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Abstract 

Major concern of engineering and scientific applications is to reduce the computing 
cost in distributed computing by introducing low cost physical design, reduced energy 
consumption and reusable model. Cheap and generalized Equal Length Cellular 
Automata (ELCA) based model is a good choice for modelling of several distributed 
computing applications. ELCA is of special interest for its characteristics. ELCA is a 
special classification of Cellular Automata (CA) where all generated CA subspaces 
(cycles) are of equal lengths. A detailed study on ELCA characteristics, synthesis, 
analysis and classification along with potential applications of ELCA in distributed 
computing have been described in this thesis. Inherent strengths of ELCA based models 
in random pattern generation have also been described. ELCA based simple solutions 
enhance cost efficiencies in terms of time complexity, space complexity, design 
complexity and searching of Prohibited Pattern Set (PPS). Three neighbourhood based 
CA structures in null boundary scenario have been considered for generation of ELCA 
cycles. A cost-efficient pseudo-random number generator in CA is presented in this 
thesis. A new approach towards exclusion of Prohibited Pattern Set (PPS) from 
randomness generating patterns is discussed. An effective approach for set of primes 
generation in null boundary CA scenario is presented. A complete set of CA rules for 
ELCA generation and synthesis of ELCA rules are described. Set of necessary and 
sufficient conditions of CA rules for generation of ELCA cycles are described. An 
analysis on ELCA linear rules is carried out to investigate the properties of the 
characteristics matrix and characteristics polynomials. Presence of primitivity or, 
recursive primitivity in ELCA characteristics polynomial is confirmed, which is a 
prerequisite criterion for generation of randomness. Mapping in ELCA generated 
patterns is explored using discrete mathematics representations. Detailed analysis on 
the dynamics of ELCA rules is presented. All the properties of CA and ELCA so 
developed have been used to design a cost-efficient solution for different distributed 
applications such as test pattern generation for reliability assessment, built-in self-test 
(BIST), system-under-test (SUT), set of primes generation, energy efficient job 
scheduling, and one time password (OTP) generation in cloud environment. 
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1.1. Introduction 

Cellular Automata (CA) are used as a tool for modelling of any dynamic complex 
system [1, 2]. CA are discrete over space and time. Several researchers have carried out 
investigations on CA rules. S. Wolfram classified CA into four groups based on their 
behaviors [1] which is described in Table 1.1.1. 

Table 1.1.1. CA classification by S. Wolfram 

CA Class Observations 
I. Homogeneous state spaces are evolved to limit points. 
II. Simple separated periodic structures are evolved to limit cycles. 
III. Chaotic aperiodic patterns are produced; chaotic behaviors of the kind 

associated with strange attractor are evolved. 
IV. Complex patterns of localized structures are evolved. 

In this thesis, we have first explored the set of CA rules responsible for generation of 
Equal Length Cellular Automata (ELCA), their detailed characteristics and dynamics 
and some uses in selected Distributed Computing Applications. 

Distributed Computing [3, 4] is a new computing technique that solves a problem 
through collaboration of geographically distant computing units by performing specific 
tasks in less time. In such computing, a single algorithm is parallelized in a 
sophisticated manner and then executed by several computing units. All the partial 
solutions of these tasks are combined to form a single solution. Several distributed 
applications are required to be processed in a cost-effective and reliable manner.  

Studies with CA in recent years explore that they are also capable of modelling different 
applications in distributed computing as they are elegant mathematical structures which 
can have a low cost, and simple VLSI (very large-scale integration) implementation. In 
this thesis, we have focussed on CA based solutions for some chosen distributed 
applications.   

1.2. Studies on ELCA 
In the past, many researchers have worked on several aspects of group, and nongroup 
CA.  S. Nandi et al. have introduced non-maximal length CA for applications in 
cryptosystems [5]. P. P. Chaudhuri et al. have discussed about maximum length CA, 
theory and applications of several additive CA rules [2]. N. Ganguly et al. have 
presented a detailed survey on CA, and its potential applications [6]. S. Ghosh et al. 
have presented invertible CA, and equal length cycle CA as a special case of invertible 
CA for potential application in protein synthesis [7, 8]. I. Aguiar et al. have presented 
CA dynamics for rule ‘26’, and ‘154’ at different boundary conditions [9]. We have 
observed that few detailed studies on equal length cycles generated by group CA and 
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their detailed characteristics, dynamics at different boundary were available in the 
literature which may be beneficial for modeling a number of distributed applications.  

We have studied Equal Length Cellular Automata (ELCA) and their properties. An  
n-cell CA produces all ‘2n’ states in the form of equal length cycles. Mathematically, 
generation of ELCA is described in following Equation 1.1 [10].  

2௡ = 2௠ ∗ 2௡ି௠ for n ≥ 1 and m = 1,2,3, … , (n − 1)   (1.1) 

where, ‘ n2 ’ is total number of states of an n-cell CA, ‘ m2 ’ is total number of equal 
length cycles and ‘ nm2 ’ is length of cycles. 

We have found that ELCA structures are produced from balanced CA rules at null 
boundary scenario. We have explored Linear CA rules and Complemented linear rules 
for ELCA generation.  We have also shown that fixed length cycles are produced with 
rule 51, and 204; variable length cycles are found with rule 153. It was further 
concluded that generation of equal length cycles is not dependent on boundary values 
of CA. We have developed a characteristics matrix for uniform ELCA, and 
characteristics matrices for a number of hybrid ELCA.  

We have also shown that the following properties hold for ELCA [10, 11]. 

 Minimal polynomials for an n-cell uniform CA using rule ‘204’ and ‘51’ are the 
same. 

 Characteristic polynomials for an n-cell uniform CA using rule ‘204’ and ‘51’ 
are same. 

 Variable length ELCA can be generated from hybrid CA if the characteristic 
matrix has a form of tri-diagonal matrix with all ‘1’ in diagonal positions, and 
on-diagonal or off-diagonal positions are occupied by “1, 0” pattern sequence. 
Corresponding determinant of the characteristic matrix is equal to one. 

 Variable length ELCA can be generated from hybrid CA if characteristic matrix 
has a form of tri-diagonal matrix with all ‘1’ in diagonal positions, and on-
diagonal or off-diagonal positions are occupied by “1, 1, 0” pattern sequence. 
Corresponding determinant of characteristic matrix is equal to one. 

 ELCA cannot be generated from hybrid CA if characteristic matrix has a form 
of tri-diagonal matrix with all ‘1’ in diagonal positions, and on-diagonal and 
off-diagonal positions are occupied by “1, 0” or “1, 1, 0” pattern sequence. 
Corresponding determinant of characteristic matrix is equal to zero. 

Following pair of necessary and sufficient conditions are found for group CA to 
distinguish between the generation of Maximum-length CA (MaxCA) and ELCA [10]. 

4



 

 Necessary condition for ELCA and MaxCA generation: determinant of 
[݊×݊]  characteristic matrix should be equal to one. 

 Sufficient condition for ELCA generation: trace of [݊×݊] characteristic 
matrix should be equal to ‘n’. 

 Sufficient condition for MaxCA generation: trace of [݊×݊] characteristic 

matrix should be equal to ‘
2
n ’. 

1.3. ELCA based models targeting Distributed Computing 
Applications 
We have considered the following distributed applications in which group CA 
specifically ELCA can be effectively used. 

 Pseudo-random pattern generation in Monte-Carlo simulation for 
assessment of reliability 

 System-Under-Test (SUT) 

 Equally populated task pull allocation for job scheduling 

 Set of Primes generation for Stress testing 

 OTP based authentication in cloud environment 

In the past, several researchers have worked on CA based reliability assessment. E. Zio 
has focused on solutions of advanced network reliability problems by means of CA and 
Mont Carlo sampling [12]. E. Jio et al. have focused on combinational usage of CA and 
Monte-Carlo simulator for computing the availability of complex network systems 
[13]. B. Canizes et al. have focused on hybrid fuzzy monte-carlo method towards 
reliability assessment [14]. In all these above-mentioned works, we have observed that 
heterogeneous models have been considered. Moreover, cost effectiveness has not been 
focused in randomness generation. We have developed a CA based cost optimized 
PRNG for Monte-Carlo simulation in distributed computation [15]. 

Several researchers have worked on built-in self-test (BIST) pattern generation. I. 
Kokolakis, et al. have focused on competitive results for CA patterns with reference to 
linear feedback shift register (LFSR) generated patterns in built-in self-test (BIST) [16]. 
S. Das et al. focused on non-linear CA based PPS free BIST test pattern generation [17, 
18]. S. Jamuna has focused on VHDL and LFSR uses in BIST architecture [19]. After 
going through these research papers, we have found out that LFSR based models or 
heterogeneous CA models have primarily been considered. Moreover, cost 
effectiveness has not been focused in randomness generation and it must be noted that 
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PPS exclusion process is crucial. We have developed a cost effective PRNG using 
ELCA and have applied that towards BIST generation [20-24]. 

In terms of past works in System-under-test (SUT), efficiencies for fault insertion (FI) 
usage in SUT have been examined by M. Cukier et al. [25]. C. Tr¨odhandl et al. have 
focused on conceptual FI framework based on hybrid hardware-software method of 
fault injection for distributed system [26]. I. Hsu. et al. have focused on combined usage 
of software-implemented FI and virtualization for an automated validation and analysis 
of distributed SUT [27]. A.W. Ulrich et al. have focused on system test architecture for 
distributed computing [28, 29]. We have observed that CA models have not been used. 
Besides, randomness for test cases in SUT architecture has not been assured, and PPS 
exclusion has not been focused for test case generation. We have presented CA based 
SUT for Distributed Computing in [30]. 

CA based Job Scheduling has been another area of active research. F. Seredynski et al. 
have proposed a CA based genetic algorithmic approach for multi-processor scheduling 
in distributed environment [31]. Co-evolutionary genetic algorithm has been introduced 
for the definition of a program graph neighbourhood for determining rules in distributed 
scheduling problems by M.S. Laghari et al. [32, 33]. P. Agrawal et al. have discussed 
periodic boundary CA based optimal scheduling in distributed computing [34]. We 
have observed that heterogeneous models, and scheduling with nonlinear CA rules have 
been introduced. Besides, randomness has not been focused in generated job pulls. 
Generation of equal length task pull has also not been focused. We have presented an 
energy efficient task-pull scheduling for Distributed Computing using ELCA [35]. 

Prime generation has been another interesting research topic. Generation of Primes by 
a one-dimensional real-time iterative array has been focused by P. C. Fischer [36]. 
Signals in one-dimensional cellular automata has been introduced by J. Mozoyer 
targeting prime generation [37]. Prime generation with CA has been described by H. 
Umeo et al [38-40]. We have observed that individual prime number generation has 
been attempted but a set of random prime generation has not been properly dealt with. 
Moreover, cost effectiveness of the generation algorithm has not been considered. We 
have designed a cost optimized algorithm for generating set of primes using Cellular 
Automata which can be applied in stress testing of distributed applications [41]. 

Lots of research works on CA based authentication and one time password (OTP) 
generation have gained importance. S. Nandi et al. have presented group CA based data 
security and authentication [5]. M. Mukherjee et al. have presented CA based 
authentication [42]. J. C. Jeon et al. have presented non-group CA based one time 
password (OTP) authentication scheme in wireless networks [43]. R. Yampolskiy et al. 
have presented CA rule 30 based data security and authentication [44]. We have 
observed that controllable generation of multiple OTP sets was not considered. 
Generation of equally populated OTP sets was also not discussed. We have explored 
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ELCA dynamics and designed a cost efficient One Time Password-based authentication 
in cloud environment using ELCA [45, 46]. 

1.4. Organisation of dissertation 
Organisation of this dissertation is as follows. A brief introduction to CA, randomness 
and MaxCA are presented in Chapter 2. Design of a novel CA based PRNG and its 
potential application in reliability assessment, BIST, and SUT are explored in Chapter 
3. Performance comparison among several random number generators (RNGs) is 
presented in Chapter 4. CA based set of primes generation targeting stress testing in 
distributed computing is also described in Chapter 4. A set of CA rules responsible for 
generation of ELCA are explored in Chapter 5 along with a detailed analysis of ELCA 
generating rules and its finite state machine (FSM) representation using discrete 
mathematics. A potential application (energy efficient task-pull allocation in distributed 
computing) using ELCA model is also presented in Chapter 5. The dynamics of ELCA 
rules and its potential application in OTP based authentication are presented in Chapter 
6. Concluding remarks and future scope are presented in Chapter 7. Literature survey 
of the related topics have been reported in each of these chapters. 
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2.1. Cellular Automata 

2.1.1. Introduction 

A Cellular Automaton (pl. Cellular Automata, in short CA) is a discrete mathematical 
model. CA is referred to as a collection of ‘valued’ cells on a grid of specified shape 
(dimension). CA evolves through several discrete time steps according to a set of rules; 
each of the cells is in one of a finite number of states, such as either value “1 (ON)” or 
value “0 (OFF)”. A typical hardware implementation of CA cell using flip flop is 
presented in Fig. 2.1.1 [2]. 

 

Fig. 2.1.1. A typical hardware implementation of CA [2] 

A one-dimensional CA is defined as Equation 2.1.1 [37]. 

( ,#, )L,CA QM 
                                            (2.1.1) 

here “Q” is the finite set of all states; “#” is a special border state, but never contained 
in “Q”;  

“L” is another state such that δ (L, L, L) = δ (#, L, L) = L (the quiescent state);  

and transition function “δ” is a mapping as defined in Equation 2.1.2 [37]. 

 :    # * *Q U Q Q Q                                    (2.1.2) 

Null boundary and periodic boundary CA- If leftmost and rightmost cell are 
grounded, then it is referred to as null boundary CA. In periodic boundary condition, 
the leftmost cell and rightmost cell of the CA are connected instead of being grounded. 

A typical N-cell null boundary CA is presented in Fig. 2.1.2 [2]. 

Cl 
                    Flip flop               
D                                                   Q 

Combinational  logic 

From right neighbor From left neighbor 

Clock 
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Fig. 2.1.2. Typical n-cell null boundary CA structure [2] 

Schematic diagram of 3-cell null boundary CA scenario is presented in Fig. 2.1.3. 

 

Fig. 2.1.3. Typical structure of 3-cell null boundary CA 

Mathematically CA has defined by J. M. Baetens et al. as a function of sextuples as 
described in Equation 2.1.3 [47]. 

0, , s, s , ,CA S N                            (2.1.3) 

where, countably infinite tessellation of an n-dimensional Euclidean Space ܴ௡ is 
represented by Γ, consisting of cells ܿ௜ such that ݅ ∈ ℕ ;  

finite set of  ݇ states referred to as ܵ where often ܵ ⊂ ℕ;  

output mapping function ݏ: ℕ×߁ → ܵ produces the state value of cell ܿ௜ at the ݐ௧௛ 
discrete time step denoted by ݏ(ܿ௜,   ;(ݐ

initial condition for every cell ܿ௜ i.e., ݏ(ܿ௜, (ݐ = :଴ݏ ଴(ܿ௜) is assigned by functionݏ ߁ →
ܵ;  

every cell ܿ௜ is mapped to a finite sequence ܰ(ܿ௜) = (ܿ௜௝)௝ୀଵ
|ே(௖೔)| by neighborhood 

function ܰ:߁ → ⋃ ௉ஶ߁
௉ୀଵ  and |ܰ(ܿ௜)| is the number of all distinct cells ܿ௜௝ ;  

ɸ = (߶௜)௜∈ℕ is a family of functions ߶௜: ܵ|ே(௖೔)| → ܵ such that each ߶௜ is responsible 
for the dynamics of cell ܿ௜, i.e., ݏ(ܿ௜, ݐ + 1) = ߶௜(ௌ~(ܰ(ܿ௜), ,as (ௌ~(ܰ(ܿ௜) ,((ݐ ((ݐ =
(ௌ~(ܰ(ܿ௜), ௝ୀଵ((ݐ

|ே(௖೔)|. 

Following definitions as found in [2] are presented to understand the CA basics. 

In         Out 

   Cell 1 

In         Out 

   Cell i-1 

In         Out 

   Cell i 

In         Out 

   Cell i+1 

In         Out 

    Cell n 
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Uniform CA- If same rule is applied in all the CA cells, it is titled Uniform CA, and 
otherwise it is titled as a hybrid CA. 

Group CA- If produced subspaces in the transition diagram of a CA are form of 
circular queue only, it is entitled as Group CA; else it is mentioned as Non-group CA. 

Linear CA- If a rule of a CA cell involves only XOR logic then it is a linear rule. A CA 
with all linear rules is a linear CA. 

Complemented CA rule- All rules involving XNOR logic is said complemented rule.  

Additive CA- A CA having a combination of XOR and XNOR rules is called an 
Additive CA.  

Non-additive CA rule- Rules with AND-OR logic is called non-additive rules. 

Group CA and non-group CA- If produced subspaces of the transition diagram of a 
CA are of a form of circular queue only, it is referred to as Group CA; else it is referred 
to as Non-group CA. 

Group CA and non-group CA have been described in Fig. 2.1.4. 

 

 

Fig. 2.1.4 (a). 

 

Fig. 2.1.4 (b). 
 

Fig. 2. 
Fig. 2.1.4 (a). Transition diagram of group CA for <90, 90, 150> 
Fig. 2.1.4 (b). Transition diagram of non-group CA for <1, 2, 10> 

Total 23 (8) possible patterns are possible for three cell three-neighborhood CA 
configuration as described in Fig. 2.1.3. Next state function of the ith cell of CA is 
expressed as a truth table (refer Table 2.1.1). Decimal equivalent of the eight outputs is 

called ‘Rule’ Ri [6, 13- 17]. In any three-neighborhood CA (refer Fig.  1), total [
322 ] 

(256) rules are possible in space. Generally, these 256 rules are referred with their 
Wolfram code, which gives each rule a distinct number from 0 to 255. For example, 

3 

1 6 0 4 

7 5 

2 
0 

1 3 6 7 

5 2 4 
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rules ‘247’, ‘135’ and ‘100’ are mentioned in Table 2.1.1. The first row of the table 
enlists the possible 23 (8) combinations of the present states of ‘(i − 1)th’, ‘ith’ and ‘(i + 
1)th’ cells at time ‘t’. 

Table 2.1.1. Truth table for rule ‘150’, ‘170’ and ‘204’ 

Present State 111 110 101 100 011 010 001 000 Rule 
(RMT) (7) (6) (5) (4) (3) (2) (1) (0) (Decimal 

Equivalent) 
(i) Next State 1 0 0 1 0 1 1 0 150 

(i) Next State 1 0 1 0 1 0 1 0 170 
(i) Next State 1 1 0 0 1 1 0 0 204 

The set of rules R = <R1, R2,… , Rn>  in charge for the arrangement of the cells of a CA 
is called the rule vector. If identical rule is followed in all the CA cells, then the CA is 
supposed to be a uniform CA; otherwise it is a non-uniform/hybrid CA. If the next-state 
logic is employed with only XOR then it is called a linear rule and if it is employed 
with XNOR logic, then it is said complemented linear rule. CA with a combination of 
XOR and XNOR rules is called additive CA (ACA) and associated rules are defined as 
additive rules. CA with a combination of additive rule(s) and non-linear rule(s) are 
referred to as non-linear CA. If all the states of a CA in its transition diagram are in 
some cycles are referred to as group CA [2]. 

2.1.2. Application fields of CA 

Potential applications of CA are found in: 

 VLSI circuit testing,   

 Pattern classification, 

 Bio-informatics, 

 Image processing, 

 Mobile computing, 

 Distributed computing, 

 Cryptography and authentication, 

 Search Engine Optimization (SEO), 

 Ontology, 

 Information processing and retrieval, 
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 Modelling of Artificial Life, 

 Synthesis of Artificial Music, etc. 

2.1.3. Summary 

CA preliminary concepts are discussed. Potential applications of CA are reported.  
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2.2. Randomness 

2.2.1. Random numbers 

Random numbers are defined as homogeneously distributed values over a well 
specified interval. Prediction for the next values is unfeasible for a random sequence 
[48, 49]. Random patterns are achieved based on the following recursive PRNG 
Equation 2.2.1 [48]. 

Xn+1=P1Xn +P2 (Mod N)                                         (2.2.1) 

where, ‘P1’ and ‘P2’ are two prime numbers; 

‘N’ is range of random numbers; 

‘Xn’ is calculated recursively using the value of ‘X0’ as base value; 

‘X0’ is termed as seed and it is also a prime number; 

2.2.1.1. Pseudo-random number 

If ‘X0’ (seed) (refer Equation 2.2.1) is same all time, then it produces pseudo-random 
number.  

Pseudo-random numbers are produced using approaches such as, recursive algorithm 
based computer program, Monte-Carlo (M-C) number generator, Linear Feedback Shift 
register (LFSR) based random number generator or, CA based random number 
generator.  

2.2.1.2. True-random number 

Non-deterministic method is primarily required in ‘seed’ selection for generation of 
true-random numbers (TRNs). ‘Seed’ is fetched from physical procedures such as 
radioactive decay, photon emissions or atmospheric noise [48]. 

