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Abstract

In this thesis, we use multiobjective evolutionary approaches to address four re-
search problems related to decision making. First, we propose a method for simultane-
ous feature selection (FS) and classification. In the next work, we propose a method of
feature extraction and selection for designing parsimonious classifiers. In the succeed-
ing work, in the context of fuzzy group decision making for multiobjective optimiza-
tion problems, we propose a new measure, called robust consensus, and incorporate
it in the search process. Finally, we propose a measure of sensitivity that can assess
the sensitivity, and hence, robustness of a multiobjective solution. In the same work,
we also propose three approaches to use this measure in the search process.

In the first work, we present an integrated algorithm for simultaneous FS and de-
sign of diverse classifiers using a steady state multiobjective genetic programming,
which minimizes three conflicting objectives: false positives, false negatives, and the
number of leaf nodes in the tree. Our method divides a c-class problem into c binary
classification problems. It evolves c sets of genetic programs to create c ensembles.
During mutation operation, our method exploits the fitness as well as the unfitness
of features, which dynamically change with generations with a view to using a set of
highly relevant features with low redundancy. The classifiers of the ith class determine
the net belongingness of an unknown data point to the ith class using a weighted vot-
ing scheme, which makes use of the false positive and false negative mistakes made
on the training data. We test our method on eight microarray and eleven text data
sets with a diverse number of classes (from 2 to 44), a large number of features (from
2000 to 49151), and a high feature-to-sample ratio (from 1.03 to 273.1). We compare
our method with a bi-objective genetic programming scheme that does not use any FS
and rule size reduction strategy. It helps to depict the effectiveness of the proposed
FS and rule size reduction schemes. Furthermore, we compare our method with four
classification methods in conjunction with six features selection algorithms and the
full feature set. Our scheme performs the best for 380 out of 474 combinations of data
sets, classification algorithm and FS method.

The primary objective of the next work is to design classifiers that are reasonably
simple and understandable yet capable of yielding a good performance. Thus, our
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problem here is to obtain an ensemble of linear classifiers with as few simple features
as possible. For this we use genetic programming to extract features that can lin-
early separate two classes. We propose an integrated mechanism for simultaneously
extracting and selecting useful linearly separable features. We decompose a c-class
problem into c binary classification problems and evolve c sets of binary classifiers
employing a steady-state multiobjective genetic programming with three minimizing
objectives. Each binary classifier is composed of a binary tree and a linear support
vector machine (SVM). The features extracted by the feature nodes and some of the
function nodes of the tree are used to train the SVM. The decision made by the SVM
is considered the decision of the corresponding classifier. During crossover and mu-
tation, the SVM-weights are used to determine the usefulness of the corresponding
nodes. We also employ unfitness functions for the feature nodes and a fitness func-
tion based on Golub’s index to select useful features. We compare our method with
34 classification systems using 18 data sets. The performance of the proposed method
is found to be better than 432 out of 570, i.e., 75.79% of comparing cases. Our results
confirm that the proposed method is capable of achieving our objectives.

In the succeeding work, we consider a multiobjective robust optimization prob-
lem where a set of weighted decision makers provides their preferences a priori. The
preferences are provided either in the objective space or in the decision variable space
using fuzzy numbers. To solve this problem the following three things are required:
1) an indicator to measure consensus, 2) an indicator to measure the robustness of the
solutions to their degrees of consensus, and 3) a reformulation of the multiobjective
robust optimization problem. It is necessary for the reformulated problem to gener-
ate robust solutions that also enjoy high degrees of consensus. In this work, we have
addressed these three issues. For this purpose, we have proposed two approaches to
define consensus. Then, we have extended these approaches to define robust consensus,
an indicator to measure the robustness of a given solution to its degree of consensus.
Though these approaches can be used to define a countless number of measures, we
have proposed 12 definitions of consensus, and hence, robust consensus. Furthermore,
we have proposed two ways for the reformulation. Experimental results illustrate that
the behaviors of the proposed definitions and of the reformulations are consistent with
our expectations.

In the final work, in the context of multiobjective optimization problems, we have
introduced a new measure of sensitivity, which is inversely related to robustness of
solutions. It quantifies the robustness of a solution with respect to perturbations in
the variable space. We have shown how the cost of computing this measure can be



xv

reduced using an approximation with the first-order Taylor series expansion subject
to the following three conditions. First, the objective functions are differentiable. Sec-
ond, the input noise is any one of uniform noise, additive white Gaussian noise, and
multiplicative noise. Third, the changes in the variables are very small. Next, we
have proposed three approaches to reformulate MOPs. When the first approach is
used, solving the reformulated MOP yields solutions of the original MOP with dif-
ferent degrees of sensitivity/robustness. When the other two approaches are used,
the reformulated MOPs yield solutions with sensitivities less than a given threshold.
We have experimentally validated our claims and have analyzed the behaviour of the
reformulation strategies.
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Chapter 1

Introduction and the Scope of the
Thesis

1.1 Introduction

In this thesis, we use multiobjective evolutionary approaches to address four prob-
lems related to decision making. Pattern classification is a straightforward task of
decision making, where selection of useful features is essential. To address this issue,
in the first work of this thesis, we propose an ensemble based method for simultane-
ous feature selection and classification using a multiobjective evolutionary approach.
Especially, if we can extract and use features that can linearly separate a given data
set, it may increase the parsimony and the interpretability of the classifier. In the sec-
ond work of this thesis, the proposed evolutionary approach extracts and selects such
feature to build a parsimonious classifier. There are, however, other types of decision
making problems, e.g., designing of an engine where the solutions need to be robust
with respect to perturbations in their parameters. Often such a problem is formulated
as a multiobjective fuzzy group decision making problem. In this context, we prefer
solutions that are robust with respect to perturbations in the variable space as well as
to their degree of consensus. We address this issue in our third work, where we pro-
pose a new measure called robust consensus and incorporate it in the multiobjective
evolutionary search process. In the last work of this thesis, we propose a measure of
sensitivity which can assess the sensitivity of a solution with respect to perturbations
in the parameter space and use the same in the evolutionary search process. Here,
we propose three approaches to reformulate a multiobjective optimization problem
(MOP). The first approach provides a set of solutions with varying degree of sensi-
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tivity, whereas, the other two approaches provide solutions with sensitivities below a
given threshold. In this chapter, next we introduce some concepts that are required to
present the works in this thesis.

1.1.1 Evolutionary Approaches: A Brief Introduction

Computational Intelligence (CI) deals with biologically and linguistically inspired com-
puting paradigms. Evolutionary computation (EC) is one of the major components
of CI. Evolutionary algorithms (EAs) exploit Darwinian principles to find solutions to a
problem. These are, indeed, trial and error based optimization schemes that use meta-
heuristics. Moreover, EAs use a population consisting of a set of candidate solutions
instead of iterating over a single solution in the search space. Usually, the following
four techniques are categorized as EC: (i) evolutionary programming (EP), (ii) evolution-
ary strategy (ES), (iii) genetic algorithm (GA), and (iv) genetic programming (GP).

EC usually initializes a population with a set of randomly generated candidate so-
lutions. However, if domain knowledge is available, it can be used to generate the
initial population and this may significantly speed up the convergence to a desired
solution. Then, the population is evolved. This evolutionary process incorporates nat-
ural selection and other evolutionary operators. From an algorithmic point of view, it is
a guided random search that uses parallel processing to achieve the desired solutions.
Note that, the natural selection must be incorporated in an EA, otherwise the approach
cannot be categorized as an EC technique. For example, though several metaheuristic
algorithms, such as, particle swarm optimization (PSO) [6] and ant colony optimiza-
tion (ACO) [7, 8] are nature inspired algorithms (NIAs), they are not EAs. Note that,
sometimes they are still loosely referred to as EC techniques.

In 1948, in a technical report [9], titled “Intelligent Machinery”, written for Na-
tional Physics Laboratory, Alan M. Turing wrote, “There is the genetical or evolution-
ary search by which a combination of genes is looked for, the criterion being survival
value. The remarkable success of this search confirms to some extent the idea that
intellectual activity consists mainly of various kinds of search.” To the best of our
knowledge, this is the first technical article, where the concept of evolutionary com-
putation is found. However, it took few more decades to develop the following three
distinct interpretations of this philosophy: (i) EP, (ii) ES, and (iii) GA. For the next one
and half decades, these three areas grew separately. Later, in the early nineties, they
were unified as a subfield of the same technology, namely EC. Each of EP, ES, and GA
is an algorithm for finding solutions of an optimization problem - it finds a parame-
ter vector that optimizes an objective function or a set of objective functions. Unlike
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these three branches, GP finds a program to solve a problem. The concept of modern
tree-based GP was proposed by Cramer in 1985 [10]. Later, Koza, a student of Cramer,
popularized it with his many eminent works [11–14].

Simultaneous optimization of multiple conflicting objectives is frequent in real
world problem solving. This type of optimization problems are called multiobjec-
tive optimization problems (MOPs). Consequently, researchers started solving MOPs
using evolutionary approaches. In 1967, a Ph.D. thesis [15] hinted the use of evolu-
tionary approaches to solve an MOP [16]. In [15], however, the author did not use
any multiobjective evolutionary approach [16]. Instead, the author [15] restated the
MOP as a single objective problem, and then, solved it using a genetic algorithm [16].
Though there is another rarely mentioned attempt in [17] to solve an MOP using a
multiobjective evolutionary algorithm (MOEA), vector evaluated genetic algorithm
(VEGA) [18] is usually considered to be the first popular evolutionary approach to
solve an MOP [16]. In this thesis, we use evolutionary multiobjective approaches, and
hence, in the next subsection we formally introduce MOPs.

1.1.2 Multiobjective Optimization

Without any loss of generality, a constrained MOP can be defined as

minimize
x∈V

f(x) = ( f1(x), f2(x), · · · , fm(x));

subject to

gj(x) ≤ 0, j = 1, 2, · · · , n 6=;

hk(x) = 0, k = 1, 2, · · · , n=; (1.1.1)

where x = (x1, x2, · · · , xn)
T, f : V → O, n is the number of variables, m is the num-

ber of objectives, n 6= is the number of inequality constraints, and n= is the number
of equality constraints. Here, V (⊆ Rn) and O (⊆ Rm) are respectively the feasible
space and the objective space. A solution x1 ∈ V is said to dominate a solution x2 ∈ V
if ∀i fi(x1) ≤ fi(x2) and ∃j, such that, f j(x1) < f j(x2). It is denoted as x1 � x2. More-
over, the overall constraint violation (CV(·)) of a solution x ∈ V is defined as follows.

CV(x) =
n 6=

∑
j=1

< gj(x) > +
n=

∑
k=1
|hk(x)|, (1.1.2)
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where

< z >=

z, if z > 0

0, otherwise.
(1.1.3)

If x satisfies all the constraints, i.e., CV(x) = 0, x is said to be a feasible solution.
Otherwise, it is an infeasible solution. Moreover, x1 is said to constraint dominate
x2, denoted by x1 �c x2, if either (i) CV(x1) = 0, CV(x2) = 0, and x1 � x2; or (ii)
CV(x1) < CV(x2). A solution x� ∈ V is called a Pareto optimal solution if @x ∈ V ,
such that, x �c x�. The set PS = {x�| (@x ∈ V) ∧ (x �c x�)} is called the Pareto set
(PS), and the set PF = {f(x�)|x� ∈ PS} is called the Pareto front (PF). Due to the
conflicting nature of the objectives, the aim of solving an MOP is to find a set of non-
dominated solutions with the following two properties. First, a set of solutions should
be as close as possible to the PF. Second, it should be uniformly distributed over the
entire PF.

Since in this thesis we solve some pattern recognition problems using multiobjec-
tive evolutionary approaches, next we briefly introduce some necessary concepts of
pattern recognition.

1.1.3 Pattern Recognition

Pattern recognition, a branch of machine learning (ML), focuses on the recognition of
patterns and regularities in data. In this subsection, we discuss three tasks related to
pattern recognition: classification, feature selection, and feature extraction, in brief.

1.1.3.1 Classification

Classification is one of the most important and frequently encountered problems in
data mining and machine learning. A wide range of real world problems of different
domains can be restated as classification problems. These include diagnosis from mi-
croarray data, text categorization, medical diagnosis, software quality assurance, and
many more. Classification can be formally defined as follows. Let there be a given
(training) data set D = {(xk, yk) : k = 1, 2, · · · , n}, where xk = (xk1, xk2, · · · , xkd)

T ∈
FS ⊆ Rd is the kth training pattern and yk ∈ Y = {Y1,Y2, · · · ,Yc} is the class label of
xk. Here, the vector fj = (x1j, x2j, · · · , xnj)

T ∈ Rn is called the jth feature vector and FS

is called feature space, where, n, d, and c respectively denote the number of samples
in the training data, the dimension of the feature space, and the number of classes.
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Then, the classification task can be stated as learning of a mapping or a model, called a
classifier, C : FS → Y, such that, given an unknown pattern x ∈ FS, C(x) = yp ∈ Y be
the correct class label associated with x. The learning process derives a set of criteria
from D, and then, encodes them in C(·). High values of d, c, and feature-to-sample-
ratio (d/n) usually increase the difficulties of classification. Redundant and/or noisy
features also cause difficulties in classification. Sometimes, an ensemble of classifiers
is used to obtain a better classification accuracy.

1.1.3.2 Feature Selection

Any classifier is designed using a set of features. Every feature may not be equally
effective in designing a classifier. Some features may be derogatory, while some others
can be non-informative for the classification task. Hence, feature selection (FS) becomes
an important part in classification. For a given classification task, there may be at least
four types of features: (i) essential, (ii) bad, (iii) redundant, and (iv) indifferent features
[19]. The objective of a FS scheme should be to (i) select the essential features, (ii) reject
the bad features, (iii) judiciously select some of the redundant features, and (iv) reject
the indifferent features. Let us consider a small example to illustrate these four types
of features [19]. Consider a data set on humans with five features: (i) sex, (ii) eye color,
(iii) height, (iv) weight, and (v) number of legs. Suppose the given classification task
has the following four classes:
(i) male AND (heavy weight OR long height),
(ii) male AND (low weight OR short height),
(iii) female AND (heavy weight OR long height), and
(iv) female AND (low weight OR short height).
In this particular case, (i) the feature sex is essential, (ii) the feature eye color is bad as
it may confuse the learning, (iii) one of the features, height and weight, is redundant as
a long person is usually heavy. Thus, weight and height constitute a redundant set for
the given classification task because usually any one of the two will be enough for the
classification task. Note that, we have emphasized on the word usually because height
and weight are statistically strongly correlated, but there could be a heavy person
with a short height. (iv) Finally, number of legs is an indifferent feature as under normal
circumstances, it is going to be two for every individual. Note that, keeping some level
of redundancy in the selected set of features may sometimes be helpful. Therefore, in
the given context, one may argue that to account for some measurement error, it may
not be a very bad idea to use both height and weight to design a classifier because that
would be more robust than a classifier designed using only one of these two features.
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FS can be formally defined as follows. Let there be a classification task associated
with a training data set D with the set of features F = {F1,F2, · · · ,Fd} and the class
label vector y = (y1, y2, · · · , yn)

T. Then, FS is a process of judiciously selecting a sub-
set of features FR ⊆ F , such that, if a classifier CS(·) is trained using the reduced
feature set FR, the performance of CS(·) should be satisfactory. A good FS mechanism
improves the associated classifier in the following manner: (i) FS simplifies the models
to enhance their interpretability, (ii) FS reduces the degrees of freedom of the classifier,
which in turn enhances the generalization capability of the classifier, and (iii) the train-
ing and decision making time may be reduced by a noticeable amount. Sometimes, FS
also improves the performance of the classifier. Note that, FS could be unsupervised
also, i.e., without using class label information.

FS methods are generally divided into two main groups: filter method and wrap-
per method [20]. A filter method does not use any feedback from the classifier or any
mining algorithm. It relies on the general characteristics of data. On the contrary, to
measure the goodness of features, a wrapper method uses a predetermined classifier
or mining algorithm, which finally use the selected features. Consequently, a wrapper
method exploits interactions among the selected features on which it is tested. But, to
find an optimal set of features, a wrapper method needs to measure performances on
all possible subsets of features. This becomes infeasible for high dimensional data sets.
To overcome this problem, wrapper methods typically use a heuristic-based forward
or backward selection mechanism [20], which does not evaluate all possible subsets.
There is a third category of methods, called embedded methods, where FS and design-
ing of the classification system are done together in an integrated manner. Embedded
methods do not need to evaluate all possible subsets. Moreover, they can account for
interaction between features and the classifier that is used to solve the problem [21].
Usually, embedded methods attain comparable accuracy to wrapper methods as well
as comparable efficiency to filter methods. Though for every classification tool it may
not be easy to define such an integrated mechanism, several attempts of FS using
embedded methods have already been made. These attempts include using single
objective GP [22], neural networks [19, 23], and support vector machines [24]. In the
literature, there are also some methods [25–28] for FS based on Markov blanket [29].
Among these works, in [26] and [27] embedded methods of FS using single objective
and multiobjective genetic algorithms have been proposed, respectively. These works
minimize the overall error or the class-specific errors using one-vs.-all strategy, and
make use of the Markov blanket property. If a feature has a Markov blanket within
the selected set of features, then that feature does not provide any more information
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beyond the Markov blanket about the class labels and other selected features [27], and
hence, can be discarded.

1.1.3.3 Feature Extraction

For a given problem, it may happen that the input data dimension is too large to
be processed, the feature set has redundancy, and may even lack relevant features.
Then a process, called feature extraction (FE), is used to construct new features. Usu-
ally both FS and FE are considered to be different ways of achieving dimensionality
reduction. However, to enhance separability, sometimes FE can be used to increase
the dimensionality of the features. To illustrate this with an example, let us con-
sider a XOR-type, binary class data set D⊕ = {((0, 0), y−), ((0, 1), y+), ((1, 0), y+),
((1, 1), y−)} with Y⊕ = {y−, y+}. The two classes are not linearly separable. But,
if we concatenate an extracted feature fE = x1 × x2, and convert this data set as
D fE⊕={((0, 0, 0), y−), ((0, 1, 0), y+), ((1, 0, 0), y+), ((1, 1, 1), y−)}, then the two classes
become linearly separable. We can formally define FE as follows. Let there be a clas-
sification task associated with a training data set D. Then, FE is the process of finding
a mapping FE : FS → FE

S , such that, FE
S ⊆ RdE , and if a classifier CE(·) is trained using

DE = {(FE(xk), yk) : k = 1, 2, · · · , n}, the performance of CE(·) should be satisfactory.
For a classification problem, the ultimate goal of FE is to enhance the classifier perfor-
mance. So for a FE algorithm my use classifier performance as the objective. But other
FE algorithms may use other criteria such as preservation of interpoint distances or au-
toencoding error. While FS enhances classification performance by selecting a smaller
subset of features, FE constructs new features to achieve the same.

Let us revisit the example on the human data set. If we want to employ FE in that
scenario, it would be good to construct a feature height ‘OR’ weight. Note that, this ‘OR’
operator is not exactly the Boolean OR operator because the attributes heavy, long etc.
are not Boolean, but fuzzy concepts, and hence, such a combined feature has to be
designed judiciously. The beauty of a GP-based system is that, during the evolution,
it may compute the intuitive ‘OR’ operator using the members of F .

In the next section, we will discuss how GP can be used for pattern classification,
FS, and FE. In this context, we will also discuss some state-of-the-art methodologies
that employs GP for these pattern recognition tasks.
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1.1.4 Genetic Programming in Pattern Recognition

GP [11–13, 30, 31] finds computer programs to solve a given problem. It evolves the
programs using biologically inspired genetic operations like reproduction, crossover,
and mutation in the search space [32–34]. GP consists of a set of instructions and a
fitness function to evaluate the performance of a candidate computer program. There-
fore, it can be considered a special case of GA, where each solution is a computer
program. There exist several ways to encode a program. We use a tree structure
[10, 35–37], which is probably the most popular and traditional one. In a tree-based
GP, the internal nodes of the trees must be from a set of predefined functions (opera-
tors), G. Moreover, every leaf node of a tree must be from a set of predefined terminals
(operands), T . The subtrees of a function node g ∈ G are the arguments to g. Note
that, a very important property of tree-based GP is that, G and T need to satisfy both
the closure property and the sufficiency property [11, 34]. To satisfy the closure prop-
erty, G needs to be well defined and closed for any combination of probable arguments
that it may encounter [11, 34]. Moreover, G and T need to be able to encode any pos-
sible valid solution of the problem to satisfy the sufficiency property. Thus, Lisp or
any other functional programming language that naturally embodies tree structures,
can be used to represent a candidate solution in GP. Use of non-tree representations
to encode solutions in GP, is comparatively less popular. An example of this is linear
genetic programming, which is suitable for more traditional imperative languages. In
this thesis, we use only on tree-based GP. The most frequently used representations
of tree-based GPs are decision trees, classification rules, and discriminant functions
(DFs). In this thesis, we confine our discussion primarily to DF based GP.

