) is mapped with at-least one-member element of the 'range' (B).

Bijective- A function :f A B is referred as bijective iff injection and surjection, both
properties are satisfied for that function.

Injection, surjection and bijection as described in [89] are presented in Fig. 5.3.1.

101

Fig. 5.3.1. (a)

Fig. 5.3.1. (b)

 Fig. 5.3.1. (c)

 Fig. 5.3.1. (d)

Fig. 5.3.1. Typical diagrammatic illustrations for injection, surjection, projection and bijection.

Lattice- Lattice in ‘ nR ’ is defined as a discrete subgroup of ‘ nR ’ which spans the real
vector space ‘ nR ’. Every lattice in ‘ nR ’ is generated from a base for the vector space by
forming all linear combinations with integer co-efficient. Lattice is also views as a regular
tiling of a space by primitive cell.

Aim of this section is to explore the principles for ELCA generation using FSM and to
carry out a thorough mathematical investigation for ELCA characteristics polynomial to
investigate randomness generation capacity from ELCA patterns.

Rest of the section is organized as follows: ELCA formulation and analysis using discrete
math is in Sub-section 5.3.2; experimental observations are reported in Sub-section 5.3.3
and summary is in Sub-section 5.3.4.

Domain (A)
⍱ ai є A

Range (B)
⍱ bi є B

Non-injective & surjective (onto)

a

a

a

b

b

b
a

Domain (A)
⍱ai є A

Range (B)
⍱ bi є B

Injective & non-surjective (one-to-one)

a

a

a

b

b

b

b

Domain (A)
⍱ ai є A

Range (B)
⍱ bi є B

Non-injective & non-surjective

a

a

a

b

b

b
a

Domain (A)
⍱ ai є A

Range (B)
⍱ bi є B

Injective & surjective (bijective)

a

a

a

b

b

b

102

5.3.2. ELCA formulation

CA are expressed as a function of sextuple in Equation 2.1.3 of Sub-section 2.1. ELCA is
a special class of group CA. Hence, ELCA is capable of being represented as a function
of sextuple [47]. Generated ELCA is capable of being transformed into some finite number
of tessellations. Equal number of states is found in each tessellation. Sextuple function for
ELCA is discussed in Equation 5.3.1. Equation 5.3.1 is based on the Equation in [47].

0, , s, s , ,ELC A S N    (5.3.1)

 where, finite number 2௠ of tessellations of length 2௡ି௠ are represented by Γ;

finite set of states (݇ = 2, where possible number of state values are represented by ݇) is
referred to as ܵ and often ܵ ⊂ ℕ;

output mapping function ݏ: ℕ×߁ → ܵ produces the state value of cell ܿ ௜ at the ݐ௧௛ discrete
time step denoted by ݏ(ܿ௜, ;(ݐ

initial condition for every cell ܿ௜ i.e. ݏ(ܿ௜ , 0) = :଴ݏ ଴(ܿ௜) is assigned by functionݏ ߁ → ܵ;
every cell ܿ௜ is mapped to a finite sequence ܰ(ܿ௜) = (ܿ௜௝)௝ୀଵ

|ே(௖೔)| by neighborhood function
߁:ܰ → ⋃ ௉ஶ߁

௉ୀଵ and |ܰ(ܿ௜)| is the number of all distinct cells ܿ௜௝ ;

ɸ = (߶௜)௜∈ℕ is a family of functions ߶௜ : ܵ|ே(௖೔)| → ܵ where each ߶௜ is responsible for the
dynamics of cell ܿ௜, i.e., ݏ(ܿ௜ , ݐ + 1) = ߶௜(ௌ~(ܰ(ܿ௜), ,as (ௌ~(ܰ(ܿ௜) ,((ݐ ((ݐ =
(ௌ~(ܰ(ܿ௜), ௝ୀଵ((ݐ

|ே(௖೔)|.

Bijection mapping is present in ELCA state transition diagrams (refer Fig. 5.3.3(d)). Hence
FSM representation for ELCA is possible. Number of cycles generated in ELCA state
space is discussed in Theorem 5.3.1 and output mapping function for ELCA generating
FSM is discussed in Theorem 5.3.2.

Motivation of Theorem 5.3.1 is to show that ELCA structure follows bijection mapping.

Theorem 5.3.1: An output mapping function employing Bijection mapping is responsible
for generation of ELCA.

Proof:

Output mapping function ݏ: ℕ×߁ → ܵ as described in Equation 5.3.1 is responsible for
generation of transitions in form of group CA. Injective [86] and surjective [87] mapping
both are simultaneously found in output mapping function, ݏ: ℕ×߁ → ܵ. A “one-to-one”
mapping is considered as a special case of “one-to-many” mapping. Thus, surjective (onto)

103

mapping is found as a collection of multiple injections (one-to-one). Hence, existence of
bijection mapping [88, 89] in output mapping function of ELCA has been proved.

(End of proof.)

Equation 5.3.4 is obtained from Theorem 5.3.1.

1 2

() () ()B SP P I P
C C

  (5.3.4)

where, ‘C1’ and ‘C2’ are conditions; ‘P’ is referred as probability; ‘B’ is referred as
bijection; ‘S’ is referred as surjection; and ‘I’ is referred as injection.

Observation 5.3.2. Lattice Isomorphism [90] is found in ELCA transition mapping
:ݏ“ ℕ×߁ → ܵ”.

A pair of Necessary and Sufficient Conditions are found from Theorem 5.3.1.

Necessary Condition for ELCA generation: Characteristics polynomial for ELCA is a
form of minimal polynomial along with a complete bijection mapping in ELCA transition
function.

Sufficient Condition for ELCA generation: Characteristics polynomial for ELCA is a
form of recursive primitive polynomial.

Randomness is assured for a CA generated pattern if characteristics polynomial for that
CA is a primitive polynomial. Primitive characteristics polynomial is found for MaxCA.
Hence degree of randomness is found in MaxCA cycle generated with a unique
combination of rules “90” and “150” in null-boundary condition only. No primitive
characteristics polynomial is ever possible for combination of rules “90” and “150” in
periodic-boundary condition. Hence MaxCA is not found in periodic boundary CA [5].

Motivation of Theorem 5.3.2 is to show the presence of primitive polynomial or primitive
recursive polynomial in ELCA characteristic polynomial.

Theorem 5.3.2. If characteristics polynomial for ELCA is primitive polynomial or
primitive recursive polynomial, then randomness is assured in generated pattern.

Proof:

The characteristics polynomials for uniform and hybrid ELCAs have been reported as
“(1+x)” and “(1+x)n”. It has been found that the characteristics polynomial of ELCA is of
the form of a minimal polynomial (Sub-section 5.2).

104

A primitive function݂(ݔ) as defined in [91] is shown in Equation 5.3.5.

(ݔ)݂ = ܽ଴ + ܽଵݔଵ + ܽଶݔଶ + ⋯ . +ܽ௡ݔ௡ …………….. (5.3.5)

where, ܽ଴ , ܽଵ, ܽଶ, … , ܽ௡ are integer coefficient, the greatest common divisor of
ܽ଴ , ܽଵ , ܽଶ, … , ܽ௡ is one, and ݂(ݔ) is a primitive function. Additionally, if ݂(ݔ) and ݃(ݔ)
are two primitive polynomials, ݂(ݔ)݃(ݔ) is also a primitive polynomial.

The characteristics polynomial for ELCA is “(1+x)” and “(1+x)n”.

Assume ଵ݂(ݔ) = ݔ) + 1) and ଵ݃(ݔ) = ݔ) + 1)௡ .

The greatest common divisor of all coefficients of ଵ݂(ݔ) is one.

Hence, ଵ݂(ݔ) is a primitive polynomial.

ଵ݃(ݔ) is represented as ଵ݃(ݔ) = (ଵ݂(ݔ))௡. Hence, ݃ଵ(ݔ) is also a primitive recursive
polynomial.

Application of primitive recursive, reducible polynomials in generation of pseudo-random
sequences can also be found in [92-94].

Therefore, all ELCAs are capable of producing pseudo-random sequences.

 (End of proof.)

5.3.3. Experimental results

Experimental results are reported in Sub-section 5.3.3.1, Sub-section 5.3.3.2 and Sub-
section 5.3.3.3. ELCA and MaxCA generated patterns are collected from computer
simulation to carry out investigations as reported in Sub-section 5.3.3.1 and Sub-section
5.3.3.2.

5.3.3.1. Performance evaluation

Randomness in generated patterns for MaxCA and ELCA are graphically shown in
Fig. 5.3.2.

105

Fig. 5.3.2(a).

Fig. 5.3.2(b)

Fig. 5.3.2(c).