Rest of the section is organized as follows: comparison of PRNG and TRNG is 
described in Sub-section 2.2.2; finally, summary is reported in Sub-section 2.2.3. 

2.2.2.  Comparison of PRNGs and TRNGs 

Comparative data among PRNG and TRNG as discussed in [48] is reported in Table 
2.2.1. 
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Table 2.2.1.  RNG Performance 

Characteristics PRNGs TRNGs 
Efficiency Excellent Poor 

Determinism Deterministic Nondeterministic 
Periodicity Periodic Aperiodic 

2.2.3. Summary 

PRNGs are better choice over TRNGs for real life applications. PRNG generated 
random sequences are efficient, reproducible, periodic and thus easy to implement in 
physical systems. 
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2.3. MaxCA - discussion 

2.3.1. Mathematical foundation 

An n-cell MaxCA is characterized by presence of a cycle of length (2n-1). Randomness 
is found in generated maximum length pattern of MaxCA. Characteristics polynomial 
for MaxCA is primitive [6, 49].   

Consider, CA size of ‘n’; 

Then, 2n= (2n -1) + 20                         (2.3.1) 

where, ‘(2n -1)’ is referred to as ‘MaxCA’ cycle and ‘20’ is referred to as single length 
cycle; 

MaxCA pattern is shown in Fig. 2.3.1.  

 

 

 

 

 

 

Fig. 2.3.1. MaxCA pattern for <90, 90, 150> 

Rest of the section is organized as follows: CA rule combinations for MaxCA 
generation are presented in Sub-section 2.3.2; degree of randomness for MaxCA pattern 
is reported in Sub-section 2.3.3; finally, summary is in Sub-section 2.3.4. 

2.3.2. CA rule combinations for MaxCA 

Rule “90” and “150” in a unique combination are responsible for generation of MaxCA 
[2, 6, 50]. MaxCA length over different combinations of rule “90” and “150” are 
presented in Table 2.3.1. Rule “90” is referred to as 0 and rule “150” is referred to as 1 
in Table 2.3.1 [2].  

 

 

 

0 

1 3 6 7 
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Table 2.3.1. Typical MaxCA configurations [2] 

Number of cells MaxCA Rule Vector MaxCA Cycle Length 
3 001 7 
4 0101 15 
5 11001 31 
6 010101 63 
7 1101010 127 
8 11010101 255 
9 110010101 511 

10 0101010101 1,023 
11 11010101010 2,047 
12 010101010101 4,095 
13 1100101010100 8,191 
14 01111101111110 16,383 
15 100100010100001 32,767 
16 1101010101010101 65,535 
17 01111101111110011 131,071 
18 010101010101010101 262,143 
19 0110100110110001001 524,287 
20 11110011101101111111 1,048,575 
21 011110011000001111011 2,097,151 
22 0101010101010101010101 4,194,303 
23 11010111001110100011010 8,388,607 
24 111111010010110101010110 16,777,215 
25 1011110101010100111100100 33,554,432 
26 01011010110100010111011000 67,108,863 
27 000011111000001100100001101 134,217,727 
28 0101010101010101010101010101 268,435,455 
29 10101001010111001010001000011 229-1 
30 111010001001101100101000111101 230-1 
31 0100110010101101111101110011000 231-1 

A unique rule combination is available for MaxCA generation for each fixed length CA 
size. 

2.3.3. Degree of randomness found in MaxCA generated patterns 

High degree of randomness is reported for MaxCA generated patterns. Maximum 
degree of randomness is found in the generated maximum length cycle containing non-
zero states only. Diehard results for MaxCA are followed in Table 2.3.2 [2, 6, 17, 18, 
51]. 

Table 2.3.2. Degree of randomness for MaxCA patterns in Diehard tests 

Serial number CA cell size Number of passes in Diehard tests 
1. 23 10 
2. 63 13 
3. 64 14 
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2.3.4. Summary 

Rule vector for generation of MaxCA for different cell sizes are reported in Table 2.3.1 
and results in DieHard Tests for MaxCA generated patterns are reported in Table 2.3.2. 
No generalized method has been found to determine rule vector for generation of 
MaxCA patterns. 
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3.1. Cost optimized design technique for pseudo-random number 

generator with ELCA 

3.1.1. Introduction 

Random numbers play a fundamental role in the field of research work varying from 

computer science, mathematics or statistics to cutting edge VLSI Circuit testing. Random 

numbers [49, 52-54] are also used in cryptographic key generation and game playing. 

Mathematicians describe that this random numbers happen in a sequence where the values 

are homogeneously distributed over a well-defined interval, and it is unfeasible to predict 

the next values based on its past or present ones. The most common way to generate 

pseudo-random number (using structured programming language) is to use a combination 

of “randomize” and “rand” functions. Random patterns are achieved based on the following 

recursive PRNG Equation 3.1.1.1 [58]. 

)(211 NmodPXPX nn +=+                     (3.1.1.1) 

where ‘P1’, ‘P2’ are prime numbers; ‘N’ is the range for random numbers; ‘Xn’ is calculated 

recursively using the base value ‘X0’; ‘X0’ is a prime number and referred to as ‘seed’; if 

X0 (seed) is same all time or, selected in a deterministic way, then pseudo-random number 

is produced [58]. Random numbers over a specified boundary are essentially normalized 

with some distributions. Power-law distribution for random number is described in 

Equation 3.1.1.2 [58]. 

nCXxP =)(  for X є [x0, x1]               (3.1.1.2) 

where ‘P(x)’ is power-law distribution and ‘C’ is a constant;  

The quality of randomness generated by a random number generator is needed to be 

verified. The diehard tests are a battery of statistical tests for measuring the quality of a 

random number generator. This statistical test suit was developed by George Marsaglia 

over several years and first published in 1995 on a CD-ROM [55].  

CA based random pattern generation have been in focus of researchers’ due to its low cost 

physical implementation capability, and high degree of randomness [1, 2, 17, 18, 51, 56, 

57, 69, 70]. It is important to remeber that PPS refers to the noncomputability state for a 

digital circuit caused by a particular input pattern. Thus, PPS exclusion is important 

towards random test pattern generation. PPS exclusion from randomness generating 

patterns were described in [51, 56, 57]. In our studies, we have not found a simple, cost 

effective, and easy PPS exclusion feature in CA based PRNG. Hence a simple and cost-
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effective ELCA based PRNG has been introduced, which may be advantageous towards 

several cost-effective daily life applications. 

Rest of the section is organized as follows: proposed work is described in sub-section 3.1.2; 

experimental results and analysis are discussed in Sub-section 3.1.3; finally, summary is in 

Sub-section 3.1.4. 

3.1.2. Proposed approach 

A cost effective and simple method targeting flexible exclusion of prohibited pattern set 

(PPS) is proposed in CA for generation of random numbers. Prohibited pattern is referred 

to as a bit configuration found in a digital circuit for noncomputability state. The cost 

efficiency refers to the space, time, searching of PPS and design complexity of an 

algorithm. A one dimensional Equal Length Cellular Automata is proposed over the 

existing Maximum Length Cellular Automata for random pattern generation. The 

decomposition of the larger cycle into more relevant sub-cycles is proposed where the 

concerning complexities cost can be reduced. The proposed PRNG system is described in 

Fig.  3.1.1.  

 
Fig.  3.1.1. Flowchart of proposed CA PRNG system 

Start 

Finish 

Initialize CA size 

Decompose the CA into small size 
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cycles 
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A new mathematical approach is proposed to obtain randomization in low cost with respect 

to various complexities and hardware implementation. 

Several equal length sub-cycles are considered in proposed approach instead of one cycle 

of maximum length cycle. The sub-cycles together are capable to generate all the states of 

the n-cell CA. The following Algorithm 3.1.1 is used for the generation of randomness in 

proposed approach. 

Algorithm 3.1.1. Cycle_Decomposition 

Input: CA size (n), PPS Set 

Output: m-length cycles excluding PPS 

Step 1: Start 

Step 2: Initialize the number of n-cell CA to generate random patterns using n-cell CA  

Step 3: Decompose the cell number (n) into two equal numbers (m) such that n=2*m  

Step 4: Check each PPS whether it belongs to a single smaller cycle CA 

Step 5: Repeat Step 3 and Step 4 until each PPS belongs to separate smaller cycles  

Step 6: Allow m-length cycles of n-cell CA after excluding all the PPS containing cycles  

Step 7: Stop 

The primary concern in proposed approach is to exclude the PPS. The occurrence of every 

prohibited pattern is ensured in some of the smaller sub-cycles. Remaining prohibited 

patterns free cycles may be allowed to generate random patterns.  

Proposed methodology implies a better cost effective approach. The proposed 

methodology simplifies the design complexity and empowers the searching complexity. 

The terminology design complexity refers to the implementation procedure for generation 

of random pattern and empowering searching complexity means the zero overhead for 

keeping track for PPS for random pattern generation. In comparison with an n-cell 

maximum length CA, more number of smaller cycles instead of one MaxCA are available. 

Assume, for an n-length CA, the total number of states is ‘2n’. By Equation 1.1, we have, 

2n = 2n-1+2n-1  
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 = 21*(2n-1) (two number of equal length cycles) 

 = 22*(2n-2) (four number of equal length cycles) 

 = 2m * (2n-m) (2m number of equal length cycles) for n≥1 and m=1, 2, 3… (n-1).                                                                                 

Thus ‘m’ is always less than ‘n’. 

PPS containing part is excluded from the MaxCA cycle [51, 56, 57]. PPS is completely 

removed in proposed approach. Random pattern generation in this scenario is followed in 

Fig.  3.1.2. Fig. 3.1.2(a) shows one maximum length cycle with prohibited patterns and 

Fig.  3.1.2(b) shows several equal length smaller cycles where some of the cycles contain 

prohibited set. The PPS in Fig. 3.1.2 is denoted as {PS0, PS1……PS9}. 

 

 

 

 

 

 

 

 

    Fig.  3.1.2(a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

        Fig.  3.1.2(b). 

Fig.  3.1.2. 

Fig. 3.1.2(a). Typical PPS exclusion in maximum length CA cycle  

Fig. 3.1.2(b). Typical PPS exclusion in proposed equal length CA of smaller cycle size 
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Assume that n-numbers of prohibited patterns are present in the maximum length cycle. 

Let the prohibited patterns are {PS0,…,PSn }. The minimum length of arc (Arcmin) between 

the prohibited pattern PS1 and PSn should be measured in the scenario of MaxCA so that 

remaining cycle arc i.e. effective arc (Earc) may be utilized for random number generation. 

Earc is typically free from PPS. This scenario is shown in Fig. 3.1.3.  

Fig.  3.1.2(a) and Fig. 3.1.3 are inspired from [57]. 

 

 

 

 

 

 

 

 

 

 

Fig.  3.1.3. Typical cycle structure of an n-cell maximum length CA 

Arcmin- The minimum length of arc (Arcmin) is the minimum distance between the first and 

last prohibited pattern in an n-cell maximum length CA cycle. 

Earc- The effective arc (Earc) is the remaining arc length of an n-cell maximum length CA 

cycle which excludes Arcmin from the corresponding CA cycle of states and it is responsible 

for generating pseudo-random patterns of integers. 

3.1.3. Experimental observations & result analysis 

PPS containing arc is excluded from the maximum length cycle. On the other hand, the 

PPS containing cycles are totally removed for generation of random sequences in proposed 

approach. Concerns to calculate Earc and Arcmin are totally absent in proposed methodology. 

The following Table 3.1.1 compares the procedures of maximum length cycle and 

proposed equal length cycle based approaches. 

Table 3.1.1. Comparison of fault coverage procedures 

 Maximum length CA Equal length CA 
Earc Computation policy required N/A 

Arcmin Computation policy required N/A 
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The p-value analysis in Diehard test helps to decide whether the test data set passes or fails 

the diehard test. Diehard test returns the p-value, which should be uniform over [0, 1) if 

the input file contains truly independent random bits. The p-values are obtained by p=F(x), 

where F is the assumed distribution of the sample random variable ‘x’, which is often 

normal. The value p<0.025 or p>0.975 means the RNG has “failed the test at the 0.05 level” 

[55]. Comparison results for proposed CA-PRNG with reference to MaxCA PRNG [51, 

56, 57] are presented in Table 3.1.2. 

Table 3.1.2. Performance result through Diehard for different CA random number generators 

Serial 

Number Name of the test 

MaxCA Proposed approach 

n=23 n=64 n=23 n=64 

1 Birthday Spacings Pass Pass Pass Pass 

2 Overlapping Permutations Pass Pass Pass Pass 

3 Ranks of 31x31 and 32x32 matrices Pass Pass Pass Pass 

4 Ranks of 6x8 Matrices Pass Pass Pass Pass 

5 The Bitstream Test Fail Fail Fail Fail 

6 Monkey Tests OPSO,OQSO,DNA Fail Pass Fail Pass 

7 Count the 1`s in a Stream of Bytes Pass Pass Pass Pass 

8 Count the 1`s in Speci_c Bytes Fail Pass Fail Pass 

9 Parking Lot Test Pass Pass Pass Pass 

10 Minimum Distance Test Pass Pass Pass Pass 

11 The 3DSpheres Test Pass Pass Pass Pass 

12 The Sqeeze Test Fail Pass Fail Pass 

13 Overlapping Sums Test Fail Pass Fail Pass 

14 Runs Test Pass Pass Pass Pass 

15 The Craps Test Pass Pass Pass Pass 

Total Number of Diehard Test Passes 10 14 10 14 

 

Competitive degree of randomness is found in Table 3.1.2. Several complexities for the 

two CA based methodologies are in Table 3.1.3. 

Table 3.1.3. Complexity comparison between MaxCA and proposed methodology 

Name of the Complexity Comparison Result 

Space Same 

Time Slightly Improved 

Design Improved 

Searching for PPS Improved 

Space complexity for both approaches is same as total length of an n-cell CA are same. 

Some changes in other complexities are found in Table 3.1.3. Other complexities are 

improved in case for proposed methodology. The proposed methodology is allowed only 

to generate random patterns from smaller cycles that exclude PPS. The PPS exclusion 
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feature from the main cycle improves the design complexity and search of PPS process. 

3.1.4. SUMMARY 

Results based on Table 3.1.1, Table 3.1.2 and Table 3.1.3 conclude that proposed 

methodology is capable to produce pseudo-random sequences at low cost. 
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3.2. CA PRNG in Monte-Carlo simulation 

3.2.1. Introduction 

Distributed computing is a reliable solution in modern days computing requirement. 

Monte-Carlo simulator is highly effective in assessing the reliability of a distributed 

system. Monte-Carlo (M-C) random number generator (RNG) found with Monte-Carlo 

simulator is alternatively used for generation of pseudo-random numbers [58, 59]. The term 

‘Monte-Carlo’ was introduced by Von Neumann and Ulam during World War II. M-C 

method was applied to problems related to the atomic bomb. The mean values of stochastic 

variables are expressed as integral of variables in M-C method as described in Equation 

3.2.1 [58, 59]. 

=
D

dxxfxhI )()(                         (3.2.1) 

where ‘D’ is high dimensional domain with coordinates ‘x’ and ‘f(x)’ is a non-negative 

function. 

Equation 3.2.2 [58, 59] is satisfied by ‘f(x)’. 

 =
D

dxxf 1)(                                     (3.2.2) 

Past research explores that CA based PRNG may be used in Monte-Carlo simulation [12-

14]. Thus, CA based PRNG may be used in reliability assessment. 

Rest of the section is organized as follows: proposed work is described in Sub-section 

3.2.2; experimental results and analysis are in Sub-section 3.2.3; finally, summary is in 

Sub-section 3.2.4. 

3.2.2. Proposed approach 

Monte-Carlo simulation is used to evaluate reliability of a complex and distributed system. 

Monte-Carlo test cases are produced using pseudo-random numbers. A default recursive 

PRNG is available along with the Monte- Carlo simulator. CA-PRNGs are considered to 

generate pseudo-random numbers in Monte Carlo simulator. Flowchart of the proposed 

system is in Fig. 3.2.1. 
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Fig.  3.2.1. Flowchart of the proposed reliability assessment system 

A novel low cost approach is introduced in the flowchart of the proposed system to achieve 

randomization in the resulting Monte-Carlo simulation. Algorithm 3.2.1 is used in 

proposed approach. Algorithm 3.2.1 is based on Algorithm 3.1.1. 

Algorithm 3.2.1. Monte-Carlo_Simulation_Generation  

Input: Choice for PRNG, CA size (n), PPS Set 

Output: Pseudo-random number based Monte-Carlo Simulation 

Step 1: Start 

Step 2: If selected PRNG is based on CA then follow Step 3 else follow Step 10       

Step 3: Initialize the number of n-cell CA for generating random patterns using n-cell CA 

Step 4: If PRNG is based on maximum length CA then follow Step 9 else follow Step 5         
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Step 5: Decompose the cell number (n) into two equal numbers m) such that n=2*m         

Step 6: Verify for each PPS whether the PPS belongs to a single smaller cycle CA or not         

Step 7: Repeat Step 3 and Step 4 until each of the PPS belongs to separate smaller cycles         

Step 8: Permit m-length cycles of n-cell CA after excluding all the PPS containing cycles         

Step 9: Exclude PPS present in maximum length cycle and follow Step 11         

Step 10: Select Monte-Carlo default random number generator  

Step 11: Generate random number sequence     

Step 12: Generate pseudo-random number based Monte-Carlo Simulation       

Step 13: Stop 

3.2.3. Experimental observations & result analysis 

Degree of randomness for the two CA-RNGs and default Monte-Carlo simulator RNG are 

shown in Fig.  3.2.2. 

 

 

 

 

 

 

 

 

 

Fig.  3.2.2(a) Randomness quality for different PRNGs 
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Fig.  3.2.2(b) Randomness quality for different PRNGs 

Fig.  3.2 2. Monte-carlo simulation result using different PRNGs 

Randomness for a part of pattern from the PRNGs used in Monte-Carlo simulation is 

shown in Fig.  3.2.2. CA length 8 is applied for Fig.  3.2.2(a), and in CA length 10 is applied 

in Fig. 3.2.2(b). A better quality of randomness is found for CA-PRNGs compared to 

Monte-Carlo in Fig. 3.2.2(a) and Fig. 3.2.2(b). Competitive randomness is found for both 

CA-PRNGs in Fig. 3.2.2. 

3.2.4. Summary 

Competitive randomness is found in Fig. 3.2.2 for both CA-PRNGs. Associated costs for 

proposed equal length CA PRNG are much lower compared to MaxCA (refer Sub-section 

3.1). Hence proposed CA-PRNG is capable of low cost test case generation in Monte-Carlo 

simulation. 
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3.3. Cost effective PRNG in BIST application 

3.3.1. Introduction 

The advancements of Information Technology are realized in the modern age chip 

fabrication techniques. The size of a complete electronic system is now reduced to a scale 

that is harder to view with bare eyes. The impact of minimization initiated a strong 

necessity for testing of minimized systems, circuit boards and chip components.  

Built-In Self-Test (BIST) [60-63] is typically used for testing purpose in design-for-

testability (DFT) technique. A section of the circuit under test (CUT) is verified and tested 

to recognize the behavior of the total circuit. A typical BIST architecture is presented in 

Fig. 3.3.1 [60]. 

 

Fig. 3.3.1. Typical BIST architecture [60] 

Pattern generator, response analyzer and test controller are essential to continue BIST in 

digital circuit. Patterns are stored in Read Only Memory (ROM). LFSR is used as a pattern 

generator. LFSR is also used as a response analyzer. Pseudo-random sequences are needed 

for pattern generation in BIST applications [60-63].  

Linear Feedback Shift Register (LFSR) is a popular choice as pseudo-random pattern 

generation for Built-In Self-Test (BIST) application [11-13]. LFSR has some advantages 

as it possesses fewer XOR gates and a good internal feedback policy. Better quality of 
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randomness and cost effective physical implementation was described for the CA based 

PRNG compared to the LFSR based PRNG [16]. Several CA based PRNG in BIST 

applications were described in [17, 18, 51, 56, 57]. In our studies, we have not found a 

simple, cost effective and easy PPS exclusion feature in CA based PRNG. Hence a simple 

and cost-effective ELCA based PRNG has been introduced, which may be advantageous 

towards cost-effective BIST application. 

Rest of the section is organized as follows: proposed work is described in Sub-section 

3.3.2; experimental results and analysis are in Sub-section 3.3.3; summary is in Sub-section 

3.3.4. 

3.3.2. Proposed approach         

ELCA based PRNG is proposed for BIST test pattern generation. Flowchart of our 

proposed ELCA based BIST pattern generator is followed in Fig. 3.3.2. 

 

Fig. 3.3.2. Flowchart of proposed BIST pattern generation system 
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Flowchart of Fig. 3.3.2 is implemented for ELCA based BIST pattern generation using 

Algorithm 3.1.1 of Sub-section 3.1.2. Cost effective PRNG is obtained from Algorithm 

3.1.1. PPS exclusion policy in proposed method is same as described in Sub-section 3.1.2. 

3.3.3. Experimental observations & result analysis 

Fault coverages for several benchmark circuits with ELCA, MaxCA, and LFSR BIST 

pattern generator are presented in Table 3.3.1. Fault coverages for several “ISCAS 85” and 

“ISCAS 89” benchmark circuits in “BISTAD” [64] are presented in Table 3.3.1. 