Since, in this thesis, we have used multiobjective genetic programming (MOGP)
for learning DFs, we discuss some DF based systems. In a DF based GP, each program
is a mathematical equation, where the variables are features of the data. Usually every
program is associated with a class. For every input data point, the program converts
it to a single output value. If this output value is more than a predefined threshold
(usually zero), the point belongs to the class to which the program is associated with.
Thus, a single equation is enough for binary classification problems. For c-class prob-
lems, there are two common ways. The first and more frequently used approach is
to consider a c-class problem as c binary classification problems [38]. Thus, c number
of DFs are used to discriminate c classes. The second and less popular approach is
to use a single DF with (c − 1) threshold values to create c intervals. Each of these
intervals is then assigned to a particular class. For both categories, a common prac-
tice is to evolve a population where each individual encodes either one (for a binary
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classification problem having a single threshold, or for a multi-class problem having
multiple thresholds) or multiple DFs each of which uses a single threshold. Such en-
coding schemes have been used in [22,34]. In another approach, each solution encodes
multiple DFs having a single threshold. The final output value, in this case, may be
obtained using a (weighted) voting scheme among the output values of different func-
tions of the same individual. An example of this scheme can be found in [39].

Many authors [40–47] have used GP to design classifiers or to generate rules for
binary classification problems. Some researchers have also attempted to solve multi-
class problems [34, 48–51]. GP has also been used for FS [52], FE [53], and simultane-
ous FS and classification [22]. In [39], the authors have used GP to create ensembles of
classifiers (genetic programs). They have used these ensembles to classify microarray
data sets. Though GP is a powerful tool, it has a drawback: without a special care
each genetic program (equation) becomes huge. As an effect, they may not learn the
patterns in the training data, rather, memorize them. It also makes genetic programs
difficult to comprehend. Besides, though ensembles can perform better than individ-
ual classifiers [54], to obtain better performance, each ensemble should be diverse and
each member of the ensemble should be accurate [54–56]. Due to the lack of an explicit
diversity preservation mechanism, without special care, the solutions of a single ob-
jective GP may loose diversity. Note that, a genetic program may not (mostly will not)
use all features of a given data set. Hence, a GP-based system performs FS implicitly,
at least to some extent even if it is not specially designed for FS. Moreover, a DF based
genetic program also implicitly performs FE from an initial set of measured features.
The derived features are expected to be less-redundant, informative, and should facil-
itate subsequent learning and enhance generalization. Sometimes, they may lead to a
better human interpretation. In Chapters 2 and 3, we have provided detailed literature
surveys related to GP in classification, FS, and FE.

1.1.5 Robust Optimization

Up to this point, we have introduced evolutionary approaches, MOPs, three pattern
recognition tasks, and the use of GP in these pattern recognition tasks, which cover
the necessary prerequisites of Chapters 2 and 3. In this subsection, we discuss the
preliminaries and a brief literature review on robust optimization, which are related
to our works presented in Chapters 4 and 5.

Uncertainties in real world MOPs are sometimes unavoidable. Primarily, there
can be three types of uncertainties [57–59]: 1) uncertainties in the environment and
operating conditions, 2) uncertainties in the parameters, and 3) uncertainties in gen-
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erating the output. The first two types of uncertainties are particularly important in
optimizing real-world problems [57]. A typical example of uncertainty would be the
measurement noise in the values of the variables during the evaluation of a given so-
lution. The evaluating function may even be noisy [60]. Existence of such noise may
mislead the search process [60–62]. Optimization with uncertainties is dealt within a
framework called robust optimization [60–64].

The literature on robust optimization in MOP is quite rich [57, 60, 62–72]. In this
subsection, we discuss a few state-of-the-art works that are the most relevant to our
investigation. In one of the initial major investigations on robustness in multiobjective
optimization, Deb and Gupta [63] defined robust solutions using both expectation-
based and variance-based approaches. The authors [63] respectively denoted them as
robust solutions of type I and type II.

If a solution x ∈ V is in the PS of the following multiobjective minimization prob-
lem, it is called a multiobjective robust solution of type I:

minimize
x∈V

fe(x) = ( f e
1(x), f e

2(x), · · · , f e
m(x));

subject to

gj(x) ≤ 0, j = 1, 2, · · · , n 6=;

hk(x) = 0, k = 1, 2, · · · , n=; (1.1.4)

where f e
j (x) is called the mean effective objective function and it is defined as

f e
j (x) =

1
|BVδ (x)|

∫
y∈BVδ (x)

f j(y)dy. (1.1.5)

Here, BVδ (x) denotes a small neighbourhood of x in the variable space defined with
the help of parameter δ, and |(·)| indicates the hypervolume of (·).

If a solution x ∈ V is in the PS of the following multiobjective minimization prob-
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lem, it is called a multiobjective robust solution of type II:

minimize
x∈V

f(x) = ( f1(x), f2(x), · · · , fm(x));

subject to

gj(x) ≤ 0, j = 1, 2, · · · , n 6=;

hk(x) = 0, k = 1, 2, · · · , n=;

||fe(x)− f(x)||p
||f(x)||p

≤ η; (1.1.6)

where η is a limiting parameter, which is usually constant throughout the optimization
process. Note that, though the definition uses p-norm (||·||p), usually p = 2, i.e., the
Euclidean norm, is used.

When we deal with robust solutions of type I and type II, we need to incur a high
cost to attain a satisfactory approximation of each mean effective objective function.
In [73] a method of surrogate modelling has been proposed to reduce this cost for
single objective robust optimization. The surrogate model in [73] uses radial basis
functions for approximation. A new evolutionary algorithm, which uses max-min
optimization strategy, has also been proposed in [73].

Bui et al. [60] defined two types of robustness: dominance robustness (DR) and
preference robustness (PR). DR is defined as the ability of a Pareto optimal solution to
stay in the PF when it is perturbed in the variable space. For a non-dominated solution
x ∈ V , DR is quantified as follows.

DR(x) =
1

|BVδ (x)|

∫
y∈BVδ (x)

G (y) dy, (1.1.7)

where G : Rn → R is a “dominance function” [60], such that, if y is a non-dominated
solution G (y) = 0, else G (y) = 1. If BVδ (x) is a countable set, DR(x) is defined as
follows.

DR(x) =
1

|BVδ (x)|
∑

y∈BVδ (x)
G (y) . (1.1.8)

On the contrary, for a given Pareto optimal solution, PR is defined as the minimum
transition cost in the variable space when the Pareto-optimal solution is perturbed in
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the objective space. For a non dominated solution x ∈ V , PR is quantified as follows.

PR(x) =
1

|BOδ (f(x))|

∫
f(y)∈BOδ (f(x))

⋂FP c (f (y)) df (y) , (1.1.9)

where BOδ (f(x)) denotes a small neighbourhood of f(x) in the objective space defined
with the help of parameter δ, FP denotes the PF, and c (f (x)) : f (x) → R, where
f(x) ∈ Rm is an expected cost function. c(·) “quantifies the cost incurred in deci-
sion space when f(x) is moved to a neighboring point in the m-dimensional objective
space” [60]. Depending on the problem domain, the transition cost may change. In
general, c(·) can be described as the financial loss for changing from a solution to an-
other. Alternatively, it can be the additional cost to generate a new solution. If there is
a finite set of solutions in the neighbourhood, and for simplicity, if the cost is consid-
ered the average Euclidean distance between x and its neighbors, PR(x) is defined as
follows.

PR(x) =
1

|BOδ (f(x))| ∑
f(y)∈BOδ (f(x))

⋂FP
||x− y||2. (1.1.10)

In Chapter 4 and 5, we have provided detailed literature surveys related to robust
optimization in MOPs.

1.1.6 Fuzzy Group Decision Making in Multiobjective Optimization

As the last introductory topic, here we discuss fuzzy group decision making in the
context of robust multiobjective optimization, which is required as a prerequisite for
our work presented in Chapter 4.

If a set of decision makers (DMs) is involved in solving a problem, it is catego-
rized as a group decision making (GDM) problem. When a GDM problem is also an
MOP, it is called a group decision making for a multiobjective optimization problem
(GDM-MOP) [74]. Sometimes, the DMs are weighted and the weights are provided
by another expert. In a given GDM-MOP, if the DMs provide their preferences using
fuzzy numbers, the problem is called fuzzy group decision making for a multiobjec-
tive optimization problem (FGDM-MOP) [74].

Now, we mathematically formulate an FGDM-MOP problem. Let there be d DMs
and the weight vector associated with the DMs be w = (w1 , w2, · · · , wd)

T, such that,
wi ∈ (0, 1) and ∑d

i=1 wi = 1. We also assume that the ith DM provides her prefer-
ence using either a (fuzzy) reference point for the jth objective rOij ; i = 1, 2, · · · , d; j =
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1, 2, · · · , m; or a (fuzzy) reference point rVij ; i = 1, 2, · · · , d; j = 1, 2, · · · , n; for the jth

variable. When the preference is given in the objective space, a DM may give her pref-
erence as CLOSE to c = (c1, c2, · · · , cm)

T ∈ Rm or can express her preference as m
different preferences as CLOSE to ci; i = 1, 2, · · · , m. Similarly, preferences in the vari-
able space can be expressed as either CLOSE to c = (c1, c2, · · · , cn)

T ∈ Rn or CLOSE
to ci; i = 1, 2, · · · , n. Note that, to keep the notation simple, we are ignoring the super-
script V or O. We shall restrict ourselves to the case when preferences are given for
each variable (or objective) separately. The extension to the multi-dimensional case is
straightforward. The DM may explicitly define what she meant by CLOSE to. Typi-
cally, the concept CLOSE to is expressed by a triangular/trapezoidal/Gaussian mem-
bership function. The concept of CLOSE to, although usually is symmetric, asymmet-
ric function may also be used depending on the problem and preference of the DM.
We shall restrict ourselves to symmetric triangular or Gaussian memberships. Thus,
to define each membership, we need two parameters, the center and the width. If the
DMs do not provide the width parameters, we can assign a fixed width to each mem-

bership function. Thus, in the present case, rOij =
(

cOij , sOij
)T

and rVij =
(

cVij , sVij
)T

. The

associated membership functions are respectively denoted by µOij (·) and µVij (·). Two
plausible definitions of CLOSE to c (with spread s) are Gaussian membership function
µG(·) and triangular membership function µT(·), defined as follows:

µG (z; c, s) = e
−
(z− c)2

2s2 ; (1.1.11)

and

µT (z; c, s) =

1− |z− c|/s, if (c− s) ≤ z ≤ (c + s)

0, otherwise.
(1.1.12)

In Chapter 4, we have provided a literature survey related to FGDM-MOPs.

1.2 The Scope of the Thesis

As mentioned earlier, in this thesis, we have addressed four research problems related
to decision making using multiobjective evolutionary approaches. The first two of
them are related to pattern classification, which is usually the first step of decision
making. There are other kinds of decision making problems, such as, designing of an
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engine where the design parameters must be robust with respect to input perturba-
tions. The third problem that we deal with in this thesis is related to robust optimiza-
tion. The last problem that we deal with is another kind of decision making, where
multiple experts are involved in the decision making process. Here, each experts has
a preference about the solution. Our objective is to obtain a set of solutions that is
robust with respect to input perturbations as well as the set enjoys a high degree of
consensus. Below, we shortly describe the primary contributions in the chapters to
follow.

1.2.1 A Multiobjective Genetic Programming based Ensemble for Simulta-
neous Feature Selection and Classification [1]

In Chapter 2, we present an integrated algorithm for simultaneous FS and designing
of diverse classifiers using a steady state MOGP, which minimizes three conflicting
objectives: false positives, false negatives, and the number of leaf nodes in the tree.
Our method divides a c-class problem into c binary classification problems. It evolves
c sets of genetic programs to create c ensembles. During the mutation operation, our
method exploits the fitness as well as the unfitness of features, which dynamically
change with generations with a view to using a set of highly relevant features with
low redundancy. The classifiers of the ith class determine the net belongingness of an
unknown data point to the ith class using a weighted voting scheme, which makes use
of the false positive and false negative mistakes made on the training data. We test our
method on eight microarray and eleven text data sets with a diverse number of classes
(from 2 to 44), a large number of features (from 2000 to 49151), and a high feature-to-
sample ratio (from 1.03 to 273.1). We compare our method with a bi-objective genetic
programming scheme that does not use any FS and rule size reduction strategy. It
helps to depict the effectiveness of the proposed FS and rule size reduction schemes.
Furthermore, we compare our method with four classification methods in conjunction
with six features selection algorithms and the full feature set. Our scheme performs
the best for 380 out of 474 combinations of data sets, classification algorithm and FS
method.

1.2.2 Feature Extraction and Selection for Parsimonious Classifiers with
Multiobjective Genetic Programming [2]

The primary objective of the work in Chapter 3 is to design classifiers that are reason-
ably simple and understandable yet capable of yielding a good performance. Thus,
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our problem here is to obtain an ensemble of linear classifiers with as few simple fea-
tures as possible. For this we use GP to extract features that can linearly separate
two classes. We propose an integrated mechanism for simultaneously extracting and
selecting useful linearly separable features. We decompose a c-class problem into c bi-
nary classification problems and evolve c sets of binary classifiers employing a steady-
state MOGP with three minimizing objectives. Each binary classifier is composed of a
binary tree and a linear support vector machine (SVM). The features extracted by the
feature nodes and some of the function nodes of the tree are used to train the SVM. The
decision made by the SVM is considered the decision of the corresponding classifier.
During crossover and mutation, the SVM-weights are used to determine the useful-
ness of the corresponding nodes. We also employ unfitness functions for the feature
nodes and a fitness function based on Golub’s index to select useful features. We com-
pare our method with 34 classification systems using 18 data sets. The performance of
the proposed method is found to be better than 432 out of 570, i.e., 75.79% of compar-
ing cases. Our results confirm that the proposed method is capable of achieving our
objectives.

1.2.3 Robust Multiobjective Optimization with Robust Consensus [3, 4]

In Chapter 4, we consider a multiobjective robust optimization problem where a set
of weighted DMs provides their preferences a priori. The preferences are provided
either in the objective space or in the decision variable space using fuzzy numbers. To
solve this problem, the following three things are required: 1) an indicator to measure
consensus, 2) an indicator to measure the robustness of the solutions to their degrees
of consensus, and 3) a reformulation of the multiobjective robust optimization prob-
lem. It is necessary for the reformulated problem to generate robust solutions that
also enjoy high degrees of consensus. In this work, we have addressed these three
issues. For this purpose, we have proposed two approaches to define consensus. Then,
we have extended these approaches to define robust consensus, an indicator to measure
the robustness of a given solution to its degree of consensus. Though these approaches
can be used to define a countless number of measures, we have proposed 12 defini-
tions of consensus, and hence, robust consensus. Furthermore, we have proposed two
ways for the reformulation. Experimental results illustrate that the behaviors of the
proposed definitions and of the reformulations are consistent with our expectations.
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1.2.4 Robustness in Multiobjective Evolutionary Optimization [5]

In Chapter 5, in the context of multiobjective optimization problems, we have intro-
duced a new measure of sensitivity, which is inversely related to robustness of solu-
tions. It quantifies the robustness of a solution with respect to perturbations in the
variable space. We have shown how the cost of computing this measure can be re-
duced using an approximation with the first-order Taylor series expansion subject to
the following three conditions. First, the objective functions are differentiable. Sec-
ond, the input noise is any one of uniform noise, additive white Gaussian noise, and
multiplicative noise. Third, the changes in the variables are very small. Next, we
have proposed three approaches to reformulate MOPs. When the first approach is
used, solving the reformulated MOP yields solutions of the original MOP with dif-
ferent degrees of sensitivity/robustness. When the other two approaches are used,
the reformulated MOPs yield solutions with sensitivities less than a given threshold.
We have experimentally validated our claims and have analyzed the behaviour of the
reformulation strategies.

1.2.5 Conclusions, Limitations, and Future Scopes

We conclude the thesis in Chapter 6. In this Chapter, we discuss some limitations of
the work presented in this thesis along with probable ways of extending our work in
future.



Chapter 2

A Multiobjective Genetic
Programming based Ensemble for
Simultaneous Feature Selection and
Classification [1]

2.1 Introduction

The microarray technology has made it possible to diagnose different types of cancers
directly using the microarray data sets. Again, finding keywords as well as contexts
from text data is essential to detect (without human intervention) the context of web
pages, emails, or questions/answers, etc. Consequently, it is an important task to
perform feature selection (FS) and classification on both microarray and text data sets.
However, the nature of these two data sets are quite distinct, and hence, they pose
different challenges. Specifically, microarray data sets usually have a large number
of features and a very small number of samples. This causes a very high feature-to-
sample ratio. On the contrary, text data sets usually have a large number of classes,
a large number of features, a large number of samples, and sparsity. In the literature,
several attempts have been made to address the above issues, yet there is a need for
finding better solutions.

The objective of this work is to find an embedded methodology of simultaneous FS
and classification employing genetic programming (GP) as a tool, such that, it should
perform satisfactorily when applied to both microarray and text data sets. Some of the
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contributions of our schemes are as follows. We have introduced a new multiobjective
genetic programming (MOGP), called archive-based steady-state micro genetic pro-
gramming (ASMiGP). It is enriched by several new operators. The mating selection
judiciously uses Roulette wheel selection instead of a two tire multiobjective selec-
tion scheme (where domination is preferred over diversity). The crossover is new and
uses male-female differentiation so that the offspring is more likely to be close to the
female parent in the genotypic space. The mutation is restrictive and performs less
exploration in the hypothesis space. Thus, it reduces disruption. For feature nodes,
instead of fitness, mutation uses unfitness to select the mutation point. Altering the
fitness and unfitness of the features in different stages of learning, we change the ob-
jective of searching in the corresponding stages. For a c class problem, we use ASMiGP
to learn c diverse sets of classifiers (equations) minimizing three objectives: false posi-
tive (FP), false negative (FN), and number of leaf nodes of a tree to restrict the rule size.
Throughout the learning process, implicit FS is performed using MOGP, whereas sev-
eral filter based approaches are used in different stages of the procedure. In this way,
we obtain concise rules that involve only simple arithmetic operations. A weighted
negative voting scheme is then used among the rules of each ensemble. These weights
are determined on the basis of the performance of the binary classifiers on the training
data set. A new measure of weighted negative voting, called net belongingness, is also
introduced.

The proposed method has been tested on eight multi-class microarray data sets
each having a large number of features, varying from 2000 to 49151, and a high feature-
to-sample ratio, varying from 32.26 to 273.06. It has also been tested on eleven high
dimensional (varying from 3182 to 26832) text data sets, where the number of classes
(categories) vary from 6 to 44. Experimental results reveal that our method can gener-
ate ensembles of classifiers with concise rules that can do a good job of classification
with a small subset of features.

2.2 Related Works

Many researchers have used GP as a tool for classification and FS. Some literature
surveys on this topic can be found in [38,75]. It has been used in both filter [76–79] and
wrapper [80–83] based approaches. GP has also been used for extracting decision trees
[84–89]. Among these, in [87, 88], MOGP has been used. GP has also been adopted
for learning rule based systems [41–43, 47, 90–92]. Both binary classification problems
[40,41,44–47] and multi-class classification problems [34,42,43,48–51,90–92] have been
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solved by GP based (rule based) systems. Even, researchers have applied GP based
(rule based) system for binary classification of imbalanced data [93, 94]. Discriminant
functions (DFs) based GP for online FS and classification has been adopted in [22] to
solve multi-class problems. It is noteworthy that GP has also been used in feature
extraction for edge detection [95].

In the recent years, researchers have made some notable attempts to solve classi-
fication problems using MOGP. In [96], the authors have proposed a MOGP to ob-
tain a group of classifiers, with which the maximum receiver operating character-
istic convex hull (ROCCH) can be obtained. For this purpose, they have adopted
four different multiobjective frameworks into GP. For further improvement of each
individual genetic program’s performance, they have defined two local search strate-
gies that have been especially designed for classification problems. The experimen-
tal results in [96] have demonstrated the efficacy of the proposed memetic scheme
in their MOGP framework. Another convex hull-based MOGP, called CH-MOGP,
can be found in [97]. In [97], the authors have shown the differences between the
conventional multiobjective optimization problem (MOP) and ROCCH maximization
problem. They [97] have introduced a convex hull based sorting without redundancy
and a new selection procedure which are suitable for ROCCH maximization prob-
lem. In [56], the authors have proposed a MOGP based approach that is especially
designed for imbalanced data sets. This approach [56] evolves ensembles of diverse
and accurate GP classifiers with good performance on both the majority and the mi-
nority classes. The individual members of the evolved ensembles, that are composed
of nondominated solutions, vote on class membership.