Fig. 5.3.2. Randomness in different CA generated patterns

Pseudo-random patterns in Fig. 5.3.2 were produced using a unique combination of rule
‘90’ and ‘150’ for MaxCA, rule ‘51’ for ELCA with characteristics polynomial ‘(1+x)’ and
rule ‘153’ for ELCA with characteristics polynomial ‘(1+x)n’. MaxCA patterns were
generated using <90, 150, 90, 150>, <150, 150, 90, 90, 150>, <90, 150, 90, 150, 90, 150>
respectively for Fig. 5.3.2(a), Fig. 5.3.2(b) and Fig. 5.3.2(c). ELCA patterns were achieved
in Fig. 5.3.2(a), Fig. 5.3.2(b) and Fig. 5.3.2(c) using uniform CA of rule ‘51’ and uniform
CA of rule ‘153’ respectively. It is evident from Fig. 5.3.2 that degrees of randomness of
the MaxCA and the ELCA for cell size 4, 5, and 6 are competitive.

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V
al

ue
s

Number of Samples

Randomness for generated pattern for 4-cell CA

MaxCA ELCA with Poly Char (1+x) ELCA with Poly Char (1+x)^n

0
20
40
60
80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

V
al

ue
s

Number of Samples

Randomness for generated pattern for 5-cell CA

MaxCA ELCA with Poly Char (1+x) ELCA with Poly Char (1+x)^n

0
50

100
150
200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

V
al

ue
s

Number of Samples

Randomness for generated pattern for 6-cell CA

MaxCA ELCA with Poly Char (1+x) ELCA with Poly Char (1+x)^n

106

5.3.3.2. Real time activities

Randomness of patterns generated by MaxCA and ELCA PRNGs are also measured using
statistical analysis tool called Runs Test [95]. The Wald–Wolfowitz runs test (or
simply runs test) is named after Abraham Wald and Jacob Wolfowitz. It is a non-
parametric statistical test that checks a randomness hypothesis for a data sequence. It can
be used to test the hypothesis that the elements of the sequence are mutually independent
[96]. The Runs Test results in terms of p-values and corresponding conclusions obtained
in [95] have been reported in Table 5.3.1.

Table 5.3.1. RUNs Test Results

Serial
number

Cell
(n)

MaxCA ELCA with
characteristics

polynomial (1+x)

ELCA with characteristics
polynomial (1+x)n

p-value Conclusion p-value Conclusion p-value Conclusion
1. 4 0.13292 Little or no

real evidence
against

randomness

0.00015 Very strong
evidence
against

randomness

0.30239 Little or no real
evidence against

randomness

2. 5 0.42976 Little or no
real evidence

against
randomness

almost
zero

Very strong
evidence
against

randomness

0.35965 Little or no real
evidence against

randomness

3. 6 0.5 Little or no
real evidence

against
randomness

almost
zero

Very strong
evidence
against

randomness

0.5 Little or no real
evidence against

randomness

If the p-value is very small (almost equal to zero) or very high (almost equal to 1), the
hypothesis that the data set is random is rejected. The p-value of the single length cycle for
MaxCA in null boundary CA scenario is zero or very small. The p-value of the ELCA with
characteristics polynomial (1+x) is also either zero or very small. But the p-values for
MaxCA and ELCA with characteristics polynomial (1+x)n are in the range to prove
existence randomness [95, 96]. Hence the degree of randomness for ELCA cycles are
comparable to MaxCA cycles.

5.3.4. Summary

Discrete mathematics based analysis on ELCA generation is reported in this section.
Existence of bijection mapping in ELCA generation ensures a close-fitting with FSM.
Characteristics polynomials for ELCA are primitive polynomials or primitive recursive
polynomials. Hence randomness in ELCA generated patterns is confirmed.

107

5.4. Energy efficient task-pull scheduling using ELCA

5.4.1. Introduction

Efficient scheduling policy play an important role in reliable distributed and parallel
computing. Load balanced task-pull scheduling for maximum number of available
processing units in distributed computing is important in efficient uses of processing units,
faster result processing and optimized energy consumption. Task scheduling to computing
devices or processors is a NP-complete problem [97, 98]. Parallel programming approaches
are followed in distributed computing. Algorithmic parallelism, geometric parallelism and
processor framing approaches have been defined in [99] depending on their characteristics.
Static task allocation is implemented in case of algorithmic parallelism and geometric
parallelism. Algorithmic parallelism is maintained for decomposition using pipeline of
processors as needed. Data is transferred through computing elements. Bigger tasks are
decomposed into several independent task modules in case of geometric parallelism
allocated to available computing units. Each computing device executes the subsets of total
processed data sets. Each isolated processor is responsible for execution of same task with
different initial data in processor farm. Static and dynamic scheduling of tasks are being
used for optimization of performance in parallel computing. A balance between
communication time and computation time is required for ensuring efficient usage of
processing resources [99].

Sequential and parallel CA based scheduling algorithms were demonstrated by researchers
[31-34]. Parallel scheduling [31], heuristics based near optimum solutions for scheduling
problems [32-34] were described to enhance parallel and distributed computing. Genetic
Algorithm (GA) based CA rule discovery for scheduling policy were reported in [33, 34].
In our studies, we have not found a simple, cost effective CA based equally populated job
scheduling, which may be beneficial towards cost-effective scheduling in distributed
computing. Hence a simple and cost-effective ELCA based scheduler is presented in this
section.

Rest of the section is organized as follows: proposed work is described in Sub-section
5.4.2; experimental results and analysis are reported in Sub-section 5.4.3; finally, summary
is in Sub-section 5.4.4.

5.4.2. Proposed approach

ELCA based design for energy efficient task-pull scheduling in distributed computing is
proposed in present research. Different tasks and available processors are mapped with
ELCA to obtain load balanced scheduling in distributed environment.

108

Consider, a typical scenario for distributed task scheduling. Let, there exists ‘P’ number of
independent task modules of similar complexities to be computed over ‘Q’ number of
available processors. ‘Q’ numbers of available processors and ‘P’ numbers of independent
task modules are mapped with the ‘M’ numbers of equal length cycles of length ‘N’
generated by ELCA as described in Equation 3.1.1. Illustration of proposed approach is as
follows.

Total ‘2m’ (let M) numbers of equal length cycles of length ‘2n-m’ (let N) are found for an
n-cell CA by Equation 3.1.1. All independent ‘P’ task modules are being grouped together
by mapping with ‘M’ numbers of equal length cycles of length ‘N’. ‘M’ numbers of task
modules are assigned to available ‘Q’ numbers of processors/computing units. The state
number of any equal length cycle of ELCA is mapped with the task number (pi). Task
modules are being assigned randomly to the available processors and resulting task
scheduling is having the advantage of equal load (equal task module) distribution to
available processors. Proposed scheduling policy is applicable for both sequential and
parallel execution. Mathematical expressions for task pull allocation scheme are shown in
following Equations.

Number of task modules is described in Equation 5.4.1.





n

i
iPP

0 (5.4.1)

Number of available processors is described in Equation 5.4.2.





n

i
iQQ

0 (5.4.2)

By Equation 1.1,

mnmn  2*22

Equation 5.4.2 is expressed as Equation 5.4.3.

NMn *2  (5.4.3)

where, M=2m and N=2n-m.

Now mapping for task scheduling is performed as described in Equation 5.4.4 and Equation
5.4.5.

NP (5.4.4)

109

MQ  (5.4.5)

Example 5.4.1.

An n-cell CA for n=4 has been decomposed into some equal length smaller cycles. In our
illustrated example as described in Fig. 5.4.1(a) is decomposed into 2 smaller cycles of
length 8; or, as described in Fig. 5.4.1(b) is decomposed into 8 smaller cycles of length 2.
Pattern generation for task scheduling in this scenario is followed as referred in Fig. 5.4.1.
Fig. 5.4.1 is based on Null Boundary condition. The synthesis of this example to generate
ELCA is achieved for a combination <195, 195, 195, 195> for Fig. 5.4.1(a) and <51, 51,
51, 51> for Fig. 5.4.1(b).

Fig. 5.4.1(a)

Fig. 5.4.1(b).
Fig. 5.4.1.

Fig. 5.4.1(a). Proposed 2 equal length cycles of cycle size 8 for < 153, 153, 153, 153 >
 Fig. 5.4.1(b). Proposed 8 equal length cycles of cycle size 2 for < 51, 51, 51, 51 >

Let there exist two processing units in a distributed computing system with sixteen
independent tasks. All these task modules are grouped together in two task-pulls as
described in Fig. 5.4.1(a). Different task-pulls are signified by each equal length cycles and
the randomly scheduled independent task modules in every task-pull are signified by
corresponding i= 0, 1, 2... etc. Generated task modules are allocated to the two different
processing units. A random and load balanced task-pull is assigned to the available
processing units.