Table 3.3.1. Fault coverage for different pattern generators 

Circuit 

name 

Feed 

back 

Seed Coverage by 

LFSR 

Coverage by 

MaxCA 

Coverage by 

ELCA 

s386 2 15 93.17 % 96.67% 100.00% 

s298 2 15 93.30% 100.00% 100.00% 

s1488 2 15 98.92% 97.72% 98.68% 

s1494 2 15 98.11% 96.87% 97.87% 

s208_1 2 15 95.18% 96.93% 99.56% 

s27 2 15 100.00% 100.00% 100.00% 

c17 2 15 100.00% 100.00% 100.00% 

 

 

Fig. 3.3.3. Screenshot for fault coverage in “ISCAS89 s1488” benchmark circuit 
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Fig. 3.3.4. Screenshot for fault coverage in “ISCAS89 s1494” benchmark circuit 

 

Fig. 3.3.5. Screenshot for fault coverage in “ISCAS89 s208” benchmark circuit 
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Competitive results in fault coverages of several “ISCAS 85” and “ISCAS 89” circuits are 

shown in Fig. 3.3.3, Fig. 3.3.4 and Fig. 3.3.5. 

3.3.4. Summary 

Competitive results for ELCA-PRNG in several “ISCAS 85” and “ISCAS 89” benchmark 

circuits are found in Table 3.3.1. Cost-effectiveness of ELCA over MaxCA is described in 

Section 3.1. Hence ELCA is a cost-effective choice for BIST application.     
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3.4. Design of a CA based System-Under-Test 

3.4.1. Introduction  

Distributed computing is the present trend for efficient resource utilization and processing 

in networked architecture. An inherent requirement to enhance the distributed computing 

is satisfied with the design of a fault tolerance in distributed system. Several aspects are 

focused for the enhancements of distributed computing. Researches were carried out on 

virtualization to enhance fault tolerance in distributed systems [25-27, 65-67]. Testing 

algorithms for distributed systems often require fault injection (FI) to assess reliability in 

distributed system. Faults are considered as elements of the applicable input data for fault-

tolerant distributed. An infrastructure was presented by I. Hsu et al. [27] to support the 

analysis of the behavior of distributed system-under-test (SUT). Software-implemented 

fault injector (FI) and virtualization were combined in [25] for an automated validation and 

analysis of distributed SUT. Hybrid fault injection for distributed SUT was introduced by 

C. Trödhandl et al. [26]. Validation of fault tolerant distributed system requires a flexible 

infrastructure for the execution of injected faults. Three key requirements for the 

infrastructures as identified in [27] are as follows. 

i) Boundary conditions across multiple system components (nodes) should be 

tested at randomized test values;  

ii) initial system state for each test must be at “error free” state; 

iii) a log file should be available for off-line analysis of fault injections, system 

responses, and resource uses. 

FIs are categorized into Simulation based FI [65], hardware FI [66] and software FI [67]. 

Timing behavior of the complete system-under-test (SUT) is adversely affected by 

injection of faults. Hardware FI is preferred over software FI. Hardware FI is primarily 

used on the chip-level [65-68]. BIST may be used as a choice for testing purpose in SUT. 

Thus, a simple ELCA based BIST architecture is proposed towards SUT in distributed 

computing, which may be advantageous as a cost-effective solution in distributed 

computing. 

ELCA based infrastructure in SUT is projected in this section. Cost optimized performance 

of ELCA in BIST applications in Sub-section 3.3.1 initiates the potential application of 

ELCA in SUT.  

Rest of the section is organized as follows: proposed work has been described in Sub-

section 3.4.2; experimental results and analysis have been reported in Sub-section 3.4.3; 

finally, summary has been reported in Sub-section 3.4.4. 
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3.4.2. Proposed approach 

ELCA based design for testing of hardware components in system-under-test (SUT) is 

proposed. Faults injected by FI in a target component of a SUT are tested with ELCA based 

design. Proposed ELCA based design in SUT is presented in Fig. 3.4.1.  

 
Fig.  3.4.1. Proposed SUT architecture in distributed computing environment 

Proposed SUT architecture may be incorporated over existing Client-Server based FI 

hardware as shown in [26]. Client-Server based FI hardware is presented in Fig.  3.4.2 [26]. 

 
Fig.  3.4.2. Fault injection client-server architecture [26] 
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Flowchart of proposed SUT design is presented in Fig. 3.4.3. 

 

Fig.  3.4.3. Proposed flowchart of SUT using ELCA BIST 

PPS free pseudo-random pattern generation in SUT is same as described in Sub-section 

3.1.1 and Sub-section 4.1.1. Algorithm 3.4.1 is used to perform CUT in SUT. 

Algorithm 3.4.1. ELCA_based_Built-In Self-Testing_ for_System-Under-Testing  

Input: SUT components 

Output: Checked error free system components for reliable computation 
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Step 2: Initialize the circuit-under-test (CUT) area to be tested by server side 
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Step 7: Analyze the signature generated in BIST 

Step 8: Report circuit status for fault inspection at server side 

Step 9: Report SUT tester about component status for processing of reliable computation  

Step 10: Stop  

3.4.3. Experimental observations & result analysis 

Several functional fault models for BIST [68] are as follows. 

i) Stuck_at_faults (SAF): A cell/line is stuck to logical zero/one state. SAF is 

thus categorized into Stuck_at_1 and Stuck_at_0 fault.  

ii) Transition_faults (TF):  It is not possible to retain previous state value since 

the memory value is changed once. It is similar to SAF. 

iii) Coupling_faults (CF): Coupling between two adjacent cells is focused with CF 

during a transition from “zero to one” or, “one to zero”. Neighbouring cell is 

forced to change its value during transition of target cell. 

iv) Neighborhood_pattern_sensitive_faults (NPSF): Center cell of a nine-

neighbourhood configuration is bound to change its value influenced by its 

neighbourhood. 

v) Data_retention_faults (DF): It is not possible by memory cell to retain its 

value over time after a memory write/read operation. 

vi) Address_decoder_faults (AF): No cell or, multiple cells are accessed 

simultaneously with an address or, a single cell is accessed by multiple 

addresses. 
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Coverage of SAF is considered in proposed SUT design. “BISTAD” is used for testing the 

fault coverages of “t3.agm” benchmark circuits [64].  

Fig.  3.4.4. Screen shot for “t3.agm” benchmark circuit 

Simulation results for “t3.agm” benchmark circuit are presented in Table 3.4.1, Fig.  3.4.5 

and Fig. 3.4.6. Fault Table used for “t3.agm” circuit testing in “BISTAD” [62, 63] is 

followed in Table 3.4.2. 

Table 3.4.1. Fault table for “t3.agm” 

Vectors % (Total) %  F A U L T  T A B L E  

10101 28.0 28.0 0 1 X X 0 0 X 1 X X X 1 X X 0 1 1 1 X X X 1 1 1 1 

01101 38.0 28.0 1 0 X X 0 X 0 X 1 X 1 X X X 0 1 1 1 X X X 1 1 1 1 

00011 44.0 20.0 X X 1 X X X X X X 1 X X X X X 1 1 1 1 X X 1 1 1 1 

11111 56.0 24.0 0 0 0 X X X X X X X 0 0 0 X X X 0 X 1 X X 1 1 1 0 

11011 58.0 20.0 X X 1 X X X X X X X X X 1 X X 1 1 1 1 X X 1 1 1 1 

00110 78.0 34.0 1 1 0 0 1 1 1 0 0 0 X X X 0 X 0 X X X X 1 1 1 1 0 

10000 90.0 16.0 X X X 1 1 X X X X X X X X 1 1 X X 0 X X X 0 X 0 0 

00111 98.0 34.0 1 1 0 0 0 1 1 0 0 0 X X X X X 0 X X 0 0 0 X 0 0 0 

00101 100.0 34.0 1 1 0 1 0 1 1 0 0 0 X X X X 0 0 X X X 1 X 1 1 1 0 

  & & & & & & & & & & & & & & & & & & & & & & & & & & 
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Fig.  3.4.5. Screen shot of SAF test coverage graph for “t3.agm” 

 

Fig.  3.4.6. Screen shot of fault coverage for “t3.agm” 

Stuck-at-faults (SAF) coverage for “t3.agm” is shown in Fig. 3.4.5 and fault coverage of 

“t3.agm” is shown in Fig. 3.4.6.   
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Fault coverages for several combinational circuits obtained in “BISTAD” are presented in 
Table 3.4.2. Each “t.agm” combinational circuit contains 5 inputs and 2 outputs, and 
behaves as an independent system [64]. Fault coverage is described in Equation 3.4.1 [68]. 

no_of_faults_noticedfault_coverage=
total_no_of_faults                         (3.4.1) 

Table 3.4.2. Fault coverage table for ‘t’ benchmark circuits 

Serial No. Model No. Fault coverage 

1 t1.agm 100% 
2 t2.agm 100% 
3 t3.agm 100% 
4 t4.agm 100% 
5 t5.agm 100% 
6 t6.agm 100% 
7 t7.agm 100% 
8 t8.agm 100% 
9 t9.agm 100% 
10 t10.agm 100% 

 

High fault coverage for different “t.agm” benchmark circuits is found in Table 3.4.2. 

3.4.4. Summary 

High fault coverage for ELCA based PRNG is obtained for “ISCAS 85”, “ISCAS 89” and 
“t.agm” circuits. Therefore, ELCA PRNG is an efficient test pattern generator for BIST, 
SUT applications in distributed computing. 
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4.1. Random number generators: performance comparison  

4.1.1. Introduction  

Random numbers [48, 49, 58] are considered in research works varying from Computer 

Science to Mathematics. Random numbers are homogeneously distributed over a well-

defined interval and it is unfeasible to predict the next values for a random pattern. ‘Seed’ 

is used as a specification of an initial number for generation of a random pattern. RNGs 

are classified into several groups based on the difference in generation procedures of 

random numbers. Pseudo-random number (PRN) and true-random number (TRN) are most 

commonly used in scientific works.  

Random numbers or, random-patterns [48, 49, 58] obtained with a computer program is 

based on recursive algorithm. Deterministic way for selection of the ‘seed’ makes the 

pattern generation procedure as ‘Pseudo-random’ [48]. Several efforts are found in 

literature to produce quality random numbers [17, 18, 48, 51, 56, 57, 69, 70]. Few popular 

techniques for generation of pseudo-random sequences are described briefly in the 

following sub-sections. 

Recursive algorithm based computer program which is most frequently used as a source of 

pseudo-random sequence is considered in this section. Generation of pseudo-random 

numbers by recursive algorithm is shown in Fig. 4.1.1.  

 
Fig. 4.1.1. Flowchart for pseudo-random number generation by recursion 
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Algorithm 4.1.1 is used to prepare pseudo-random number.  

          Algorithm 4.1.1. Recursive_Pseudo-Random_Pattern_Generation  

Input: Upper limit for random numbers to be generated (n) 

Output: Random pattern of integers 

Step 1: Start 

Step 2: Initialize the range for which random integers to be generated  

Step 3: Setting up of randomize seed 

Step 4: Repeat Step 5 until required number of iteration has been achieved 

Step 5: Generate random number using the random seed 

Stop 6: Stop 

M-C PRNG (found with Monte-Carlo Simulator) is another option to produce pseudo-

random numbers within a specific boundary [13]. Pseudo-random sequence generation 

using CA specifically MaxCA is briefly described in Section 4.1.2.  

Rest of the section is organized as follows: proposed work is described in Sub-section 

4.1.2; experimental results and analysis are described in Sub-section 4.1.3; finally, 

summary is in Sub-section 4.1.4. 

4.1.2. Proposed approach 

Few popular RNGs are considered in search of a cost-efficient RNG along with flexible 

prohibited pattern set (PPS) exclusion process. Prohibited pattern is referred to as a bit 

configuration found in a digital circuit for noncomputability. Recursive Random Number 

Generator (RRNG), True Random Number Generator (TRNG) [48], Monte-Carlo Random 

Number Generator (M-C RNG), MaxCA PRNG, and ELCA PRNG are considered for this 

comparison.  

All states of an n-cell CA may be generated as a collection of several equal length cycles. 

Flowchart (Fig. 3.1.1) and algorithm (Algorithm 3.1.1) presented in Section 3.1 are used 

in the following sub-section. An n-cell CA is divided into two or more equal sub-cycles 

instead of taking the full cycle. Generated sub-cycles together produce all the states of the 

n-cell CA.  
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Example 4.1.1. 

Consider, CA size 5. 5-cell CA might be decomposed into some equal length smaller cycles 

instead of one maximum length cycle. CA size 5 in Example 4.1.1 is decomposed into 4 

cycles of length 8 (Refer 4.1.2(b)); or, it is decomposed into 8 smaller cycles of length 4 

(Refer Fig. 4.1.2(c)).  Maximum length cycle is shown in Fig. 4.1.2(a); Fig. 4.1.2(a) is 

based on Null Boundary 5 cell CA having rules in specified sequence < 90, 90, 90, 90, 150 

>. The synthesis of this example in Fig. 4.1.2(b) and Fig. 4.1.2(c) Equal Length CA 

(ELCA) are achieved for a combination of balanced CA rules [2] such as “60”, “102”, 

“153”, “195” for CA size n=5. 

 

Fig. 4.1.2(a) 

 

Fig. 4.1.2(b) 
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Fig. 4.1.2(c) 

Fig. 4.1.2 

Fig. 4.1.2(a). MaxCA Cycle for n=5 for <90, 90, 90, 90,150> 

Fig. 4.1.2(b). Proposed 4 ELCA of cycle size 8 for < 153,153,153,153,153 > 

Fig. 4.1.2(c). Proposed 8 ELCA of cycle size 4 for < 60, 60,195,102,153 > 

Set of balanced CA rules for generation of ELCA as presented in Fig. 4.1.2 are: “51”, “60”, 

“102”, “153”, “195” and “204”.  Few details of ELCA generating rules are presented in 

Table 4.1.1 

Table 4.1.1. ELCA rule information 

Serial 

no. 

CA rule Binary 

equivalent  

of CA rule 

Combinatorial binary logic for  

next state =i(t+1) 

1 51 00110011 NOT i(t) 

2 204 11001100 i (t) 

3 60 00111100 i-1(t) XOR i(t) 

4 195 11000011 i-1(t) XNOR i(t) 

5 102 01100110 i(t) XOR i+1(t) 

6 153 10011001 i(t) XNOR i+1(t) 

Binary representations of ELCA rules explore that all CA rules are balanced in nature.  

A pair of necessary and sufficient conditions are found for ELCA rules.  

Necessary Condition for ELCA: Higher bits partition (HbP) and lower bits partition 

(LbP) in binary representation for the CA rule, is balanced, i.e., HbP and LbP both 

individually contains two numbers of 0’s and two numbers of 1’s. 
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Sufficient Condition for ELCA: 8 bit binary representation for the CA rule, is balanced, 

i.e., the binary representation contains four numbers of 0’s and four numbers of 1’s. 

Example 4.1.2. 

Consider an ELCA generating balanced rule “51”. Rule “51” are represented in 8 bit binary 

format as presented in Fig. 4.1.3. 

 

 Fig. 4.1.3. Binary representation of rule “51”  

Binary representation for rule “51” is shown in Fig. 4.1.3. HbP (Higher bits partition) and 

LbP (lower bits partition) section show that they are individually balanced and rule “51” 

itself is balanced CA rule [2].  

Corollary 4.1.1.  All the balanced CA rules, whose HbP and LbP positions are not 

balanced, are not responsible for generating ELCA. 

Proof:  

All the rules at their binary equivalent are having equal numbers of 0’s and 1’s in its HbP 

and LbP positions (Table 4.1.1). Total two numbers of 0’s and two numbers of 1’s are 

present at HbP and LbP positions for each ELCA rule. It indicates that all the ELCA rules 

are balanced at their HbP and LbP positions.  

An unbalanced situation at HbP and LbP position never satisfy the necessity and 

sufficiency conditions. Hence no rule with unbalanced condition at HbP and LbP position 

is bound to produce ELCA cycles. 

(End of Proof.) 
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Theorem 4.1.1. Space complexity is at least same for proposed methodology with respect 

to MaxCA. 

Proof:  

Space complexity increases with the increased number of cells in a CA. Increased numbers 

of CA cells require more hardware component for implementation. Memory space required 

to process a fixed length of an n-cell CA is always same. 

(End of Proof.) 

Theorem 4.1.2. Design cost of proposed ELCA system is less than MaxCA. 

Proof:  

Proposed methodology is allowed only to generate random patterns from smaller cycles 

that do not contain PPS. The PPS exclusion feature from the main cycle, which is 

responsible for generating random patterns, improves the design complexities.  The logic 

behind this simplicity is that the proposed methodology simply discards the equal length 

cycles containing prohibited patterns. So there is no need to keep track of Arcmin length in 

cycles. Concept of Arcmin and Earc is only applicable for MaxCA based design only.  

Let the time taken for calculating Arcmin and Earc are Tarc and TE respectively in MaxCA. 

There is no concept of calculating Tarc and TE in ELCA. All the PPS containing smaller 

cycles are discarded from pattern generation process. Time consumed for pattern 

generation TELCA. TELCA is free from the overhead of calculation of Tarc and TE. Hence the 

design complexity of ELCA is simpler compared to MaxCA. 

(End of Proof.) 

Theorem 4.1.3. Time complexity is less in proposed methodology with respect to MaxCA. 

Proof: 

Random pattern is only allowed to generate in proposed approach from PPS free equal 

length CA cycles which are smaller in size. So, execution time for smaller cycles are much 

less with respect to MaxCA. The time complexity of an n-length MaxCA is O (n). Time 

complexity for m-length ELCA is O (m). We have “m” is smaller than “n” by Equation 

3.1.1.  

Hence the time complexity of equal length is less than the time complexity of MaxCA.  

(End of Proof.) 
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4.1.3. Experimental observations & result analysis  

Data sets generated by different RNGs (i.e., Recursive PRNG, M-C PRNG, TRNG, 

MaxCA PRNG and ELCA PRNG) have been reported in Fig. 4.1.4 visualizing randomness 

of corresponding RNGs. The graph describes that the Recursive PRNG is having the least 

degree of randomness whereas CA PRNGs are better compared to all other RNGs. 

 

Fig. 4.1.4. Randomness quality graph for five different RNGs 

The degree of randomness achieved by different random number generators in Diehard 

tests is presented in Table 4.1.2. Detailed Diehard result for TRNG has been described in 

[48]. 

Table 4.1.2. Performance results using Diehard for different RNGs 

Serial Name of the test Recursive PRNG M-C PRNG TRNG 

1 Birthday Spacings Fail Fail Pass 

2 Overlapping Permutations Fail Fail Fail 

3 Ranks of 31x31 and 32x32 matrices Fail Fail Fail 

4 Ranks of 6x8 Matrices Fail Fail Pass 

5 The Bitstream Test Fail Fail Fail 

6 Monkey Tests OPSO, OQSO, DNA Fail Fail Pass 

7 Count the 1`s in a Stream of Bytes Fail Fail Pass 

8 Count the 1`s in Specific Bytes Fail Fail Pass 

9 Parking Lot Test Fail Fail Pass 

10 Minimum Distance Test Fail Fail Pass 

11 The 3DSpheres Test Fail Fail Pass 

12 The Sqeeze Test Fail Fail Fail 

13 Overlapping Sums Test Fail Fail Pass 

14 Runs Test Fail Fail Pass 

15 The Craps Test Fail Fail Pass 

 Total No. of Passes 0 0 11 
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Results obtained for different RNGs (Table 3.1.2 and Table 4.1.2) are illustrated 

graphically in Fig. 4.1.5.  

 

Fig. 4.1.5. Diehard test performance graph 

The results obtained in Fig. 4.1.5 have ensured maximum degree of randomization in CA 

based design. 

PPS exclusion policy in CA based PRNGs are briefly described as follows. PPS containing 

arc in random pattern generating cycle is excluded from the cycle in MaxCA (Refer Fig. 

4.1.6). On the other hand, the PPS containing cycles are totally removed to generate the 

random sequences. There is no overhead to calculate Earc and Arcmin in proposed ELCA 

methodology. Table 4.1.3 compares the procedures of MaxCA and ELCA based random 

pattern generators (Refer Fig. 4.1.6). 
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Fig. 4.1.6(a) 

 

Fig. 4.1.6(b) 

Fig. 4.1.6 

Fig. 4.1.6(a). MaxCA cycle structure with PPS 

 Fig. 4.1.6(b). ELCA cycle structure with PPS 

Fig. 4.1.6 is based on an arbitrarily drawn scenario where total number of prohibited 

patterns is 5 and let an arbitrary PPS is {5, 3, 11, 12, 16}. In worst case scenario, every 

single prohibited pattern is found in five independent cycle as illustrated in Fig. 4.1.6(b). 
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Comparison result between MaxCA and ELCA on this given set of PPS have been enlisted 

in Table 4.1.3. 