During evolution of GP, the variable length genome gradually starts to increase its
length without significant improvement in fitness. This incident, called bloating [98],
is a well known phenomenon in GP. Bloating causes genetic programs (i) to keep
reducible genome structures, and (ii) to memorize training data points, rather than
recognizing hidden patterns. To find rules, which are to some extent human inter-
pretable and can be analyzed, each of the genetic programs must be concise. A plausi-
ble way to achieve this target is to control bloating. A popular way to handle bloating
is to take into account the program size [11, 99–102]. Some other methods include
spatially-structured populations [103, 104], island based models to introduce spatial
structure to the population [103, 104], intron deletion [105], and dynamic population
sizing [106, 107]. The work in [108] attempts to understand the GP evolved solutions;
while authors in [109] attempt to find comprehensible rules in subgroup discovery.

In classification, the basic task is to search through a hypothesis space to find a
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suitable hypothesis that will be able to classify the data points in a better way. An
ensemble combines multiple hypotheses to form a better one [39, 55, 56, 94, 110, 111].
Empirically, an ensemble performs better when each of the classifiers is highly accu-
rate (strong learner) and the members of the ensemble are significantly diverse. The
explanation behind the better performance of ensemble classifiers than a single clas-
sifier has been described in [54]. Normally, to decide the class label of a data point,
the member classifiers of an ensemble use (weighted) voting although other aggrega-
tion schemes can and have been used. Ensembles are often used in bio-informatics
classification problems [112].

2.3 Proposed Work

2.3.1 Representation of Classifiers or Solutions

Here, to solve a c class problem, we evolve c-populations of genetic programs. Each
individual of these populations is a binary classifier. Each binary classifier is repre-
sented by a single tree. When a data point is passed through an individual of the ith

population, if the output value is positive, the individual says that the passed data
point belongs to the ith class; otherwise, it says that the point does not belong to that
class. The internal (non-leaf) nodes of these trees are a set of functions G. The terminal
nodes must be either a feature or a constant from the set C. We have imposed some
constraints on the minimum size (architecture) of the trees. In each tree there must
be at least one function node and two terminal nodes (with at least one feature node).
Though, a single feature (terminal) node might be enough to determine the class la-
bel, this would rarely happen in practice. The above restrictions make the trees more
useful without any loss of generalization capability. Again, after generation of any
tree throughout the learning phase (using mutation, crossover, or random initializa-
tion), the largest subtree consisting of only constants as its leaf nodes is replaced by a
constant leaf node having the equivalent constant value.

2.3.2 Multiobjective Genetic Programming for Learning

Larger genetic programs may memorize the training patterns which, in turn, may in-
crease the training accuracy, and reduce the test accuracy and the understandability
of the rules. Therefore, we aim to find smaller but accurate classifiers. Again, when
c is high enough, even a balanced c-class data set may get converted to c number of
highly imbalanced binary classification data sets. Instead of minimization of classifi-
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Algorithm 2.1 Archive-based steady-state micro genetic programming (ASMiGP)
Initialize population using ramped-half-and-half method. Initialize the archive solu-
tions using initial solutions. while EvaluationsCurrent ≤ EvaluationsMaximum do

repeat
operator = Select crossover or mutation. if operator == crossover then

Select male and female parents (mating selection). Perform crossover.
end
else

Select an individual (mating selection). Mutate the individual.
end

until the infix equation of offspring is distinct from infix equation of any individual of the
archive
Evaluate the new offspring. EvaluationsCurrent = EvaluationsCurrent + 1 Update
the archive using new offspring (multiobjective environmental selection).

end
F ronts = Perform fast-non-dominated-sort. return first front of F ronts.

cation error, simultaneous minimization of FP and FN would be more appropriate in
this regard. Because in this case usually the size of the positive class is much smaller
than that of the negative class. Consequently, minimization of the total misclassi-
fication error often may make the classifier essentially learn the negative class and
practically reject the positive class (high FN). That is why we minimize both FP and
FN. Thus, we have three objectives, i.e., minimizations of (a) FP, (b) FN, and (c) rule
size. Moreover, when different classes are overlapped, minimization of FP is usually
in conflict with the minimization of FN and vice versa. Multiobjective optimization is
more suitable when we need to optimize more than one conflicting objective. There-
fore, during the learning of each binary classifier, we minimize three objectives using
an MOGP: (a) FP, (b) FN, and (c) the number of leaf nodes in the tree. The third objec-
tive is to reduce the size of the tree which enhances the understandability and reduces
the pattern memorization capability. The algorithm, proposed in this work, is called
ASMiGP: archive-based steady-state micro genetic programming, which is presented
in Algorithm 2.1.

In an evolutionary search, it is desired to have as many generations as possible
and steady state nature of an algorithm maximizes the number of generations when
the number of function evaluations is fixed [113]. Due to maximization of generations,
a steady state evolutionary search is more exploitative to enhance the searching in a
region which is more likely to have or to be closer to the Pareto front and avoiding
exploration in regions that are less likely to improve the solutions. It causes faster
convergence. In other words, independent of the fitness evaluation process, steady
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state selection performs better than discrete generational selection [114]. Therefore,
we have used a steady state algorithm instead of a generational one.

2.3.3 Feature Selection

In this work, we have used the embedded model of FS. Explicit FS is performed during
population initialization and mutation. Implicit FS is performed during crossover. Fil-
tering is also performed at three different stages of the learning process; in particular,
at the beginning and after 50% and after 75% of evaluations as described next in this
subsection.

To facilitate the FS, following [115], we define an index that assesses the discrim-
inating ability of a feature. Consider a two-class problem. Note that for a multi-class
problem, the one-versus-all case can also be viewed as a two-class problem. Let there
be np number of training points and the class label for the jth data point be +1 if it
belongs to class 1, and −1 if it belongs to class 2. Let the value of the f th feature for
the kth data point be x f k; k = 1, 2, · · · , np. If the f th feature is a good discriminatory
feature then for all data points from class 1, it should have high values, and for all
points from class 2, it should have low values or vice-versa. Hence for a good discrim-
inatory feature, we can define an ideal feature vector with values 1, if the data point
is from class 1 and 0 otherwise; or the feature value is 0, if it is from class 1, otherwise
it is 1. Let yik be the ideal feature value of the kth data point for the ith classification
task. Note that, there could be other important features that are not linearly related
to the class structure. We are not considering them in this preliminary filtering step.
As in [115], we compute the Pearson’s correlation (or any other measure of similarity)
between the ideal feature vector (yi) and the f th feature vector as a measure of feature
relevance:

Ci
f =

np

∑
k=1

(x f k − x f )(yik − yi)√√√√ np

∑
k=1

(x f k − x f )2
np

∑
k=1

(yik − yi)2

. (2.3.1)

A higher value of |Ci
f | indicates a stronger discriminative power of feature f .

Now, we describe the FS procedure. Let the set of all features be Fall . We intend to
incorporate only those features from Fall which are more likely to help the classifiers
to decide the class label. We assign different fitness and unfitness measures to the
features during the learning phase. To remove a feature node from any tree (during
mutation), we select it using Roulette wheel selection on the unfitness values of the
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features which are present in that tree. Similarly, when a new feature is inserted in the
tree, it is selected using Roulette wheel selection on the fitness values. During the first
50% evaluations, the fitness of the features is defined as in (2.3.2), and the unfitness is
defined as in (2.3.3).

F0%,i
f itness( f , i) =


(

Ci
f

Ci
max

)2

, if

∣∣∣Ci
f

∣∣∣
Ci

max
> 0.3

0, otherwise

(2.3.2)

F0%,i
un f itness( f , i) = 1.0− F0%,i

f itness, (2.3.3)

where Ci
max = max

f∈Fall

∣∣∣Ci
f

∣∣∣. Equation (2.3.2) sets the fitness of very poor features (poor

with respect to its discriminating power) to zero to eliminate their impact during the
initial evolution. Let, Feval=0%,i ⊆ Fall be the features with nonzero fitness values.
Basically, at this stage we are using a filter on the feature set Fall to obtain a smaller
feature set.

After completion of 50% evaluations for each population, we find the features used
in that population. Let the feature set be Feval=50%,i. Then we make the fitness of all
features in Fall −Feval=50%,i to zero. This is done with the assumption that after 50%
evaluations useful features should have been used by the collection of trees. Now
the fitness and unfitness values of all features in Feval=50%,i are modified according to
(2.3.4) and (2.3.5) respectively.

F50%,i
f itness( f , i) =


|Ci

f |
∑

f 6=g
g∈F50%,i

|ρ f g|
, if f ∈ Feval=50%,i

0, otherwise

(2.3.4)

F50%,i
un f itness( f , i) = e

−
F50%,i

f itness( f ,i)−min f {F
50%,i
f itness}

max f {F
50%,i
f itness}−min f {F

50%,i
f itness} , (2.3.5)

where ρ f g is the Pearson’s correlation between the f th and the gth features, which is
a measure of redundancy. Here we try to select features with higher relevance but
reducing the redundancy in the set of selected features. The fitness, defined in (2.3.4),
increases when the feature is highly correlated with class label. Similarly, it reduces
when it is more correlated with other existent features. This is done to achieve maxi-
mum relevance minimum redundancy (MRMR).
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After 75% function evaluations, again we take another snapshot of the population.
Let the existent features for the population be Feval=75%,i ⊆ Feval=50%,i. Then, the
fitness and the unfitness values of the features, in Feval=75%,i, are defined in (2.3.6) and
(2.3.7), respectively.

F75%,i
f itness( f , i) =

F0%
f itness( f , i), if f ∈ Feval=75%,i

0, otherwise
(2.3.6)

F75%,i
un f itness( f , i) = 1.0− F75%,i

f itness( f , i) (2.3.7)

Equation (2.3.6) sets the fitness values of the features that are non-existent in the
archive to zero, so that, these features do no get any further chance to be selected
during mutation.

2.3.4 Population and Archive Initialization

We initialize each population using ramped-half-and-half method. While constructing
the random trees, generation of terminal nodes has been done with a probability pvar.
To insert a terminal node in a tree, a random number rn is drawn in [0, 1]. If rn < pvar

then a feature node is added, otherwise a constant node is added. The function nodes
are chosen from the set G, with equal probability of inclusion for all functions. The
feature nodes are selected using Roulette wheel selection on fitness F0%

f itness, defined in
(2.3.2).

To initialize the archive from the initial population, we have used the multiobjec-
tive archive initialization scheme present in [116] and [113]. It requires two param-
eters: maximum archive size (Nmax) and minimum archive size (Nmin). To do this,
we apply a fast-nondominated-sort [117] on the initial population that contains Nmax

number of solutions and stop the sorting process after obtaining Nmin number of solu-
tions. To elaborate this, let us assume that the ith front has si number of solutions. Then
we select all solutions up to the kth front, such that, ∑k−1

i=1 si < Nmin and ∑k
i=1 si ≥ Nmin.

2.3.5 Selection of Crossover or Mutation

Since ASMiGP is a steady state MOGP, in each generation we generate only one off-
spring. We use either crossover or mutation to do that. The crossover is selected with
the probability pc. A random number rc is drawn in [0, 1]. if rc < pc then crossover
operator is selected, otherwise the mutation operator is selected for that generation.
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2.3.6 Mating Selection

ASMiGP uses crossover with male and female differentiation which needs one male
and one female parent. We perform Roulette wheel selection using classification accu-
racy of the binary classifiers as fitness to select the female parent. Then the male parent
is selected randomly from the remaining archive. The only condition to be satisfied
is that the male and female parents must be distinct. For mutation, we need only one
individual and it is selected in the same way as done for the female parent in case of
crossover operator.

A choice of mating selection could have been done using some bi-level selection
operator, where Pareto dominance is preferred over diversity. In that case, solutions
along the whole Pareto optimal solution set with good diversity would have been
selected as the primary (female) parents. Note that, we have used crossover with
male-female differentiation that tries to generate an offspring near the primary parent
in the hypothesis space. Consequently, this might cause generation of Pareto optimal
binary classifiers along the whole Pareto optimal solution set. Though they are Pareto
optimal, these binary classifiers may have poor accuracies. This is because of the im-
plicit imbalance nature of the binary classification problems (due to conversion from
multi-class classification problems) and different classifier sizes. An ensemble clas-
sifier, however, performs better when individual members of the ensemble are more
accurate. Therefore, we use classification accuracy based mating selection. It guides
the search to generate more accurate binary classifiers.

2.3.7 Crossover

In this study, we have used crossover operation with male and female differentiation.
We want the offspring to be near the female (acceptor) parent in the hypothesis space.
The male (donor) parent is used to make the offspring diverse from its mother. To
do this, two random points (nodes) are selected from each of the parents. The proba-
bilities of selection of terminal nodes and function nodes as a crossover point (node)
are respectively pc

t and (1− pc
t). Then, the subtree rooted at the selected node of the

mother tree is replaced with a similarly selected subtree from the father tree. If the
offspring is identical to any of its parents, the whole procedure is repeated (before
evaluation/learning of the offspring).
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2.3.8 Mutation

In most GP based systems, for mutation a subtree rooted at a randomly selected node
is replaced by a new randomly generated subtree. Though this kind of mutation ex-
plores more in the hypothesis space, it may be too disruptive in nature. Therefore,
we intend to use less exploration by keeping the tree structure unaltered. During mu-
tation we perform the following operations on a tree: (1) Each constant of the tree is
replaced by another random constant with probability pm

c . (2) Each function node of
the tree is replaced by anther random function node with probability pm

f . (3) Only one
feature node of the tree is replaced by another feature node.

For feature nodes, to select the mutation point Roulette wheel selection is per-
formed on the unfitness of the features which are present in the tree. Similarly, to
insert a new feature at the mutation point, we select a feature using Roulette wheel se-
lection based on the fitness values (probability proportional to fitness) of the features.

This restricted mutation scheme ensures that the tree structure of an equation re-
mains the same. It also ensures that the variables in an equation do not change dras-
tically - changing more than one variable may shift the solution (equation) in the hy-
pothesis space by a large amount.

2.3.9 Environmental Selection

ASMiGP uses the archive truncation strategy used in [116] and [113]. This multiobjec-
tive archive truncation strategy uses Pareto based fitness function, i.e., fitness is Pareto
dominance rank. This scheme maintains an archive (ensemble) with an adaptive and
dynamic size. It does not allow the archive to fall below a minimum size ensuring
diversity in the genotypic space. Moreover, the environmental selection diminishes
the exploration in areas of objective space that are less likely to yield improved solu-
tions [113], ensuring diversity in phenotypic space. Furthermore, we have made the
following difference in the environmental selection. ASMiGP ensures that the infix ex-
pression of every offspring (after mutation or crossover) is distinct from every member
of the archive. To achieve this, before evaluating the offspring, ASMiGP converts it to
its infix expression, and then, compares the expression with that of each individual
of the archive. Only if the expression is unique, the offspring is evaluated and added
to the archive. Otherwise, it is discarded and a new offspring is generated. Another
noticeable difference is that here the number of objectives is three. Note that the diver-
sity maintenance in each ensemble both in phenotypic space and in genotypic space
finds a diverse set of trees (bi-classifiers). Diverse trees enhance the performance of
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the corresponding ensemble. In this context, it is worth mentioning that the archive,
along with the archive truncation strategy, helps to realize a good Pareto front by ex-
plicitly maintaining diversity among the fit (according to rank) solutions. However,
the archive alone is not sufficient to evolve a good Pareto front along all the objectives.

2.3.10 Decision Making

To determine the class label, we find the net belongingness of a point to each class.
The net belongingness lies in [0, 1]. A higher value indicates more net belongingness
to that class. A data point is assigned to that class for which it has the highest net
belongingness.

After the learning, we obtain a set of c archives, A = {A1,A2, · · · ,Ac}; ∀i, 1 ≤
|Ai| ≤ Nmax, where c is the number of classes, and Ai is the set of all binary classifiers
for the ith class. To determine the net belongingness of a data point x to class m, Bnet

m (x),
it is passed through all genetic programs ofAm; m = 1, 2, · · · , c. The net belongingness,
Bnet

m (x), of the point x for class m is computed using (2.3.8).

Bnet
m (x) =

1
2

(
1
|Am|

|Am|

∑
i=1
Bi

m(x) + 1.0

)
, (2.3.8)

where Bi
m is defined as

Bi
m(x) =


+

(
1.0− FPi

m
FPmax

m

)
, if Ai

m(x) > 0

−
(

1.0− FNi
m

FNmax
m

)
, otherwise.

(2.3.9)

In (2.3.9), FPi
m and FNi

m respectively represent the number of FPs and FNs made by
the ith individual of Am on the training data. FPmax

m and FNmax
m are respectively the

maximum possible FP and the maximum possible FN for the mth class; and Ai
m(x) is

the output from the ith individual of Am for input data point x. Finally, x is assigned
the class k, when Bnet

k =
c

max
m=1
{Bnet

m }. Note that, FPmax
m and FNmax

m are determined

using the training data.

The concept of net belongingness is inspired by the concept of negative voting. Neg-
ative voting has been widely used in diverse applications [118–120]. It is more effec-
tive when circumstances unfavourable to the preferences invoke stronger electoral re-
sponses than the similar favourable responses, as well as the behaviours of the voters
are well defined [121]. In our scheme, the learners for the ith class learn to vote yes for
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the points of the ith class and no for the points which do not belong to the ith class. For
multi-class problems, it is more likely that a binary classifier learns to say no than to
say yes for a larger number of points. Therefore, we found negative voting to be more
suitable in this context. However, we have used a weighted negative voting scheme.
The accuracies for the responses yes and no of the ith binary classifier of the mth class

are respectively
(

1.0− FPi
m

FPmax
m

)
and

(
1.0− FNi

m
FNmax

m

)
. These values have been used as

corresponding weights for the responses yes and no of the ith binary classifier of the
mth class. We have used the positive and the negative signs to indicate acceptance and
rejection of the data point for the mth class, respectively.

2.4 Experiments and Results

2.4.1 Experimental Settings

We have repeated 10-fold cross validation of the proposed method 10 times. Table
2.1 shows the parameter settings that we have used for this purpose. The training
data is Z-score normalized. Furthermore, based on the means and the standard devi-
ations of the features of the training data, the test data was Z-score normalized. Note
that, except Nmax and Nmin, all parameters are standard parameters used in any GP
simulations, while Nmax and Nmin are needed for archive maintenance. Although all
the parameters can be chosen using a cross validation mechanism, because of a huge
computational overhead, we could not do that. Based on a few experiments, we have
selected these parameters. These choices are not optimal. However, since the same set
of values are used for widely different types of data sets, it demonstrates the effective-
ness of the proposed scheme. The proposed method has been implemented in Java
with the help of jMetal [122, 123].

We have used eight microarray and eleven text data sets which are summarized in
Tables 2.2 and 2.3, respectively.