The scenario as illustrated in Fig. 5.4.1(b) that all those sixteen task modules are capable
for equally load distributed condition among eight processing units in a distributed
computing environment. All these tasks-pools are capable of being processed by individual
processing units simultaneously or, one after another. Now consider a special case where
nine number of tasks are to be allocated in available two processors. Two equal length task-
pulls of length four are formed and allocated to available processing units and remaining
single task is assigned to any of the available processing units. Proposed flowchart of
ELCA based task scheduling policy is presented in Fig. 5.4.2.

110

Fig. 5.4.2. Proposed flowchart for task scheduling in distributed computing environment

ELCA based task scheduling policy for distributed computing environment is designed
using Algorithm 5.4.1, Algorithm 5.4.2 and Algorithm 5.4.3.

Algorithm 5.4.1. CA size_computation

Input: Number of tasks (P), number of processors (Q)

Output: CA size (n)

Step 1: Start

Step 2: Initialize the number of tasks (P), number of processors (Q)

Step 3: Compute minimum value of ‘m’ such that 2m ≈ Q

Step 4: Compute minimum value of ‘n’ such that 2n-m ≈ P

Step 5: Stop

Algorithm 5.4.2. Task_pull_generation_using_ELCA

Input: CA size (n), balanced rules

Output: ‘M’ numbers of equal length task-pull of length ‘N’

Step 1: Start

Step 2: Initialize the number of n-cell CA to generate random numbers using n-cell CA

Start

Stop

Initialize no. of task modules
(P) and no. of available

processors (Q)

Initialize balanced CA rule to
the n-cell CA

Calculate required no. of cells in
CA (n)

Create task-pulls

Decompose into ‘M’ no. of equal
length cycles of length ‘N’

Allocate task-pulls to available
processors

Check Q≈M and P≈N

Yes

No

111

Step 3: Initialize balanced CA rule to all the cells for generation of equal length task-pull

Step 4: Decompose the cell number (n) into equal numbers (m) such that 2n= 2m*(2n-m)
 i.e., ‘m’ number of equal length cycles of (n-m) length) for n≥1 and m=1,2,3…….(n-1)

Step 5: Schedule task-pull using appropriate scheduling procedure

Step 6: Stop

Algorithm 5.4.3. Task-pull_scheduling

Input: Task-pulls (M), available processors (Q)

Output: task-pull scheduling

Step 1: Start

Step 2: If M<=Q then randomly allocate ‘M’ number of task-pulls into ‘Q’ number of
 available processors else follow Step 3.

Step 3: Scheduling error and follow Algorithm 5.4.2

Step 4: Process ‘M’ number of task-pulls at ‘M’ number of processors sequentially or
 simultaneously

Step 5: Stop

An efficient approach for optimum energy consumption in concerned distributed
computing environment is found from proposed ELCA based scheduling approach.
Discussions are included in Example 5.4.2 to report about optimum energy consumption.

Example 5.4.2.

Let a distributed computing environment where number of independent task modules is ‘P’
and available number of processors is ‘Q’; all are following same architecture. ‘M’
numbers of equal length task cycles of length ‘N’ are produced by ELCA based scheduler.
The equal length task-pulls are then allocated to available ‘Q’ number of processors using
Equation 5.4.4 and Equation 5.4.5.

Let energy consumption for a processing unit in active state is ‘Eactv’ and in idle state is
‘Eidle’ respectively. ‘Active’ state is achieved by processing unit while it is in the process
of execution for a task module else it is in ‘idle’ state, if the processor is in powered on
mode. Energy consumption in powered off mode is zero and it has already been established
that Eactv > Eidle > 0 (zero) [34]. Energy consumption for every processing unit is Eactv for

112

every individual task module. So, total energy consumption in the distributed computing
system is given as following relation.

Etotal=no. of processors in active state (M)* no. of task modules in task-pull (N)*energy
consumption for one processor in active state (Eactv) + no. of processors in idle state (Q-M)
*energy consumption for one processor in idle state (Eidle).

Thus,

idleactvtotal EMQENME *)(**  (5.4.6)

Maximum power consumption for that distributed system for equally load distributed
condition in an ideal scenario where all available processors are scheduled with ELCA
generated task schedules is achieved from Equation 5.4.6. Thus, Equation 5.4.7 is achieved
form Equation 5.4.6.

actvENME **max  (5.4.7)

where (Q-M) = 0;

Here no processing unit is in idle state. Hence, Equation 5.4.8 is achieved from Equation
5.4.7.

actvEPE *max  (5.4.8)

where P=M*N.

An efficient use of available processing units is found for ELCA based scheduler. Equal
length task modules are allocated to maximum number of available processors for an equal
load distribution.

5.4.3. Experimental observations & result analysis

Different task-pulls were simulated with Grid Matrix Simulator [100, 101] based on
SimGrid Toolkit [102]. Simulations were performed in client-server architecture for
different number of task modules and varying numbers of processing units. Computation
size task 5000 and communication size of task 1000 were used in simulation. Simulation
set up is shown in Fig. 5.4.3.

113

Fig. 5.4.3. Screenshot of task-pull execution in client-server architecture in GridMatrix

Different scenarios for equal task allocations in client-server architecture are shown in Fig.
5.4.4. Different numbers of tasks are assigned to available fixed numbers of computing
units.

114

Fig. 5.4.4(a).

Fig. 5.4.4(b).

115

Fig. 5.4.4(c).
Fig. 5.4.4.

 Fig. 5.4.4(a). Simulation result for total task size of 256 tasks
Fig. 5.4.4(b). Simulation result for total task size of 512 tasks
Fig. 5.4.4(c). Simulation result for total task size of 1024 tasks

A linear growth in the computation time is achieved in Fig. 5.4.4 for complete execution
of the varying number of task pulls by a fixed number of processing units. Execution time
in curves increases linearly in Fig. 5.4.4 (a), Fig. 5.4.4(b) and Fig. 5.4.4(c).

Time consumed for a balanced task load distribution (fixed length task pull of length 256)
to different number of processors is reported in Table 5.4.1. Graphical representation of
information achieved from Table 5.4.1, is shown in Fig. 5.4.5.

Table 5.4.1. Simulation time

No. of processing units Time
2 0.641374
4 0.777577
16 0.933235

116

Fig. 5.4.5. Task pull compliance graph

A relationship between time and number of used processing units is found in Fig. 5.4.5.
Detailed explanation of Fig. 5.4.5 is as follows.

The relation between numbers of used processors and length of task-pull is in Equation
5.4.9.

)(
1)(

NngthTaskPullLe
MorsNoOfPocess 

 (5.4.9)

Relation between task execution time and task-pull length is followed in Equation 5.4.10.

)()(NngthTaskPullLeTionTimeTaskExecut e 

 (5.4.10)

Hence, task execution time (Te) increases as the task pull length (N) increases.

Relation between task-pull scheduling time and numbers of used processors is followed in
Equation 5.4.11.

)()(MocessorsPrNoOfTmehedulingTiTaskPullSc s  (5.4.11)

Hence, task scheduling time (Ts) increases as the number of available processing units (N)
increases. More task scheduling time (Ts) is required to schedule balanced tasks to all
available processing units (N).

5.4.4. Summary

Random task assignment is found in ELCA based equally populated task-pulls. All these
generated task-pulls are efficiently utilizing the maximum number of available processing
units.

117

CHAPTER
6

EQUAL LENGTH CELLULAR

AUTOMATA DYNAMICS

118

6.1. Dynamics of ELCA rules

6.1.1. Introduction

Studies with CA explore the mathematical properties of system dynamics for any complex
system. Langton’s λ-parameter (activity parameter) and Z-parameter are used discuss the
system dynamics [103-105]. Langton’s λ-parameter is used to determine the probability
that a CA cell will have next state as one [104].

Let ‘n’ number of transitions present for quiescent state (an arbitrary space “s є ∑”) ‘sq’ in
the transition function ‘Δ’. Let the remaining “(KN-n)” transitions in ‘Δ’ be filled by
pinching randomly and uniformly over the other “K-1” states in “∑ - sq”. Thus, Langton’s
λ-parameter is calculated as in Equation 6.1.1 [104].

 

N

N

K n
K





 (6.1.1)

If “ Nn K ”, then all the transitions in the rule table will be to the quiescent state ‘sq’ and
 = 0.0 . Most homogeneous distribution is indicated by = 0.0 . If n = 0 , then there

will be no transitions to ‘sq’ and = 1.0 . When all states are represented equally in the
rule table, ‘  ’ is defined as in Equation 6.1.2. Most homogeneous rule table has been
described by Equation 6.1.2.

 = 1.0 - 1/K (6.1.2)

Range of ‘λ’ for different dynamic behavior as discussed in [104, 105] is presented in Table
6.1.1.

Table 6.1.1. Typical ‘λ’ values and observed system dynamics

Serial λ- value Conclusion
1. 0.40 Dynamical activity is collapsing down onto periodic configurations.
2. 0.45 Dynamical activity is at a balance point between collapse and expansion.
3. 0.50 Large fluctuations are observed in the area covered by dynamical activity;

eventual collapse of the dynamics is found due to fluctuations.
4. 0.55 Dynamical activity effectively settles down to chaotic behavior.
5. 0.60 Chaotic dynamic activities are observed.
6. 0.65 Typical Chaotic activities are observed.