Table 4.1.3. Comparison of fault coverage procedures 

 MaxCA ELCA 

CA size(n) 5 5 

Earc 7 N/A 

Arcmin 24 N/A 

Advantages of the proposed methodology over MaxCA are presented in Table 4.1.2. No 

overhead for Earc and Arcmin are found for ELCA. PPS exclusion policies for Recursive 

PRNG, M-C PRNG, TRNG are not available. 

Complete data from MaxCA and ELCA PRNGs are shown in Fig. 4.1.7. Fig. 4.1.7 is based 

on MaxCA for <90, 90, 90, 90, 90, 150> and ELCA for <153,153,153,153,153,153>. 

 

Fig. 4.1.7. Randomness quality graph for different CA-PRNGs 

Hardware, time, design, and searching complexities for the said PRNGs are presented in 

Table 4.1.4. Required number of flip-flops for physical implementation of concerned 

PRNG system is referred to as hardware complexity. Time required for generation of a 

pseudo-random pattern by RNG is referred to as time complexity. The inherent design 

methodology dealing with problems of PPS is considered as design complexity. The 

complexity associated with searching PPS free pseudo-random patterns is referred to as 

searching complexity. 
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Table 4.1.4. Complexity comparison among different pattern generators 

Name of the 

Complexity 

Recursive M-C TRNG MaxCA ELCA Remarks 

Hardware Not 

available 

Not 

available 

Not 

available 

O(n) O(n) CA PRNGs are 

feasible for 

implementation 

using flip flops 

Time O (n) 

Here ‘n’ 

denotes 

number of 

iteration 

required in 

the 

concerned 

program. 

O (n) 

Here ‘n’ 

denotes 

number of 

iteration 

required in 

the 

concerned 

program. 

O (n) 

Here ‘n’ 

denotes 

number of 

iteration 

required in 

the 

concerned 

method. 

O(n)  

Here ‘n’ 

denotes 

length of 

cycle. 

∑O (mi)  

Here 

‘m’ 

denotes 

length 

of cycle 

and ‘i’ 

denotes 

number 

of 

ELCA. 

Single cycle in 

ELCA has less 

time 

complexity. 

Design Require 

randomize () 

for random 

seed 

selection 

and no such 

particular 

method to 

deal with 

PPS. 

 

Require 

specific 

mechanism 

for random 

seed 

selection 

and no 

such 

particular 

method to 

deal with 

PPS. 

 

Require 

natural 

source for 

random 

seed 

selection 

and no 

such 

particular 

method to 

deal with 

PPS. 

Requirements 

for 

Calculation 

of  Arcmin  to 

deal with 

PPS. 

Does 

not 

require 

to 

calculate 

any 

Arcmin to 

deal 

with 

PPS. 

ELCA is 

simpler design 

to deal with 

PPS. 

Searching for 

PPS 

No such 

particular 

method to 

deal with 

PPS. 

 

No such 

particular 

method to 

deal with 

PPS. 

 

No such 

particular 

method to 

deal with 

PPS. 

 

Requirements 

for 

calculation of  

Earc. 

Does 

not 

require 

to 

calculate 

Earc.. 

ELCA has 

simpler 

searching to 

deal with PPS. 
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Advantages of ELCA based PRNG over other RNGs are described in Table 4.1.4.  

4.1.4. Summary 

Quality of randomness achieved from the various samples of random data sets are verified. 

Good quality and cheap implementation are advantages for ELCA PRNG.  
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4.2. Set of Primes generation with CA 

4.2.1. Introduction 

Prime numbers [36-40, 71, 72] are used in cryptography [5, 73, 74] and stress testing.  

S. Wolfram focused on generation of primes in CA. CA rule “110” is used as the basis for 

some of the smallest universal Turing machines [75]. Several researches were carried out 

towards CA based primes generation [36-40, 76]. P. C. Fischer focused on the generation 

of primes in real-time by a single-dimensional iterative array [36]. J. Mazoyer presented 

prime generation in one-dimensional CA [37]. CA based prime number generation in 

several scenarios were described in [38-40]. In our studies, we have not found a cost 

effective and easy generation of set of primes in null boundary ECA scenario. Hence a 

simple and cost-effective set of primes generation may be advantageous towards cost-

effective application. 

Stress testing (torture testing) is an intense or thorough testing used to determine the 

stability of a distributed computing entity. Beyond normal operational capacity is often 

involved in stress testing, often to its breaking point to monitor the results [77].  

The unique primality property of a prime number ensures that the prime number has exactly 

two divisors, one and the number itself. A number is decided to be a prime or composite 

number depending upon the result of successful pass or failure in primality test. Probability 

theory based Fermat primality testing [78] is used in primality testing. High degree of 

confidence in declaration of prime or composite number, low error ratios and faster 

execution are found in Fermat’s Hypothesis for primes. Fermat Theory for primality is 

illustrated in Equation 4.2.1 and Equation 4.2.2 [78]. 

(mod )P AA P                                   (4.2.1) 

where “P” is a prime number and “A” is a natural number. 

Furthermore, if P*A (“A” is not divisible by “P”), then there is some minimum exponent 

“ P ” where  

1 1(mod )PA P−                                    (4.2.2) 

and “
1 1PA − − ” is divisible by “ P ”. 

Example 4.2.1. 

An example is followed for illustration of Fermat Primality Hypothesis.  
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Let a number “220” should be checked whether it is prime or composite.  

For convention, let us consider a randomly choice value of “a” where, 1 ≤ a< 220, say 

a = 37. Now by definition, 

an-1= 37219≡ 1 (mod 220). 

Now, either 220 is prime, or 37 is a Fermat liar, so another value of ‘a’, say 29 is considered. 

an-1= 29219≡ 1 (mod 220). 

Therefore, 220 is composite and 37 is indeed a Fermat liar. 

Rest of the section is organized as follows: proposed work is described in  

Sub-section 4.2.2; experimental results and analysis are in Sub-section 4.2.3; finally, 

summary is in Sub-section 4.2.4. 

4.2.2. Proposed approach 

ELCA generating rule along with rule “110” are proposed for cost effective generation 

procedure of set of maximum numbers of primes. Primality for produced number is verified 

using Fermat Hypothesis as described in Equation 4.2.2. Proposed system flowchart is 

described in Fig. 4.2.1. 

 
Fig.4.2.1. Proposed flowchart of the system for stress testing 

 

Proposed set of maximum number of primes generation is performed using Algorithm 

4.2.1. 
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Algorithm 4.2.1. Stress_testing_for_distributed_computing_using_CA 

Input: Cell size (n), rule “110”, balanced ELCA rule(s ) 

Output: Stress test passed distributed system 

Step1: Start 

Step2: Initialize CA size and a combination of rule “110” and balanced ELCA rule(s) 

Step3: Consider maximum length sub space for possible set of primes 

Step4: Generate possible primes using Algorithm 2 

Step5: Perform stress testing 

Step6: Follow Step 2 for new prime set, else follow Step7 

Step7: Stop 

Algorithm 4.2.2. Possible_primes_set_generation 

Input: Decimal state values for maximum length sub space 

Output: A maximum length set of prime numbers (S) 

Step1: Start 

Step2: For every decimal values of state follow Step 3 

Step3: Perform Fermat Primality testing as reported in Equation 2 and follow Step 4         

Step4: If state value satisfies Fermat Primality then follow Step 5 else follow Step 6        

Step5: update set of primes (S) with this state value and follow Step 6        

Step6: Stop 

Example 4.2.1. 

Set of primes generation for <110,110,204> in null-boundary CA is presented in Fig. 4.2.2. 

The maximum length subspace is of length four and contains larger numbers of primes as 

compared to other subspaces. The maximum length subspace is considered in proposed 

approach as source of primes. 
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Fig. 4.2.2. Transition diagram for <110,110,204> 

4.2.3. Experimental observations & result analysis 

A combination of rule “110” and ELCA generating rule “204” are considered for 

generation of prime numbers. Detailed studies on these rules are presented in Table 4.2.1. 

Table 4.2.1. Rule details for prime number computation 

Serial 

no. 

Rule Binary equivalent Next state computing function 

1. 110 01101110 NOT i-1(t) AND i(t) AND i+1(t) XOR i(t) XOR i+1(t) 

2. 204 11001100 i(t) 

ELCA rule “204” along with “110” are responsible for length reduction in maximum length 

state space. ELCA rule “51” and “204” is not much efficient in length reduction in 

maximum length state space, but are capable to generate set of primes. Experimental results 

obtained for a data set generated using Algorithm 4.2.1 and Algorithm 4.2.2 are illustrated 

in Fig. 4.2.3. Data shown in Fig. 4.2.3(a) is based on <110, 110, 110, 110> and Fig. 4.2.3(b) 

is based on <110, 110, 110, 204 > in null boundary condition. 

 

Fig. 4.2.3(a). 
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Fig. 4.2.3(b). 

Fig. 4.2.3 

Fig. 4.2.3(a). Transition diagram for <110,110,110,110> 

 Fig. 4.2.3(b). Transition diagram for <110,110,110,204> 

State transitions are shown in Fig. 4.2.3. Algorithm 4.2.2 is applied on the maximum length 

state space as shown in Fig. 4.2.3. Performance of finding maximum number of primes in 

proposed methodology is reported in Table 4.2.2.  

Table 4.2.2. Prime finding performance 

Serial 

No. 

No. 

of 

Cells 

in 

CA 

(n) 

No. of 

States in 

generated 

maximum 

subspace 

(s1) 

No. of 

Primes 

found 

(p1) 

Performance 

= 

(p1/s1)*100% 

No. of States 

in generated 

maximum 

subspace 

(s2) in 

proposed 

method 

No. of 

Primes 

found 

(p2) in 

proposed 

method 

Performance 

= 

(p2/s2)*100% 

in proposed 

method 

1. 6 15 5 33.33% 14 5 35.71% 

2. 7 17 7 41.18% 16 7 43.75% 

3. 8 22 7 31.82% 21 7 33.33% 

 

Proposed design methodology for obtaining maximum number of primes is found better in 

Table 4.2.2 as compared to existing method. Experimental results on different CA sizes are 

presented in Table 4.2.3. 

 

 

60



 

Table 4.2.3. Generation of different sets of primes 

Serial no. No. of cells in 

CA (n) 

No. of states in generated maximum 

length subspace (s2) 

No. of primes found 

(p2) 

1. 3 3 3 

2. 4 8 4 

3. 5 8 4 

4. 6 14 5 

5. 7 16 7 

6. 8 21 7 

7. 9 23 9 

8. 10 29 10 

Observation 4.2.1. Number of primes in generated maximum length state space is often 

equal to the CA size. 

Observation 4.2.2.  Number of primes in produced set almost increases with increased 

number of CA size. 

Observation 4.2.3. Distribution of primes in generated state space is of random pattern.  

Randomness in generated set of primes is reported in Fig. 4.2.4. 

 

Fig. 4.2.4. Randomness of generated pattern of primes 

Degree of randomness for set of primes as reported Series1, Series2 and Series3 in  

Fig. 4.2.4 are achieved for CA size 3, 4 and 5 respectively. Here first four members of the 

set are presented. Result obtained in Table 4.2.3 is illustrated in Fig. 4.2.5. 
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Fig. 4.2.5. Different sets of primes obtained with varying number of cell size 

Observation 4.2.4. Same degree of randomness is found for both methodology. Graphical 

representation of equivalent randomness for CA size 4 is described in Fig. 4.2.6. Members 

of prime set are already shown in Fig. 4.2.3. 

 

Fig. 4.2.6. Equivalency of degree of randomness in different applied methods 

Observation 4.2.5. Performance for finding primes is increased with proposed approach.  

Prime finding performance based on data reported in Table 4.2.2 is shown in Fig. 4.2.7 
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Fig. 4.2.7. Graphical representation of prime finding performance 

Selection of rule for set of primes generation in null boundary CA is in Table 4.2.4. 

Table  4.2.4. Class rule selection for primes 

First rule Intermediate rule Last rule 

110 110 204 

110 110 51 

110 110 153 

4.2.4. Summary 

Larger set of primes is produced from generated maximum length subspace. Length 

reduction for maximum length CA subspace without decreasing the number of primes 

present in that string is only possible with proposed methodology. Random distribution and 

cost-effectiveness in set of primes generation are found in proposed approach. Hence 

proposed method has a potential of uses in stress testing in distributed computing.  
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5.1. CA rules exploration for ELCA generation 

5.1.1. Introduction 

Detailed studies with group CA in ECA scenario targeting several engineering applications 
were presented by researchers [2, 5-8]. Studies of group CA include maximum length [2], 
nonmaximal length [5], invertible CA [7, 8], and also equal length cycle CA (a special case 
of invertible CA) [8]. Nonmaximal length group CA is available in uniform CA scenario 
only [5] and ELCCA, as a special case of invertible CA with length 8 and 16 only is 
available in [8]. CA together with GA [79] based approach are considered towards 
modelling of complex and large systems including cryptosystems [2, 5, 73, 80, 81].  GA 
based CA rule synthesis [80, 81], pattern classification [73] were found in literature. CA 
based crypto system involving CA rule “51”, “195” and “153” was described in [5, 74]. 
Unfortunately, we have not found complete set of CA rules for generation of equal length 
cycles both in uniform, and hybrid CA scenario, and easy synthesis of ELCA rules. 

Motivations for this work are i) to explore the complete set of CA rules for ELCA 
generation, ii) to categorize the set of ELCA rules into linear and non-linear rules for 
detailed analysis of ELCA, and iii) to provide an easy synthesis of ELCA rules for 
generation of equal length cycles. Complete knowledge of ELCA rules is an essential 
criterion to explore the potential applications of ELCA in different scientific and 
engineering trends.  

Rest of the section is organized as follows: proposed work is followed in Sub-section 5.1.2; 
analytical studies are in Sub-section 5.1.4; experimental results are presented in Sub-
section 5.1.4; finally, summary is presented in Sub-section 5.1.5. 

5.1.2. Proposed approach  

Set of necessary and sufficiency conditions for ELCA generating rules are explored in Sub-
section 4.1. Studies on ELCA generating rules in Sub-section 4.1 explored that balanced 
‘HbP’ and ‘LbP’ configurations of balanced CA rule are responsible for generation of 
ELCA rules.  

Cartesian product using all identical combinations [92] of balanced HbP and balanced LbP 
structures of linear ELCA rule, is proposed for exploring all ELCA generating balanced 
CA rules. Proposed Cartesian product is described in Fig.  5.1.1. 
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Fig.  5.1.1. Proposed method for all possible ELCA rule construction 

Total thirty-six number of balanced CA rules is achieved with proposed method as 
described in Fig. 5.1.1. All the thirty-six numbers of balanced CA rules satisfy both 
sufficiency and necessity conditions is described in Fig.  4.1.3 (in Sub-section 4.1). A few 
CA rules are found to produce ELCA cycles at uniform CA scenario (referred as primary 
rules for equal length cycle generation). Other rules are found to produce of equal length 
cycles in hybrid CA scenario.  Primary rules for equal length cycle generation are presented 
in Table 5.1.1. 

Table 5.1.1.  Primary CA rules for ELCA generation 

Serial CA rule Binary equivalent of CA rule 
1 204 11001100 
2 51 00110011 
3 153 10011001 

Observation 5.1.1. Table 5.1.1 consists of three balanced rules among them there is one 
pair of rules which is complement to each other (rule “204” and “51”). 

Observation 5.1.2. HbP and LbP for each primary ELCA generating rules are identical 
with reference to their image property. 

Observation 5.1.3. All the primary rules are self-reproductive in nature in terms of their 
HbP and LbP format. 

Equal length cycles are shown in Fig. 5.1.2, Fig. 5.1.3 and Fig. 5.1.4. State transition 
diagrams of Fig. 5.1.2, Fig. 5.1.3 and Fig. 5.1.4 are obtained for a 4-cell null boundary 
uniform CA using primary rules of Table 5.1.1. 
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Fig.  5.1.2. State transition diagram for <204,204,204,204> 

 

Fig.  5.1.3. State transition diagram for <51, 51, 51, 51> 

 

Fig.  5.1.4. State transition diagram for <153,153,153,153> 

All ELCA generating rules are classified into some classes. Rule “204” and its 
complemented rule “51” can generate ELCA cycles by their own. Besides, this rule set is 
capable of synthesizing rule “195” and rule “60”. Henceforth these two rules are kept 
together in a separate class. Remaining ELCA rules are categorized into different classes. 
Overviews for all ELCA generating rules along with their appropriate classes are presented 
in Table 5.1.2. 
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Table 5.1.2. Categorization of ELCA generating rules 

Class  ELCA generating rules Remarks 

A 204, 51 Both of rules are capable of generating 
ELCA by their own, hence considered as 

primary rule set. 
 

B 
 

153, 102 
Only Rule 153 is capable of generating 

ELCA by its own. Hence it is also a 
primary rule. Rule 102 is capable of 

generating ELCA only with a 
combination of primary rules. 

 
 

C 

 
 

195, 60 

Rule 195 is achieved from Class A by a 
methodology discussed in Method 1. Rule 

60 is complemented rule of Rule 195. 
This class is capable of generating ELCA 
with a combination of primary rules and 

also with a combination among 
themselves. 

 
 

D 

53, 54, 57, 58, 83, 85, 86, 89, 90, 92, 99, 
101, 105, 106, 108, 147, 149, 150, 154, 
156, 163, 165, 166, 169, 170, 172, 197, 

198, 201, 202  

All the rules are achieved from Class A, 
Class B, and Class C by a methodology as 
described in Method 1 and Method 2. All 
the rules are capable of generating ELCA 

with a combination of CA rules under 
Class A and Class B. 

Rule “204” is the unique rule which is generating all single length CA cycle and is capable 
of synthesis of other balanced CA rules responsible for ELCA generation. Two different 
algorithms are followed to regenerate all other ELCA generating rules from rule “204”. An 
intra-crossover based design is reported in Sub-section 5.1.2.1. and an inter-crossover 
based design is reported in Sub-section 5.1.2.2. 

5.1.2.1. Intra-Crossover Design (bit wise crossing over at HbP / LbP) 

An identical structure with reference to the HbP and LbP is found for ELCA generating 
primary rules. Identical HbP and LbP is observed for rule “204”. Therefore, it is easy to 
implement same operation at both partitions of the rule “204”. HbP / LbP structure for rule 
“204” is presented in Fig.  5.1.5. 

 

Fig.  5.1.5. HbP/LbP structure of rule “204” 

Lexicographical order [82] is used to synthesize other rules from the HbP / LbP structure 
of rule “204”. Proposed approach is presented in Fig. 5.1.6. 
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Fig.  5.1.6. All lexicographical order  

Six different HbP structures are generated in Fig. 5.1.6. All six different HbP structures 
have successfully generated thirty-six balanced ELCA rules (Fig. 5.1.1). Described 
approach of Fig. 5.1.6 is used in following Sub-section 5.1.2.2. 

5.1.2.1. Intra-Crossover based Algorithm 

Algorithm 5.1.2.1. Intra_crossing_over_for_ELCA_rule_synthesis 

Input: HbP or, LbP of primary rule 

Output: All balanced CA rules responsible for ELCA generation  

Step1: Start 

Step2: Initialize with binary value of HbP or, LbP and store it as parent  

Step3: If consecutive 0 and 1 are found in parent then goto Step4 else goto Step2 

Step4: Perform complementation operation for both of the position 

Step5: If generated child is balanced then follow Step6 else follow Step 8 

Step6: If generated child is not in existing parent database then follow Step7 else follow 
           Step9 

Step7: Store it into class ‘A’ as future parent and goto Step3 

Step8: Discard the child and goto Step3 

Step9: Make one clone class ‘B’ for all generated valid parents of class ‘A’ and follow 
           Step10 
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Step10: Perform Cartesian production operation on class ‘A’ and class ‘B’ and follow  
             Step11 

Step11: Store all results in class ‘C’ 

Step12: Stop 

5.1.2.2. Inter-crossover Design (bit wise crossing over between HbP and LbP) 

All HbPs along with their complemented structures of the primary rules are crossed over 
with all LbPs along with their complemented structures of the primary rules. All the 
resulting child rules are ELCA generating rules satisfying both necessity and sufficiency 
conditions. Described approach is developed in Sub-section 5.1.2.2. 

5.1.2.2 Inter-crossover based Algorithm  

Algorithm 5.1.2. Inter_crossing_over_for_ELCA_rule_synthesis 

Input: Binary form of Class ‘A’ and Class ‘B’ rules 

Output: All balanced CA rules responsible for ELCA generation  

Step1: Start 

Step2: Initialize class ‘A’ with binary value of Class ‘A’ and Class ‘B’ rules  

Step3: Decompose each rule into HbP and LbP  

Step4: Perform all possible HbP and LbP positional crossing over for data stored in  
           class ‘A’ and update class ‘A’ if it is not already contained in class ‘A’ 

Step5: Perform bit-wise complementation operation for all of the HbP and LbP positions 
           stored in class ‘A’ 

Step6: Perform all possible HbP and LbP positional crossing over for data stored in  
           class ‘A’  

Step7: If the rule is not existing into class ‘A’ then update class ‘A’ with it and follow Step8 

Step8: Stop 

Proposed synthesis methodology for ELCA rules as described in Algorithm 5.1.2.2 is 
presented diagrammatically in Fig. 5.1.7. 
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Fig.  5.1.7. All ELCA generating rule synthesis methodology 

Motivation of Theorem 5.1.1 is to find out the mathematics behind exploration of the 
complete set of ELCA rules. 