2.4.2 Importance of Feature Selection and Rule Size Reduction

To demonstrate the importance of the proposed FS and rule size reduction scheme, we
have compared our method with GP without FS and no restriction to equation size. To
do that, we have made the following changes in the proposed method: (1) No explicit
FS as described in Section 2.3.3 is done. (2) There are only two objectives, FP and FN.
All other parts of the algorithm and the parameter values remain unchanged. Similar



2. A MOGP based Ensemble for Simultaneous FS and Classification 29

Table 2.1: Parameter Settings for the Proposed Method

Parameter Value
Set of functions (G) {+,−,×,÷}
Range of initial values of constants (C) [0, 2]
Maximum depth of tree during initialization 6
Maximum allowable depth of tree 10
Maximum archive size (Nmax) 50
Minimum archive size (Nmin) 30
Initial Probability of feature nodes (pvar) 0.8
Probability of crossover (pc) 0.8
Probability of crossover for terminal nodes (pc

t ) 0.2
Probability of mutation for constants (pm

c ) 0.3
Probability of mutation for function nodes (pm

f ) 0.1
Function evaluations for each binary classifier 400000

Table 2.2: Summary of Microarray Data Sets

Data Set
Features Samples Classes

(
F
S

)
(F) (S) (C)

1 Colon 2000 62 2 32.26
2 TOX-171 5748 171 4 33.61
3 Leukemia 1 7129 34 2 209.68
4 Leukemia 2 7129 38 2 187.61
5 CLL-SUB-111 11340 111 3 102.16
6 GCM 16063 144 14 111.55
7 SMK-CAN-187 19993 187 2 106.91
8 GLA-BRA-180 49151 180 4 273.06

Table 2.3: Summary of Text Data Sets

Data Set
Features Samples Classes

(
F
S

)
(F) (S) (C)

1 oh0.wc 3182 1003 10 3.17
2 oh10.wc 3238 1050 10 3.08
3 tr12.wc 5804 313 8 18.54
4 tr23.wc 5832 204 6 28.59
5 tr11.wc 6429 414 9 15.53
6 tr21.wc 7902 336 6 23.52
7 wap.wc 8460 1560 20 5.42
8 ohscal.wc 11465 11162 10 1.03
9 la2s.wc 12432 3075 6 4.04

10 la1s.wc 13195 3204 6 4.12
11 new3s.wc 26832 9558 44 2.81

to the proposed scheme, we have also executed 10-fold cross validation 10 times for all
the data sets. The results (mean values of the corresponding 10 runs) obtained using
this scheme for microarray and for text data sets are summarized in Tables 2.4 and 2.5,
respectively. From these two tables, we observe the following.



30 2.4. Experiments and Results

Table 2.4: Experimental Results on Microarray Data Sets (Mean Values of 10 Runs of
10-Fold Cross Validation)

Data Set
%TA FS TS (F/T) %F (%F/T)

PM WF&R PM WF&R PM WF&R PM WF&R PM WF&R PM WF&R
Colon 85.12 (2.07) 71.93 (4.12) 195.0 182.5 6.76 123.60 3.11 8.56 9.75 9.13 0.16 0.43
TOX-171 81.07 (3.42) 58.52 (4.57) 407.6 540.9 8.83 148.44 3.53 11.97 7.09 9.41 0.06 0.21
Leukemia1 93.50 (2.85) 74.08 (6.42) 188.6 276.6 3.01 76.09 2.00 6.52 2.65 3.88 0.03 0.09
Leukemia2 91.58 (3.67) 77.33 (6.84) 147.8 229.0 3.50 74.16 2.02 5.72 2.07 3.21 0.03 0.08
CLL-SUB-111 80.52 (2.60) 54.51 (3.51) 335.3 465.3 7.29 134.28 3.20 10.75 2.96 4.10 0.03 0.09
GCM 69.35 (1.96) 33.97 (2.60) 854.3 1086.0 4.70 105.42 1.91 6.22 5.32 6.76 0.01 0.04
SMK-CAN-187 68.68 (1.18) 62.12 (2.30) 319.9 435.8 22.23 135.88 6.41 15.33 1.60 2.18 0.03 0.08
GLA-BRA-180 68.22 (2.25) 58.89 (2.75) 784.4 569.9 11.30 150.81 4.33 11.40 1.60 1.16 0.01 0.02

%TA: Test Accuracy (standard deviation is provided within parenthesis), FS: Number
of Features Selected per Classifier, TS: Tree Size, (F/T): Number of Features per Tree,
%F: Percentage of Features Selected, (%F/T): Percentage of Features Selected per Tree,
PM: Proposed Method, WF&R: GP without FS and Rule Size Reduction

1. In all cases, the test accuracy is much higher for the proposed method. Espe-
cially, for GCM having 14 classes, the difference between the test accuracies is
remarkably high.

2. The tree size increases significantly when the third objective, i.e., the restriction
on rule size, is not used.

3. For most of the data sets, the proposed method selects a smaller number of dis-
tinct features per tree as well as per classifier.

These observations clearly demonstrate the importance of the FS as well as constrain-
ing the rule size. Our FS scheme discards features with poor relevance and uses fea-
tures with good discriminating power, yet avoiding use of redundant features. This
not only makes the discovery of useful rules easier but also implicitly constrains the
rule size. Thus, FS plays a very important role having two positive impacts: it makes
identification of useful rules easier, and it promotes the minimization of the third ob-
jective.

2.4.3 Comparing with Other Methods

To compare the performance of the proposed method, we have used the experimental
results reported in [124] (see Table 4, Table 5, Table 6, and Table 7 of [124]). In [124],
the authors have used four different types of classification algorithms: (1) probability
based Naive Bayes (NB), (2) tree based C4.5, (3) instance based lazy learning algorithm
IB1, and (4) rule based RIPPER, both before and after FS. Along with the full feature
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Table 2.5: Experimental Results on Text Data Sets (Mean Values of 10 Runs of 10-Fold
Cross Validation)

Data Set
%TA FS TS (F/T) %F (%F/T)

PM WF&R PM WF&R PM WF&R PM WF&R PM WF&R PM WF&R
oh0.wc 87.75 (0.51) 70.53 (1.17) 484.1 2080.7 17.06 145.38 6.46 25.90 15.21 65.39 0.20 0.81
oh10.wc 81.06 (0.61) 66.11 (1.52) 439.6 2166.8 24.11 140.67 7.12 26.03 13.58 66.92 0.22 0.80
tr12.wc 87.86 (1.50) 60.55 (2.36) 603.7 1697.3 8.67 123.91 4.17 17.22 10.40 29.24 0.07 0.30
tr23.wc 93.95 (1.19) 64.90 (2.14) 396.5 1154.2 6.10 117.15 3.09 14.81 6.80 19.79 0.05 0.25
tr11.wc 86.08 (0.72) 64.63 (2.56) 631.6 1785.8 8.82 128.57 4.03 17.03 9.82 27.78 0.06 0.26
tr21.wc 89.64 (1.14) 71.46 (2.62) 362.0 1219.2 9.51 114.51 4.17 15.00 4.58 15.43 0.05 0.19
wap.wc 79.60 (0.60) 58.96 (1.64) 1199.8 4377.5 17.38 125.53 6.07 21.02 14.18 51.74 0.07 0.25
ohscal.wc 73.45 (0.23) 62.59 (1.21) 232.9 3853.8 63.48 111.52 7.78 24.87 2.03 33.61 0.07 0.22
la2s.wc 83.95 (0.62) 67.32 (0.99) 354.6 2369.1 53.17 133.76 11.41 28.65 2.85 19.06 0.09 0.23
la1s.wc 83.06 (0.36) 65.62 (1.05) 380.6 2372.0 56.40 133.21 12.30 28.35 2.88 17.98 0.09 0.21
new3s.wc 81.32 (0.27) 58.96 (1.64) 1674.2 4377.5 33.93 125.53 7.10 21.02 6.24 16.31 0.03 0.08

%TA: Test Accuracy (standard deviation is provided within parenthesis), FS: Number
of Features Selected per Classifier, TS: Tree Size, (F/T): Number of Features per Tree,
%F: Percentage of Features Selected, (%F/T): Percentage of Features Selected per Tree,
PM: Proposed Method, WF&R: GP without FS and Rule Size Reduction

set, they have used six FS algorithms in their experiment: (1) FAST [124], (2) FCBF
[125, 126], (3) CFS [127], (4) ReliefF [128], (5) Consist [129], and (6) FOCUS-SF [130].
Use of all features can be viewed as the seventh FS algorithm. To make this paper
comprehensive, we are not discussing the experimental settings used in [124]. Note
that, accuracies for few data sets for few pairs of FS schemes are not available in [124].

2.4.3.1 Results on Microarray Data Sets

Table 2.4 presents the results of the proposed method on microarray data sets. We
have already mentioned that, for each classifier in [124] the authors have used seven
FS schemes (six FS methods as well as the set of all features). For each FS method, 10-
fold cross validation experiment were repeated five times in [124]. And then, for each
FS method, the average accuracy over the five repetitions is reported. We compare
this average accuracy with the average accuracy that we have obtained by our method
over the 10 repetitions of the 10-fold cross validation experiments. In particular, we
count the number of cases (each case refers to one FS scheme) in which our algorithm
outperforms. Note that, for some combinations of data set and classifier, the total
number of cases is less than seven as for those combinations some results are not
available. Table 2.6 reports these counts. To elaborate Table 2.6, consider the entry
corresponding to column IB1 and row CLL-SUB-111. For the data set CLL-SUB-111, in
Table 6 of [124], authors report the performance of the algorithm IB1 for six different FS
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Table 2.6: Comparison with NB, C4.5, IB1, and RIPPER on Microarray Data Sets

Data Set NB C4.5 IB1 RIPPER Total
Colon 4/7 2/7 4/7 6/7 16/28
TOX-171 4/7 7/7 3/7 7/7 21/28
Leukemia1 2/7 2/7 2/7 2/7 8/28
Leukemia2 5/7 6/7 6/7 5/7 22/28
CLL-SUB-111 4/7 6/7 5/6 4/7 19/27
GCM 4/7 7/7 6/7 7/7 24/28
SMK-CAN-187 2/6 2/6 2/6 2/6 8/24
GLA-BRA-180 3/6 5/6 1/6 5/6 14/24
Total 28/54 37/54 29/53 38/54 132/215

algorithms. Our algorithm is found to perform better than five of the six FS algorithms,
and hence, the entry for row CLL-SUB-111 and column IB1 is 5/6. For this data set,
authors of [124] did not report performance of IB1 using all features. All but the entries
in the last column of Table 2.6 are generated in the same manner. The last column of
Table 2.6, which reports the row total, reveals that our method performs the best for
61.40% (132 out of 215) test cases.

If we compute the percentage of features selected by the ensembles, it may not be
very small for some data sets, like Colon. But, if we consider the number of features
selected per binary classifier (tree), we find that this number is quite small, e.g., the
maximum value is 0.16% for Colon. We assume that binary classifiers (binary trees)
having less than twenty nodes are concise enough. We need to remember that we are
talking about raw rules (equations) directly obtained from GP which are most likely
affected by bloating. Simplification of these rules may lead to reduction in their sizes.
Based on this, in all but one data set we could find easy to analyze rules. For SMK-
CAN-187, the extracted rules are more complex possibly because of complex structure
of the data.

In Table 2.7, we present the best rules (or binary classifiers or GPs) we found for
each class of each microarray data set. These GPs have the highest training accuracy
among the GPs obtained from the first fold of the first 10-fold cross validation. If there
are more than one rule having the same maximum training accuracy, the rule with the
smallest length has been reported. The features in the equations are indexed starting
from ‘0’. From Table 2.7 we can observe that for several classes the proposed method
could find substantially small rules. Noticeably, for four, six, eight, and three classes,
the proposed method could find the best binary classifier having only one, two, three,
and four distinct variables, respectively. So, in 21 out of 33 (i.e., 63.64%) cases, we
could find considerably small (and hence easy to interpret) rules. For some classes,
the rules having the highest training accuracy were not very comprehensible because
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(a) Feature x5170 vs. feature x3251 (b) Feature x757 vs. feature x3251

Figure 2.1: (a) Feature x5170 vs. feature x3251 and (b) feature x757 vs. feature x3251 of
Leukemia1 data set.

the length of the rule was not very small. If we think that (2.0 × xi) is more easy
to understand than (xi + xi), though both equations have the same size, we observe
that for 21 out of 33 (i.e., 63.64%) cases the proposed method could find rules having
highest accuracy, which are not affected by bloating and are comprehensible without
simplification.

Table 2.7 shows that the rules corresponding to the ALL and AML classes of
Leukemia1 data set use two pairs of features: (i) feature x5170 and feature x3251, and
(ii) feature x757 and feature x3251, respectively. To visually inspect the qualities of these
two pairs of features, we plot them in Figs. 2.1a and 2.1b, respectively. From Fig. 2.1,
we find that these two gene pairs are indeed good. This is because the gene corre-
sponding to x3251 is highly expressed for AML but unexpressed for AML, whereas,
the other two genes are unexpressed for ALL but expressed for AML.

To investigate how the number of distinct features changes in the archive, we have
executed our algorithm with 400000 function evaluations using the entire GLA-BRA-
180 data set. In Fig. 2.2, we have plotted the number of distinct features after initial
and after each 12.5% of maximum function evaluations. For all four classes of GLA-
BRA-180 data set, the number of distinct features in the archive initially falls drasti-
cally depicting the impact of FS. After some generations, it becomes almost constant.
Moreover, the number of final distinct features for each class is quite small. This in-
deed reveals a desirable behavior of the our scheme.

To show how the individual binary classifiers’ accuracies change with function
evolutions, we have plotted each individual’s FPs and FNs for all four classes of GLA-
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Table 2.7: Some of the Best Genetic Programs for Microarray Data Sets

Data Set CL %TrA Best Genetic Program (Binary Classifier)

Colon
N 98.18 ((x1359 + ((x1858 + 0.44) − x376)) − x376)
P 98.18 (((x492 − (0.66 + x575)) + x13) − x1441)

TOX-171

1 97.39 (((((−2.16 + (x977 + (x1327 + x1669))) + x1669) + (x5475 + ((x2883 + x999) + x5568)))
+ (x2956 + (x2956 + (((x2429 + −0.49) + x1220) + (x1327 + (−2.16 + ((x5568 + x1220)
+ (x3601 + x999)))))))) + (x2883 + ((−2.16 + x2956) + ((((−2.16 + x265) + x1669) +
x2883) + x2956))))

2 98.04 ((((((x2176 − x5608) + (x3527 + −1.48)) − x564) − x5608) + ((x5099 + ((x521 + ((x2176
− x5213) + (x685 − 3.04))) + x5465)) + x4197)) − x564)

3 100.00 ((x624 − (x2307 + x3601)) − ((x2768 + (x4073 − (x1864 − 1.78))) − ((x2015 − 1.08) −
x4073)))

4 99.35 (((x4436 + (((x4422 − 2.57) + x1983) + x1892)) + x5684) + x3440)

Leukemia1
ALL 100.00 (x5170 − x3251)
AML 100.00 (x3251 − x757)

Leukemia2
ALL 100.00 (0.16 − x4846)
AML 100.00 (7.6 ∗ x4846)

CLL-SUB-111
1 100.00 (−1.14 + x6559)
2 96.97 ((((x10124 + x10389) + x9520) − x10903) − ((x10092 − (x14 − ((x8462 − (((x10124 − x4890)

+ x4231) − 1.19)) + x6527))) + x6527))
3 96.97 ((x4999 − x348) + (((((((x64 + x1861) + x9138) + x1861) + ((x10178 − x8518) − x9448)) +

x6191) + x5887) − x8518))

GCM

0 99.22 ((((((x2173 ∗ x7307) − (1.47 + x15052)) + ((x8462 − 1.81) + (x10928 + (x11553 − 0.77))))
+ x8263) + x10928) + x9691)

1 100.00 ((x12503 ∗ (7.26 − x8902)) + x6941)
2 100.00 (x2435 + ((x6867 + (x279 − 3.11)) + x8333))
3 100.00 (((x3338 − 2.12) + x5490) + x12313)
4 100.00 (x6656 − 0.15)
5 100.00 ((((x965 − 1.79) − x2715) − 1.04) − x15971)
6 98.45 ((x2650 − 1.41) − x6887)
7 100.00 (x3258 + (x4136 + (x5365 − 2.53)))
8 100.00 ((x2268 − 1.47) + x3596)
9 100.00 (((x7067 − 2.23) + x3041) + x5274)
10 100.00 ((x1096 + (x15254 − 0.97)) + x4454)
11 100.00 ((x8776 − 3.9) + (x2359 + (x13518 + x14888)))
12 100.00 ((−1.48 + x13508) + (x2621 / (−0.87 + x7191)))
13 100.00 (x11018 + x548)

SMK-CAN-187
1 89.29 (((((((x12065 − x3087) − x5094) + (x8465 + x10370)) + (((x12065 − x3087) + x10370) +

x16876)) + (x16876 − 0.5)) + x7209) + ((((((x16876 − (x8465 + x10370)) − x3087) +
(((x12065 − x3087) − x16876) + x10370)) + (((x12065 − 0.29) − x5094) + x16876)) + (1.27
+ x15445)) − (x12065 + 0.78)))

2 89.29 (((x5701 + ((x8889 + ((x8889 − x11317) − x13749)) + ((0.62 + (1.82− x5569)) − x19412)))
− x4716) + ((((x15453 / x6993) ∗ (x11521 − x7593)) + ((x8889 + ((x6054 / x6993) + (((x5701
− x11041) − 1.51) − x11041))) − x5701)) − x4716))

GLA-BRA-180

1 100.00 ((x36519 − 2.25) + x19374)
2 96.30 ((((((((x20651 − (x43947 − x48975)) − 0.94) − (x33319 − (x20801 − x11906))) + x44840) −

(2.64 − x15031)) − x11906) + x35714) + (x45181 − ((1.78 − (x20651 − 0.44)) − (x47620 +
x1685))))

3 94.44 (((((x31170 + x27810) + (((x187 + x28332) + (x31280 + x3320)) + 0.72)) + (x187 + x28332))
+ x28332) + (x31280 + (x20443 + (x31280 + x3320))))

4 95.06 ((x11225 − 0.78) + ((((((x43755 − x11522) − x5202) + (((x10207 − x10153) + ((x43755 −
x34025) + x8954)) + x29225)) + ((((x11225 − 3.46)− x30877) + x22932) + x34601))− x5202)
+ (((x43755 − x24511) + x8954) − x5202)))

CL: Class Label, %TrA: Training Accuracy, N: Negative, P: Positive.

BRA-180 data set in Figs. 2.3 and 2.4. For this part of the experiment also, we have
used the entire data set for training. From the figures it is observed that with the
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Figure 2.2: The number of distinct features present in the archive with respect to the
number of function evaluations for GLA-BRA-180 data set.

increase in the number of evolutions, the average accuracy of the solutions tends to
increase. However, for class four, some solutions having lower level of accuracies
(having higher FPs and FNs) are there even after 400000 function evaluations. One
possible reason for this may be that even after such a high number of function eval-
uations, the algorithm was still searching for more concise solutions, and could find
some trees of comparatively smaller size.

2.4.3.2 Results on Text Data Sets

Similar to the microarray data sets, for the text data sets we present the number of test
cases for which our algorithm provides the best results for each classifier and data set
pair in Table 2.8. Table 2.8 reveals that for text data sets the proposed scheme performs
the best for 95.75% (248 out of 259) cases.

If we consider the same criteria that binary classifiers (trees) having less than
twenty nodes are concise enough, then our method could not find concise rules for
five (oh10.wc, ohoscal.wc, la2s.wc, la1s.wc, and new3s.wc) out of the eleven text data
sets. Some reasons behind this may be that (1) the number of classes is high for the
text data sets, and (2) the existence of more complex class structure, which is defined
by the keywords and the relation of keywords to the imposed classes is usually not
as straightforward as genes have to cancers. However, the percentage of features se-
lected per binary classifiers (trees) is quite small. Noticeably, the accuracy obtained
for new3s.wc (having 44 classes), is much higher than that of the other methods (for
accuracies of other methods, see [124]). We can also observe that for data sets hav-
ing more than or equal to ten classes, our method performs comparatively better than
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Figure 2.3: Changes in archives with different number of function evaluations for all
four classes of GLA-BRA-180 data set (archives at different evaluations are shown
separately).

other methods.
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Figure 2.4: Changes in archives with different number of function evaluations for all
four classes of GLA-BRA-180 data set.