Observed system dynamics is graphically reported in Fig. 6.1.1. Dominate behavior of the
rules is changed from homogeneous fixed point to inhomogeneous fixed points, periodic,
complex spatial-temporal dynamics and chaotic dynamics as “λ-parameter value” changes

119

from “0.0” to “0.5”. For “λ-parameter value” higher than “0.5” is found in reverse order of
the mentioned behavior of “λ-parameter value” for the range “0.0” to “0.5” [104, 105].

Fig. 6.1.1. Typical scale for λ-parameter values and system behaviors

Aim in this section is to calculate the λ-parameter value for analysis of ELCA dynamics.

Rest of the section is organized as follows: λ-parameter value for ELCA generating rules
are computed in Sub-section 6.1.2; analysis of system dynamics based computed λ-
parameter values is in Sub-section 6.1.3 and summary is in Sub-section 6.1.4.

6.1.2. Computation of λ-parameter for ELCA rule

Linear and non-linear rules are explored for ELCA pattern generation (Sub-section 6.1).
Detailed characteristics for linear rules are explored using matrix algebraic tools (Sub-
section 6.1). No such matrix algebraic computation has been reported for non-linear rules.
A generalized study towards the CA dynamics based the non-linear and linear rules are
focused in this Sub-section. The computation of the “λ-parameter” is emphasized for
dynamics analysis of ELCA rules. “λ-parameters” are computed using Equation 6.1.1.
Equal number of 0’s and 1’s is present in the binary representation of each ELCA
generating rules (Sub-section 6.1). Hence density of 1’s or 0’s in any ELCA generating
rule is “0.5”.

Example 6.1.

Let an arbitrary ELCA generating rules as enlisted in Table 4. Say rule “204”. Binary
representation of rule “204” is “11001100”. λ-parameter value for “11001100” is 4/8
(=0.5).

Value of λ-parameter for each ELCA rule is in the “symmetry line” (refer Fig. 6.1.1) [104,
105]. Hence chaotic property is observed ELCA rules.

0.0

0.5

1.0

Null
Null Symmetry Line

Fixed point
+ periodic

Complex Chaotic Complex Fixed point
+ periodic

λ - parameter value

120

Theorem 6.1.1. All ELCA rules are positioned in the “symmetry line” of the λ-parameter
based global dynamics of CA.

Proof:

There exists equal number of 0’s and 1’s in any ELCA rule. Hence λ-parameter value for
any ELCA rule is always “.0.50” (Refer Equation 8.5). All ELCA rules are placed in the
symmetry line of the global dynamics CA (refer Fig. 6.1.1).

(End of proof.)

Corollary 6.1.1. Chaotic nature is exhibited by the ELCA rules.

Proof:

All ELCA rules are situated in the global dynamics CA (refer Fig. 6.1.1) by Theorem 6.1.1.
Symmetry line in Fig. 6.1.1 is at the center position of chaotic behavior region. Hence an
inherent chaotic characteristic is found in the dynamics of the ELCA rules.

(End of proof.)

6.1.3. Analysis of ELCA dynamics

It is found in “λ-parameter” values for ELCA rules is “0.50” and thus chaotic dynamics is
present in ELCA generated patterns. Degree of randomness as a measurement of chaos
present in ELCA generated patterns has been reported in Table 6.2. Statistical analytical
approach based on the RUNs test [95] is presented in Table 6.1.2.

Table 6.1.2. Degree of randomness as a measurement of inherent chaotic dynamics for ELCA

Serial Number Rule vector ELCA pattern

p-value Conclusion
1. <51, 51,51,51> 0.30239 Little or no real evidence against

randomness
2. <153, 153, 153, 153,

153>
0.35965 Little or no real evidence against

randomness
3. <51, 204, 51, 204> 0.00015 Very strong evidence against randomness
4. <51, 204, 51, 204,

51>
Almost zero Strong evidence against randomness

Competitive dynamics are achieved for ELCA with respect to MaxCA. Reported CA rules
“90” and “150” responsible for generation of MaxCA pattern and possess same “λ-
parameter” value equals to “0.50”. Hence similar chaotic dynamics is expected for ELCA
and MaxCA rules (Fig. 6.1.1). Competitive degree of randomness for CA patterns as found

121

in [95] is described in Table 6.1.1. Test results in Sub-section 6.1.2 confirm the existence
of almost same chaotic nature in both CA patterns.

6.1.4. Summary

Computed λ-parameters for ELCA rules is “0.50” which is same as the λ-parameter values
for MaxCA composing CA rules. All ELCA rules are situated in the symmetry line of CA
global dynamics Fig. (refer Fig. 6.1.). Thus inherent chaotic characteristics are found for
ELCA dynamics. It is found that ELCA dynamics is similar to MaxCA dynamics.

122

6.2. OTP based authentication using ELCA

6.2.1. Introduction

Distributed system is susceptible to a variety of security threats mounted by intruders. Brief
discussion on different security and authentication aspects in distributed environment is
reported below.

Inherent threats in data communications have been categorized in [110] as “Host
Compromise” and “Communication Compromise”. Combination of hardware and software
has been suggested as a solution to host compromise [116]. On the other hand,
“Communication Compromise” refers to the threat associated with message
communication. Loss of privacy in conversations (eavesdropping), arbitrary
modification(s) to received message and replay of old messages are common security
hazards faced during transmission of message. Authentication is accepted as a solution to
this problem. Authentication means an appropriate arrangement of identification and
verification. Three different authentication categories are discussed in the literature: (i)
authentication of content (ii) authentication of origin (iii) authentication of general identity
[116].

OTP scheme has been suggested as an efficient and simple solution for message
authentication in distributed and cloud computing. OTP is known to be a time synchronized
random password which is used in authentications; this password can be used at most once.
The list of generated passwords is stored in the client and the server. A single password
from the list is used in a sequential manner for every distinct session. OTP protocol is
known to be an effective measure for security in cloud to defend against “Replay Attacks”
and “Dictionary Attacks” [116]. Several authentication techniques have been presented by
researchers [42-44, 111-116]. Smart phone-based authentication has been described in
[114]. Besides, multiple factor-based authentication [112], attachment of small piece of
high-performance trusted hardware with untrusted units [115], anonymous node ID
Assignment [116] are some of the different approaches adopted now-a-days to enhance
authentication. Uses of CA in authentication is also very popular among researchers. M.
Mukherjee et al. have presented CA based authentication [42]. J. C. Jeon et al. have
presented non-group CA based one time password (OTP) authentication scheme in wireless
networks [43]. R. Yampolskiy et al. have presented CA rule 30 based data security and
authentication [44]. In our studies, we have not found a simple, cost effective generation
of equally populated OTP sets. Hence a simple and cost-effective generation of equally
populated OTP sets using ELCA has been introduced, which may be advantageous towards
low-cost authentication in distributed computing.

123

Rest of the section is organized as follows: Preliminary concepts of authentication are
briefly described in Sub-section 6.2.2; ELCA based proposed design is in Sub-section
6.2.3; Results are discussed in Sub-section 6.2.4; finally, summary is in Sub-section 6.2.5.

6.2.2. Preliminary concepts of authentication

During authentication, one node (sender) is verified by another node (receiver). In basic
authentication, encrypted messages independently generated by the sender and the receiver
using a symmetric key have to match [106]. Building a complex crypto system for
authentication purposes is not typical in distributed computing [106].

6.2.3. Proposed design

Linear CA rules “51”, “204” and “153” are suggested for OTP-based authentication in
distributed computing. Selection of these CA rules is based on application suitability,
Langton’s λ-parameter, and the characteristics polynomials of enlisted CA rules.
Primitivity is found in ELCA characteristic polynomial, which is an important criterion for
generation of randomness. Enlisted linear CA rules can be used in both uniform and hybrid
scenarios. The characteristics matrices ELCA is explored in Sub-section 5.2. Use of
rectangular matrix in cryptography and authentication is discussed in [107]. Formation of
a concatenated matrix from two square matrices is illustrated in Equation 6.2.1. Matrix
concatenation is used to examine the characteristics of ELCA rules of high order.

௡ܶమబర ೚ೝ ఱభ =

⎣
⎢
⎢
⎢
⎡
1 0 0⋯0
0 1 0⋯0
0 0 1⋯0

⋮
0 0 0 … 1⎦

⎥
⎥
⎥
⎤

௡୶௡

⃘ ௡ܶభఱయ =

⎣
⎢
⎢
⎢
⎡
1 1 0⋯0
0 1 1⋯0
0 0 1⋯0

⋮
0 0 0 … 1⎦

⎥
⎥
⎥
⎤

௡୶௡

 (6.2.1)

Horizontal concatenation “(T (Hori))” is defined in Equation 6.2.2.