Theorem 5.1.1. Maximum numbers of ELCA generating balanced rules are thirty-six 
only. 

Proof: 

ELCA generating CA rules are balanced and at the same time, HbP and LbP structures of 
the balanced CA rule are also balanced by the set of necessity and sufficiency condition. 
Hence, the maximum number of combinations satisfying both the necessity and sufficiency 
conditions is 4C2 (=6). So, the maximum number of balanced rules with 4C2 number of 
balanced configurations in HbP or, LbP position is, 4C2* 4C2=36.  

Therefore, maximum number of ELCA generating rules is 4C2* 4C2=36. 

(End of proof.) 

Corollary 5.1.1. All equal length cycle generating CA rules are balanced CA rules. 
Reverse is not true. 

Proof: 

All ELCA generating rules are balanced as well as they are balanced at their HbP and LbP 
positions (the necessity and sufficiency conditions).  

On the contrary it may happen that certain balanced CA rule contains equal number of 0’s 
and 1’s in its binary representation but it’s HbP and LbP individually contains unequal 

Class A Class C 

Class A Class B Class C 

Class D 

Crossing over at HbP and LbP 

All possible Combinatorial at HbP and 
LbP 
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distribution of 0’s and 1’s. Therefore, this type of CA rule violates the necessity and 
sufficiency conditions. Henceforth, ELCA generation is not confirmed. 

(End of proof.) 

Example 5.1.1. 

Let rule “51” and rule “240” for explanation of Corollary 5.1.1. Both of the rules are 
balanced. But only rule “51” is responsible for generating ELCA. Rule “240” does not 
satisfy necessity and sufficiency conditions. Binary representation structure for rule “51” 
is shown in Fig.  5.1.8(a) and Binary representation of rule “240” is described in Fig.  
5.1.8(b). 

 
5.1.8(a). Rule “51” 

 
5.1.8(b). Rule “240” 

Fig.  5.1.8. Binary representation of Rules 

Motivations of Theorem 5.1.2 and Corollary 5.1.2 are to categorize the ELCA rules 
appropriately into linear and non-linear CA rules using basic binary operation. 

Theorem 5.1.2. If the bit-wise OR/AND operation among balanced HbP and balanced 
LbP of a balanced rule results an even number of 0’s in result, then it is a linear rule or 
complemented rule. 

Proof: 

Binary representations of balanced ELCA rules explore that a bit wise OR/AND operation 
among HbP and LbP produce a result containing even number of 0’s. The next state 
calculating binary functions for these rules employ XOR/XNOR logic only. Hence the 
statement is true. 

(End of Proof.) 
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Corollary 5.1.2. If the bit-wise OR/AND operation among balanced HbP and balanced 
LbP of a balanced rule results an odd number of 0’s in result, then it is a non-linear 
rule. 

Proof: 

Binary representations of balanced ELCA rules explore that if the bit wise OR/AND 
operation among HbP and LbP of a concerned balanced rule does not produce a result 
containing even number of 0’s then the next state calculating binary functions for these 
rules employ AND-OR logic only. Hence the statement is true. 

(End of Proof.) 

Let ELCA rule “102”, “153”, “201”, and “54” for explanation of Theorem 5.1.2 and 
Corollary 5.1.2. Bit wise AND/OR operation among HbP and LbP of the concerned rule 
has been described in Sub-section 5.1.3. 

5.1.3. Analytical studies 

5.1.3.1. Binary representation for rule “102” 

Table 5.1.3. Rule “102” in binary representation 

Rule  HbP    LbP   
102 0 1 1 0 0 1 1 0 

 
Bit-wise OR operation for rule “102” 

0 1 1 0 

0 1 1 0 

-------------------------------------------- 

0 1 1 0 
 

Bit-wise AND operation for rule “102” 
0 1 1 0 

0 1 1 0 

-------------------------------------------- 

0 1 1 0 
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Next state calculating binary function for rule “102” 
 

i(t+1)=i(t) XOR i+1(t)                                      (5.1.1) 

Both bit-wise OR/AND operation among HbP and LbP of rule “102” results two number 
of 0’s in the outcome and the next state calculating function employs XOR logic. Hence 
rule “102” is a linear rule. 

5.1.3.2. Binary representation for rule “153” 

Table 5.1.4. Rule “153” in binary representation 

Rule  HbP    LbP   
153 1 0 0 1 1 0 0 1 

 

Bit-wise OR operation for rule “153” 
1 0 0 1 

1 0 0 1 

----------------------------------------- 

1 0 0 1 

Bit-wise AND operation for rule “153” 
1 0 0 1 

1 0 0 1 

----------------------------------------- 

1 0 0 1 

Next state calculating binary function for rule “153” 
 

i(t+1)=i(t) XNOR i+1(t)                                     (5.1.2) 

Both bit-wise OR/AND operation among HbP and LbP of rule “153” results even number 
of 0’s in the outcome and the next state calculating function employs XNOR logic. Hence 
rule “153” is a complemented rule. 
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5.1.3.3. Binary representation for rule “201” 

Table 5.1.5. Rule “201” in binary representation 

Rule  HbP    LbP   
201 1 1 0 0 1 0 0 1 

 

Bit-wise OR operation for rule “201” 
1 1 0 0 

1 0 0 1 

----------------------------------------- 

1 1 0 1 
Bit-wise AND operation for rule “201” 

1 1 0 0 

1 0 0 1 

----------------------------------------- 

1 0 0 0 

Next state calculating binary function for rule “201” 

i(t+1)=(NOT (i-1(t) OR i+1(t))) OR i(t)                               (5.1.3) 

Both bit-wise OR/AND operation among HbP and LbP of rule “201” results odd number 
of 0’s in the outcome and the next state calculating function does not employ any 
XOR/XNOR logic. Combination of OR logic have been considered. Hence rule “201” is a 
non-linear rule. 

5.1.3.4. Binary representation for rule “54” 

Table 5.1.6. Rule “54” in binary representation 

Rule  HbP    LbP   

54 0 0 1 1 0 1 1 0 
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Bit-wise OR operation for rule “54” 
0 0 1 1 

0 1 1 0 

------------------------------------------ 

0 1 1 1 
 

Bit-wise AND operation for rule “54” 
0 0 1 1 

0 1 1 0 

------------------------------------------ 

0 0 1 0 

Next state calculating binary function for rule “54” 

i(t+1)= (i-1(t) OR i+1(t)) OR i(t)                                       (5.1.4) 

Both bit-wise OR/AND operation among HbP and LbP of rule “54” results odd number of 
0’s in resultant. Furthermore, next state calculating function of rule “54” does not employ 
any XOR/XNOR logic; only combination of OR logic is found. Hence rule “54” is a non-
linear rule. 

Motivations of Theorem 5.1.3 and Corollary 5.1.3 are to establish class-relationships 
among the specified classes as referred in Table 5.1.3 and Table 5.1.4. 

Theorem 5.1.3. In ELCA rule synthesis, an evolutionary approach with intra-
combination to class ‘A’ always produces another additive CA class rules. 

Proof: 

Intra-combination among balanced HbP and balanced LbP of a “class A” rule produces a 
balanced class rule which is also balanced at its HbP and LbP. Class A rules are additive 
in nature and they also satisfy another property that their HbP and LbP is image to each 
other.  

The pair of rules in class A is complemented rule to each other. Therefore, the intra-
combination among the HbP and LbP generates a set of balanced rules with balanced HbP 

76



 

and LbP where the HbP and LbP is mirror image to each other. The next state function for 
these rules simply imply the implementation of XOR/XNOR logic.  

Hence the new derived class is additive CA class rules. 

(End of Proof.) 

Corollary 5.1.3. An evolutionary approach with inter combination between two additive 
classes mostly produces non-additive CA class rules. 

Proof: 

Inter combination among balanced HbP and balanced LbP of different class rules produce 
a balanced class rule which is balanced at its HbP and LbP, but their HbP and LbP is mostly 
different i.e., they do not satisfy any image or mirror image property.  

The inter combination among the HbP and LbP generates a set of balanced rules with 
balanced HbP and LbP where the HbP and LbP is neither image or mirror image to each 
other. The next state function for these rules simply imply the implementation of AND-OR 
logic instead of XOR/XNOR logic.  

Hence the new derived class is non-additive CA class rules. 

(End of Proof.) 

5.1.4. Experimental results 

Detailed experimental results obtained in computer simulation are reported in Sub-section 
5.1.4.1, and Sub-section 5.1.4.2. 

5.1.4.1. Real time activities 

ELCA pattern generation is presented in Table 5.1.7.  

Table 5.1.7. Different equal length cycles generated by primary rules  

Serial Number Rule Cell Size (n) Cycle 
Length 

(m) 
1 204 331 1 
2 51 331 2 
 
 
3 

 
 

153 

3 4 
47 8 

815 16 
1631 32 
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Different uniform and hybrid ELCA scenarios and corresponding rule selection have 
been reported in Sub-section 5.1.4.2. 

5.1.4.2. Efficient Usage 

Class rule selection for uniform CA is presented in Table 5.1.8 and class rule selection for 
hybrid CA is in Table 5.1.9, Table 5.1.10 and Table 5.1.11. 

Table 5.1.8. Class rule selection for uniform ELCA 

Class of Ri Ri Class of Ri+1 Ri+1 
A 204 A 204 
A 51 A 51 
B 153 B 153 

 
Table 5.1.9. Class rule selection for hybrid ELCA 

First 
rule 
class 

First rule 
Ri-1 

Intermediate 
rule class 

Intermediate rules 
Ri 

Last rule 
class 

Last rule 
Ri+1 

A 204 A, B, C 51,60,102,195 A, B 51,204 
A 51 A, B, C 51,60,102,153,195,204 A, B, C 51,102,153,204 
B 153 A, B, C 102,153 A, B, C 51,60,204 
B 102 A, B, C 51,60,102,153,195,204 A, B 51,153 
C 195 A, B, C 60,195 A, B, C 60,102,153,195 
C 60 A, B, C 60,102,153,195 A, B, C 51,60,153 

 
Table 5.1.10. Special cases for class rule selection for hybrid ELCA 

Cell size (n) First rule Intermediate rules in alternative selection Last rule 

Odd 204 153/204 204 
Even 204 153/204 153 

 
Table 5.1.11. Special cases for class rule selection for hybrid ELCA 

Cell size (n) First rule Intermediate rules in alternative selection 

 204 99/204 
 204 57/204 
 51 57/51 
 51 99/51 

n>=4 99 204/99 
 99 204/51 
 57 204/57 
 57 51/57 
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5.1.5. Summary 

All balanced CA rules, uniform and hybrid scenario responsible for generation of equal 
length cycles are explored. Synthesis for all reported ELCA rules from primary ELCA rule 
and hierarchical relationship among ELCA rules are described.  
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5.2. Analysis of ELCA generating linear rules 

5.2.1. Introduction 

An n-cell CA with linear rules is characterized by an [݊×݊] square matrix. Construction of 
characteristics matrix M [i,j] is defined as Equation 5.2.1 [73]. 

M [i,j]=

1,            
            
 0,  

if the next state of the i th cell is dependent
on the present state of the j th cell
otherwise

 






               (5.2.1) 

Example 5.2.1. 

Let R=<102, 150, 170, 204> 

1

4 4

1       1     0      0
1       1     1      0
0      0     0      1
0      0     1      0

M



 
 
 
 
 
 

 

Characteristics Polynomial of matrix is obtained by constructing the matrix [M] + x [I] and 
computing the corresponding determinant [M+xI]; where [I] is identity matrix. 

State transition of a linear CA is defined as Equation 5.2.2 [73]. 

Y=M(x)                                             (5.2.2) 

where, CA input is denoted by an n-bit vector ‘x’; 

‘Y’ denotes the output bit vector of the CA; 

Construction of Characteristics polynomial from characteristics matrix has been illustrated 
in Example 5.2.2. 
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Example 5.2.2. 

 

1    1      0      0
1      1    1       0
0        0            1
0        0      1      

1       1       0      0
1    1         1       0

(
0        0              1
0        0        1      

x
x

M xI
x

x

x
x

x
x




 




 0 1

2

1 0 1

swap C  and C )

1            0                      0      0
1   (1 ) +1             1      0

(C = C *(1+x)+ C )
0            0                            1
0            0                      1      

x x
x

x

 


2
2 2

1 0 1

1           0                  0      0
0                           1       0 (R = R *(1+x)+ R ) and (1 ) +1 )
0           0                        1
0           0                  1      

1     

x x x
x

x

  


2

1 2

  0           0                 0
0       1                          0 (swap C  and C )
0                  0                 1
0       1           0                 

x
x

x
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2
2 1 23

2

1       0           0                 0
0       1           0                 0

(C =C *x +C )
0                                  1
0       1                            

1       0           0       

x x
x x



 2 1 2 3 1 33

2

          0
0       1           0                 0

(R =R *x+R ) and (R =R +R )
0       0                           1
0       0                            

1       0           0                 0
0   

x
x x

 3 23

2

    1           0                 0
(swap  C  and C )

0       0           1                
0       0                            

1       0           0                 0
0       1           0         

x
x x

 3
3 2 3

4 2

        0
(C = C * )

0       0           1                0
0       0                            

1       0           0                 0
0       1           0                 0
0       0        

x C

x x x





 3 2 3

4 2

(swap  R = R * )
   1                0

0       0           0                 

1       0           0                 0
0       1           0                 0
0       0           1                0
0

x R

x x





 3
3 2 3

4 2

(C = C * )

       0                            

1       0           0                 0
0       1           0                 0
0       0           1                0
0       0           0      

x C

x x x





 3 2 3

4 2

(R = R * )

           

x R

x x




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Minimal polynomial for given matrix is (x4+x2). 

Therefore, the characteristic polynomial is 1.1.1.(x4+x2). 

Characteristics Polynomial is given by Equation 5.2.3. 

4 2Y x x                                                              (5.2.3) 

Aim of this section is to explore the algebraic properties of ELCA generating linear CA 
rules and to find out the mathematical relationship between cell length and cycle length.  

Rest of the section is organized as follows: ELCA generating linear and complemented 
linear rules are reported in Sub-section 5.2.2; formal analysis on ELCA generating linear 
and complemented linear rules are presented in Sub-section 5.2.3; experimental 
observations are reported in Sub-section 5.2.4 and finally summary is in Sub-section 5.2.5. 

5.2.2. ELCA generating linear and complemented linear rules 

ELCA generating linear and complemented linear rules are reported in Table 5.2.1. 

Table 5.2.1. ELCA generating linear and complemented linear rules 

Serial 
number 

Rule Binary 
representation 

Next state function Cell dependency 

1. 60 00111100 i-1(t) XOR i(t) Left & self 
2. 90 01011010 i-1(t) XOR i+1(t) Left & right 
3. 102 01100110 i(t) XOR i+1(t) Self & right 
4. 150 10010110 i-1(t) XOR i(t) XOR i+1(t) Left, self & right 
5. 170 10101010 i+1(t) Right 
6. 204 11001100 i(t) Self 
7. 195  11000011 i-1(t) XNOR i(t) Left & self 
8. 165 10100101 i-1(t) XNOR i+1(t) Left & right 
9. 153 10011001 i(t) XNOR i+1(t) Self & right 

10. 105 01101001 i-1(t) XNOR i(t) XNOR i+1(t) Left, self & right 
11. 85 01010101 NOT i+1(t) Right 
12. 51 00110011 NOT i(t) Self 

 

5.2.3. Formal analysis on ELCA generating rules 

Characteristic matrix for ELCA generation using linear rule ‘204’ (in an n-cell uniform 
CA) is shown in Equation 5.2.4. Equation 5.2.2 and cell dependencies (refer Table 5.2.1) 
are utilized for construction of characteristic matrix. 
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1       0     0   ...  0
0       1     0   ...  0
0      0     1   ...  0
.
.
.
0      0     0   ...  1

linearn

n n

T



 
 
 
 
 
 
 
 
 
  

                                          (5.2.4) 

Characteristic polynomial for given matrix is shown in Equation 5.2.5. 

Y204= (x+1)                                                                 (5.2.5) 

Characteristic matrix for ELCA generation using complemented linear rule ‘51’ is shown 
in Equation 5.2.6. Equation 5.2.6 and cell dependencies (refer Table 5.2.1) are used for 
construction of characteristic matrix. 

1       0     0   ...  0
0       1     0   ...  0
0      0     1   ...  0
.
.
.
0      0     0   ...  1

complementedLinn

n n

T 



 
 
 
 
 
 
 
 
 
  

                                     (5.2.6) 

Characteristic polynomial for given matrix is shown in Equation 5.2.7. 

Y51= (x+1)                                        (5.2.7) 

Observation 5.2.1. Minimal polynomials for an n-cell uniform CA using rule ‘204’ and 
‘51’ are same. 

Observation 5.2.2. Characteristic polynomials for an n-cell uniform CA using rule ‘204’ 
and ‘51’ are same. 

Theorem 5.2.1. Fixed length ELCA is generated from uniform CA, only if characteristic 
polynomial has a form of (x+1). 

Proof: 

All single length ELCA are produced using linear rule ‘204’ and all double length ELCA 
are generated using complemented linear rule ‘51’ in null-boundary uniform CA. Rules 
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‘204’ & ‘51’ have next state dependency on self-cell only. Other linear ELCA rules do not 
have next state dependency on self-cell only (refer Table 5.2.1 and Table 5.2.2).  

Therefore, characteristic polynomial (x+1) (refer Equation 5.2.4 and Equation 5.2.6) only 
produces fixed length ELCA. 

(End of proof.) 

Characteristic matrix for linear rule ‘153’ in an n-cell uniform CA is illustrated in  
Equation 5.2.8. Equation 5.2.8 and cell dependencies (refer Table 5.2.1) are used for 
construction of characteristic matrix. 

 

1       1     0   ...  0
0       1     1   ...  0
0      0     1   ...  0
.
.
.
0      0     0   ...  1

complementedLinn

n n

T 



 
 
 
 
 
 
 
 
 
  

                               (5.2.8) 

Characteristic polynomial for given matrix is shown in Equation 5.2.9. 

Y153= (x+1)n                                            (5.2.9) 

Theorem 5.2.2. Variable length ELCA is generated from uniform CA, only if 
characteristic polynomial has a form of (x+1)n. 

Proof: 

ELCA are produced using linear rule ‘153’ in null-boundary uniform CA. Next state 
dependency for rule ‘153’ is on self-cell and right cell only (refer Table 5.2.1). 
Characteristic polynomial only produces a polynomial (x+1)n (refer Equation 5.2.9). 

(End of proof.) 

Example 5.2.3. 

Let, R = <153, 153, 153, 153>. 

Characteristic matrix is considered as follows. 

85



 

153

4 4

1       1     0    0
0       1     1    0
0      0     1     1
0      0     0     1

T 



 
 
 
 
 
 

 

All elements in main-diagonal and on-diagonal are ‘1’.  

Characteristic matrix for ELCA generation using an n-cell hybrid CA is shown in  
Equation 5.2.10 for given rule set “R = <204, Ri…..Ri>” having “Ri = <60, 195, 51>”. 

1       0     0   ...  0 0
1       1     0   ...  0 0
0      1     1   ...  0 0
0       .. 0  1  ...  0 0
.        ...                 .
0       ...            1  0
0      0     0   ...  0  1

nT

 



 



 n n











                                   (5.2.10) 

Characteristic polynomial for given hybrid matrix is shown in Equation 5.2.11. 

Yhybrid= (x+1)                                                           (5.2.11) 

Different characteristic matrices for ELCA generation using n-cell hybrid CA are presented 
in Equation 5.2.12, Equation 5.2.13, Equation 5.2.14, and Equation 5.2.15.  

1

1       0     0   ...  0 0
1       1     0   ...  0 0
0      0     1   ...  0 0
0       .. 1  1  ...  0 0
.        ...                 .
0       ...            1  0
0      0     0   ...  0  1

nT





 



 n n












                                (5.2.12) 
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2

1       0     0   ...  0 0
1       1     0   ...  0 0
0      1     1   ...  0 0
0       .. 0  1  ...  0 0
.        ...                 .
0       ...            1  0
0      0     0   ...  0  1

nT





 



 n n












                        (5.2.13)  

3

1       1     0   ...  0 0
0       1     0   ...  0 0
0      0     1   ...  0 0
0       .. 0  1  ...  0 0
.        ...                 .
0       ...            1  0
0      0     0   ...  0  1

nT





 



 n n












                        (5.2.14)                                                                              

4

1       1     0   ...  0 0
0       1     1   ...  0 0
0      0     1   0..  0 0
0       .. 0  1  ...   0 0
.        ...                 .
0       ...            1  0
0      0     0   ...  0  1

nT





 



 n n











 

                        (5.2.15) 

Equation 5.2.12 is generated for “R = <204, Rn1,….Rn1>” having “Rn1 = <60, 51>”. 

Equation 5.2.13 is generated for “R = <153, Rn2,…Rn2>” having “Rn2 = <60, 195, 51>”. 