Table 2.8: Comparison with NB, C4.5, IB1, and RIPPER on Text Data Sets

Data Set NB C4.5 IB1 RIPPER Total
oh0.wc 7/7 7/7 7/7 6/6 27/27
oh10.wc 7/7 7/7 7/7 6/6 27/27
tr12.wc 7/7 7/7 7/7 7/7 28/28
tr23.wc 7/7 5/7 7/7 4/7 23/28
tr11.wc 7/7 7/7 7/7 6/6 27/27
tr21.wc 6/7 6/7 6/7 3/6 21/27
wap.wc 7/7 6/6 6/6 6/6 25/25
ohscal.wc 4/4 4/4 4/4 4/4 16/16
la2s.wc 6/6 5/5 5/5 5/5 21/21
la1s.wc 6/6 5/5 5/5 5/5 21/21
new3s.wc 3/3 3/3 3/3 3/3 12/12
Total 67/68 62/65 64/65 55/61 248/259

2.4.4 Statistical Significance Testing

To compare the proposed method with existing FS and classification methods, we
consider four classification and six FS methods as well as with the full feature set.
Thus we compare our algorithm with 28 FS and classification algorithm pairs. We have



38 2.5. Conclusions and Discussions

Table 2.9: Wilcoxon Signed Ranks Test (One-tailed) for Pairwise Comparisons with the
Proposed Method at α = 0.05

NB C4.5 IB1 RIPPER
FAST A R R R
FCBF R R R R
CFS R R R R
ReliefF R R R R
Consist R R R R
FOCUS-SF R R R R
Full Set R R R R
A: H0 Accepted, R: H0 Rejected.

performed Wilcoxon signed ranks test to show that the performance of the proposed
algorithm is significantly different over 28 pairs of FS and classification algorithms.
For this, we have considered both the microarray and the text data sets together, and
have used the average test accuracies achieved with different algorithms on these data
sets. Moreover, we have removed the cases for which accuracies are not known (see
Table 4, Table 5, Table 6, and Table 7 of [124]). Table 2.9 shows that out of the 28
cases, only in one case the null hypothesis (H0) is accepted. Here the null hypothesis
is that there is no significant difference in performance between our algorithm and
a comparing algorithm. We have also used Friedman test [131, 132] to check if all
the 29 (28 existing and our proposed) algorithms perform similarly over seven data
sets: Colon, TOX-171, Leukemia1, Leukemia2, GCM, tr12.wc, and tr23.wc (see Table
4, Table 5, Table 6, and Table 7 of [124], some accuracies for other data sets are not
available). The obtained Friedman statistic is 60.13, which is significant at α = 0.001
as the corresponding statistic χ2 with 28 degrees of freedom is 56.90. Thus Friedman
test suggests existence of significant difference among the algorithms.

2.5 Conclusions and Discussions

In this chapter, we have used a multiobjective genetic programming, called ASMiGP,
to evolve diverse sets of binary classifiers to solve multi-class classification problems.
Simultaneous FS and rule extraction are performed during the genetic evolution. An
important objective of this work is to find simple classification rules that may be hu-
man understandable, which in the given context translates to rules with simple oper-
ations and short length. The proposed method is found to achieve its goal.

Ensembles perform better when weighted voting is used, the members of the en-
sembles are diverse enough, and the classifiers are accurate [55]. Here, we have cre-
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ated c sets of diverse ensembles. Unlike other ensemble based methods, here each
ensemble represents diverse classifiers for a single class. The number of features used
by the ensembles is high with respect to the number of features selected per (binary
classifier) tree. This suggests that the binary classifiers are diverse enough. In our
algorithm, we evolve c distinct species in parallel, which try to learn distinct patterns
and no inter-species gene exchange is ever allowed. This property makes each species
different from the other species.

Our method has been tested on nineteen (eight microarray and eleven text) data
sets. The experimental results show that we could find easy-to-understand rules for
overall 63.2% (87.5% for microarray and 54.5% for text) data sets. We have compared
our method with four classification methods in conjunction with seven FS methods
including use of the all-feature set. For 80.17% (61.40% for microarray and 95.75% for
text) cases our method outperforms others. Except for one case, the improvement in
performance is shown statistically significant compared to the others 27 classification
systems.

The overall performance of the proposed method is better on text data sets com-
pared to that of microarray data sets. Two important differences between these two
groups of data sets are that (i) microarray data sets have comparatively large feature-
to-sample ratios and may not have enough number of points in each class for MOGP
to learn the structure of the data sets, and (ii) the text data sets have comparatively
large number of features, classes as well as instances. Our limited experiments suggest
that when there are enough points in each class so that each species can successfully
learn its target pattern, the proposed method works better. We have found that for
text data our method performs noticeably better than the other methods, particularly
when number of classes is high (ten or more than that).





Chapter 3

Feature Extraction and Selection for
Parsimonious Classifiers with
Multiobjective Genetic
Programming [2]

3.1 Introduction

A support vector machine (SVM) is a binary classifier that finds a separating hyper-
plane maximizing the margin of separation between the two classes. For a binary
classification task, an SVM solves the following optimization problem.

minimize

{
||w||2 + γ

n

∑
k=1

ξk

}
subject to

yk (w · xk + w0)− 1 + ξk ≥ 0, k = 1, 2, · · · , n;

ξk ≥ 0, k = 1, 2, · · · , n; (3.1.1)

where w = (w1, w2, · · · , wd)
T ∈ Rd, w0 ∈ R, yk ∈ Y = {−1,+1}, k ∈ {1, 2, · · · , n},

||·|| indicates the `2 norm, and (·) indicates the inner product of two vectors. Here,
wi, i ∈ {1, 2, · · · , d} is the coefficient of the ith feature, γ is a constant that determines
the penalty for a misclassification, and ξk, k ∈ {1, 2, · · · , n} is a slack variable. The
human understandability of a two class SVM with a linear kernel is high, because,
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it finds out a hyperplane that works as a decision boundary. But, most of the real
world data sets are not linearly separable. Therefore, an SVM uses a nonlinear kernel
function to project the data into a higher (may be infinite) dimensional space and then
finds a hyperplane in that projected space. However, when a non-linear kernel is used,
an SVM performs feature extraction (FE) and may (usually will) attain much higher
classification accuracy. For example, if we use an RBF kernel or a sigmoidal kernel,
the input data are implicitly projected into an infinite dimension. Thus, the use of a
non-linear kernel reduces the human understandability of the system. An additional
problem is that we cannot realize the importance of the features used in the classifier.
Note that, similar statements can be made about the features extracted by many other
popular FE techniques, e.g., (deep) neural networks, independent component analysis
(ICA), and linear discriminant analysis (LDA). However, if we can explicitly extract
some useful features, and then feed them into a linear classifier, (e.g., a linear SVM)
simplicity and explainability of the system would be enhanced. In addition to this,
depending on the magnitudes of the corresponding weights, we can also assess the
importance of the features used in the model. In this work, our aim is to use this
concept to design a linear classifier with simple features. Specifically, the objectives of
this work are as follows.

1. To investigate the capability of genetic programming (GP) to extract linearly sep-
arable features.

2. To propose an integrated methodology using GP and SVM to select and extract
linearly separable features for realizing an ensemble of linear binary classifiers.
Therefore, the system would be simple and understandable.

To achieve these objectives, we have contributed in the following ways.

1. We have proposed (i) a new encoding of a solution for a GP, (ii) new fitness and
unfitness measures for the existing features, (iii) new fitness and unfitness mea-
sures for the nodes of a tree using the weights of the corresponding SVM, (iv)
new fitness and unfitness measures for the feature-nodes of a tree depending
upon the number of occurrences of the features in the archive, (v) a new archive
initialization technique that is consistent with the archive maintenance strategy,
(vi) an occurrence-based mating selection strategy for mutation, (vii) a weighted
crossover technique, and (viii) an occurrence-based mutation technique. Most
importantly, we have augmented some new algorithmic components with some
existing components to design an integrated methodology using GP and SVM
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to extract and select linearly separable features for finding an ensemble of parsi-
monious classifiers.

2. We have compared the performance of the proposed method with 34 classifica-
tion systems and have found that the proposed method performs better in 432
out of 570, i.e., 75.79% comparing cases.

3.2 Related Works

There is a large number of references [34,39,40,42,43,45–51,84–94,133–135], where GP
has been used for classification, feature selection (FS), and FE. Below we discuss some
of them. Detailed literature surveys on this topic can be found in [38, 75, 136].

Researchers have used GP for designing both binary classifiers [40, 45–47] and
multi-class classifiers [34,42,43,48–51,90–92,133,134]. There are several works, where
decision trees have been generated using GP [84–89]. Some of these works [87, 88]
have used multiobjective genetic programming (MOGP). In another set of works, GP
has been extensively used for generating rule-based systems for classification [34, 40,
42, 43, 45–51, 90–92]. GP, moreover, has been used to generate rule-based binary clas-
sifiers that can handle imbalanced data [93, 94]. Ensemble based classifiers have also
been designed using GP [1, 39], where the individuals of the ensembles participate in
voting to predict the class label of a given pattern. A GP based classifier has also been
designed for binary image classification, where the number of training instances are
limited [135].

GP performs FS and FE implicitly when a classifier is modelled using GP. Different
works, however, have explicitly taken care of FS and FE. Here we discuss some of them
briefly. Both filter [76–79] and wrapper [80–83] based strategies have been adopted
while performing FS using GP. In some works, discriminant function based GP has
been used for online FS and multi-class classification [1, 22], where FS is performed in
an embedded way. GP has also been used for FE in several works [53,79,137–141]. Ad-
ditionally, GP has been adopted for FE and FS for classification of high-dimensional
data [142]. In [95, 143], GP has been used to extract features for edge detection. Fur-
ther, both single objective GP and MOGP have been used for image FS to perform
segmentation [144].

Here, we propose a discriminant function (DF)-based GP system, and hence, in the
reminder of this subsection, we discuss some of the DF-based GP systems that have
been used for classification, FS, and/or FE. In [96], researchers have used four dif-
ferent multiobjective approaches into GP to find a set of classifiers maximizing the re-
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ceiver operating characteristic convex hull (ROCCH). For furtherance of their method,
they [96] have also incorporated two local search techniques, which have been care-
fully modelled for classification problems. Authors in [96] have also empirically estab-
lished the effectiveness of the local search strategies in their adopted MOGP schemes.
There is another prominent work with convex hull based GP [97], where the differ-
ences between the ROCCH maximization problem and the conventional multiobjec-
tive problems, have been analyzed. In that work [97], the authors proposed a new
GP-based system namely CH-MOGP, that introduces a new selection strategy and a
convex hull based sorting. Both of these schemes are developed to address the issues
associated with ROCCH maximization problem.

In [145], researchers have proposed a MOGP-based method for FE and data visu-
alization. In [145], each solution is encoded using an array of trees, such that, each
tree extracts an individual feature. For the purpose of evolution, they [145] have used
six objective functions, three of which correspond to FE, and the remaining three cor-
respond to data visualization. Later, in [53], GP has been used to extract features for
regression. Unlike conventional GP that uses the final output of a tree, this method [53]
uses features extracted by some subexpressions of the tree. In this regard, they investi-
gated with five different variants considering: (i) only the feature extracted by the root
node, (ii) the features extracted by the root node and the leaf nodes, (iii) every subex-
pression of the tree, (iv) the feature extracted by the root node and all original features,
and (v) all the subexpressions of the tree along with all original features. These fea-
tures are then used in least angle regression [146]. Note that, like [53], in this work
also, we use the features extracted by some subexpressions of the trees.

Recently, a new FS algorithm, called GP with permutation importance (GPPI), has
been proposed in [52]. The entire process, called GP-GPPI, has two phases. In the
first phase, GPPI is used for FS. In this phase, GP individuals with higher permutation
measures [52], a new measure proposed by them, are selected. In the second phase,
another GP-based method is used for symbolic regression. In this phase, only the
features selected by GPPI are used.

3.3 Proposed Work

The basic architecture of this work is similar to the work presented in Chapter 2. Here,
as done in Chapter 2, we decompose a c-class classification problem into c binary
classification problems and then evolve c distinct sets of genetic programs (binary
classifiers). Finally, to an unknown pattern x, we assign the class label yk, if class
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Algorithm 3.1 Archive-based steady-state micro genetic programming - 2 (ASMiGP-2)
Initialize the population. Use the initial population to initialize the archive. while
EvalCount ≤ EvalMax do

repeat
operator = Select crossover or mutation. if operator == crossover then

Perform crossover with its mating selection.
end
else

Perform mutation with its mating selection.
end

until the infix expression of off-spring is different from the same of any individual of the
archive
Evaluate the new off-spring. EvalCount = EvalCount + 1 Use archive maintenance
strategy to update the archive with the new offspring (environmental selection).

end
return the nondominated solutions of the archive.

k attains the maximum net-belongingness. The GP based strategy that we use here
is called archive-based steady-state micro genetic programming-2 (ASMiGP-2). The
basic steps of ASMiGP-2 is provided in Algorithm 3.1. We note that, the objective of
the work in Chapter 2 was simultaneous FS and classification using MOGP, while here
we have a different set of objectives: (i) to inspect the capability of GP to extract linearly
separable features and (ii) to develop an integrated methodology using GP and SVM to
find an ensemble of classifiers, which are simple, understandable, and parsimonious.

3.3.1 Encoding, Evaluation, and Feature Extraction

Every solution corresponding to the ith binary classification task consists of a binary
tree (genetic program) and a binary SVM with a linear kernel. To process a given
pattern, at first it is passed through the tree. The outputs from some specific nodes
of the tree together comprise the (selected and) extracted features. These features are
used in the corresponding SVM. Next we discuss this process with further details.

During the function evaluation, we pass every training pattern through the tree.
For every pattern, each node of the tree generates a value. Thus, if there are m nodes
in a tree, we obtain m extracted features for every sample in the training data set. If a
node appears at the jth position in the post-order traversal of the corresponding tree,
we denote the associated value as the jth feature. Now, for the ith binary classification
task, we define a target vector yi = (yi

1, yi
2, · · · , yi

n)
T ∈ {−1,+1}n, such that, if the

kth pattern belongs to the ith class, yi
k = +1, else yi

k = −1. A binary SVM with a
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linear kernel is then trained using the extracted feature set and yi. The SVM finds out
a weight vector w = (w1, w2, · · · , wm)T ∈ Rm and a bias w0 ∈ R, where wj is the
weight corresponding to the jth feature generated by the jth node. Here, we perform
the following trick. Instead of using the entire extracted feature set, if a feature is
generated by a constant node or by a function node with a function ϕ± ∈ {+,−},
we don’t use that feature in training the SVM. We set the weights of such features
to zero. Because, a linear SVM finds out a hyperplane that works as the boundary
between two classes, a constant feature generated by a constant node cannot help
in the process. Moreover, if we consider two feature sets (i) Fa,b = {Fa,Fb} and
(ii) Fa,b,± = {Fa,Fb,F±}, such that F± = Fa ± Fb, then Fa,b,± does not help an
SVM more than what Fa,b does, because, a hyperplane waxa + wbxb + w±x± + w0 =

0 can always be represented by another hyperplane (wa + w±)xa + (wb ± w±)xb +

0 × x± + w0 = 0, where xν (ν ∈ {a, b,±}) is the variable associated with feature
Fν. Thus, Fa,b,± includes a useless feature F±, which may needlessly increase the
computational effort. Consequently, we choose not to use the features extracted by
subtrees rooted with a function node with a function ϕ± ∈ {+,−}. In this work, we
use L2-regularized L2-loss support vector classifier in the primal space by minimizing
the following Lagrangian.

LL2
P = ||w||2 + γ

n

∑
k=1

(
max

{
0, 1− yi

k (w · xk)
})2

, (3.3.1)

where all variables are as defined earlier.

For each solution associated with the ith binary classification task, the FPs and FNs
obtained by its SVM on the training data are used along with the number of nodes in
its tree as its three objectives. To test a pattern x by a classifier for the ith class, it x is
passed through its corresponding tree. Then the extracted feature vector is used by its
corresponding SVM. Thus, GP is used as a tool for FE.

3.3.2 Fitness and Unfitness Measures for Selection of Features

We use an embedded model of FS, where we perform filtering at the beginning, and
after completion of 50% and 75% function evaluations of the corresponding evolution-
ary learning process. We also perform explicit FS during crossover and mutation. The
crossover operation, moreover, performs both implicit and explicit FS on the existing
as well as extracted features. To achieve this, we assign fitness values to the features,
both fitness and unfitness values to the nodes of the trees, and different unfitness mea-
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sures to the leaf nodes of the trees. After that, these measures are used in crossover
and mutation to select and extract an enriched feature subset. In the reminder of this
subsection, we discuss the filtering mechanism and the fitness and unfitness measures.
Later, while discussing the crossover and mutation operations, we discuss how and
why these measures are used in the proposed method.

3.3.2.1 Fitness of Features and Filtering Strategy

Here, we use Golub’s index [147] to measure the relevance (Gi
j) of the jth feature for

the ith classification task:

Gi
j =

(
µ+1

ij − µ−1
ij

)
/
(

σ+1
ij + σ−1

ij

)
, (3.3.2)

where µYij and σYij denote the mean and standard deviation of the jth feature with class
label Y ∈ {−1,+1} for the ith binary classification task. Note that, a larger value
of |Gi

j| denotes a higher discriminating capability of the jth feature for the ith binary
classification task.

Let us use Fall to denote the set of all features. For each binary classification task,
our intention is to use a subset of Fall that will help the binary classifiers to determine
the corresponding binary class label. To attain this, for a given feature set F , using Gi

j,
we define the following fitness function for the jth feature as follows.

φi
F (j) =

(
|Gi

j|/
(

max|F |k=1

{
|Gi

k|
}))β

. (3.3.3)

Here, β (> 0) is the order of relevance which can be used to tune the FS process. In
this work, we consider β = 2. Note that, Gi

j could be some other measure, such as,
correlation or mutual information between the jth feature and the class label. While
designing φi

F (·), our intention is to use the relevance of the jth feature for the ith binary
classification task.

At the beginning of the evolutionary training process associated with the ith bi-
nary classification task, for all features in Fall , we find φi

Fall
(·). All the features with

φi
Fall

(·) > τ are selected. Here we have used τ = 0.35. Let the selected feature sub-
set corresponding to the ith binary classification task be F i

init ⊆ Fall . To select a new
feature in a tree of the initial population or in mutation operations (during the first
50% function evaluations), we select the new feature with a probability proportional
to φi

F i
init
(·). After 50% function evaluations, we perform an explicit filtering on the ex-
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isting features in the ith archive. Let us denote the selected feature subset for the ith

binary classification task as F i
50% ⊆ F i

init. In the next 25% function evaluations to in-
troduce a new feature in any tree during relevance-based mutation, we select the new
feature with a probability proportional to φi

F50%
(·). After 75% function evaluations, we

again perform explicit FS (filtering) on the existing features in each archive. Let us de-
note the selected feature subset for the ith binary classification task as F i

75% ⊆ F i
50%. In

the last 25% function evaluations whenever we introduce a new feature node in any
tree during relevance-based mutations, we select the new feature with a probability
proportional to φi

F75%
(·).

We want to select the most relevant features. So, at the beginning of the search pro-
cess, we drop the features that are not very useful using a filtering scheme. However,
we also want the features to interact with each other so that synergistic set of features
that are individually less relevant but as a set has high discriminating power can be
found. We assume that after allowing enough interactions, if a feature is not used by
any tree in the archive; that feature is not expected to be useful. So, we can discard
it. Keeping this in view, we have used two other filtering steps at 50% and 75% func-
tion evaluations. The choice of these percentages are intuitive, in fact, the “optimal”
choices could be different say 40% and 60%.

Next, we introduce an occurrence-based fitness measure for the features. Let oi
j be

the number of occurrences of the jth feature in the ith archive at a given time. Then,
oi

j is taken as the occurrence-based fitness of the jth feature for the ith binary classifi-
cation task at that time. To introduce a new feature in a tree during occurrence-based
mutation, we select the new feature with a probability proportional to oi

j.

3.3.2.2 Fitness and Unfitness of Different Nodes

Let there be m nodes in a tree of which m1 nodes are either constant nodes or are
function nodes with a function + or−. As already mentioned, features corresponding
to these nodes are not used in training the SVMs. The features corresponding to the
remaining m2 = (m−m1) nodes are used in training the SVM. Hence, associated with
the tree, there is a weight vector w = (w0, w1, w2, · · · , wm2)

T ∈ Rm2+1, where w0 is the
bias and wk, k ∈ {1, 2, · · · , m2} is associated with the kth feature of the feature set used
to train the SVM. Let, wmin = min{w1, w2, · · · , wm2}. The fitness of the jth node of the
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tree is defined as

φnode(j) =

|wj|, if the jth node is used in the SVM

κ × wmin, otherwise,
(3.3.4)

where κ > 0 is a small constant. Now, we define the unfitness of the jth node as

Unode(j) = e

−
φnode(j)−min

k
{φnode(k)}

max
k
{φnode(k)} −min

k
{φnode(k)}


. (3.3.5)

We have also used an occurrence-based unfitness measure defined as 1/oi
j for the fea-

ture nodes of a tree. We have used this unfitness measure during occurrence-based
mutation to select a feature node to be replaced.

3.3.3 Population and Archive Initialization

We have initialized the trees of each solution (corresponding to each population) with
Ninit number of solutions using the ramped-half-and-half algorithm. For construct-
ing the trees randomly, we have selected terminal nodes with a probability pvar. To
introduce a terminal node in a tree, we have drawn a random number rn in [0, 1].
If rn < pvar, then we have added a feature node, otherwise we have added a con-
stant node. We have chosen the function nodes with equal probabilities from the set
G = {+,−,×,÷}. We have selected the feature nodes using Roulette wheel selection
on fitness Fi

Finit
(·).