௡(మబర ೚ೝ ఱభ)೚ భఱయ(݅ݎ݋ܪ)ܶ
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 … 0 1 1 0 … 0
0 1 0 … 0 0 1 1 … 0
0 0 1 … 0 0 0 1 … 0

.

.

.
0 0 0 … 1 0 0 0 … 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

௡୶ଶ௡

 (6.2.2)

and ்ܴܽ݊݇(௛௢௥௜)೙(మబర ೚ೝ ఱభ)೚భఱయ = ݊.

Vertical concatenation “(T (Vert))” is defined in Equation 6.2.3.

124

௡ (మబర ೚ೝ ఱభ)೚భఱయ(ݐݎܸ݁)ܶ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 … 0
0 1 0 … 0
0 0 1 … 0

.

.

.
0 0 0 … 1
1 1 0 … 0
0 1 1 … 0
0 0 1 … 0

.

.

.
0 0 0 … 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ଶ௡୶௡

 (6.2.3)

and ்ܴܽ݊݇(௏௘௥௧)೙ (మబర ೚ೝ ఱభ)೚భఱయ
= ݊.

Ranks of two rectangular matrices in Equation 6.2.2 and Equation 6.2.3 possess a value
equal to the minimum value between row and column values of these matrices. Hence
maximal ranks are obtained for these two matrices [108]. Maximal rank matrices might be
used for data security and authentication applications [109]. Therefore, selected ELCA
rules are suitable for usage in OTP-based authentication.

6.2.3.1. Proposed ELCA classification

Proposed classification design has been introduced in Fig. 6.2.1.

Fig. 6.2.1. ELCA classification procedure

Start Number of
Cells

CA rule Compute
λ-parameter

Is
 ‘λ’== 0.5?

Check for
balanced HbP

and LbP

Classify as ELCA
rule

Check for
uniform CA

Usage in other
applications Usage in OTP

authentication

End

Yes

Yes
No No

Yes No Not ELCA rule

125

The number of CA cells and CA rules are initialized first. The number of cells is dependent
on the total number of OTPs required. The λ-parameter value is computed for each CA
rule. It is checked whether the λ-parameter value is equal to 0.5. Once the λ-parameter
value for ELCA rule is equal to 0.5, it is checked for balanced ‘HbP’ & ‘LbP’ conditions.
Thereafter, it is checked whether the ELCA rules are in uniform CA condition. Use of
ELCA rules in uniform condition is suggested for OTP-based authentication because the
design becomes simple and requires less storage in such cases. Use of hybrid CA
configuration for generation of ELCA is also acceptable.

6.2.3.2. Proposed design for OTP authentication

A simple design ensuring pseudo-random generated patterns is proposed. Different
uniform CA scenarios are discussed briefly in Table 6.2.1.

Table 6.2.1. Uniform CA scenario for ELCA generation

Serial
Number

CA
rule

Binary
representation

Rule
Type

Cell
Size (n)

Length
of Cycles

1. 204 11001100 Linear 37 1
2. 51 00110011 Linear 37 2
3. 153 10011001 Linear 3 4

47 8

The flowchart of the proposed OTP-based authentication design is depicted in Fig. 6.2.2.
Algorithm 6.2.1, Algorithm 6.2.2, and Algorithm 6.2.3 are designed to facilitate cost
effective OTP set generation and authentication in OTP-based communication for ‘n’
number of messages. An ‘n’ cell CA is proposed for OTP generation of ‘n’ number of
message(s). Rule selection for uniform CA is based on Table 6.2.1.

It is found form Table 6.2.1 that a flexibility of selection of number set members in OTP
set is available for ELCA based OTP authentication design. System flowchart of the
proposed OTP authentication design has been depicted in
Fig. 6.2.2.

Algorithm 6.2.1. OTP_Set_Generation

Input: Number of cell (n), ELCA generating balanced CA rule (R)

Output: Number of OTP sets (m) containing equal number of OTP members

Step 1: Start

Step 2: Initialize number of cells and ELCA generating rule (refer Table 11.1) in each cell

126

Step 3: Decompose into ‘m’ number of cycles of equal lengths

Step 4: Call Algorithm 8.2

Step 5: Communicate OTP lists to sender and receiver

Step 6: End

Algorithm 6.2.2. OTP_Assignment

Input: Equal length cycles generated in Algorithm 1 (m), Number of messages (m)

Output: OTP set with equal number of members for every message

Step 1: Start

Step 2: Assign ‘m’ number of equal length cycles to ‘m’ number of messages

Step 3: Assign states of each cycle as OTP for concerned message

Step 4: End

Algorithm 6.2.3. OTP_Authentication

Input: Lists of OTP for communication from Algorithm 11.1

Output: Authenticated sender approval for communication

Step 1: Start

Step 2: Use OTP in a sequenced manner one at a time

Step 3: If OTP is validated by receiver with time synchronization then follow Step 4

 else follow Step 2

Step 4: Successful authentication of Sender

Step 5: Establish communication

Step 6: End

127

Fig. 6.2.2. Proposed flowchart of ELCA based OTP authentication

Cost effective OTP set generation is the objective of the Algorithm 6.2.1. The primary
concern in the proposed ELCA based system is that at least the same number of OTP sets
of equal population size is generated with reference to the number of messages
participating in communication. Each OTP is valid for a time stamp; i.e., each OTP should
be used for session authentication within a specific period. It is referred to as time
synchronization in the Fig. 6.2.2 and the Algorithm 6.2.3. The OTP set so produced is
assigned to each message. Efficiency in authentication of the sender in distributed
computing has been obtained based on the method of message number dependent OTP set
generation.

In the present work, de-correlation between generated ELCA cycles is not considered as
no low cost and VLSI compatible CA model to generate multiple equal length OTP sets is
found.

Decompose into ‘2m’
number of ELCA by

Equation 6.2.1

Start

End

Determine number of
messages (n)

Configure an ‘n’–cell CA in null
boundary condition and initialize
each cell with a rule selected from

Table 6.2.1

Ensure that ‘2m’
is at least equal

to ‘n’

Assign a single ELCA
cycle as set of OTP to

each message

Communicate list of
OTPs to sender and

receiver in client server
architecture

Authenticate sender in
communication session
in time synchronized

way

No

Yes

128

Example 6.2.1.

Let a scenario where three number of messages are needed to communicate between sender
and receiver. Four number of OTP set containing two random OTPs in each set are
generated (refer Fig. 6.2.3). State number of the state is assigned as generated random OTP.

Fig. 6.2.3. Four ELCA structures for <51, 51, 51>

Generation of cost effective and equally populated ELCA based random OTP sets have
been achieved as a final outcome in usage of the combined form of two approaches (refer
Fig. 6.2.1 and Fig. 6.2.2). Unique OTP set is assigned to each message. Efficiency in
authentication of sender for message communication in distributed computing has been
achieved based on the method of message number dependent OTP set generation. De-
correlation between generated ELCA cycles were not considered as no low cost and VLSI
compatible CA model was found which is capable to produce multiple equal length OTP
sets.

6.2.4. Experimental results

Degree of randomness for ELCA generated pattern and comparison with MaxCA pattern
are described in detail in Sub-sections 5.3 and 6.1. Competitive degree of randomness is
found for ELCA patterns with respect to the MaxCA patterns. Detailed comparison of cost
effectiveness for ELCA based approach as presented in Sub-section 4.1 with reference to
the space and time complexity, is presented again in Table 6.2.2.

Table 6.2.2. Complexity comparison

Complexity Analysis
Space Space complexity for both ELCA and MaxCA are O(n) as total number of an n-cell CA

and number of states are unchanged. So, space requirement is the same for both cases.
Time Time Complexity to generate ELCA cycles is ∑O (mi), where ‘m’ denotes length of

cycle and ‘i’ denotes number of ELCA cycle; time complexity of to generate MaxCA
cycles is O(n), where ‘n’ denotes length of the MaxCA cycle.

As per Equation 2, length of ELCA cycle is lesser than length of the MaxCA cycle.
Thus, time requirement for one single cycle generation in ELCA is less than the time

requirement for a complete cycle generation in MaxCA.

0 7 2 5

1 6 3 4

129

The comparison of space and time complexities of the ELCA and the MaxCA in Table
6.2.2 suggests that the time complexity is less for ELCA while the space complexity for
both ELCA and MaxCA remains similar.

6.2.5. Summary

Cost efficiency, quality randomness and design flexibility in set of OTPs are found in
ELCA based set of OTP generation. Linear CA rule based uniform CA design in three
neighborhood null boundary condition is capable of easy implementation of modular
arithmetic, which is an essential requirement in cryptographic & authentication system.