Equation 5.2.14 is generated for “R = <153, Rn3…. Rn3>” having “Rn3 = <51, 102>”. 

Equation 5.2.15 is generated for “R = <153, Rn4………. Rn4, 51>” having “Rn4 = <102, 51, 
60>”. 

Observation 5.2.3. Variable length ELCA is generated in hybrid CA scenario, if 
characteristic matrix forms a tri-diagonal matrix with all ‘1’ in diagonal positions, and on-
diagonal or off-diagonal positions are occupied by “1, 0” pattern sequence. Corresponding 
determinant of characteristic matrix is equal to one. 
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Observation 5.2.4. Variable length ELCA is generated from hybrid CA, if characteristic 
matrix forms a tri-diagonal matrix with all ‘1’ in diagonal positions, and on-diagonal or 
off-diagonal positions are occupied by “1, 1, 0” pattern sequence. Corresponding 
determinant of characteristic matrix is equal to one. 

Observation 5.2.5. ELCA could not be generated from hybrid CA, if characteristic matrix 
forms a tri-diagonal matrix with all ‘1’ in diagonal positions, and on-diagonal & off-
diagonal positions are occupied by “1, 0” or “1, 1, 0” pattern sequence. Corresponding 
determinant of characteristic matrix is equal to zero. 

Example 5.2.4. 

Let, R11 = <51, 204, 51, 204, 51>, R12 = <204, 60, 51, 60, 51>,  

R13 = <153, 51, 102, 51, 102>, and, R14 = <153, 60, 153, 195, 51>. 

11

5 5

1       0     0    0     0
0       1     0    0     0
0      0     1     0    0
0      0     0     1    0
0       0    0      0    1

RT 



 
 
 
 
 
 
  

                       

determinant = 1; 

capable to produce ELCA = yes; 

characteristic polynomial = (x+1). 

12

5 5

1       0     0    0     0
1       1     0    0     0
0      0     1     0    0
0      0     1     1    0
0       0    0      0    1

RT 



 
 
 
 
 
 
  

 

determinant = 1; 

capable to produce ELCA = yes; 

characteristic polynomial = (x+1). 
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        13

5 5

1       1     0    0     0
0       1     0    0     0
0      0     1     1    0
0      0     0     1    0
0       0    0      0    1

RT 



 
 
 
 
 
 
  

                       

determinant = 1; 

capable to produce ELCA = yes; 

characteristic polynomial = (x+1). 

14

5 5

1       1     0    0     0
1       1     0    0     0
0      0     1     1    0
0      0     1     1    0
0       0    0      0    1

RT 



 
 
 
 
 
 
  

 

determinant = 0; 

capable to produce ELCA = no; 

Characteristic polynomial = (x+1). 

Corollary 5.2.1. Variable length ELCA is generated from hybrid CA, if characteristic 
polynomial has a form of (x+1)n, and corresponding determinant of characteristic matrix 
is equal to one. 

Proof: 

ELCA cycles are generated using linear rule ‘153’ in null-boundary uniform CA scenario. 
Next state dependency for rule ‘153’ is on self-cell and right cell only (refer Table 5.2.1). 
Therefore characteristic polynomial only produces a polynomial (x+1)n (refer Equation 
5.2.9). 

(End of proof.) 

5.2.3.2. Algebraic Properties 

5.2.3.2.1. Algebraic operations, performed on [݊×݊] characteristic matrix as reported in 
Equation 7 and Equation 9, are mentioned as follows. 
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rank = n; 

determinant = 1; 

trace = n; 

signature = (n,0). 

5.2.3.2.2. Algebraic operations, performed on [݊×݊] characteristic matrix as reported in 
Equation 11, are mentioned as follows. 

rank = n; 

determinant = 1; 

trace = n; 

not a symmetric matrix, hence no signature. 

Example 5.2.5. 

Let, R1 = <51, 51, 51, 51>, R2 = <204, 204, 204, 204>, R3 = <153, 153, 153, 153>, and, R4 

= <90, 150, 90, 150>. 

1

4 4

1       0     0    0
0       1     0    0
0      0     1     0
0      0     0     1

RT 



 
 
 
 
 
 

 

rank = 4; 

determinant = 1; 

trace = 4; 

signature = (4,0). 

2

4 4

1       0     0    0
0       1     0    0
0      0     1     0
0      0     0     1

RT 



 
 
 
 
 
 

 

rank = 4; 

90



 

determinant = 1; 

trace = 4; 

signature = (4,0). 

3

4 4

1       1     0    0
0       1     1    0
0      0     1     1
0      0     0     1

RT 



 
 
 
 
 
 

 

rank = 4; 

determinant = 1; 

trace = 4. 

not a symmetric matrix, hence no signature. 

4

4 4

0       1     0    0
1       1     1     0
0       1     0    1
0       0     1    1

RT 



 
 
 
 
 
 

 

rank = 4; 

determinant = 1; 

trace = 2; 

signature = (2, 2). 

Theorem 5.2.3. An n-cell CA is responsible for ELCA generation, iff determinant of 
characteristic matrix is one, and, trace of characteristic matrix is equal to ‘n’.    

Proof: 

Algebraic properties as reported in 3.2.1 and 3.2.2 prove the statement for an n-cell CA. 

(End of proof.) 
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Lemma 5.2.1. An n-cell CA is responsible for fixed length ELCA generation, iff 
determinant of characteristic matrix is equal to one, and, trace is equal to ‘n’ and 
signature is (n, 0).    

Proof: 

Algebraic properties as reported in 3.2.1 and 3.2.2 prove the statement for an n-cell CA. 
Illustrations related to Lemma 5.2.1 are in Example 4 (refer R1 and R2 in Example 5.2.5).   

(End of proof.) 

Lemma 5.2.2. An n-cell CA is responsible for variable length ELCA generation, iff 
determinant of characteristic matrix is equal to one, and, trace is equal to ‘n’ and there 
is no signature for characteristic matrix. 

Proof: 

Algebraic properties as reported in 3.2.1 and 3.2.2 prove the statement for an n-cell CA. 
Illustrations related to Lemma 5.2.2 are in Example 4 (refer R3 in Example 5.2.5).  

(End of proof.) 

Lemma 5.2.3. An n-cell CA is responsible for maximum length CA (MaxCA) generation, 
iff determinant of characteristic matrix is equal to one, and, trace is equal to ‘

2
n ’ and 

signature of characteristic matrix is (
2
n ,

2
n ).    

Proof: 

Illustrations related to Lemma 5.2.3 are in Example 5 (refer R4 in Example 5.2.5). MaxCA 
is generated for this rule set in null-boundary CA. 

(End of proof.) 

Transition diagrams for Example 5.2.5 have been shown in Fig. 5.2.1. 

 

Fig. 5.2.1(a). Transition diagram for <51, 51, 51, 51> 

0 15 

11 4 

14 1 

10 5 

12 

9 6 

12 3 

8 7 
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Fig. 5.2.1(b). Transition diagram for <204, 204, 204, 204> 

 

Fig. 5.2.1(c). Transition diagram for <153, 153, 153, 153> 

 

Fig. 5.2.1(d). Transition diagram for <90, 150, 90, 150> 
Fig. 5.2.1. Transition diagrams using 51, 204, 153, 90, 150 

Eight equal length cycles of length two are shown in Fig. 5.2.1(a). Sixteen equal length 
cycles of length one are presented in Fig. 5.2.1(b). Two equal length cycles of length eight 
are shown in Fig. 5.2.1(c). One MaxCA of length fifteen is shown in Fig. 5.2.1(d). A set of 
necessary and sufficient conditions are achieved using Lemma 1, Lemma 2, and Lemma 3. 

Necessary condition for ELCA and MaxCA generation: Determinant of [݊×݊]  
characteristic matrix should be equal to one. 

Sufficient condition for ELCA generation: Trace of [݊×݊] characteristic matrix should 
be equal to ‘n’. 

1 0 2 3 4 5 6 7 

8 10 11 12 13 14 15 9 

0 15 

6 5 

13 14 

8 7 

12 1 

3 10 

2 11 

9 4 

1 3 

1
0 

11 6 

15 1
0 

5 2 

4 14 

9 13 

7 8 

0 
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Sufficient condition for MaxCA generation: Trace of [݊×݊] characteristic matrix should 
be equal to ‘

2
n ’. 

Discussions on characteristic matrix of Example 5.2.4 are provided in Example 5.2.6. 

Example 5.2.6. 

11

5 5

1       0     0    0     0
0       1     0    0     0
0      0     1     0    0
0      0     0     1    0
0       0    0      0    1

RT 



 
 
 
 
 
 
  

                       

rank = 5; 

determinant = 1; 

trace = 5; 

signature = (5, 0); 

capable to produce ELCA = yes.        

  12

5 5

1       0     0    0     0
1       1     0    0     0
0      0     1     0    0
0      0     1     1    0
0       0    0      0    1

RT 



 
 
 
 
 
 
  

       

rank = 5; 

determinant = 1; 

trace = 5; 

not a symmetric matrix, hence no signature; 

capable to produce ELCA = yes.            
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11

5 5

1       1     0    0     0
0       1     0    0     0
0      0     1     1    0
0      0     0     1    0
0       0    0      0    1

RT 



 
 
 
 
 
 
  

           

rank = 5; 

determinant = 1; 

trace = 5; 

not a symmetric matrix, hence no signature; 

capable to produce ELCA = yes.            

    11

5 5

1       1     0    0     0
1       1     0    0     0
0      0     1     1    0
0      0     1     1    0
0       0    0      0    1

RT 



 
 
 
 
 
 
  

 

rank = 3; 

determinant = 0; 

trace = 5; 

signature = (3, 0); 

capable to produce ELCA = no.          

Transition diagrams for Example 5.2.6 are shown in Fig. 5.2.2. 
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Fig. 5.2.2(a). Transition diagram of R11=<51, 204, 51, 204, 51> 

 

Fig. 5.2.2(b). Transition diagram of R12=<204, 60, 51, 60, 51> 
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Fig. 5.2.2(c). Transition diagram of R13=<153, 51, 102, 51,102> 

 

Fig. 5.2.2(d). Transition diagram of R14=<153, 60, 153, 195, 51> 
Fig. 5.2.2. Transition diagrams using 51, 204, 60, 153, 102, 195 
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Equal length cycles are observed in Fig. 5.2.2(a), Fig. 5.2.2(b), and, Fig. 5.2.2(c). No equal 
length cycle is found in Fig. 5.2.2(d) (refer Theorem 5.2.1, Lemma 5.2.1, Lemma 5.2.2, 
and, Lemma 5.2.3). 

5.2.4. Experimental observations & results  

ELCA patterns are generated in simulation. Intel Pentium Dual CPU E2180 @ 2.00 GHz 
processing support was availed in execution of computer simulation. Equal length cycles 
generated with ELCA generating linear and complemented linear rules in three-
neighborhood null-boundary scenario are reported in Table 5.2.2. 

Table 5.2.2. ELCA generation table using a combination of rule “204”, “51” and “153” 

Serial 
Number 

Rule                                                n-cell CA 
                Uniform                   Hybrid 

1. 204 Capable for producing ELCA Capable for producing ELCA 
2. 51 Capable for producing ELCA Capable for producing ELCA 
3. 153 Capable for producing ELCA Capable for producing ELCA 

 
Rule “51”, “153” and “204” are capable of generation of ELCA patterns both in uniform 
and hybrid CA conditions. Cycle lengths in generated ELCA patterns are enlisted in Table 
5.2.3, Table 5.2.4 and Table 5.2.5. 

Table 5.2.3. ELCA cycle length table for rule “204”  

Serial Number Cell Size  Cycle Length 
1. 3 1 
2. 4 1 
3. 5 1 
4. 6 1 
5. 12 1 
6. 23 1 
7.                       63 1 

 
All single length ELCA patterns are achieved in Table 5.2.3. Hence a conclusion is drawn 
using that all single length ELCA patterns are generated for rule “204” in uniform CA 
scenario. 
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Table 5.2.4. ELCA cycle length table for rule “51”  

Serial Number Cell Size  Cycle Length 
1. 3 2 
2. 4 2 
3. 5 2 
4. 6 2 
5. 12 2 
6. 23                                   2 
7.                       63 2 

All double length ELCA patterns are achieved in Table 5.2.4. Hence a conclusion is drawn 
that all double length ELCA patterns are generated for rule “51” in uniform CA scenario. 

ELCA length is found as varying over different cell sizes for null boundary uniform CA 
with rule “153”. Different cycle lengths have been reported in Table 5.2.5.  

Table 5.2.5. ELCA cycle length table for rule “153” 

Serial 
Number 

Cell Size range Minimum number of bits required 
to represent in binary 

equivalent(n) 

Cycle Length 

1. 3 2 4 
2. 47 3 8 
3. 815 4 16 
4. 1631 5 32 

         5. 3263 6 64 

Generalized relationship among cell size of CA and generated ELCA cycle length for rule 
“153” in uniform CA scenario is reported in Table 5.2.6. 

Table 5.2.6. ELCA cycle length calculation table for rule “153” 

Cell Size range Cell Size range 
(in decimal 

value) 

Minimum number of bits 
required to represent in binary 

equivalent(n) 

Cycle Length 

(2n)(2n+1-1) 2n2n+1-1 n+1 2n+1 

Equation 5.2.15 is presented based on Table 5.2.6.  

                 2 number of minimum bits required to represent in equivalent binary form for given cell numbers in decimalCycle length   
(5.2.15) 

Results obtained in Table 5.2.2, Table 5.2.3 and Table 5.2.4 are graphically shown in  
Fig. 5.2.3. 
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Fig. 5.2.3. ELCA cycle length 

ELCA cycle length in uniform CA scenario is shown in Fig. 5.2.3 for rule “204”, “51” and 
“153”. A trend for corresponding graph is shown with Power Curves (refer Fig. 5.2.3). A 
linear growth in power curve is achieved for ELCA patterns with constant cycle length 
(refer Table 5.2.3 and Table 5.2.4). Stepped growth is only been observed for rule “153” 
(refer Table 5.2.5 and Equation 5.2.15). 

Discussions for all other ELCA rules (refer Table 5.2.2 and Table 5.2.3) are reported in 
Table 5.2.7.  

Table 5.2.7. ELCA generation table for other ELCA generating linear rules 

CA rules n-cell CA 

Uniform condition Hybrid condition 
60, 85, 90, 102, 105, 150, 165, 170, 195 Not Capable for producing 

ELCA 
Capable for producing 

ELCA 

ELCA generating capability by ELCA generating balanced rules in different CA scenarios 
(i.e. uniform, and hybrid scenario) are explored in the experiments. Lengths of generated 
ELCA cycles in different experimental results strengthen the analysis (refer Sub-section 
5.2.3). 

5.2.5. Summary 

A formal analysis on linear CA rules in null boundary scenario is presented for ELCA 
generation. Algebraic approach is focused in the Sub-section. General form of 
characteristics matrix, relationship between ELCA cycle and CA size are shown.  
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5.3. ELCA formulation using Discrete Mathematics 

5.3.1. Introduction 

Discrete Mathematics [83] is referred to as the study of mathematical configurations that 
are essentially disconnected rather than continuous in character. Set of finite or infinite 
number of stuffs is considered for theoretical discrete mathematics. Finite mathematics is 
applied to parts of discrete mathematics field that deals with finite sets for the physical 
implementation of the computation. Tessellation concept is introduced for efficient 
designs. Tessellation is referred as a tiling of plane (flat surface) using one/multiple 
geometric shapes (tiles) with no overlapping and gap between two consecutive tiles. 
Aperiodic tiling is referred as a non-periodic tiling with a restricted property that arbitrarily 
large periodic patches are excluded from concerned tile [84]. 

Repeating arrangement of points in a graph (tile) is described with the help lattice theory. 
Lattice is described as an algebra over a non-empty set and a pair of binary operations 
(“And operation” and “Or operation”) on that non-empty set [85]. Mapping is required for 
better understanding of computation. Mapping is referred as a relationship among elements 
of domain and range. Injection, surjection and bijection mapping as found in [86-89] are 
briefly discussed below. 

Injective- A function :f A B  is referred as injective (one-to-one) iff each member 
elements of the 'domain'(A) is exactly mapped with at-most one-member element of the 
'range' (B). 

Surjective- A function :f A B  is referred as surjective (onto) iff each member elements 
of the 'domain'(A) is mapped with at-least one-member element of the 'range' (B). 

Bijective- A function :f A B  is referred as bijective iff injection and surjection, both 
properties are satisfied for that function.  

Injection, surjection and bijection as described in [89] are presented in Fig. 5.3.1. 
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Fig. 5.3.1. (a) 

 
Fig. 5.3.1. (b) 

 

                               Fig. 5.3.1. (c) 

 

                          Fig. 5.3.1. (d) 

Fig. 5.3.1. Typical diagrammatic illustrations for injection, surjection, projection and bijection. 

Lattice- Lattice in ‘ nR ’ is defined as a discrete subgroup of ‘ nR ’ which spans the real 
vector space ‘ nR ’. Every lattice in ‘ nR ’ is generated from a base for the vector space by 
forming all linear combinations with integer co-efficient. Lattice is also views as a regular 
tiling of a space by primitive cell. 

Aim of this section is to explore the principles for ELCA generation using FSM and to 
carry out a thorough mathematical investigation for ELCA characteristics polynomial to 
investigate randomness generation capacity from ELCA patterns. 

Rest of the section is organized as follows: ELCA formulation and analysis using discrete 
math is in Sub-section 5.3.2; experimental observations are reported in Sub-section 5.3.3 
and summary is in Sub-section 5.3.4. 

 

Domain (A) 
⍱ ai є A 

Range (B) 
⍱ bi є B 

Non-injective & surjective (onto) 

a

a

a

b

b

b
a

Domain (A) 
⍱ai є A 

Range (B) 
⍱ bi є B 

Injective & non-surjective (one-to-one) 

a

a

a

b

b

b

b

Domain (A) 
⍱ ai є A 

Range (B)  
⍱ bi є B 

Non-injective & non-surjective 

a

a

a

b

b

b
a

Domain (A)  
⍱ ai є A 

Range (B)  
⍱ bi є B 

Injective & surjective (bijective) 

a

a

a

b

b

b

102



 

5.3.2. ELCA formulation 

CA are expressed as a function of sextuple in Equation 2.1.3 of Sub-section 2.1. ELCA is 
a special class of group CA.  Hence, ELCA is capable of being represented as a function 
of sextuple [47]. Generated ELCA is capable of being transformed into some finite number 
of tessellations. Equal number of states is found in each tessellation. Sextuple function for 
ELCA is discussed in Equation 5.3.1. Equation 5.3.1 is based on the Equation in [47].  

0, , s, s , ,ELC A S N                                  (5.3.1) 

 where, finite number 2௠  of tessellations of length 2௡ି௠  are represented by Γ; 

finite set of states (݇ = 2, where possible number of state values are represented by ݇) is 
referred to as ܵ and often ܵ ⊂ ℕ;   

output mapping function ݏ: ℕ×߁ → ܵ  produces the state value of cell  ܿ ௜ at the ݐ௧௛  discrete 
time step denoted by ݏ(ܿ௜,   ;(ݐ

initial condition for every cell ܿ௜ i.e. ݏ(ܿ௜ , 0) = :଴ݏ ଴(ܿ௜) is assigned by functionݏ ߁ → ܵ;  
every cell ܿ௜ is mapped to a finite sequence ܰ(ܿ௜) = (ܿ௜௝)௝ୀଵ

|ே(௖೔)| by neighborhood function 
߁:ܰ → ⋃ ௉ஶ߁

௉ୀଵ  and |ܰ(ܿ௜)| is the number of all distinct cells ܿ௜௝ ;  

ɸ = (߶௜)௜∈ℕ is a family of functions ߶௜ : ܵ|ே(௖೔)| → ܵ where each ߶௜  is responsible for the 
dynamics of cell ܿ௜, i.e., ݏ(ܿ௜ , ݐ + 1) = ߶௜(ௌ~(ܰ(ܿ௜), ,as (ௌ~(ܰ(ܿ௜) ,((ݐ ((ݐ =
(ௌ~(ܰ(ܿ௜), ௝ୀଵ((ݐ

|ே(௖೔)|. 

Bijection mapping is present in ELCA state transition diagrams (refer Fig. 5.3.3(d)). Hence 
FSM representation for ELCA is possible. Number of cycles generated in ELCA state 
space is discussed in Theorem 5.3.1 and output mapping function for ELCA generating 
FSM is discussed in Theorem 5.3.2. 

Motivation of Theorem 5.3.1 is to show that ELCA structure follows bijection mapping. 

Theorem 5.3.1: An output mapping function employing Bijection mapping is responsible 
for generation of ELCA. 

Proof:  

Output mapping function ݏ: ℕ×߁ → ܵ as described in Equation 5.3.1 is responsible for 
generation of transitions in form of group CA. Injective [86] and surjective [87] mapping 
both are simultaneously found in output mapping function, ݏ: ℕ×߁ → ܵ. A “one-to-one” 
mapping is considered as a special case of “one-to-many” mapping. Thus, surjective (onto) 
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mapping is found as a collection of multiple injections (one-to-one). Hence, existence of 
bijection mapping [88, 89] in output mapping function of ELCA has been proved. 