Similar to ASMiGP, ASMiGP-2 uses the same archive maintenance strategy in
[113, 116]. This strategy requires three parameters: (i) maximum archive size (Nmax),
(ii) minimum archive size (Nmin), and (iii) a flag, called fastNonDominatedSortRequired.
The flag needs to be turned OFF when all the solutions of the archive are nondomi-
nated to each other, and ON otherwise. To initialize the archive from the initial popula-
tion of size Ninit (≥ Nmax), we perform a fast-nondominated-sorting [117] on the initial
population. Let, ϑ(i) be the number of solutions in the ith sub-front, and sk = ∑k

i=1 ϑ(i).
Then, we choose all solutions up to the lth sub-front, such that, Nmin ≤ sl ≤ Nmax in
the archive. However, it may happen that there is no such l. In that case, there will
be an l, such that, sl < Nmin and sl+1 > Nmax. Then, we choose all solutions up to
the lth front and the first (Nmax − sl) solutions from the (l + 1)th front. If l = 1, we set
fastNonDominatedSortRequired OFF, otherwise, we set it ON.
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3.3.4 Crossover With Its Mating Selection

We use two types of crossover operators: (i) a random crossover, and (ii) a weighted
crossover. We use a mix of these two crossover strategies randomly with equal prob-
abilities. We need a female parent (acceptor) and a male (donor) parent for both
crossovers. We perform mating selection for crossover as follows. We select a sin-
gle solution from the archive with probabilities proportional to their accuracies as the
female parent. Then, we choose another random solution as the male parent. Note
that, these two parents must be distinct. Next we discuss the crossover strategies.

3.3.4.1 Random Crossover

From each parent, we randomly select a point (node), where pc
t and (1− pc

t) are the
probabilities of selection of terminal and nonterminal nodes, respectively. After that,
the subtree rooted at the selected node of the father tree is used to replace a similarly
selected subtree from the mother tree. We repeat this process before evaluation of the
binary solution if the offspring is identical to any of its parents.

3.3.4.2 Weighted Crossover

To select the crossover points, we use Roulette wheel selection on unfitness values
(Unode(·)) and fitness values (φnode(·)) of the nodes of the acceptor parent and donor
parent, respectively. After that, with the subtree rooted at the selected node of the
donor parent, we replace the subtree rooted at the selected node of the acceptor parent.
If the tree of the offspring is identical to any of the solutions present in the population,
we repeat the entire process. For a given set of parents, if three successive trials of
the weighted crossover fail to generate any such off-spring, we choose the random
crossover.

Using the weighted crossover operation, in a single solution we want to gather a
useful feature set from the original and extracted features. Therefore, we want to select
a node of the acceptor parent, which has contributed less in the binary classification
task, to be replaced with a node of the donor parent, which has contributed more in
the same task. In the weighted crossover, the selection of a node of the donor parent
and another node of the acceptor parent with probabilities respectively proportional
to unfitness (Unode(·)) and fitness (φnode(·)) allows us to do that. Always guiding
the search, however, may cause more exploitation and less exploration. Weighted
crossover is likely to replace a sub-tree rooted at an unfit node by a sub-tree rooted at
a fit node. In that sense it is biased towards exploitation. But random crossover does
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not have this bias and provides a high scope of exploration. Use of the both with an
equal probability ensures some kind of balance between exploration and exploitation.

3.3.5 Mutation With Its Mating Selection

Here, we use two mutation strategies: (i) a relevance-based mutation, and (ii) an
occurrence-based mutation. In the first 50% function evaluations we use only
relevance-based mutation, whereas, in the last 50% function evaluations, we use a
mix of these two mutations with equal probabilities.

3.3.5.1 Relevance-based Mutation

The objective of this mutation is to make a good tree better by using a randomly se-
lected more relevant (with a higher discriminating power) feature. To achieve this, we
select a solution from the archive with a probability proportional to the accuracy of the
binary classification task. Then, to perform mutation, we replace each constant node
and each function node of the tree by another randomly generated constant node and
function nose with probabilities pm

c and pm
f , respectively. Next, only a single feature

node of the tree is replaced by another feature node. To do this, we select a feature
node of the tree with a probability proportional to Unode(·). We replace this selected
node by a feature node selected with a probability proportional to φi

F (·).

3.3.5.2 Occurrence-based Mutation

The objective of occurrence based mutation is to reject the features that have been
used a few times with one that is well used. Let us assume that a solution s has k
features and L(s) = {l1, l2, · · · , lk} is the list of indexes of the features present in s. We
define the fitness of s as min

l∈L(s)

{
oi

l

}
. We select a solution with a probability proportional

to this fitness value. Then, to perform mutation, like the relevance based mutation,
we replace each constant node of the tree by another randomly generated constant
node with a probability pm

c . Similarly, each function node is replaced by a function
node with a probability pm

f . After that, we select an unfit node with a probability
proportional to 1/oi

j. Then, we find a new feature with a probability proportional to
oi

j as a replacement of the unfit feature node.

In the first phase of the evolutionary learning process, we intend to find some good
binary classifiers. Therefore, we want each of them to have as many relevant features
as possible. Selecting a feature node with a probability proportional to Unode(·) is more
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likely to select a feature node that has contributed less in the binary classification task.
Again, to accumulate features which are more suitable for the corresponding binary
classification task, we select a feature with a probability proportional to φi

F (·). We do
this for the first 50% evaluations. For the last 50% evaluations, in addition to select-
ing features with the maximum relevance, we also intend to reject features that are
selected only a few times in the given archive. Consequently, in the last 50% function
evaluations, we use a mix of occurrence-based and relevance-based mutations with
equal probabilities. We assume that if a feature has a good discriminating capability
for the ith class, in the first 50% evaluations, it should be used well by the binary clas-
sifiers. Hence, its frequency of occurrences should be high. Note that, though bloating
causes some unimportant features to exist in the population, as we use rule size as the
third objective, solutions with comparatively smaller trees are more likely to survive.
This would cause the number of occurrences of unimportant features to be low.

3.4 Experiments and Results

3.4.1 Capability of Genetic Programming to Extract Linearly Separable Fea-
tures

Here, we investigate the capability of GP to find linearly separable features both with
and without normalization of the data. We use three synthetic two class classification
data sets. We call these data sets XOR, Disk, and Sphere. Figure 3.1a, 3.2a, and 3.3a
show these three data sets, respectively. In the XOR data set, points of the two classes
are generated uniformly following an XOR pattern. It is basically an XOR-type data.
In Disk data set, the points of the first class are uniformly distributed inside a disk and
the points of the second class are uniformly distributed inside a concentric hollow
ring. There is a gap between these two classes. In the Sphere data set, the points of the
first class are uniformly distributed inside a sphere and the points of the second class
are uniformly distributed inside a concentric hollow shell surrounding the sphere. In
this data set also, there is a gap between the two classes. Note that, none of these three
data sets is linearly separable, and it is not an easy task to extract linearly separable
features for them.

To inspect the effect of data normalization, we have performed Z-score normaliza-
tion on the original features before beginning of the learning process. During eval-
uation we also use Z-score normalized values of the extracted features before using
them to train the SVM. Furthermore, during prediction of class label of a test data
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(a) Original input.

(b) Extracted features (normalized). (c) Extracted features (unnormalized).

Figure 3.1: The XOR data: the original features and the extracted features with and
without normalization.

(a) Original input.

(b) Extracted features (normalized). (c) Extracted features (unnormalized).

Figure 3.2: The Disk data: the original features and the extracted features with and
without normalization.
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(a) Original input.

(b) Extracted features (normalized). (c) Extracted features (unnormalized).

Figure 3.3: The Sphere data: the original features and the extracted features with and
without normalization.

point, we also normalize all features using the means and standard deviations of the
corresponding feature obtained from the training data. We have also experimented
with unnormalized data. For these three data sets, thus, we have six tasks: three with
normalization and three without normalization.

We have implemented the proposed method in Java with the help of jMetal [122,
123] and LibLinear [148]. All parameters of the proposed method have been kept the
same throughout the experiments. These parameters have been provided in Table 3.1.
Note that, most of these parameters are the same as the parameters used in our work
discussed in Chapter 2, and hence, Table 3.1 has a resemblance with Table 2.1. As we
did in Chapter 2, these parameters have also been chosen based on our initial ad-hoc
experiments. The choices of these parameters, consequently, are not optimal. If they
are chosen using a cross-validation mechanism, performance of the proposed method
may enhance. However, we have not done that due to our limited computing power.
The same set of parameter values have been used for a large number of data sets with
widely varying type and satisfactory performance has been obtained. Consequently,
these values may be considered effective for the proposed method.

Table 3.2 summarizes the results obtained by the proposed method for the syn-
thetic data sets. Table 3.2 displays the accuracies and equations encoded by some
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Table 3.1: Parameter Settings for the Proposed Method

Parameter Value
Set of functions (G) {+,−,×,÷}
Range of initial values of constants (C) [0, 2]
Maximum depth of tree during initialization 6
Maximum allowable depth of tree 10
Maximum archive size (Nmax) 50
Minimum archive size (Nmin) 30
Initial Probability of feature nodes (pvar) 0.95
Probability of crossover (pc) 0.8
Probability of crossover for terminal nodes (pc

t ) 0.2
Probability of mutation for constants (pm

c ) 0.3
Probability of mutation for function nodes (pm

f ) 0.1
Function evaluations for each binary classifier 60000
Order of Relevance (β) 2.0
Threshold of Fi

F (·) (τ) 0.35
Coefficient of minimum weight (κ) 0.1
Cost of misclassification for SVM (C) [148] 50
Tolerance of SVM (eps) [148] 0.1

specific trees. These trees belong to the most accurate binary solutions (classifiers) of
the archive corresponding to the first class. If there are more than one such binary
solution, a solution with the minimum tree size is chosen. Along with the accuracies
obtained by the proposed method (listed in the second column), Table 3.2 lists the ac-
curacies obtained by these specific binary classifiers (in the last column). It shows that
for each task though the proposed method could not find an ensemble with 100% ac-
curacy, it could find at least one linear binary classifier with 100% accuracy. It means
that, the proposed method could find at least one linearly separable set of features for
each of these six tasks. The surprising simplicity of these extracted features is also
worth noting. For each of these six tasks, our intention was to get a set of simple
features that can make the classes linearly separable, and the proposed method suc-
cessfully attains our objective for these six tasks. We have also investigated if there
exists any smaller subset of features (among the features selected and extracted by
each of these binary classifiers) that can achieve 100% accuracy for the corresponding
binary classification task. To visually inspect this, we have plotted all (selected and
extracted) features pairs. If there exists no such feature pairs, we have plotted all pos-
sible triplets of features. We have found a single linearly separable feature, (x1 ÷ x2),
for the normalized XOR data. We have found linearly separable feature pairs for two
tasks, Disk with normalization and Disk without normalization. Moroever, we have
found linearly separable feature triplets for three tasks, XOR without normalization,
Sphere with normalization, and Sphere without normalization. These linearly separa-



56 3.4. Experiments and Results

Table 3.2: Experimental Results of the Proposed Method for the Artificially Synthe-
sized Data Sets

Task Accuracy
SMABCC1

Equation ELSFS Accuracy
XOR (With Normalization) 100.00% x1 ÷ x2 x1 ÷ x2 100.00%

Disk (With Normalization) 100.00% (x1 × x1) + (x2 × x2)
x1 × x1 100.00%x2 × x2

Sphere (With Normalization) 96.73% (x2 × x2)÷ ((x3 × x3)− (x1 × x1))
x1 × x1

100.00%x2 × x2
x3 × x3

XOR (Without Normalization) 100.00% x2 × x1

x1
100.00%x2

x2 × x1

Disk (Without Normalization) 96.09% (x2 − (x1 × x1))× x2
x2 − (x1 × x1) 100.00%
(x2 − (x1 × x1))× x2

Sphere (Without Normalization) 98.83% (x2 × x2)÷ (x3 × (x3 + (x1 × x1)))
x1 × x1

100.00%x2 × x2
x3 × (x3 + (x1 × x1))

SMABCC1: The Smallest among the Most Accurate Binary Classifiers of Class 1,
ELSFS: Extracted Linearly Separable Feature Subset.

ble subsets of features extracted by the above-mentioned binary classifiers have been
listed in the fourth column of Table 3.2.

Let us first consider the normalized version of the XOR type problem. Figure 3.1b
shows the scatter plot of the extracted feature (x1 ÷ x2) for this data set. The x-axis
represents class-wise ordered sample numbers and the y-axis represents the feature
value (x1 ÷ x2). Figure 3.1b immediately reveals that a single feature, (x1 ÷ x2), lin-
early separates the two classes. We note that, here if x2 = 0, then (x1 ÷ x2) is taken
as zero. On the other hand, if we do not normalize the XOR data, the same feature,
(x1 ÷ x2), does not make the classes linearly separable (see Fig. 3.4). In that case, our
system found the following features: x1, x2, and (x2 × x1) (see Table 3.2). Fig. 3.1c de-
picts that together these three features make the classes linearly separable. Though for
the unnormalized XOR data, the chosen tree does not extract any feature or any pair
of features that makes the classes linearly separable, it does not mean that there does
not exist any such feature. We note here that this set of three features is simpler than a
polynomial kernel of degree two. We also note here that for the XOR type data with-
out normalization, GP increased the dimensionality to find linearly separable features.

Next we consider the normalized Disk data, which is not separable using x1 and
x2. Even for this task, using the same computational protocol, the proposed method
found a set of four features:

{
x1, x2, x2

1, x2
2
}

. Of these four features, x2
1 and x2

2 are good
enough to make the data set linearly separable as depicted in Fig 3.2b. The separating
hyperplane (decision boundary) generated by the SVM for this task is: −0.85x2

1 −
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Figure 3.4: Scatter plot of the feature (x1 ÷ x2) for the unnormalized XOR data.

0.85x2
2 ≈ 0, which we have depicted in Fig. 3.2b. Here, we mention that the coefficients

of feature x1, feature x2, and the bias were −0.008, −0.008, and −0.007, respectively,
which we have taken as zero. When we do not normalize the Disk data, the proposed
algorithm adapts itself using the same protocol to find an appropriate set of features
that make the two classes linearly separable. For the tree listed in Table 3.2, extracted
feature set {(x2 − x2

1), (x2
2 − x2

1 × x2)} makes the two classes linearly separable (Fig.
3.2c).

The Sphere data is a more challenging data. For this, irrespective of whether the
data is normalized or not, we found that at least three features extracted by our scheme
are needed to make the two classes linearly separable (Table 3.2). For the normalized
data the feature set {x2

1, x2
2, x2

3} can make the two classes linearly separable (Fig. 3.3b).
When the Sphere data is not normalized, the obtained linearly separable feature set is
{x2

1, x2
2, (x2

3 + x2
1 × x3)}, which has been listed in Table 3.2 and illustrated in Fig. 3.3c.

3.4.2 Comparison with Other Methods

3.4.2.1 Data Sets

To compare the proposed method with existing methods, we have used eight microar-
ray and ten text data sets. We have selected these 18 data sets, because, we have used
results reported on these data sets in Chapter 2 and [124] for comparison purposes.
These 18 data sets have been summarized in Table 3.3. These are all high dimensional
data sets and some of them have a few samples, which makes the classifier design
challenging. We have performed 10-fold cross validation of the proposed method
with the parameters provided in Table 3.1. To reduce the effect of data partitioning
and randomness associated with the proposed method, as done in [124] we have re-
peated 10-fold cross validation five times, and have reported the results in Table 3.4.
Here, we have Z-score normalized the data as done for the synthetic data.
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Table 3.3: Summary of the Classification Data Sets

Type Data Set
Features Samples Classes

(
F
S

)
(F) (S) (C)

M
ic

ro
ar

ra
y

Colon 2000 62 2 32.26
TOX-171 5748 171 4 33.61
Leukemia 1 7129 34 2 209.68
Leukemia 2 7129 38 2 187.61
CLL-SUB-111 11340 111 3 102.16
GCM 16063 144 14 111.55
SMK-CAN-187 19993 187 2 106.91
GLA-BRA-180 49151 180 4 273.06

Te
xt

oh0.wc 3182 1003 10 3.17
oh10.wc 3238 1050 10 3.08
tr12.wc 5804 313 8 18.54
tr23.wc 5832 204 6 28.59
tr11.wc 6429 414 9 15.53
tr21.wc 7902 336 6 23.52
wap.wc 8460 1560 20 5.42
ohscal.wc 11465 11162 10 1.03
la2s.wc 12432 3075 6 4.04
la1s.wc 13195 3204 6 4.12

Table 3.4: Experimental Results of the Proposed Method

Data Set %TA FS TS
F
T

%F
%F
T

Colon 81.10 (3.01) 188.4 5.24 3.09 9.42 0.15
TOX-171 79.06 (1.34) 494.2 6.50 3.71 8.60 0.06
Leukemia1 92.33 (1.71) 211.2 3.00 1.98 2.96 0.03
Leukemia2 93.17 (1.37) 354.8 3.00 1.99 4.98 0.03
CLL-SUB-111 77.30 (3.26) 586.8 5.45 3.18 5.17 0.03
GCM 64.03 (2.13) 1895.4 3.77 2.37 11.80 0.01
SMK-CAN-187 71.57 (2.33) 722.8 14.08 7.05 3.62 0.04
GLA-BRA-180 70.33 (1.60) 1000.8 8.75 4.73 2.04 0.01
oh0.wc 88.16 (0.45) 279.0 10.31 5.29 8.77 0.17
oh10.wc 77.98 (0.62) 290.2 15.58 6.10 8.96 0.19
tr12.wc 86.72 (1.70) 452.4 6.57 3.63 7.79 0.06
tr23.wc 93.99 (2.43) 351.8 4.62 2.79 6.03 0.05
tr11.wc 83.68 (0.68) 465.8 7.67 3.90 7.25 0.06
tr21.wc 90.01 (0.85) 529.4 7.46 3.95 6.70 0.05
wap.wc 78.87 (0.90) 1172.2 12.65 6.10 13.86 0.07
ohscal.wc 69.55 (0.09) 182.8 46.79 6.85 1.59 0.06
la2s.wc 78.11 (0.52) 476.6 30.36 11.45 3.83 0.09
la1s.wc 77.03 (0.55) 406.6 33.36 12.03 3.08 0.09
%TA: Test Accuracy (standard deviation is provided within parenthesis), FS: Number

of Features Selected per Classifier, TS: Tree Size,
F
T

: Number of Features per Tree, %F:

Percentage of Features Selected,
%F
T

: Percentage of Features Selected per Tree.
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3.4.2.2 Comparing Algorithms

We have used the experimental results provided in [124] (see Tables 4, 5, 6, and 7
of [124]) and in Chapter 2 (see Tables 2.4 and 2.5) to compare the performance of the
proposed method with the state-of-the-art methods. In [124], the following four clas-
sification algorithms have been used: (i) Naive Bayes (NB), (ii) C4.5, (iii) IB1, and (iv)
RIPPER. These four algorithms are different in nature: probability based, tree-based,
instance based (lazy learning), and rule-based, respectively. In [124], the authors have
used these four classification algorithms in conjunction with six FS algorithms along
with the full feature sets. The FS algorithms are (i) FAST [124], (ii) FCBF [125, 126],
(iii) CFS [127], (iv) RelifF [128], (v) Consist [129], and (vi) FOCUS-SF [130]. We con-
sider the use of full feature set as the seventh FS algorithm. Thus, we have 28 (FS,
classification) algorithm pairs. The experimental setup used for these aforementioned
algorithms can be found in [124]. As the proposed method is an hybridization of
SVM and GP, which uses ensembles of trees (rules), we have also compared the per-
formances of the proposed method with (i) SVM with a linear kernel, (ii) SVM with
a RBF kernel, (iii) random forest [149], (iv) AdaBoost [150], (v) tri-objective ASMiGP-
based method with embedded FS presented in Chapter 2, and (vi) bi-objective GP-
based method without embedded FS discussed in Chapter 2. To compare the perfor-
mance of the proposed method with SVM with a linear kernel and SVM with an RBF
kernel, we have executed the LibSVM [151] implementation of SVM. We have used
gamma = 1 / number of features, C = 1, cache size = 100, shrinking = 1 for this ex-
periment (see LibSVM [151] documentation to know more about the parameters). For
random forest and AdaBoost, we have used their MATLAB implementations, which
are TreeBagger(·) and fitensemble(·), respectively. Both parameter NumTrees for
TreeBagger(·) and parameter NLearn for and fitensemble(·) are set to 200. The re-
sults of SVM with linear kernel, SVM with RBF kernel, random forest, and AdaBoost
have been provided in Table 3.5. The results of the comparing two GP-based methods
have been reported in Tables 2.4 and 2.5.