130

CHAPTER

7

CONCLUSIONS
AND FUTURE SCOPE

131

The contributions in different chapters of this thesis are summarized in this chapter.
Major objectives of the current research are to explore the characteristics and properties
of Equal Length Cellular Automata (ELCA), inherent cost efficiencies as a
pseudo-random number generator (PRNG) and potential applications in Distributed
Computing. Design of CA based alternative PRNG using ELCA and reliability
assessment of distributed computing, ELCA based alternative design for BIST
applications along with SUT design are presented in
Chapter 3. Performance comparison among different random number generators
(RNGs) and a CA based stress testing model targeting distributed computing are
presented in Chapter 4. ELCA generating complete rule set exploration, detailed
analysis of ELCA generating linear rules along with its representation in Discrete
Mathematics and one potential application of ELCA model in energy efficient task-pull
allocation are presented in Chapter 5. ELCA system dynamics and ELCA based
classifier design for OTP based authentication in distributed computing are described
in Chapter 6. Complete investigation, synthesis and analysis of ELCA along with
potential applications of ELCA model for several distributed computing applications
are described in this entire research.

Focus of the research is to provide detailed study of ELCA and potential applications
of ELCA based cost effective model towards several distributed applications.

Important aspects of the researches reported in this dissertation may be extended for
the benefit of research community. Probable future works are as follows.

 Programmable CA (PCA) based implementation of ELCA,

 Z-parameter analysis of ELCA rules,

 Phase shift analysis of ELCA,

 ELCA based complete cryptosystem.

132

References

133

1. Wolfram, S. (1986). Theory and applications of cellular automata (Vol. 1).
Singapore: World scientific.

2. Chaudhuri, P.P., Chowdhury, D.R., Nandi, S., & Chattopadhyay, S. (1997).
Additive Cellular Automata Theory and Applications (Vol. 1). John Wiley & Sons.

3. Chandy, K. M., Kiniry, J., Rifkin, A., & Zimmerman, D. (1998). A framework
for structured distributed object computing, Parallel Computing, Journal of Parallel
Computing-Special Issue on applications, 24(12-13), 1901-1922.

4. Distributed Computing. http://distributedcomputing.info/

5. Nandi, S., Kar, B. K., & Chaudhuri, P. P. (1994). Theory and applications of
cellular automata in cryptography. IEEE transactions on computers, 43(12), 1346-
1357.

6. Ganguly, N., Sikdar, B. K., Deutsch, A., Canright, G., & Chaudhuri, P. P.
(2003). A survey on cellular automata.

7. Ghosh, S., Maiti, N. S., Pal Chaudhuri, P., & Sikdar, B. K. (2011). On invertible
three neighborhood null-boundary uniform cellular automata. Complex
Systems, 20(1), 47.

8. Ghosh, S., Bachhar, T., Maiti, N. S., Mitra, I., & Chaudhuri, P. P. (2010,
September). Theory and application of equal length cycle cellular automata (ELCCA)
for enzyme classification. In International Conference on Cellular Automata (pp. 46-
57). Springer Berlin Heidelberg.

9. Aguiar, I., & Severino, R. (2015). Two Elementary Cellular Automata with a
New Kind of Dynamic. Complex Systems, 24(2), 113-125.

10. Mitra, A., Kundu, A., Chattopadhyay, M., & Chattopadhyay, S. (2015). An
Analysis of Equal Length Cellular Automata (ELCA) generating Linear Rules for
Applications in Distributed Computing. Journal of Cellular Automata, 10.

11. Mitra, A., & Teodorescu, H. N. (2016). Detailed Analysis of Equal Length
Cellular Automata with Fixed Boundaries. Journal of Cellular Automata, 11.

12. Zio, E. (2005). Solving advanced network reliability problems by means of
cellular automata and Monte Carlo sampling. Reliability Engineering & System
Safety, 89(2), 219-226.

13. Zio, E., Podofillini, L., & Zille, V. (2006). A combination of Monte Carlo
simulation and cellular automata for computing the availability of complex network
systems. Reliability Engineering & System Safety, 91(2), 181-190.

134

http://distributedcomputing.info/

14. Canizes, B., Soares, J., Vale, Z., & Khodr, H. M. (2012). Hybrid fuzzy Monte
Carlo technique for reliability assessment in transmission power
systems. Energy, 45(1), 1007-1017.

15. Mitra, A., & Kundu, A. (2012, September). CA based cost optimized PRNG for
Monte-Carlo simulation of distributed computation. In Proceedings of the CUBE
International Information Technology Conference (pp. 332-337). ACM.

16. Kokolakis, I., Andreadis, I., & Tsalides, P. (1997). Comparison between cellular
automata and linear feedback shift registers based pseudo-random number
generators. Microprocessors and Microsystems, 20(10), 643-658.

17. Das S., Sikdar B. K., Chaudhuri P. P., (2004) Nonlinear CA Based Scalable
Design of On-Chip TPG for Multiple Cores, Asian Test Symposium, Taiwan.

18. Das S., Rahaman H., Sikdar B. K, (2005) Cost Optimal Design of Nonlinear
CA Based PRPG for Test Applications, IEEE 14th Asian Test Symposium, India.

19. Jamuna, S., & Agrawal, V. K. (2011). Implementation of BIST structure using
VHDL for VLSI circuits. International Journal of Engineering Science and
Technology, 3(6).

20. Mitra, A., & Kundu, A. (2012). Cost optimized approach to random numbers in
cellular automata. Advances in Computer Science, Engineering & Applications, 609-
618.

21. Mitra, A., & Kundu, A. (2012). Cost optimized design technique for pseudo-
random numbers in cellular automata. International Journal of Advanced Information
Technology, 2(3), 21-36.

22. Mitra, A., & Kundu, A. (2014). Cost Optimized Random Sampling in Cellular
Automata for Digital Forensic Investigations. Computational Intelligence in Digital
Forensics: Forensic Investigation and Applications: Studies in Computational
Intelligence, 555, 79-95.

23. Mitra, A., Kundu, A., & Das, C. (2014). Random number generators:
performance comparison of ELCA and MaxCA. CSI transactions on ICT, 2(2), 117-
127.

24. Mitra, A., Kundu, A., & Das, C. (2014, February). Cost effective PRNG using
ELCA: A BIST application. In Automation, Control, Energy and Systems (ACES),
2014 First International Conference on (pp. 1-6). IEEE.

25. Cukier, M., Chandra, R., Henke, D., Pistole, J., & Sanders, W. H. (1999). Fault
injection based on a partial view of the global state of a distributed system. In Reliable
Distributed Systems, 1999. Proceedings of the 18th IEEE Symposium on (pp. 168-
177). IEEE.

135

26. Trodhandl, C., & Weiss, B. (2008). A concept for hybrid fault injection in
distributed systems. Windsor: TAIC PART Publishing.

27. Hsu, I., Gallagher, A., Le, M., & Tamir, Y. (2010). Using virtualization to
validate fault-tolerant distributed systems. In Int. Conf. on Parallel and Distributed
Computing and Systems (pp. 210-217).

28. Ulrich, A. W., Zimmerer, P., & Chrobok-Diening, G. (1999). Test architectures
for testing distributed systems. In Proceedings of the 12th International Software
Quality Week.

29. Ulrich, A. W., & Chanson, S. T. (1996). An approach to testing distributed
software systems. In Proceedings of the 15th International Symposium on Protocol
Specification, Testing, and Verification, Warsaw, Poland.

30. Mitra, A., Kundu, A., Chattopadhyay, M., & Chattopadhyay, S. (2014). A novel
design with Cellular Automata for System-Under-Test in Distributed
Computing. Journal of Convergence Information Technology, 9(6), 55.

31. Seredynski, F., & Zomaya, A. Y. (2002). Sequential and parallel cellular
automata-based scheduling algorithms. IEEE Transactions on Parallel and Distributed
Systems, 13(10), 1009-1023.

32. Laghari, M. S., & Khuwaja, G. A. (2012). Scheduling techniques of processor
scheduling in cellular automaton. In Proc. Int. Conf. on Intelligent Computational
Systems (pp. 96-100).

33. Laghari, M. S., & Khuwaja, G. A. (2012, January). Processor Scheduling on
Parallel Computers. In Proc. Int. Conf. on Computer, Electrical, and Systems Sciences,
and Engineering, Abu Dhabi.

34. Agrawal, P., & Rao, S. (2012, March). Energy-aware scheduling of distributed
systems using cellular automata. In Systems Conference (SysCon), 2012 IEEE
International (pp. 1-6). IEEE.

35. Mitra, A., Kundu, A., & Chattopadhyay, M. (2014, December). Energy
Efficient Task-Pull Scheduling Using Equal Length Cellular Automata in Distributed
Computing. In Emerging Applications of Information Technology (EAIT), 2014
Fourth International Conference of (pp. 40-45). IEEE.

36. Fischer, P. C. (1965). Generation of primes by a one-dimensional real-time
iterative array. Journal of the ACM (JACM), 12(3), 388-394.