(End of proof.) 

Equation 5.3.4 is obtained from Theorem 5.3.1. 

1 2

( ) ( ) ( )B SP P I P
C C

                                     (5.3.4) 

where, ‘C1’ and ‘C2’ are conditions; ‘P’ is referred as probability; ‘B’ is referred as 
bijection; ‘S’ is referred as surjection; and ‘I’ is referred as injection.  

Observation 5.3.2. Lattice Isomorphism [90] is found in ELCA transition mapping 
:ݏ“ ℕ×߁ → ܵ”. 

A pair of Necessary and Sufficient Conditions are found from Theorem 5.3.1.  

Necessary Condition for ELCA generation: Characteristics polynomial for ELCA is a 
form of minimal polynomial along with a complete bijection mapping in ELCA transition 
function. 

Sufficient Condition for ELCA generation: Characteristics polynomial for ELCA is a 
form of recursive primitive polynomial. 

Randomness is assured for a CA generated pattern if characteristics polynomial for that 
CA is a primitive polynomial. Primitive characteristics polynomial is found for MaxCA. 
Hence degree of randomness is found in MaxCA cycle generated with a unique 
combination of rules “90” and “150” in null-boundary condition only. No primitive 
characteristics polynomial is ever possible for combination of rules “90” and “150” in 
periodic-boundary condition. Hence MaxCA is not found in periodic boundary CA [5].  

Motivation of Theorem 5.3.2 is to show the presence of primitive polynomial or primitive 
recursive polynomial in ELCA characteristic polynomial. 

Theorem 5.3.2. If characteristics polynomial for ELCA is primitive polynomial or 
primitive recursive polynomial, then randomness is assured in generated pattern. 

Proof:  

The characteristics polynomials for uniform and hybrid ELCAs have been reported as 
“(1+x)” and “(1+x)n”. It has been found that the characteristics polynomial of ELCA is of 
the form of a minimal polynomial (Sub-section 5.2). 

104



 

A primitive function݂(ݔ) as defined in [91] is shown in Equation 5.3.5. 

(ݔ)݂ = ܽ଴ + ܽଵݔଵ + ܽଶݔଶ + ⋯ . +ܽ௡ݔ௡      ……………..  (5.3.5) 

where, ܽ଴ , ܽଵ, ܽଶ, … , ܽ௡  are integer coefficient, the greatest common divisor of 
ܽ଴ , ܽଵ , ܽଶ, … , ܽ௡  is one, and ݂(ݔ) is a primitive function. Additionally, if ݂(ݔ) and ݃(ݔ) 
are two primitive polynomials, ݂(ݔ)݃(ݔ) is also a primitive polynomial. 

The characteristics polynomial for ELCA is “(1+x)” and “(1+x)n”. 

Assume ଵ݂(ݔ) = ݔ) + 1)  and ଵ݃(ݔ) = ݔ) + 1)௡ . 

The greatest common divisor of all coefficients of   ଵ݂(ݔ) is one. 

Hence,  ଵ݂(ݔ) is a primitive polynomial. 

ଵ݃(ݔ) is represented as ଵ݃(ݔ) = ( ଵ݂(ݔ))௡.  Hence, ݃ଵ(ݔ) is also a primitive recursive 
polynomial. 

Application of primitive recursive, reducible polynomials in generation of pseudo-random 
sequences can also be found in [92-94].  

Therefore, all ELCAs are capable of producing pseudo-random sequences. 

 (End of proof.) 

5.3.3. Experimental results 

Experimental results are reported in Sub-section 5.3.3.1, Sub-section 5.3.3.2 and Sub-
section 5.3.3.3. ELCA and MaxCA generated patterns are collected from computer 
simulation to carry out investigations as reported in Sub-section 5.3.3.1 and Sub-section 
5.3.3.2. 

5.3.3.1. Performance evaluation 

Randomness in generated patterns for MaxCA and ELCA are graphically shown in  
Fig. 5.3.2.  
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Fig. 5.3.2(a). 

 
Fig. 5.3.2(b)

 
Fig. 5.3.2(c). 

Fig. 5.3.2. Randomness in different CA generated patterns 

Pseudo-random patterns in Fig. 5.3.2 were produced using a unique combination of rule 
‘90’ and ‘150’ for MaxCA, rule ‘51’ for ELCA with characteristics polynomial ‘(1+x)’ and 
rule ‘153’ for ELCA with characteristics polynomial ‘(1+x)n’. MaxCA patterns were 
generated using <90, 150, 90, 150>, <150, 150, 90, 90, 150>, <90, 150, 90, 150, 90, 150> 
respectively for Fig. 5.3.2(a), Fig. 5.3.2(b) and Fig. 5.3.2(c). ELCA patterns were achieved 
in Fig. 5.3.2(a), Fig. 5.3.2(b) and Fig. 5.3.2(c) using uniform CA of rule ‘51’ and uniform 
CA of rule ‘153’ respectively. It is evident from Fig. 5.3.2 that degrees of randomness of 
the MaxCA and the ELCA for cell size 4, 5, and 6 are competitive. 
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5.3.3.2. Real time activities  

Randomness of patterns generated by MaxCA and ELCA PRNGs are also measured using 
statistical analysis tool called Runs Test [95].  The Wald–Wolfowitz runs test (or 
simply runs test) is named after Abraham Wald and Jacob Wolfowitz. It is a non-
parametric statistical test that checks a randomness hypothesis for a data sequence. It can 
be used to test the hypothesis that the elements of the sequence are mutually independent 
[96].  The Runs Test results in terms of p-values and corresponding conclusions obtained 
in [95] have been reported in Table 5.3.1. 

Table 5.3.1. RUNs Test Results 

Serial 
number 

Cell 
(n) 

MaxCA ELCA with 
characteristics 

polynomial (1+x) 

ELCA with characteristics 
polynomial (1+x)n 

p-value Conclusion p-value Conclusion p-value Conclusion 
1. 4 0.13292 Little or no 

real evidence 
against 

randomness 

0.00015 Very strong 
evidence 
against 

randomness 

0.30239 Little or no real 
evidence against 

randomness 

2. 5 0.42976 Little or no 
real evidence 

against 
randomness 

almost 
zero 

Very strong 
evidence 
against 

randomness 

0.35965 Little or no real 
evidence against 

randomness 

3. 6 0.5 Little or no 
real evidence 

against 
randomness 

almost 
zero 

Very strong 
evidence 
against 

randomness 

0.5 Little or no real 
evidence against 

randomness 

If the p-value is very small (almost equal to zero) or very high (almost equal to 1), the 
hypothesis that the data set is random is rejected. The p-value of the single length cycle for 
MaxCA in null boundary CA scenario is zero or very small. The p-value of the ELCA with 
characteristics polynomial (1+x) is also either zero or very small. But the p-values for 
MaxCA and ELCA with characteristics polynomial (1+x)n  are in the range to prove 
existence randomness [95, 96]. Hence the degree of randomness for ELCA cycles are 
comparable to MaxCA cycles. 

5.3.4. Summary 

Discrete mathematics based analysis on ELCA generation is reported in this section. 
Existence of bijection mapping in ELCA generation ensures a close-fitting with FSM. 
Characteristics polynomials for ELCA are primitive polynomials or primitive recursive 
polynomials. Hence randomness in ELCA generated patterns is confirmed. 
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5.4. Energy efficient task-pull scheduling using ELCA 

5.4.1. Introduction 

Efficient scheduling policy play an important role in reliable distributed and parallel 
computing.  Load balanced task-pull scheduling for maximum number of available 
processing units in distributed computing is important in efficient uses of processing units, 
faster result processing and optimized energy consumption. Task scheduling to computing 
devices or processors is a NP-complete problem [97, 98]. Parallel programming approaches 
are followed in distributed computing. Algorithmic parallelism, geometric parallelism and 
processor framing approaches have been defined in [99] depending on their characteristics. 
Static task allocation is implemented in case of algorithmic parallelism and geometric 
parallelism. Algorithmic parallelism is maintained for decomposition using pipeline of 
processors as needed. Data is transferred through computing elements. Bigger tasks are 
decomposed into several independent task modules in case of geometric parallelism 
allocated to available computing units. Each computing device executes the subsets of total 
processed data sets. Each isolated processor is responsible for execution of same task with 
different initial data in processor farm. Static and dynamic scheduling of tasks are being 
used for optimization of performance in parallel computing. A balance between 
communication time and computation time is required for ensuring efficient usage of 
processing resources [99].  

Sequential and parallel CA based scheduling algorithms were demonstrated by researchers 
[31-34]. Parallel scheduling [31], heuristics based near optimum solutions for scheduling 
problems [32-34] were described to enhance parallel and distributed computing. Genetic 
Algorithm (GA) based CA rule discovery for scheduling policy were reported in [33, 34].  
In our studies, we have not found a simple, cost effective CA based equally populated job 
scheduling, which may be beneficial towards cost-effective scheduling in distributed 
computing. Hence a simple and cost-effective ELCA based scheduler is presented in this 
section. 

Rest of the section is organized as follows: proposed work is described in Sub-section 
5.4.2; experimental results and analysis are reported in Sub-section 5.4.3; finally, summary 
is in Sub-section 5.4.4. 

5.4.2. Proposed approach 

ELCA based design for energy efficient task-pull scheduling in distributed computing is 
proposed in present research. Different tasks and available processors are mapped with 
ELCA to obtain load balanced scheduling in distributed environment.  
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Consider, a typical scenario for distributed task scheduling. Let, there exists ‘P’ number of 
independent task modules of similar complexities to be computed over ‘Q’ number of 
available processors. ‘Q’ numbers of available processors and ‘P’ numbers of independent 
task modules are mapped with the ‘M’ numbers of equal length cycles of length ‘N’ 
generated by ELCA as described in Equation 3.1.1. Illustration of proposed approach is as 
follows. 

Total ‘2m’ (let M) numbers of equal length cycles of length ‘2n-m’ (let N) are found for an 
n-cell CA by Equation 3.1.1. All independent ‘P’ task modules are being grouped together 
by mapping with ‘M’ numbers of equal length cycles of length ‘N’. ‘M’ numbers of task 
modules are assigned to available ‘Q’ numbers of processors/computing units. The state 
number of any equal length cycle of ELCA is mapped with the task number (pi). Task 
modules are being assigned randomly to the available processors and resulting task 
scheduling is having the advantage of equal load (equal task module) distribution to 
available processors. Proposed scheduling policy is applicable for both sequential and 
parallel execution. Mathematical expressions for task pull allocation scheme are shown in 
following Equations. 

Number of task modules is described in Equation 5.4.1. 





n

i
iPP

0                                  (5.4.1)                                                                                                                             

Number of available processors is described in Equation 5.4.2. 





n

i
iQQ

0                                  (5.4.2)                                                                                                                             

By Equation 1.1,  

mnmn  2*22  

Equation 5.4.2 is expressed as Equation 5.4.3. 

NMn *2                               (5.4.3) 

where, M=2m and N=2n-m. 

Now mapping for task scheduling is performed as described in Equation 5.4.4 and Equation 
5.4.5. 

NP                                  (5.4.4)                                                                                                                             
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MQ                                   (5.4.5) 

Example 5.4.1. 

An n-cell CA for n=4 has been decomposed into some equal length smaller cycles. In our 
illustrated example as described in Fig. 5.4.1(a) is decomposed into 2 smaller cycles of 
length 8; or, as described in Fig. 5.4.1(b) is decomposed into 8 smaller cycles of length 2. 
Pattern generation for task scheduling in this scenario is followed as referred in Fig. 5.4.1. 
Fig. 5.4.1 is based on Null Boundary condition. The synthesis of this example to generate 
ELCA is achieved for a combination <195, 195, 195, 195> for Fig. 5.4.1(a) and <51, 51, 
51, 51> for Fig. 5.4.1(b). 

 

Fig. 5.4.1(a) 

 

Fig. 5.4.1(b). 
Fig. 5.4.1.  

Fig. 5.4.1(a). Proposed 2 equal length cycles of cycle size 8 for < 153, 153, 153, 153 > 
   Fig. 5.4.1(b). Proposed 8 equal length cycles of cycle size 2 for < 51, 51, 51, 51 > 

Let there exist two processing units in a distributed computing system with sixteen 
independent tasks. All these task modules are grouped together in two task-pulls as 
described in Fig. 5.4.1(a). Different task-pulls are signified by each equal length cycles and 
the randomly scheduled independent task modules in every task-pull are signified by 
corresponding i= 0, 1, 2... etc. Generated task modules are allocated to the two different 
processing units. A random and load balanced task-pull is assigned to the available 
processing units.  

The scenario as illustrated in Fig. 5.4.1(b) that all those sixteen task modules are capable 
for equally load distributed condition among eight processing units in a distributed 
computing environment. All these tasks-pools are capable of being processed by individual 
processing units simultaneously or, one after another. Now consider a special case where 
nine number of tasks are to be allocated in available two processors. Two equal length task-
pulls of length four are formed and allocated to available processing units and remaining 
single task is assigned to any of the available processing units. Proposed flowchart of 
ELCA based task scheduling policy is presented in Fig. 5.4.2. 
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Fig. 5.4.2. Proposed flowchart for task scheduling in distributed computing environment 

ELCA based task scheduling policy for distributed computing environment is designed 
using Algorithm 5.4.1, Algorithm 5.4.2 and Algorithm 5.4.3. 

Algorithm 5.4.1. CA size_computation 

Input: Number of tasks (P), number of processors (Q) 

Output: CA size (n) 

Step 1: Start 

Step 2: Initialize the number of tasks (P), number of processors (Q) 

Step 3: Compute minimum value of ‘m’ such that 2m ≈ Q 

Step 4: Compute minimum value of ‘n’ such that 2n-m ≈ P 

Step 5: Stop 

Algorithm 5.4.2. Task_pull_generation_using_ELCA  

Input: CA size (n), balanced rules 

Output: ‘M’ numbers of equal length task-pull of length ‘N’ 

Step 1: Start 

Step 2: Initialize the number of n-cell CA to generate random numbers using n-cell CA 

Start 

Stop 

Initialize no. of task modules 
(P) and no. of available 

processors (Q) 

Initialize balanced CA rule to 
the n-cell CA 

Calculate required no. of cells in 
CA (n) 

Create task-pulls 

Decompose into ‘M’ no. of equal 
length cycles of length ‘N’ 

Allocate task-pulls to available 
processors 

Check Q≈M and P≈N 

Yes 

No 
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Step 3: Initialize balanced CA rule to all the cells for generation of equal length task-pull 

Step 4: Decompose the cell number (n) into equal numbers (m) such that 2n= 2m*(2n-m) 
      i.e., ‘m’ number of equal length cycles of (n-m) length) for n≥1 and m=1,2,3…….(n-1)  

Step 5: Schedule task-pull using appropriate scheduling procedure 

Step 6: Stop 

Algorithm 5.4.3. Task-pull_scheduling 

Input: Task-pulls (M), available processors (Q) 

Output: task-pull scheduling 

Step 1: Start 

Step 2: If M<=Q then randomly allocate ‘M’ number of task-pulls into ‘Q’ number of 
            available processors else follow Step 3. 

Step 3: Scheduling error and follow Algorithm 5.4.2 

Step 4: Process ‘M’ number of task-pulls at ‘M’ number of processors sequentially or 
            simultaneously  

Step 5: Stop 

An efficient approach for optimum energy consumption in concerned distributed 
computing environment is found from proposed ELCA based scheduling approach. 
Discussions are included in Example 5.4.2 to report about optimum energy consumption. 

Example 5.4.2. 

Let a distributed computing environment where number of independent task modules is ‘P’ 
and available number of processors is ‘Q’; all are following same architecture. ‘M’ 
numbers of equal length task cycles of length ‘N’ are produced by ELCA based scheduler. 
The equal length task-pulls are then allocated to available ‘Q’ number of processors using 
Equation 5.4.4 and Equation 5.4.5.  

Let energy consumption for a processing unit in active state is ‘Eactv’ and in idle state is 
‘Eidle’ respectively. ‘Active’ state is achieved by processing unit while it is in the process 
of execution for a task module else it is in ‘idle’ state, if the processor is in powered on 
mode. Energy consumption in powered off mode is zero and it has already been established 
that Eactv > Eidle > 0 (zero) [34]. Energy consumption for every processing unit is Eactv for 

112



 

every individual task module. So, total energy consumption in the distributed computing 
system is given as following relation. 

Etotal=no. of processors in active state (M)* no. of task modules in task-pull (N)*energy 
consumption for one processor in active state (Eactv) + no. of processors in idle state (Q-M) 
*energy consumption for one processor in idle state (Eidle). 

Thus,  

idleactvtotal EMQENME *)(**                  (5.4.6)                                                                                                        

Maximum power consumption for that distributed system for equally load distributed 
condition in an ideal scenario where all available processors are scheduled with ELCA 
generated task schedules is achieved from Equation 5.4.6. Thus, Equation 5.4.7 is achieved 
form Equation 5.4.6. 

actvENME **max                                             (5.4.7) 

where (Q-M) = 0; 

Here no processing unit is in idle state. Hence, Equation 5.4.8 is achieved from Equation 
5.4.7. 

actvEPE *max                                                       (5.4.8)                                                                                                                             

where P=M*N. 

An efficient use of available processing units is found for ELCA based scheduler. Equal 
length task modules are allocated to maximum number of available processors for an equal 
load distribution. 

5.4.3. Experimental observations & result analysis 

Different task-pulls were simulated with Grid Matrix Simulator [100, 101] based on 
SimGrid Toolkit [102]. Simulations were performed in client-server architecture for 
different number of task modules and varying numbers of processing units. Computation 
size task 5000 and communication size of task 1000 were used in simulation. Simulation 
set up is shown in Fig. 5.4.3. 
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Fig. 5.4.3. Screenshot of task-pull execution in client-server architecture in GridMatrix 

Different scenarios for equal task allocations in client-server architecture are shown in Fig. 
5.4.4. Different numbers of tasks are assigned to available fixed numbers of computing 
units.  
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Fig. 5.4.4(a). 

 

Fig. 5.4.4(b). 
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Fig. 5.4.4(c). 
Fig. 5.4.4. 

 Fig. 5.4.4(a). Simulation result for total task size of 256 tasks 
Fig. 5.4.4(b). Simulation result for total task size of 512 tasks 
Fig. 5.4.4(c). Simulation result for total task size of 1024 tasks 

A linear growth in the computation time is achieved in Fig. 5.4.4 for complete execution 
of the varying number of task pulls by a fixed number of processing units. Execution time 
in curves increases linearly in Fig. 5.4.4 (a), Fig. 5.4.4(b) and Fig. 5.4.4(c).  

Time consumed for a balanced task load distribution (fixed length task pull of length 256) 
to different number of processors is reported in Table 5.4.1. Graphical representation of 
information achieved from Table 5.4.1, is shown in Fig. 5.4.5. 

Table 5.4.1. Simulation time 

No. of processing units Time 
2 0.641374 
4 0.777577 
16 0.933235 
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Fig. 5.4.5. Task pull compliance graph 

A relationship between time and number of used processing units is found in Fig. 5.4.5. 
Detailed explanation of Fig. 5.4.5 is as follows. 

The relation between numbers of used processors and length of task-pull is in Equation 
5.4.9. 

)(
1)(

NngthTaskPullLe
MorsNoOfPocess 

                         (5.4.9) 

Relation between task execution time and task-pull length is followed in Equation 5.4.10. 

)()( NngthTaskPullLeTionTimeTaskExecut e 

                           (5.4.10) 

Hence, task execution time (Te) increases as the task pull length (N) increases. 

Relation between task-pull scheduling time and numbers of used processors is followed in 
Equation 5.4.11. 

)()( MocessorsPrNoOfTmehedulingTiTaskPullSc s                (5.4.11) 

Hence, task scheduling time (Ts) increases as the number of available processing units (N) 
increases. More task scheduling time (Ts) is required to schedule balanced tasks to all 
available processing units (N).   

5.4.4. Summary  

Random task assignment is found in ELCA based equally populated task-pulls. All these 
generated task-pulls are efficiently utilizing the maximum number of available processing 
units.  
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6.1. Dynamics of ELCA rules 

6.1.1.  Introduction 

Studies with CA explore the mathematical properties of system dynamics for any complex 
system. Langton’s λ-parameter (activity parameter) and Z-parameter are used discuss the 
system dynamics [103-105]. Langton’s λ-parameter is used to determine the probability 
that a CA cell will have next state as one [104].  

Let ‘n’ number of transitions present for quiescent state (an arbitrary space “s є ∑”) ‘sq’ in 
the transition function ‘Δ’. Let the remaining “(KN-n)” transitions in ‘Δ’ be filled by 
pinching randomly and uniformly over the other “K-1” states in “∑ - sq”. Thus, Langton’s 
λ-parameter is calculated as in Equation 6.1.1 [104]. 

 
  

N

N

K n
K





                      (6.1.1) 

If “ Nn K ”, then all the transitions in the rule table will be to the quiescent state ‘sq’ and 
 = 0.0 . Most homogeneous distribution is indicated by  = 0.0 . If  n = 0 , then there 

will be no transitions to ‘sq’ and  = 1.0 . When all states are represented equally in the 
rule table, ‘   ’ is defined as in Equation 6.1.2. Most homogeneous rule table has been 
described by Equation 6.1.2. 