3.4.2.3 Results and Discussions

In [124], five repetitions of the 10-fold cross validation were performed correspond-
ing to each (FS, classification) algorithm pair. Then, the average accuracy over the
five runs were reported for each FS method. We have compared the average accu-
racies provided in [124] with the average accuracies that we have obtained with the
proposed method over the five runs of the 10-fold cross validation (results reported
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Table 3.5: Test Accuracies of SVM with Linear Kernel, SVM with RBF Kernel, Random
Forest (RF), and AdaBoost

Data Set
SVMa

RFa AdaBoosta
Linear Kernel RBF Kernel

Colon 81.00 (0.21) 76.86 (1.06) 81.33 (0.00) 77.00 (9.43)
TOX-171 97.11 (1.04) 83.49 (0.79) 78.35 (7.07) 60.12 (0.42)
Leukemia1 92.33 (0.37) 63.67 (0.75) 94.00 (0.00) 60.00 (5.45)
Leukemia2 94.17 (0.37) 71.83 (0.37) 83.50 (3.54) 70.00 (7.07)
CLL-SUB-111 80.58 (1.59) 65.06 (0.07) 74.55 (7.71) 73.64 (1.77)
GCM 68.76 (0.92) 43.39 (0.28) 66.00 (3.03) 51.57 (0.35)
SMK-CAN-187 72.67 (2.39) 68.91 (0.71) 68.00 (2.51) 68.42 (3.31)
GLA-BRA-180 71.44 (0.50) 67.89 (0.25) 71.00 (4.03) 71.57 (2.46)
oh0.wc 80.96 (0.05) 46.64 (0.76) 89.28 (0.28) 63.84 (0.64)
oh10.wc 72.27 (0.98) 46.23 (0.30) 84.19 (1.89) 62.91 (2.35)
tr12.wc 67.10 (1.71) 33.99 (0.14) 87.35 (0.46) 80.00 (1.51)
tr23.wc 71.78 (1.59) 47.21 (0.01) 82.80 (0.71) 92.60 (0.01)
tr11.wc 73.23 (1.61) 37.00 (0.36) 88.20 (2.41) 76.73 (0.61)
tr21.wc 75.11 (0.69) 68.77 (0.03) 86.47 (1.87) 76.47 (0.10)
wap.wc 76.90 (0.06) 46.69 (0.26) 81.15 (1.32) 48.73 (0.17)
ohscal.wc 68.20 (0.08) 60.49 (0.22) 80.86 (0.57) 55.17 (0.11)
la2s.wc 82.50 (0.01) 59.05 (0.16) 88.52 (0.85) 51.04 (1.26)
la1s.wc 81.68 (0.11) 59.44 (0.14) 87.32 (0.45) 52.00 (0.15)
aStandard deviations are provided within parenthesis.

in Table 3.4). To be more specific, we have counted the number of cases (each case
corresponds to one FS strategy) in which the proposed method has performed better
than the comparing method. For some combinations of (FS, classification) algorithm
pairs, no result is reported in [124]. Consequently, the total number of comparisons
(cases) is less than seven in those cases. We have reported these counts in Table 3.6. To
understand this table, let us consider the cell corresponding to the row GLA-BRA-180
and column C4.5. In Table 6 of [124], the accuracies of C4.5 classification scheme were
reported for six out of seven FS strategies. The proposed method has outperformed
five out of these six FS methods. Consequently, the cell corresponding to column C4.5
and row GLA-BRA-180 contains 5/6. We have reported the column total in the last
row of Table 3.6 and the row total in the last column of Table 3.6. The last entry of
Table 3.6 indicates that the proposed method outperformed the comparing algorithm
in 358 out of 462 cases, i.e., for 77.45% cases. Again, when we compare the proposed
method with (i) SVM with linear kernel, (ii) SVM with RBF kernel, (iii) random forest,
(iv) AdaBoost, (v) tri-objective ASMiGP-based method with embedded FS presented
in Chapter 2, and (vi) bi-objective GP-based method without embedded FS discussed
in Chapter 2, it outperforms the comparing algorithms for 10, 17, 6, 17, 6, and 18 cases,
respectively. For each of these comparisons there are 18 comparing cases (datasets).
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Table 3.6: Comparison with NB, C4.5, IB1, and RIPPER

Data Set NB C4.5 IB1 RIPPER Total
Colon 2/7 0/7 2/7 4/7 8/28
TOX-171 3/7 7/7 3/7 7/7 20/28
Leukemia1 2/7 2/7 2/7 2/7 8/28
Leukemia2 5/7 6/7 6/7 6/7 23/28
CLL-SUB-111 4/7 4/7 4/6 4/7 16/27
GCM 3/7 7/7 4/7 7/7 21/28
SMK-CAN-187 2/6 3/6 5/6 3/6 13/24
GLA-BRA-180 4/6 5/6 2/6 6/6 17/24
oh0.wc 7/7 7/7 7/7 6/6 27/27
oh10.wc 7/7 7/7 7/7 6/6 27/27
tr12.wc 7/7 7/7 7/7 7/7 28/28
tr23.wc 7/7 5/7 7/7 4/7 23/28
tr11.wc 7/7 6/7 7/7 6/6 26/27
tr21.wc 7/7 6/7 6/7 4/6 23/27
wap.wc 7/7 6/6 6/6 6/6 25/25
ohscal.wc 4/4 4/4 4/4 4/4 16/16
la2s.wc 6/6 4/5 4/5 4/5 18/21
la1s.wc 6/6 4/5 5/5 4/5 19/21
Total 90/119 90/116 88/115 90/112 358/462

Thus, in 432 out of 570 comparing cases, i.e, 75.79% cases the proposed method out-
performs the comparing algorithms. Except the SVM with a linear kernel, none of
the other 33 comparing methods considers a linear classifier or ensembles of linear
classifiers, whereas, the proposed methods does that. Consequently, the classifiers
modelled with the proposed method are comparatively simpler and more parsimo-
nious.

3.4.2.4 Statistical Significance Testing

At first, we perform Friedman test [131, 132] to check if there exist significant differ-
ences among the performances (measured in terms of accuracy) of the comparing 35
(one proposed and 34 existing) methods. Similar to Chapter 2, we use seven data sets
for this comparison, because, at least one accuracy corresponding to each of the re-
maining eleven data sets is not available (see Table 4, 5, 6, and 7 of [124]). These seven
data sets are Colon, TOX-171, Leukemia1, Leukemia2, GCM, tr12.wc, and tr23.wc.
The test statistic of this experiment is 81.23. This is significant at the significance level
α = 0.001, because, the associated statistic (χ2 with 34 degrees of freedom) is 65.24.
Consequently, from this experiment we can conclude that there are significant differ-
ences among the performances of the comparing algorithms.

Now, we perform pair-wise comparison of the proposed method with these 34
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Table 3.7: Wilcoxon Signed Ranks Test (1-tailed) for Pairwise Comparisons with the
Proposed Method at α = 0.01

CA C1F1 C1F2 C1F3 C1F4 C1F5 C1F6 C1F7 C2F1
CO A A A R R R R A
CA C2F2 C2F3 C2F4 C2F5 C2F6 C2F7 C3F1 C3F2

CO R R R R A R A R
CA C3F3 C3F4 C3F5 C3F6 C3F7 C4F1 C4F2 C4F3

CO A R R R R A R R
CA C4F4 C4F5 C4F6 C4F7 C5 C6 C7 C8

CO R A A A A R A R
CA C9 C10
CO A R
CA: Comparing Algorithm, CO: Comparison Outcome, C1: NB, C2: C4.5,
C3: IB1, C4: RIPPER, C5: SVM (linear kernel), C6: SVM (RBF kernel),
C7: Random forest, C8: AdaBoost, C9: ASMiGP based method, C10: Bi-
objective GP, F1: FAST, F2: FCBF, F3: CFS, F4: ReliefF, F5: Consist, F6:
FOCUS-SF, F7: Full Set, A: H0 accepted, R: H0 rejected.

methods. For this purpose, we use Wilcoxon signed ranks test [152] (one-tailed) with
the following null hypothesis (H0): there is no significant difference between the per-
formance of the comparing algorithms. We consider the level of significance (α) as
0.01. We use average accuracy as the performance measure on the 18 data sets. We,
moreover, remove the cases for which accuracies were not reported in [124] (see Ta-
ble 4 5, 6, and 7 of [124]). We have reported the results of these tests in Table 3.7,
which shows that, for 20 out of the 34 cases H0 has been rejected. In other words, in
58.82% cases the performance of the proposed method is significantly better than the
comparing algorithms, and for the remaining 41.18% (14 out of 34 cases) cases there
is no significant difference between the performance of the proposed method and the
comparing methods.

We compare the proposed method and the tri-objective ASMiGP based method
in terms of the number of selected features using pairwise Wilcoxon signed ranks
test (one-tailed) at the same level of significance (α) and with the same null hypoth-
esis (H0). In addition to that we also perform the same test with the bi-objective GP
based method. In both the cases, H0 was accepted suggesting that there is no signifi-
cant difference in terms of the number of selected features at α = 0.01. Next we per-
form Wilcoxon signed ranks test (one-tailed) with the same α and H0 to compare the
rule (tree) sizes of the proposed method with those by both the tri-objective ASMiGP-
based method and the bi-objective GP-based method. Here, H0 was rejected for both
the cases suggesting significant differences between the rules sizes of the proposed
method and the comparing methods. Since, the proposed method finds rules with
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smaller size and the rules extract linearly separable features, the proposed method
finds rules with higher parsimony than the comparing GP-based methods.

3.4.3 Effects of New Crossover and Mutation

To investigate the effects of weighted crossover and occurrence based mutation, we
consider two variants of the proposed method:MC andMM, which do not use these
two operators, respectively. We execute both of these methods on 17 datasets sum-
marized in Table 3.3 except for ohscal.wc (We could not use ohscal.wc due to our
limited computing resources). Here, we use the same experimental settings as used
for the proposed method. We report the results in Table 3.8. Next, we compare the
proposed method (results provided in Table 3.4) withMC andMM using Wilcoxon
signed ranks test (one-tailed). The statistics that we have used for this experiment are
the number of features selected per classifier, tree sizes, and test accuracies. When the
proposed method is compared with MC with these three statistics at statistical sig-
nificance level α = 0.05, we found that the proposed method selected a significantly
smaller number of features, generated trees with significantly smaller size, and the
test accuracy of the proposed method was significantly better. This experiment vali-
dates that the proposed crossover helps in finding smaller/simpler solutions with a
smaller number of features. When we compare the proposed method withMM at the
same level of significance, we observe that the proposed method selected significantly
smaller number of features. The other two statistics were comparable at the chosen
level of significance. This experiment indicates that the proposed mutation helps in
the FS process.

3.5 Conclusions and Discussions

In this Chapter, we have investigated the capability of GP to extract linearly separable
features. We have also proposed a multiobjective GP-based embedded FS and FE
strategy for generating an ensemble of parsimonious classifiers that intends to use
only linearly separable features. For a c class problem, the classifier is an ensemble of c
archives, where each archive is an ensemble of binary classifiers. Each binary classifier
is composed of a binary tree (genetic program) and an SVM with a linear kernel. In
each binary classifier, the genetic program selects and extracts a set of features and the
corresponding SVM operates on that feature space.

We have tested the proposed method on three artificial data sets to examine its ca-
pability regarding the extraction of linearly separable features. From this experiment,
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Table 3.8: Results for Two Variants of the Proposed Method: Without Weighted
Crossover (MC) and Without Occurrence based Mutation (MM)

Data Set
FS Tree Size %TA

MC MM MC MM MC MM
Colon 196.2 193.2 5.44 5.39 76.71 76.71
TOX-171 488.4 498.0 6.67 6.38 79.75 79.75
Leukemia1 251.6 221.4 3.00 3.00 90.50 90.50
Leukemia2 413.6 339.2 3.00 3.00 93.17 93.17
CLL-SUB-111 628.4 614.4 5.73 5.63 75.80 75.80
GCM 2153.6 1942.8 3.74 3.76 65.47 65.47
SMK-CAN-187 777.8 770.0 14.76 14.36 71.40 71.40
GLA-BRA-180 1070.8 1088.6 9.09 9.00 67.78 67.78
oh0.wc 283.2 276.8 10.63 10.35 88.45 88.45
oh10.wc 293.2 295.4 15.95 15.71 78.42 78.42
tr12.wc 488.4 471.8 6.76 6.63 86.01 86.01
tr23.wc 365.8 369.4 4.61 4.57 94.11 94.11
tr11.wc 465.2 493.4 7.73 7.52 83.72 83.72
tr21.wc 580.6 524.2 7.87 7.57 90.19 90.19
wap.wc 1251.4 1206.2 13.25 12.64 78.31 78.31
la2s.wc 488.4 481.4 33.55 30.05 78.14 78.14
la1s.wc 417.2 415.8 35.77 33.69 77.12 77.12
FS: Number of Features Selected per Classifier, %TA: Test
Accuracy.

we have found that the proposed method can successfully extract linearly separable
features both with and without data normalization. We have compared the proposed
method with 34 state-of-the-art algorithms and found that the proposed method out-
performs the comparing methods in 75.79% (432 out of 570) cases. Next, we have per-
formed Friedman test that confirmed the existence of significant differences among the
performances of the comparing algorithms. After that, we have performed Wilcoxon
signed ranks test for pairwise comparison of the proposed method with the exist-
ing methods. This experiment has suggested that the performance of the proposed
method is significantly better than 58.82% (20 out of 34) of the comparing methods.
These tests have also suggested that there is no significant difference in the perfor-
mance of the proposed method and the remaining 41.18% (14 out of 34) comparing
methods. Consequently, none of the comparing 34 methods has been found to be sig-
nificantly better than the proposed method. Lastly, we have found that the proposed
method can find rules with higher parsimony compared to two GP-based methods,
both of which have been discussed in Chapter 2.



Chapter 4

Robust Multiobjective
Optimization with Robust
Consensus [3, 4]

4.1 Introduction

Group decision making (GDM) problems are frequently encountered in real world
problem solving. Depending upon the type of GDM, primarily there are four ap-
proaches in the MOP literature [60]:

1. No-preference: No apriori preferences for the solutions are provided by the de-
cision makers (DMs). After solving the MOP, the set of obtained solutions is
provided to the DMs.

2. Use of preferences to guide the search (biased): The DMs provide their preferences
prior to the search, and the preferences are used to guide the search.

3. Use of preferences after the search: At first, a multiobjective optimizer is used to find
a set of non-dominated solutions. Then, to determine the most suitable solution,
an expert applies the preferences provided by the DMs.

4. Use of human interactive refinement during the search: In this approach, active hu-
man intervention is used periodically to refine the obtained solutions and to
guide the search. This approach is a hybridization of the previous two ap-
proaches.
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The posterior approach (the third approach) is less subjective than the apriori and in-
teractive approaches. Therefore, it is probably the most frequently used strategy by
the research community [60]. In this work, we try to address two slightly different
but related questions. Consider a scenario of robust fuzzy group decision making for
a multiobjective optimization problem (FGDM-MOP), where the DMs are weighted,
and they provide their preferences either in the objective space or in the variable space.
First, if the preferences are available apriori, how can we use these preferences to make
the entire search process biased (the second approach) to get solutions that are robust
with respect to problem parameters as well as with respect to their degree of consen-
sus? Second, if the preferences are available after the search, how can we assess the
qualities of the available solutions (the third approach)? Now, we discuss a real world
problem, where we need to answer such questions. Consider the robust multiobjec-
tive optimal reactive power dispatch problem [153]. This problem has two objectives:
real power loss and voltage deviation. Suppose there are two operators (DMs) with
different but fixed preferences about the objectives or the control variables. Here, we
are interested in a set of robust solutions with a high degree of consensus. We also
note that there is a huge body of literature that uses an iterative consensus reaching
process with the help of a moderator. For such methods, the preferences of DMs may
change with iterations. This is a different problem. Some of the works, most relevant
to our work, can be found in [60, 63, 74]. These works have dealt with either robust-
ness [60, 63] or both robustness and consensus [74] in MOPs. In these works, robust
solutions refer to robustness with respect to its variables. In the literature, we could
not find any work that searches for robust solutions, which are also robust with re-
spect to consensus among the DMs. The focus of this work is to fill this gap, i.e., find
robust solutions which are also robust to their degree of consensus.

Next, we explain the problem using a toy example. Suppose, for a bi-objective
optimization problem, there are two DMs with weights w = (0.3, 0.7). The DMs
have provided their preferences in the objective space using Gaussian membership
functions as rO11 = (100, 10), rO12 = (110, 5), rO21 = (95, 12), and rO22 = (115, 8); where rOij =

(c, s) denotes a Gaussian membership function with center c and spread s; i = 1, 2; j =
1, 2. Suppose we have two solutions x1, x2 ∈ V , such that, f(x1) = (103, 109) and f(x2)

= (93, 118). Then, according to the aforementioned preferences, these two solutions
have the following membership values: µO11(x1) = 0.96, µO12(x1) = 0.98, µO21(x1) = 0.80,
µO22(x1) = 0.75, µO11(x2) = 0.78, µO12(x2) = 0.28, µO21(x2) = 0.99, and µO22(x2) = 0.93. The
question is how to find a measure using the four membership values associated with
each solution to indicate the quality of the solution in terms of consensus. Such a
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measure should also be able to compare the solutions x1 and x2 quantitatively. Here,
we need to aggregate the four membership values associated with each solution in a
plausible manner to assess which of the two solutions satisfies both experts to a higher
degree or we need to use them to drive the search process.

For a given set of weighted DMs and their preferences, in this work, we have
proposed two approaches to define an indicator to measure the consensus of a given
solution. We have named this measure consensus. For this purpose, we have assumed
that preferences are provided either in the objective space or in the variable space us-
ing fuzzy numbers. We have further extended these approaches to define an indicator,
named robust consensus, to measure the robustness of a given solution with respect to
its degree of associated consensus. Note that, when there is no perturbation in the sys-
tem, the proposed definition of robust consensus reduces to that of consensus. Though
there may be countless definitions using the proposed two approaches, we have used
them to propose 12 sets of definitions of consensus, and the corresponding robust con-
sensus. We have also proposed two ways to reformulate a given FGDM-MOP problem
for searching a set of solutions that is both robust and enjoys a high degree of con-
sensus. We have discussed the behaviour of the proposed formulations and provided
supporting results.

4.2 Related Works

Though the literature on MOPs [1,113,116,154,155], robustness in MOPs [57,60,62–72],
GDM [3, 156–158], and FGDM-MOP [157] is quite rich, there are only a few works re-
lated to FGDM-MOP [3, 74], where each DM provides her preference using a fuzzy
number [74]. Moreover, there is a huge literature [159–164] in GDM which deals with
a different facet of GDM, and hence, their problem formulation is different from ours.
There, unlike our formulation, a set of alternative solutions is available and no search
process is involved. A set of DMs is involved in the decision making process. Each
DM provides her preference using ordering/utility functions/fuzzy preference rela-
tion. The consensus reaching process in these works, is iterative, where usually with
the help of a moderator the DMs change their preferences to achieve consensus. Note
that, in our problem formulation, similar to [74], the preferences provided by the DMs
do not change and the preferences help to find the desired solutions via an optimiza-
tion problem. Due to these differences in the problem formulation and objectives, we
choose not to discuss these works further. The only work relevant to ours is due to
Xiong et al. [74], which we discuss next.
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In [74], Xiong et al. assumed that the ith DM provides her preferences for the jth

objective function using a triangular fuzzy number rT
ij =

(
rT

ij1, rT
ij2, rT

ij3

)
. Then, given

a set of solutions S , they defined consensus (cd(·)) of the tth solution of S , i.e., xt, as
follows:

cd(xt) =
d

∑
i=1

wiρi (xt) ;

where

ρi(xt) = A
(
$ij(xt); j = 1, 2, · · · , m

)
;

$ij(xt) =

√√√√ 3

∑
l=1

1
3
·
(

f j(xt)− rT
ijl

)2

(
|S|

max
k=1

fi(xk)−
|S|

min
k=1

fi(xk)

) . (4.2.1)

Here, A(·) is an aggregation operator, and in [74] authors used it as the arithmetic
mean operator. Then, following [60], they [74] proposed a robustness measure (rd(·))
which refers to the principle of preference robustness, which we have discussed in Sec-
tion 1.1.5. Given a non-dominated solution x ∈ V and the set of all non-dominated
solutions in its neighbourhood within a radius of δ, denoted by N x

δ , (rd(·)) is defined
as follows:

rd(x) =
1

|N x
δ |+ ε

+

∑
y∈N x

δ

1
n

n

∑
k=1

|xk − yk|(
xmax

k − xmin
k

)
|N x

δ |+ ε
, (4.2.2)

where ε is a small positive value that they [74] considered 1.0 × 10−06. Here, xmax
k

and xmin
k are respectively the maximum and the minimum values of the kth decision

variable in N x
δ . Note that, the definition of rd(·) consists of two components. The

first component considers the number of neighbors of x in N x
δ , whereas, the second

component computes the average normalized “distance” of x with its neighbours in
N x

δ . We note here that in (4.2.1), no membership value is used. It is also not clear, what
the denominator of (4.2.1) really represents.