37. Mazoyer, J., & Terrier, V. (1999). Signals in one-dimensional cellular
automata. Theoretical Computer Science, 217(1), 53-80.

136

38. Umeo, H., & Kamikawa, N. (2002). A design of real-time non-regular sequence
generation algorithms and their implementations on cellular automata with 1-bit inter-
cell communications. Fundamenta Informaticae, 52(1-3), 257-275.

39. Umeo, H., & Kamikawa, N. (2003). Real-time generation of primes by a 1-bit-
communication cellular automaton. Fundamenta Informaticae, 58(3-4), 421-435.

40. Umeo, H., Miyamoto, K., & Abe, Y. (2010, November). A construction of
smallest real-time prime generators on cellular automata. In Computer Technology and
Development (ICCTD), 2010 2nd International Conference on (pp. 338-342). IEEE.

41. Mitra, A., & Kundu, A. (2013). Cost optimized set of Primes Generation with
Cellular Automata for Stress Testing in Distributed Computing. Procedia
Technology, 10, 365-372.

42. Mukherjee, M., Ganguly, N., & Chaudhuri, P. (2002). Cellular automata based
authentication (CAA). Cellular Automata, 259-269.

43. Jeon, J. C., Kim, K. W., & Yoo, K. Y. (2006). Non-group cellular automata
based one time password authentication scheme in wireless networks. Secure Mobile
Ad-hoc Networks and Sensors, 110-116.

44. Yampolskiy, R. V., Méndez, J. D. R., & Hindi, M. (2014). Password Protected
Visual Cryptography via Cellular Automaton Rule 30. Trans. Data Hiding and
Multimedia Security, 9, 57-67.

45. Mitra, A., Kundu, A., Chattopadhyay, M., & Chattopadhyay, S. (2014, August).
Dynamics computation of Equal Length Cellular Automata (ELCA) rules.
In Electronics Engineering & Computer Science, 2014Emerging Applications of
Information Technology (EAIT), 2014 Fifth International Conference of (pp. 214-220).
Elsevier.

46. Mitra, A., Kundu, A., Chattopadhyay, M., & Chattopadhyay, S. (2017). A cost-
efficient one time password-based authentication in cloud environment using equal
length cellular automata. Journal of Industrial Information Integration, 5, 17-25.

47. Baetens, J. M., & De Baets, B. (2010, September). Towards generalized
measures grasping CA dynamics. In International Conference on Cellular
Automata (pp. 177-187). Springer Berlin Heidelberg.

48. True Random Numbers. http://www.random.org.

49. Wolfram, S. (2008). Wolfram mathematica tutorial collection: random number
generation.

50. Ganguly, N., Sikdar, B. K., & Chaudhuri, P. P. (2001). Theory of additive
cellular automata. Fundamenta Informaticae, (21), 1001-1021.

137

http://www.random.org.

51. Ganguly, N., Nandi, A., Das, S., Sikdar, B. K., & Chaudhuri, P. P. (2002,
November). An evolutionary strategy to design an on-chip test pattern generator
without prohibited pattern set (PPS). In Test Symposium, 2002.(ATS'02). Proceedings
of the 11th Asian (pp. 260-265). IEEE.

52. Tirthapura, S., & Woodruff, D. P. (2011, September). Optimal random sampling
from distributed streams revisited. In International Symposium on Distributed
Computing (pp. 283-297). Springer Berlin Heidelberg.

53. Hortensius, P. D., McLeod, R. D., & Card, H. C. (1989). Parallel random
number generation for VLSI systems using cellular automata. IEEE Transactions on
Computers, 38(10), 1466-1473.

54. Wolfram, S. (1986). Random sequence generation by cellular
automata. Advances in applied mathematics, 7(2), 123-169.

55. Robert G. Brown. dieharder: A Random Number Test Suite, 2006a.
http://www.phy. duke.edu/~rgb/General/dieharder.php. C program archive dieharder,
version 1.4.24.

56. Das, S., Kundu, A., & Sikdar, B. K. (2004, November). Nonlinear CA based
design of test set generator targeting pseudo-random pattern resistant faults. In Test
Symposium, 2004. 13th Asian (pp. 196-201). IEEE.

57. Das, S., Kundu, A., Sikdar, B. K., & Chaudhuri, P. P. (2005). Design of
nonlinear CA based TPG without prohibited pattern set in linear time. Journal of
Electronic Testing, 21(1), 95-107.

58. Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of the
American statistical association, 44(247), 335-341.

59. Zio, E., Podofillini, L., & Zille, V. (2006). A combination of Monte Carlo
simulation and cellular automata for computing the availability of complex network
systems. Reliability Engineering & System Safety, 91(2), 181-190.

60. Agrawal, V. D., Kime, C. R., & Saluja, K. K. (1993). A tutorial on built-in self-
test. I. Principles. IEEE Design & Test, 10(1), 73-82.

61. Seth, S. C., Agrawal, V. D., & Farhat, H. (1990). A statistical theory of digital
circuit testability. CSE Journal Articles, 32.

62. Wang, S. (2007). A BIST TPG for low power dissipation and high fault
coverage. IEEE transactions on very large scale integration (VLSI) systems, 15(7),
777-789.

63. Lee, K.-J. Introduction to VLSI testing.
http://www.ece.uc.edu/~wjone/intro.pdf.

138

http://www.phy.
http://www.ece.uc.edu/~wjone/intro.pdf.

64. BIST Analyzer & Diagonyzer (BISTAD). http://www.pld.ttu.ee/applets/bista.

65. Alvarez, G. A., & Cristian, F. (1997, May). Centralized failure injection for
distributed, fault-tolerant protocol testing. In Distributed Computing Systems, 1997.,
Proceedings of the 17th International Conference on (pp. 78-85). IEEE.

66. Karlsson, J., Folkesson, P., Arlat, J., Crouzet, Y., & Leber, G. (1995).
Integration and comparison of three physical fault injection techniques. In Predictably
Dependable Computing Systems (pp. 309-327). Springer Berlin Heidelberg.

67. Dawson, S., Jahanian, F., Mitton, T., & Tung, T. L. (1996, June). Testing of
fault-tolerant and real-time distributed systems via protocol fault injection. In Fault
Tolerant Computing, 1996., Proceedings of Annual Symposium on (pp. 404-414).
IEEE.

68. Steininger, A. (2000). Testing and built-in self-test–A survey. Journal of
systems Architecture, 46(9), 721-747.

69. Fushimi, M., & Hadano, T. (2008). Optimal Configurations of Cell Automata
to Generate Test Stimuli for VLSI.

70. De la Guia Martinez, D., & Dominguez, A. P. (1999). Pseudorandom number
generation based on nongroup cellular automata. In Security Technology, 1999.
Proceedings. IEEE 33rd Annual 1999 International Carnahan Conference on (pp. 370-
376). IEEE.

71. Prime95. http://en.wikipedia.org/wiki/Prime95.

72. Prime-Generating Cellular Automaton.
http://demonstrations.wolfram.com/PrimeGeneratingCellularAutomaton/

73. Maji, P., Shaw, C., Ganguly, N., Sikdar, B. K., & Chaudhuri, P. P. (2003).
Theory and application of cellular automata for pattern classification. Fundamenta
Informaticae, 58(3-4), 321-354.

74. Das, D., & Misra, R. (2011). Programmable cellular automata based efficient
parallel AES encryption algorithm. arXiv preprint arXiv:1112.2021.

75. Wolfram, S. (2002). A new kind of science (Vol. 5). Champaign: Wolfram
media.

76. Prime-Generating Cellular Automaton.
http://demonstrations.wolfram.com/PrimeGeneratingCellularAutomaton/

77. Stress (torture) Testing. https://en.wikipedia.org/wiki/Stress_testing

78. Fermat Primality Testing. http://en.wikipedia.org/wiki/Fermat_primality_test.

139

http://www.pld.ttu.ee/applets/bista.
http://en.wikipedia.org/wiki/Prime95.
http://demonstrations.wolfram.com/PrimeGeneratingCellularAutomaton/
http://demonstrations.wolfram.com/PrimeGeneratingCellularAutomaton/
https://en.wikipedia.org/wiki/Stress_testing
http://en.wikipedia.org/wiki/Fermat_primality_test.

79. Rajasekaran, S., & Pai, G. V. (2003). Neural networks, fuzzy logic and genetic
algorithm: synthesis and applications (with cd). PHI Learning Pvt. Ltd.

80. Mitchell, M., Crutchfield, J. P., & Das, R. (1996, May). Evolving cellular
automata with genetic algorithms: A review of recent work. In Proceedings of the First
International Conference on Evolutionary Computation and Its Applications
(EvCA’96).

81. Chavoya, A., & Duthen, Y. (2006, July). Using a genetic algorithm to evolve
cellular automata for 2D/3D computational development. In Proceedings of the 8th
annual conference on Genetic and evolutionary computation (pp. 231-232). ACM.