 = 1.0 - 1/K                      (6.1.2) 

Range of ‘λ’ for different dynamic behavior as discussed in [104, 105] is presented in Table 
6.1.1. 

Table 6.1.1. Typical ‘λ’ values and observed system dynamics 

Serial  λ- value Conclusion 
1. 0.40 Dynamical activity is collapsing down onto periodic configurations. 
2. 0.45 Dynamical activity is at a balance point between collapse and expansion. 
3. 0.50 Large fluctuations are observed in the area covered by dynamical activity; 

eventual collapse of the dynamics is found due to fluctuations. 
4. 0.55 Dynamical activity effectively settles down to chaotic behavior. 
5. 0.60 Chaotic dynamic activities are observed. 
6. 0.65 Typical Chaotic activities are observed. 

Observed system dynamics is graphically reported in Fig. 6.1.1. Dominate behavior of the 
rules is changed from homogeneous fixed point to inhomogeneous fixed points, periodic, 
complex spatial-temporal dynamics and chaotic dynamics as “λ-parameter value” changes 
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from “0.0” to “0.5”. For “λ-parameter value” higher than “0.5” is found in reverse order of 
the mentioned behavior of “λ-parameter value” for the range “0.0” to “0.5” [104, 105].  

 
Fig. 6.1.1. Typical scale for λ-parameter values and system behaviors 

Aim in this section is to calculate the λ-parameter value for analysis of ELCA dynamics.  

Rest of the section is organized as follows: λ-parameter value for ELCA generating rules 
are computed in Sub-section 6.1.2; analysis of system dynamics based computed λ-
parameter values is in Sub-section 6.1.3 and summary is in Sub-section 6.1.4. 

6.1.2. Computation of λ-parameter for ELCA rule 

Linear and non-linear rules are explored for ELCA pattern generation (Sub-section 6.1). 
Detailed characteristics for linear rules are explored using matrix algebraic tools (Sub-
section 6.1). No such matrix algebraic computation has been reported for non-linear rules. 
A generalized study towards the CA dynamics based the non-linear and linear rules are 
focused in this Sub-section. The computation of the “λ-parameter” is emphasized for 
dynamics analysis of ELCA rules. “λ-parameters” are computed using Equation 6.1.1. 
Equal number of 0’s and 1’s is present in the binary representation of each ELCA 
generating rules (Sub-section 6.1). Hence density of 1’s or 0’s in any ELCA generating 
rule is “0.5”. 

Example 6.1. 

Let an arbitrary ELCA generating rules as enlisted in Table 4. Say rule “204”. Binary 
representation of rule “204” is “11001100”. λ-parameter value for “11001100” is 4/8 
(=0.5). 

Value of λ-parameter for each ELCA rule is in the “symmetry line” (refer Fig. 6.1.1) [104, 
105]. Hence chaotic property is observed ELCA rules. 

0.0 

0.5 

1.0 

Null 
Null Symmetry Line 

Fixed point 
+ periodic 

Complex Chaotic Complex Fixed point 
+ periodic 

λ - parameter value 
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Theorem 6.1.1. All ELCA rules are positioned in the “symmetry line” of the λ-parameter 
based global dynamics of CA. 

Proof: 

There exists equal number of 0’s and 1’s in any ELCA rule. Hence λ-parameter value for 
any ELCA rule is always “.0.50” (Refer Equation 8.5). All ELCA rules are placed in the 
symmetry line of the global dynamics CA (refer Fig. 6.1.1). 

(End of proof.) 

Corollary 6.1.1. Chaotic nature is exhibited by the ELCA rules. 

Proof: 

All ELCA rules are situated in the global dynamics CA (refer Fig. 6.1.1) by Theorem 6.1.1. 
Symmetry line in Fig. 6.1.1 is at the center position of chaotic behavior region. Hence an 
inherent chaotic characteristic is found in the dynamics of the ELCA rules. 

(End of proof.) 

6.1.3. Analysis of ELCA dynamics 

It is found in “λ-parameter” values for ELCA rules is “0.50” and thus chaotic dynamics is 
present in ELCA generated patterns. Degree of randomness as a measurement of chaos 
present in ELCA generated patterns has been reported in Table 6.2. Statistical analytical 
approach based on the RUNs test [95] is presented in Table 6.1.2. 

Table 6.1.2. Degree of randomness as a measurement of inherent chaotic dynamics for ELCA 

Serial Number Rule vector ELCA pattern 

p-value Conclusion 
1. <51, 51,51,51> 0.30239 Little or no real evidence against 

randomness 
2. <153, 153, 153, 153, 

153> 
0.35965 Little or no real evidence against 

randomness 
3. <51, 204, 51, 204> 0.00015 Very strong evidence against randomness 
4. <51, 204, 51, 204, 

51> 
Almost zero Strong evidence against randomness 

 

Competitive dynamics are achieved for ELCA with respect to MaxCA. Reported CA rules 
“90” and “150” responsible for generation of MaxCA pattern and possess same “λ-
parameter” value equals to “0.50”. Hence similar chaotic dynamics is expected for ELCA 
and MaxCA rules (Fig. 6.1.1). Competitive degree of randomness for CA patterns as found 
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in [95] is described in Table 6.1.1. Test results in Sub-section 6.1.2 confirm the existence 
of almost same chaotic nature in both CA patterns. 

6.1.4. Summary 

Computed λ-parameters for ELCA rules is “0.50” which is same as the λ-parameter values 
for MaxCA composing CA rules. All ELCA rules are situated in the symmetry line of CA 
global dynamics Fig.  (refer Fig. 6.1.). Thus inherent chaotic characteristics are found for 
ELCA dynamics. It is found that ELCA dynamics is similar to MaxCA dynamics. 

 

 

 

 

 
 
 
 
 
 
 

122



 

6.2. OTP based authentication using ELCA 

6.2.1. Introduction 

Distributed system is susceptible to a variety of security threats mounted by intruders. Brief 
discussion on different security and authentication aspects in distributed environment is 
reported below. 

Inherent threats in data communications have been categorized in [110] as “Host 
Compromise” and “Communication Compromise”. Combination of hardware and software 
has been suggested as a solution to host compromise [116]. On the other hand, 
“Communication Compromise” refers to the threat associated with message 
communication. Loss of privacy in conversations (eavesdropping), arbitrary 
modification(s) to received message and replay of old messages are common security 
hazards faced during transmission of message. Authentication is accepted as a solution to 
this problem. Authentication means an appropriate arrangement of identification and 
verification. Three different authentication categories are discussed in the literature: (i) 
authentication of content (ii) authentication of origin (iii) authentication of general identity 
[116].  

OTP scheme has been suggested as an efficient and simple solution for message 
authentication in distributed and cloud computing. OTP is known to be a time synchronized 
random password which is used in authentications; this password can be used at most once. 
The list of generated passwords is stored in the client and the server. A single password 
from the list is used in a sequential manner for every distinct session. OTP protocol is 
known to be an effective measure for security in cloud to defend against “Replay Attacks” 
and “Dictionary Attacks” [116]. Several authentication techniques have been presented by 
researchers [42-44, 111-116]. Smart phone-based authentication has been described in 
[114]. Besides, multiple factor-based authentication [112], attachment of small piece of 
high-performance trusted hardware with untrusted units [115], anonymous node ID 
Assignment [116] are some of the different approaches adopted now-a-days to enhance 
authentication. Uses of CA in authentication is also very popular among researchers. M. 
Mukherjee et al. have presented CA based authentication [42]. J. C. Jeon et al. have 
presented non-group CA based one time password (OTP) authentication scheme in wireless 
networks [43]. R. Yampolskiy et al. have presented CA rule 30 based data security and 
authentication [44]. In our studies, we have not found a simple, cost effective generation 
of equally populated OTP sets. Hence a simple and cost-effective generation of equally 
populated OTP sets using ELCA has been introduced, which may be advantageous towards 
low-cost authentication in distributed computing. 
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Rest of the section is organized as follows: Preliminary concepts of authentication are 
briefly described in Sub-section 6.2.2; ELCA based proposed design is in Sub-section 
6.2.3; Results are discussed in Sub-section 6.2.4; finally, summary is in Sub-section 6.2.5.  

6.2.2. Preliminary concepts of authentication 

During authentication, one node (sender) is verified by another node (receiver). In basic 
authentication, encrypted messages independently generated by the sender and the receiver 
using a symmetric key have to match [106]. Building a complex crypto system for 
authentication purposes is not typical in distributed computing [106]. 

6.2.3. Proposed design 

Linear CA rules “51”, “204” and “153” are suggested for OTP-based authentication in 
distributed computing. Selection of these CA rules is based on application suitability, 
Langton’s λ-parameter, and the characteristics polynomials of enlisted CA rules. 
Primitivity is found in ELCA characteristic polynomial, which is an important criterion for 
generation of randomness. Enlisted linear CA rules can be used in both uniform and hybrid 
scenarios. The characteristics matrices ELCA is explored in Sub-section 5.2. Use of 
rectangular matrix in cryptography and authentication is discussed in [107]. Formation of 
a concatenated matrix from two square matrices is illustrated in Equation 6.2.1. Matrix 
concatenation is used to examine the characteristics of ELCA rules of high order.  

௡ܶమబర ೚ೝ ఱభ =

⎣
⎢
⎢
⎢
⎡
1 0 0⋯0
0 1 0⋯0
0 0 1⋯0

⋮
0 0 0 … 1⎦

⎥
⎥
⎥
⎤

௡୶௡

⃘ ௡ܶభఱయ =

⎣
⎢
⎢
⎢
⎡
1 1 0⋯0
0 1 1⋯0
0 0 1⋯0

⋮
0 0 0 … 1⎦

⎥
⎥
⎥
⎤

௡୶௡

            (6.2.1) 

Horizontal concatenation “(T (Hori))” is defined in Equation 6.2.2. 

௡(మబర ೚ೝ ఱభ)೚ భఱయ(݅ݎ݋ܪ)ܶ
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 … 0 1 1 0 … 0
0 1 0 … 0 0 1 1 … 0
0 0 1 … 0 0 0 1 … 0

.

.

.
0 0 0 … 1 0 0 0 … 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

௡୶ଶ௡

          (6.2.2) 

and  ்ܴܽ݊݇(௛௢௥௜)೙(మబర ೚ೝ ఱభ)೚భఱయ = ݊. 

Vertical concatenation “(T (Vert))” is defined in Equation 6.2.3. 
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               (6.2.3) 

and ்ܴܽ݊݇(௏௘௥௧)೙ (మబర ೚ೝ ఱభ)೚భఱయ
= ݊. 

Ranks of two rectangular matrices in Equation 6.2.2 and Equation 6.2.3 possess a value 
equal to the minimum value between row and column values of these matrices. Hence 
maximal ranks are obtained for these two matrices [108]. Maximal rank matrices might be 
used for data security and authentication applications [109]. Therefore, selected ELCA 
rules are suitable for usage in OTP-based authentication. 

6.2.3.1. Proposed ELCA classification 

Proposed classification design has been introduced in Fig. 6.2.1. 

 
Fig. 6.2.1. ELCA classification procedure 
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The number of CA cells and CA rules are initialized first. The number of cells is dependent 
on the total number of OTPs required. The λ-parameter value is computed for each CA 
rule. It is checked whether the λ-parameter value is equal to 0.5. Once the λ-parameter 
value for ELCA rule is equal to 0.5, it is checked for balanced ‘HbP’ & ‘LbP’ conditions. 
Thereafter, it is checked whether the ELCA rules are in uniform CA condition. Use of 
ELCA rules in uniform condition is suggested for OTP-based authentication because the 
design becomes simple and requires less storage in such cases. Use of hybrid CA 
configuration for generation of ELCA is also acceptable. 

6.2.3.2. Proposed design for OTP authentication 

A simple design ensuring pseudo-random generated patterns is proposed. Different 
uniform CA scenarios are discussed briefly in Table 6.2.1.  

Table 6.2.1. Uniform CA scenario for ELCA generation 

Serial 
Number 

CA 
rule 

Binary 
representation 

Rule 
Type 

Cell 
Size (n) 

Length 
of Cycles 

1. 204 11001100 Linear 37 1 
2. 51 00110011 Linear 37 2 
3. 153 10011001 Linear 3 4 

47 8 

The flowchart of the proposed OTP-based authentication design is depicted in Fig. 6.2.2. 
Algorithm 6.2.1, Algorithm 6.2.2, and Algorithm 6.2.3 are designed to facilitate cost 
effective OTP set generation and authentication in OTP-based communication for ‘n’ 
number of messages. An ‘n’ cell CA is proposed for OTP generation of ‘n’ number of 
message(s). Rule selection for uniform CA is based on Table 6.2.1. 

It is found form Table 6.2.1 that a flexibility of selection of number set members in OTP 
set is available for ELCA based OTP authentication design. System flowchart of the 
proposed OTP authentication design has been depicted in  
Fig. 6.2.2.  

Algorithm 6.2.1. OTP_Set_Generation 

Input: Number of cell (n), ELCA generating balanced CA rule (R) 

Output: Number of OTP sets (m) containing equal number of OTP members 

Step 1: Start 

Step 2: Initialize number of cells and ELCA generating rule (refer Table 11.1) in each cell        
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Step 3: Decompose into ‘m’ number of cycles of equal lengths         

Step 4: Call Algorithm 8.2 

Step 5: Communicate OTP lists to sender and receiver 

Step 6: End 

 
Algorithm 6.2.2. OTP_Assignment 

Input: Equal length cycles generated in Algorithm 1 (m), Number of messages (m) 

Output: OTP set with equal number of members for every message 

Step 1: Start 

Step 2: Assign ‘m’ number of equal length cycles to ‘m’ number of messages         

Step 3: Assign states of each cycle as OTP for concerned message         

Step 4: End 

 
Algorithm 6.2.3. OTP_Authentication 

Input: Lists of OTP for communication from Algorithm 11.1 

Output: Authenticated sender approval for communication 

Step 1: Start 

Step 2: Use OTP in a sequenced manner one at a time 

Step 3: If OTP is validated by receiver with time synchronization then follow Step 4 

           else follow Step 2      

Step 4: Successful authentication of Sender 

Step 5: Establish communication 

Step 6: End 
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Fig. 6.2.2. Proposed flowchart of ELCA based OTP authentication 

Cost effective OTP set generation is the objective of the Algorithm 6.2.1. The primary 
concern in the proposed ELCA based system is that at least the same number of OTP sets 
of equal population size is generated with reference to the number of messages 
participating in communication. Each OTP is valid for a time stamp; i.e., each OTP should 
be used for session authentication within a specific period. It is referred to as time 
synchronization in the Fig. 6.2.2 and the Algorithm 6.2.3. The OTP set so produced is 
assigned to each message. Efficiency in authentication of the sender in distributed 
computing has been obtained based on the method of message number dependent OTP set 
generation. 

In the present work, de-correlation between generated ELCA cycles is not considered as 
no low cost and VLSI compatible CA model to generate multiple equal length OTP sets is 
found. 
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Example 6.2.1. 

Let a scenario where three number of messages are needed to communicate between sender 
and receiver. Four number of OTP set containing two random OTPs in each set are 
generated (refer Fig. 6.2.3). State number of the state is assigned as generated random OTP. 

 
Fig. 6.2.3. Four ELCA structures for <51, 51, 51> 

Generation of cost effective and equally populated ELCA based random OTP sets have 
been achieved as a final outcome in usage of the combined form of two approaches (refer 
Fig. 6.2.1 and Fig. 6.2.2). Unique OTP set is assigned to each message. Efficiency in 
authentication of sender for message communication in distributed computing has been 
achieved based on the method of message number dependent OTP set generation. De-
correlation between generated ELCA cycles were not considered as no low cost and VLSI 
compatible CA model was found which is capable to produce multiple equal length OTP 
sets. 

6.2.4. Experimental results 

Degree of randomness for ELCA generated pattern and comparison with MaxCA pattern 
are described in detail in Sub-sections 5.3 and 6.1. Competitive degree of randomness is 
found for ELCA patterns with respect to the MaxCA patterns. Detailed comparison of cost 
effectiveness for ELCA based approach as presented in Sub-section 4.1 with reference to 
the space and time complexity, is presented again in Table 6.2.2. 

Table 6.2.2. Complexity comparison 

Complexity Analysis 
Space Space complexity for both ELCA and MaxCA are O(n) as total number of an n-cell CA 

and number of states are unchanged. So, space requirement is the same for both cases. 
Time Time Complexity to generate ELCA cycles is ∑O (mi), where ‘m’ denotes length of 

cycle and ‘i’ denotes number of ELCA cycle; time complexity of to generate MaxCA 
cycles is O(n), where ‘n’ denotes length of the MaxCA cycle. 

As per Equation 2, length of ELCA cycle is lesser than length of the MaxCA cycle. 
Thus, time requirement for one single cycle generation in ELCA is less than the time 

requirement for a complete cycle generation in MaxCA. 

0 7 2 5 

1 6 3 4 
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The comparison of space and time complexities of the ELCA and the MaxCA in Table 
6.2.2 suggests that the time complexity is less for ELCA while the space complexity for 
both ELCA and MaxCA remains similar. 

6.2.5. Summary 

Cost efficiency, quality randomness and design flexibility in set of OTPs are found in 
ELCA based set of OTP generation. Linear CA rule based uniform CA design in three 
neighborhood null boundary condition is capable of easy implementation of modular 
arithmetic, which is an essential requirement in cryptographic & authentication system.  
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The contributions in different chapters of this thesis are summarized in this chapter. 
Major objectives of the current research are to explore the characteristics and properties 
of Equal Length Cellular Automata (ELCA), inherent cost efficiencies as a  
pseudo-random number generator (PRNG) and potential applications in Distributed 
Computing. Design of CA based alternative PRNG using ELCA and reliability 
assessment of distributed computing, ELCA based alternative design for BIST 
applications along with SUT design are presented in  
Chapter 3. Performance comparison among different random number generators 
(RNGs) and a CA based stress testing model targeting distributed computing are 
presented in Chapter 4. ELCA generating complete rule set exploration, detailed 
analysis of ELCA generating linear rules along with its representation in Discrete 
Mathematics and one potential application of ELCA model in energy efficient task-pull 
allocation are presented in Chapter 5. ELCA system dynamics and ELCA based 
classifier design for OTP based authentication in distributed computing are described 
in Chapter 6. Complete investigation, synthesis and analysis of ELCA along with 
potential applications of ELCA model for several distributed computing applications 
are described in this entire research.   

Focus of the research is to provide detailed study of ELCA and potential applications 
of ELCA based cost effective model towards several distributed applications.  

Important aspects of the researches reported in this dissertation may be extended for 
the benefit of research community. Probable future works are as follows. 

 Programmable CA (PCA) based implementation of ELCA, 

 Z-parameter analysis of ELCA rules, 

 Phase shift analysis of ELCA, 

 ELCA based complete cryptosystem. 
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M-C- Monte-Carlo 

N 
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NP- Not Polynomial 

144



 

 

O 

ORA- Output Response Analyzer 

OTP- One Time Password 

P 

P- Polynomial 

PBCA- Periodic Boundary Cellular Automata 

PRNG-Pseudo-Random Number Generator 

PRPG- Pseudo-Random Pattern generator 

PPS- Prohibited Pattern Set 

R 

RNG- Random Number Generator 

RRNG- Recursive-Random Number Generator 

S 

SoC- System on Chip 

SUT- System-Under-Test 

T 

TCS- Theoretical Computer Science 

TRNG- True-Random Number Generator 

TRPG- True-Random Pattern Generator 

TPG- Test Pattern Generator 

TF- Transition Faults 

V 

VLSI- Very Large Scale Integration 

 

 

145



 

 

 
 
 

_______________________ 
Author’s Biography 

_______________________ 
 

 

 

 

 
 

 

 

 

146



 

 

Mr. Arnab Mitra has completed his school level education form Katwa Kashi Ram Das 
Institution, Katwa-713130, India. He has qualified his Secondary level education from the 
West Bengal Board of Secondary Education, India in 1996 followed by  
Higher Secondary level education in 1998 from West Bengal Council of  
Higher Secondary Education, India. He has received his under-graduate degree in  
B. E. (Information Technology) in 2003 from University of North Bengal,  
Siliguri-734430, India followed by M. Tech (Computer Science & Engineering) in 2010 
from West Bengal University of Technology, Kolkata-700064, India. He has been 
registered for his Ph.D. (Engg.) with Jadavpur University, Kolkata-700032, India. He has 
received and availed the prestigious EU- Erasmus Mundus sponsored ‘cLink’ Ph.D. 
mobility (grant agreement no. 212-26451001-001-EM action 2 partnerships) for the 
session July 2015 to May 2016 at “Gheorghe Asachi” Technical University of Iasi, 
Romania.   

His research area includes Cellular Automata, Distributed Computing, Artificial 
Intelligence. He has served as invited reviewer for several international journals, and 
conferences of international repute.  

 
 

 

 

 

 

 

 

 

  

147


	begging part
	main part