82. Itai, A. (2001). Generating permutations and combinations in lexicographical
order. Journal of the Brazilian Computer Society, 7(3), 65-68.

83. Gu, J., Purdom, P. W., Franco, J., & Wah, B. W. (1996). DIMACS Series in
Discrete Mathematics and Theoretical Computer Science.

84. Weisstein E. W., Tessellation, MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Tessellation.html.

85. Insall M., Weisstein Eric W., Lattice, MathWorld--A Wolfram Web
Resource. http://mathworld.wolfram.com/Lattice.html.

86. Weisstein E. W., Injection, MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Injection.html.

87. Weisstein E. W., Surjection, MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Surjection.html.

88. Weisstein E. W., Bijection, MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Bijection.html.

89. Bijection, Injection and Surjection.
http://en.wikipedia.org/wiki/Bijection,_injection_and_surjection.

90. Insall M., "Lattice Isomorphism" From MathWorld--A Wolfram Web
Resource, created by E. W. Weisstein.
http://mathworld.wolfram.com/LatticeIsomorphism.html.

91. Polynomial over the Rational Field.

http://cims.nyu.edu/~kiryl/Algebra/Section_3.10--
Polynomials_Over_The_Rational_Field.pdf.

92. Wang, D. K., & Compagner, A. (1993). On the use of reducible polynomials as
random number generators. Mathematics of Computation, 60(201), 363-374.

140

http://mathworld.wolfram.com/Tessellation.html.
http://mathworld.wolfram.com/Lattice.html.
http://mathworld.wolfram.com/Injection.html.
http://mathworld.wolfram.com/Surjection.html.
http://mathworld.wolfram.com/Bijection.html.
http://en.wikipedia.org/wiki/Bijection,_injection_and_surjection.
http://mathworld.wolfram.com/LatticeIsomorphism.html.
http://cims.nyu.edu/~kiryl/Algebra/Section_3.10--

93. Cenzer, D., & Remmel, J. B. (2013, January). Sub-computable bounded
pseudorandomness. In International Symposium on Logical Foundations of Computer
Science (pp. 104-118). Springer Berlin Heidelberg.

94. Bojinov, H., Sanchez, D., Reber, P., Boneh, D., & Lincoln, P. (2012).
Neuroscience meets cryptography: designing crypto primitives secure against rubber
hose attacks. In Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12), (pp 129-141).

95. Randomness of statistical sampling: the runs' test.
https://home.ubalt.edu/ntsbarsh/business-stat/otherapplets/Randomness.htm.

96. Test for randomness: the runs' test. https://home.ubalt.edu/ntsbarsh/business-
stat/opre504.htm#rrunstest.

97. Gary, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide
to the Theory of NP-completeness.

98. NP Complete problems.
http://www.cs.berkeley.edu/~vazirani/algorithms/chap8.pdf

99. Parallel Programming Techniques.
http://jcsites.juniata.edu/faculty/rhodes/smui/parex.htm.

100. Grid Matrix Simulator. http://research.nektra.com/Grid_Matrix.

101. Mocskos, E. E., Yabo, P., Turjanski, P. G., & Slezak, D. F. (2012). Grid Matrix:
a grid simulation tool to focus on the propagation of resource and monitoring
information. Simulation.

102. SimGrid. http://simgrid.gforge.inria.fr/

103. Li, W., & Packard, N. (1990). The structure of the elementary cellular automata
rule space. Complex Systems, 4(3), 281-297.

104. Langton, C. G. (1990). Computation at the edge of chaos: phase transitions and
emergent computation. Physica D: Nonlinear Phenomena, 42(1), 12-37.

105. Li, W., & Packard, N. (1990). The structure of the elementary cellular automata
rule space. Complex Systems, 4(3), 281-297.

106. Kshemkalyani, A. D., & Singhal, M. (2011). Chapter 16: Distributed
computing: principles, algorithms, and systems. Cambridge University Press. 598-628.

107. Transposition Cipher.
http://global.britannica.com/EBchecked/topic/603174/transposition-cipher.

141

https://home.ubalt.edu/ntsbarsh/business-stat/otherapplets/Randomness.htm.
https://home.ubalt.edu/ntsbarsh/business-
http://www.cs.berkeley.edu/~vazirani/algorithms/chap8.pdf
http://jcsites.juniata.edu/faculty/rhodes/smui/parex.htm.
http://research.nektra.com/Grid_Matrix.
http://simgrid.gforge.inria.fr/
http://global.britannica.com/EBchecked/topic/603174/transposition-cipher.

108. Injective and Surjective.
http://www.math.lsa.umich.edu/~speyer/417/InjectiveSurjective.pdf

109. Gaborit, P., Ruatta, O., Schrek, J., & Zémor, G. (2014, October). RankSign: an
efficient signature algorithm based on the rank metric. In International Workshop on
Post-Quantum Cryptography (pp. 88-107). Springer International Publishing.

110. Kshemkalyani, M. Singhal, Chapter 16: Authentication in distributed system,
distributed computing: principles, algorithms and systems, Cambridge University
Press, (2011) 598-628.

111. S. K. H. Islam, G. P. Biswas, K.-K. R. Choo, Cryptanalysis of an improved
smartcard-based remote password authentication scheme, Information Sciences
Letters, 3.1 (2014) 35-40.

112. Z. Siddiqui, A. H. Abdullah, M. K. Khan, S. Alghamdi, Smart environment as
a service: three factor cloud based user authentication for telecare medical information
system, Journal of medical systems, 38.1 (2014) 1-14.

113. S. Kolhe, S. Dhage, Trusted platform for support services in cloud computing
environment, Int. Conf. System Engineering and Technology (ICSET), Bandung,
(2012) 1-6.

114. J. Timpner, D. Schürmann, L. Wolf, Secure smartphone-based registration and
key deployment for vehicle-to-cloud communications, ACM workshop on Security,
privacy & dependability for cyber vehicles, (2013) 31-36.

115. H. J. Yang, V. Costan, N. Zeldovich, S. Devadas, Authenticated storage using
small trusted hardware, ACM workshop Cloud Computing Security (2013) 35-46.

116. L. A. Dunning, R. Kresman, Privacy preserving data sharing with anonymous
id assignment, IEEE Tran. Information Forensics and Security, 8.2 (2013) 402-413.

142

http://www.math.lsa.umich.edu/~speyer/417/InjectiveSurjective.pdf

Appendix

143

A

AI- Artificial Intelligence

B

BIST- Built-In Self-Test

C

CUT- Circuit-Under-Test

CA- Cellular Automata

D

DFI- Digital Forensics Investigation

E

ELCA- Equal Length Cellular Automata

F

FI- Fault Insertion

H

HbP- Higher bit Position

I

IC- Integrated Circuit

L

LbP- Lower bit Position

LFSR- Linear Feedback Shift Register

M

MaxCA- Maximum Length Cellular Automata

M-C- Monte-Carlo

N

NoC- Network on Chip

NBCA- Null Boundary Cellular Automata

NP- Not Polynomial

144

O

ORA- Output Response Analyzer

OTP- One Time Password

P

P- Polynomial

PBCA- Periodic Boundary Cellular Automata

PRNG-Pseudo-Random Number Generator

PRPG- Pseudo-Random Pattern generator

PPS- Prohibited Pattern Set

R

RNG- Random Number Generator

RRNG- Recursive-Random Number Generator

S

SoC- System on Chip

SUT- System-Under-Test

T

TCS- Theoretical Computer Science

TRNG- True-Random Number Generator

TRPG- True-Random Pattern Generator

TPG- Test Pattern Generator

TF- Transition Faults

V

VLSI- Very Large Scale Integration

145

Author’s Biography

146

Mr. Arnab Mitra has completed his school level education form Katwa Kashi Ram Das
Institution, Katwa-713130, India. He has qualified his Secondary level education from the
West Bengal Board of Secondary Education, India in 1996 followed by
Higher Secondary level education in 1998 from West Bengal Council of
Higher Secondary Education, India. He has received his under-graduate degree in
B. E. (Information Technology) in 2003 from University of North Bengal,
Siliguri-734430, India followed by M. Tech (Computer Science & Engineering) in 2010
from West Bengal University of Technology, Kolkata-700064, India. He has been
registered for his Ph.D. (Engg.) with Jadavpur University, Kolkata-700032, India. He has
received and availed the prestigious EU- Erasmus Mundus sponsored ‘cLink’ Ph.D.
mobility (grant agreement no. 212-26451001-001-EM action 2 partnerships) for the
session July 2015 to May 2016 at “Gheorghe Asachi” Technical University of Iasi,
Romania.

His research area includes Cellular Automata, Distributed Computing, Artificial
Intelligence. He has served as invited reviewer for several international journals, and
conferences of international repute.

147

	begging part
	main part