Now, we summarize the innovative points and shortcomings of the prominent
works of the literature. In [63], Deb and Gupta defined robustness in MOP both using
expectation based and variance based approaches. Later, in [60], Bui et al. defined
both dominance robustness and preference robustness in the context of MOPs. How-
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ever, none of these two works has dealt with GDM or consensus. The only work that
we could find in the literature dealing with both consensus and robustness is in [74].
They introduced a measure of consensus and a measure of robustness, which did not
incorporate “robust consensus”, i.e., the robustness of a robust solution with respect
to its degree of consensus. Here, our objective is to find robust optimal solutions with
robust consensus [3].

4.3 Proposed Work

In Section 4.1, using a toy example we found that there is a need for aggregation oper-
ators to define consensus. Here, first we talk about some useful aggregation operators,
and then, use them to define consensus.

4.3.1 Common Aggregation Operators

Here, we discuss three aggregation operators that we have extensively used in this
work. As inputs, each operator takes a set of arguments (membership values or
degree of satisfaction of some property) α = (α1, α2, · · · , αd) and a set of weights
w = (w1, w2, · · · , wd) that are associated with the arguments, such that, ∀i wi ∈ (0, 1)
and ∑d

i=1 wi = 1.
The first operator [165] is a weighted conjunction operator, defined as follows.

ψC (α, w) =
d

min
i=1

max


1− wi

d
max
k=1
{wk}

 , αi


 . (4.3.1)

The second operator is a weighted T-norm operator [166] as defined bellow.

ψT (α, w) = h−1

(
d

∑
i=1

wi · h (αi)

)
, (4.3.2)

where h(·) is the generating function of any continuous Archimedean T-norm operator
and h−1(·) is the pseudo-inverse of h(·). In this study, we choose h(z) = − log(z), i.e.,
h−1(z) = e−z, and ψT (α, w) = ∏d

i=1 αwi
i [166].

The third operator is a weighted arithmetic mean operator defined below in (4.3.3).

ψM (α, w) =
d

∑
i=1

wi · αi. (4.3.3)
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Throughout this work, ψ(·) is used to denote any of the operators ψC(·), ψT(·), and
ψM(·).

4.3.2 Consensus

We define consensus using two approaches. Both approaches are applicable irrespec-
tive of whether the preferences are provided in the objective space or in the variable
space. However, in this subsection, to enhance the understandability, we assume that
the preferences are provided in the objective space. Later, we have mentioned how
the proposed approaches can be applied, if preferences are provided in the variable
space.

For a given solution x ∈ V , let Ux =
[
uij
]

d×m ∈ [0, 1]d×m be a matrix, such that,
uij = µOij (x), i.e., uij is the degree to which f j(x) satisfies the preference provided by
the ith DM for the jth objective. Then, we define the degree of satisfaction of the ith DM
for x as follows.

σi(x) = φ (ui1, ui2, · · · , uim) ; i = 1, 2, · · · , d; (4.3.4)

where φ(·) is any aggregation operator, which usually is a T-norm or the mean(·) oper-
ator applied over the degree of satisfaction of preferences for all m objectives, f j(x); j =
1, 2, · · · , m. For simplicity, we choose min(·) as the T-norm operator throughout this
work. Consequently, unless stated explicitly, φ(·) denotes either the min(·) or the
mean(·) operator. Similarly, for x, we define the degree to which all DMs are satisfied,
i.e., the level of consensus on the jth objective f j(x) corresponding to x, as follows.

γj(x) = ψ
((

u1j, u2j, · · · , udj
)

, w
)

; j = 1, 2, · · · , m; (4.3.5)

where, as mentioned earlier, ψ(·) is one of the operators ψC(·), ψT(·), and ψM(·). Now
we define consensus using two approaches.

1. Approach I: We define the level of consensus (overall satisfaction) on x as follows.

C1(x) = ψ ((σ1, σ2, · · · , σd) , w) . (4.3.6)

2. Approach II: We define the level of consensus (overall satisfaction) on x as follows.

C2(x) = φ (γ1, γ2, · · · , γm) . (4.3.7)
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Table 4.1: Different Definitions of Consensus using Approach I (C1(·)) with Different
Choices of φ(·) and ψ(·)

φ(·)†

min(·) mean(·)

ψ(·)‡
ψC(·) C1(·)|φ(·)=min(·),ψ(·)=ψC(·) C1(·)|φ(·)=mean(·),ψ(·)=ψC(·)
ψT(·) C1(·)|φ(·)=min(·),ψ(·)=ψT(·) C1(·)|φ(·)=mean(·),ψ(·)=ψT(·)
ψM(·) C1(·)|φ(·)=min(·),ψ(·)=ψM(·) C1(·)|φ(·)=mean(·),ψ(·)=ψM(·)

†First operator, applied row-wise on Ux.
‡Second operator, applied column-wise on the obtained set of values
computed with the first operator.

Table 4.2: Different Definitions of Consensus using Approach II (C2(·)) with Different
Choices of ψ(·) and φ(·)

ψ(·)†

ψC(·) ψT(·) ψM(·)

φ(·)‡ min(·) C2(·)|ψ(·)=ψC(·),φ(·)=min(·) C2(·)|ψ(·)=ψT(·),φ(·)=min(·) C2(·)|ψ(·)=ψM(·),φ(·)=min(·)
mean(·) C2(·)|ψ(·)=ψC(·),φ(·)=mean(·) C2(·)|ψ(·)=ψT(·),φ(·)=mean(·) C2(·)|ψ(·)=ψT(·),φ(·)=mean(·)

†First operator, applied column-wise on Ux.
‡Second operator, applied row-wise on the obtained set of values computed with the
first operator.

Note that, if φ(·) is chosen as any T-norm operator, for instance min(·), and ψ(·) is
chosen as either ψC(·) or ψT(·), both definitions of consensus, i.e., C1(·) and C2(·)
become the strictest ones. In that case, if there is no region that is common to every
DMs’ choice, there would be no solution with nonzero consensus. In other words,
∀x ∈ V , C1(x) = 0 and C2(x) = 0 would hold true.

Using this framework (Approach I and Approach II) countless definitions of con-
sensus can be generated. However, in this work, we restrict ourselves to φ(·) as min(·)
or mean(·); and ψ(·) as ψC(·), ψT(·) or ψM(·). Thus, using Approach I, with different
choices of φ(·) and ψ(·), we generate six definitions of consensus (C1(·)). They are
provided in Table 4.1. Similarly, using Approach II, with different choices of ψ(·) and
φ(·), we generate six definitions of consensus (C2(·)), which are provided in Table 4.2.

If wi = 1/d; i = 1, 2, · · · , d; then ψC(·) = min(·) holds. Consequently, Approach I
with φ(·) = min(·) and ψ(·) = ψC(·) is the same as the Approach II with ψ(·) = ψC(·)
and φ(·) = min(·). In this case, ∀x ∈ V , C1(x) = C2(x) = min(uij; i = 1, 2, · · · , d; j =
1, 2, · · · , m) holds true. Similarly, if wi = 1/d; i = 1, 2, · · · , d; then ψM(·) = mean(·).
Thus, ∀x ∈ V , C1(x)|φ(·)=mean(·),ψ(·)=ψM(·) = C2(x)|ψ(·)=ψM(·),φ(·)=mean(·) = mean(uij; i =
1, 2, · · · , d; j = 1, 2, · · · , m) holds true. Note that, φ(·) can be any T-norm. Conse-
quently, it can be chosen as the product of all its arguments, i.e., φ(α1, α2, · · · , αm) =
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∏m
j=1 αj. If we consider φ(·) as the product T-norm and ψ(·) = ψT(·), then C1(x) =

C2(x) = ∏d
i=1 ∏m

j=1 uwi
ij . There may be other cases too when C1(·) = C2(·) may hold

true.

Note that, in Approach II, the weights have a stronger influence on the com-
puted consensus in the sense that in Approach II, every membership value is mod-
ulated by the weights, and those modulated membership values are aggregated. On
the other hand, in Approach I, after we aggregate the degree of satisfaction of the
objectives using an aggregation operator, we use the weights. The nature of influ-
ence of weights will depend on the particular choice of ψ(·). For example, if we use
ψ(α, w) = ψT(α, w) = ∏n

i=1 αwi
i , then every modulated value of αi is increased, and

for a fixed weight, smaller membership values are increased relatively more. On the
other hand, if we use ψ(·) = ψM(·), every value is reduced, in particular, reduction in
αi is proportional to (1− wi).

If the preferences are provided in the variable space, consensus can be defined in a
similar manner. The only difference is that the parameter m would be replaced by the
parameter n, i.e., the dimension of Ux would be (d× n) and there would be n input
parameters to the φ(·) operators used in (4.3.4) and (4.3.7).

Let us revisit the toy example of consensus that we discussed in Section 4.1. We
can define a matrix for x1 as

Ux1 =

[
µO11(x1) µO12(x1)

µO21(x1) µO22(x1)

]
=

[
0.96 0.98
0.80 0.75

]
. (4.3.8)

Let us select φ(·) = min(·). Then, we can compute the degree of satisfaction for the
DMs as σ1(x1) = min(0.96, 0.98) = 0.96, and σ1(x1) = min(0.80, 0.75) = 0.75. If we
choose ψ(·) = ψT(·), using Approach I, we can define consensus of x1, i.e., C I(x1) =
0.960.3 × 0.750.7 = 0.81. Similarly, we can find C I(x2) = 0.68. As C I(x1) > C I(x2), we
can conclude that solution x1 is better than solution x2 in terms of consensus.

4.3.3 The Proposed Definition of Consensus may Fail in Robust Optimiza-
tion

A robust solution, which has a good degree of consensus measured either in terms of
C1(·) or C2(·), may not be equally robust with respect to its consensus. We consider
Fig. 4.1 to discuss this issue with an example. In the left panel, Fig. 4.1 shows a robust
solution x ∈ V in the variable space along with a neighborhood BVδ (x) ∈ V . In the
right panel, Fig. 4.1 shows the objective vector corresponding to x, i.e., f(x) ∈ O, in the
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Figure 4.1: In the left panel, showing x ∈ V and BVδ (x) ∈ V in the variable space. In
the right panel, showing f(x) ∈ O BOδ (x) ∈ O, and the preferences P1 and P2 in the
objective space, such that, ∀y ∈ BVδ (x), f(y) ∈ BOδ (x).

objective space along with a neighborhood BOδ (x) ∈ O, such that, ∀y ∈ BVδ (x), f(y) ∈
BOδ (x). We note here that, BOδ (x) may not necessarily be a convex set like in the right
panel figure. There are two DMs, who have provided their preferences as CLOSE to P1

and CLOSE to P2, respectively. We also assume that the weight vector associated with
the DMs is w = (w1, w2), such that, w1 >> w2. When there is no perturbation in the
system, C1(x) and C2(x) would be high, because, f(x) is closer to P1 and w1 >> w2.
However, if x is perturbed in BVδ (x), C1(x) and C2(x) may not remain high. Because,
due to the perturbations in the variable space, f(x) may get shifted away from P1, and
hence, consensus measured in terms of C1(·) and C2(·) may decrease. In this case,
though x is a robust solution, it is not robust to its degree of consensus. To address
this issue, in the next section, we propose a new measure called robust consensus and
discuss how to incorporate it in robust optimization to find robust solutions that are
also robust to their degree of consensus.

4.3.4 Robust Consensus and Problem Reformulations

For a solution x ∈ V , we define robust consensus, denoted by CR(x), as a measure of its
robustness to its degree of consensus as follows:

CR(x) = 1
|BVδ (x)|

∫
y∈BVδ (x)

C(y)dy. (4.3.9)

Here, C(·) is chosen either as C1(·) or C2(·). Note that, for any x ∈ V , CR(x)|δ=0 =

C(x). In other words, our definitions of robust consensus reduce to their correspond-
ing definitions of consensus when δ = 0. Though at a glance one may find similarities
between (1.1.7) and (4.3.9), there are significant differences between them. In (1.1.7),
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G(y) is a “dominance function”. It is 1 if y is a non-dominated solution, and 0, oth-
erwise. Consequently, G(y) has no relationship with the degree of satisfaction of the
DMs for y. On the contrary, C(y) in (4.3.9) provides a real value in the range [0, 1] that
measures the degree of satisfaction of the DMs for y, and hence, C(y) has nothing to
do with the nature of y in terms of dominance.

Now, we use an expectation based approach to define a robust solution which is
also robust with respect to its degree of consensus as follows. A solution x ∈ V (i)
is a robust solution, (ii) has consensus, and (iii) is robust with respect to its degree of
consensus, if x is in the Pareto set (PS) of the following minimization problem:

minimize
x∈V

fe,CR(x) =
(

f e
1(x), f e

2(x), · · · , f e
m(x),−CR(x)

)
;

subject to

gj(x) ≤ 0, j = 1, 2, · · · , n 6=;

hk(x) = 0, k = 1, 2, · · · , n=. (4.3.10)

Next, we use a variance based approach as follows. A solution x ∈ V (i) is a robust
solution, (ii) has consensus, and (iii) is robust to its degree of consensus, if x is in the
PS of the following minimization problem:

minimize
x∈V

f(x) = ( f1(x), f2(x), · · · , fm(x));

subject to

gj(x) ≤ 0, j = 1, 2, · · · , n 6=;

hk(x) = 0, k = 1, 2, · · · , n=;

||fe(x)− f(x)||p
||f(x)||p

≤ η;

||CR(x)− C(x)||p
||C(x)||p

≤ ηCR ; (4.3.11)

Here, η and ηCR are two limiting or tolerance parameters. In this investigation, we
consider only formulation (4.3.10).
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4.4 Experiments and Results

4.4.1 Test Problems and Experimental Framework

In this work, we consider the following test problem, introduced in [63].

minimize f1(x) = x1;

minimize f2(x) = H (x1) + G (x) · S (x1) ;

subject to 0 ≤ x1 ≤ 1; −1 ≤ xj ≤ 1, j = 2, 3, · · · , n;

where

H (x1) = 1− x2
1;

G (x) =
n

∑
j=2

(
10 + x2

j − 10 cos
(
4πxj

))
;

S (x1) =
1

0.2 + x1
+ x2

1. (4.4.1)

The PS of this problem comprised of all points where xj = 0, j = 2, 3, · · · , n, and
x1 ∈ [0, 1]. Note that, for all of these solutions S (x1) = 0 and f2(x) = 1− f 2

1 (x).

We assume that for a given set of parameters δ = (δ1, δ2, · · · , δn), the jth vari-
able of a solution, i.e., xj is perturbed in the neighbourhood

[
xj − δj, xj + δj

]
. Con-

sequently, the neighbourhood BVδ (·) of a solution is the n-orthotope with vertices
(x1 ± δ1, x2 ± δ2, · · · , xn ± δn). Then, the mean effective objective functions

(
f e
j (·), j =

1, 2, · · · , m
)

for a Pareto-optimal solution x, are given as follows [63]:

f e
1(x) =x1;

f e
2(x) =

(
1− x2

1
)
− δ2

1
3
+

(
1

2δ1
log
(

0.2 + x1 + δ1

0.2 + x1 − δ1

)
+(

x2
1 +

δ2
1

3

))
·
(

n

∑
j=2

(
10 +

δ2
j

3
− 10

4πδj
sin
(
4πδj

)))
. (4.4.2)

Thus, using (4.4.2), for a given δ, one can theoretically find the robust PF of type
I [63].

To approximate the mean objective functions, we randomly generate H points
in the δ-neighborhood

(
BVδ (·)

)
of a point x. Throughout this work, we consider

H = 1000. Moreover, we consider 5 variables, i.e., n = 5. Furthermore, unless speci-
fied explicitly, we use δ1 = (0.007, 0.014, 0.014, 0.014, 0.014), which is one of the pertur-
bations that produces a robust Pareto front (PF) separated by a gap from the original
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Figure 4.2: Original and type I robust Pareto front of the test problem with δ = δ1 =
(0.007, 0.014, 0.014, 0.014, 0.014).

PF [63]. Figure 4.2 shows the original PF and the robust PFs of Type I with δ = δ1 for
the test problem.

For experimentation, we have used archive-based steady-state micro-genetic algo-
rithm (ASMiGA) [113] with differential evolution crossover-3 (DE-3) [113, 116], poly-
nomial mutation [167] and the following parameter settings: minimum archive size
Nmin = 20, maximum archive size Nmax = 100, selection ratio Sr = 0.15. Parameters
for DE-3 crossover are, F = 0.5 and CR = 0.1. The distribution index of polynomial
mutation is ηm = 50, and the probability of mutation is pm = 1/n. Note that, any
multiobjective algorithm can be used instead of ASMiGA. We, however, choose AS-
MiGA, as it is a newly designed algorithm proposed by us [113, 116]. ASMiGA was
experimentally proven to perform better than popular algorithms like NSGA-II [117]
and MOEA/D [168], when tested on several standard benchmark problems [113,116].
For every test, we have executed the algorithm 10 times and have selected (plotted)
only the set of non-dominated solutions from the set of obtained solutions.

4.4.2 A Careful Look at Consensus and Robust Consensus

We have given 12 definitions of consensus, and hence, robust consensus (two ap-
proaches × three definitions of ψ(·) × two definitions of φ(·)). At first, we examine
how the definitions of robust consensus work with δ = 0, i.e., when robust consensus
reduces to corresponding consensus. For this purpose, we consider three DMs with
the same weights, i.e., w = (1/3, 1/3, 1/3). We assume that the DMs have provided
their preferences in terms of objectives. We consider the following two cases.
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Case-1: We presume that the DMs have provided their preferences using Gaus-
sian membership functions with preferences rO11 = (0.8, 0.033), rO12 = (0.9, 0.033),
rO21 = (0.8, 0.0167), rO22 = (0.9, 0.0167), rO31 = (0.9, 0.033), rO32 = (0.8, 0.033).

Case-2: We consider that the DMs have provided their preferences using triangu-
lar membership functions with preferences rO11 = (0.80, 0.10), rO12 = (0.90, 0.10),
rO21 = (0.80, 0.05), rO22 = (0.90, 0.05), rO31 = (0.90, 0.10), rO32 = (0.80, 0.10).

A close look at the parameters reveals that in both cases, their preferences are similar.
The preferences are quite specific (the non-specificity of each fuzzy set is low). The
prominent difference is that, when Gaussian membership functions are used, every
solution would have a nonzero (may be very small) membership value with respect
to a given DM’s preference. On the contrary, when triangular membership functions
are used, the membership values of the solutions lying outside a given triangle would
be zero. We want to examine how our formulations behave when (i) each solution has
some nonzero membership value (may be very small), and (ii) a set of solutions has
zero membership values. For this purpose, we have considered the above two cases.

Figure 4.7 shows the contour plots of solutions for Case-1, when Gaussian mem-
bership functions are used for preferences. The top two rows in Fig. 4.7 have six
panels one for each of the six combinations of φ(·) and ψ(·), when Approach I is used.
The last two rows, on the other hand, correspond to the same six choices of φ(·) and
ψ(·) but with Approach II. Figure 4.8 depicts the same results as in Fig. 4.7 but using
surface plots. To show the effect of choice of membership functions, in Fig. 4.9 we
display the contour plots with triangular membership functions (Case-2) for the same
problem as in Fig. 4.7.

Figures 4.7, 4.8, and 4.9 reveal that each of the formulations is quite different as
their contours and surfaces differ from each other. From the same set of figures, we
observe that, when Gaussian membership functions are used, the obtained solutions
are spread over a larger region, whereas, for triangular membership functions, the
obtained solutions are concentrated over a smaller region. Though detailed results
are provided in Figs 4.7, 4.8, and 4.9, to illustrate this visually, we have provided
contour plots of consensus and the obtained solutions in Figs. 4.3 (Gaussian mem-
bership) and 4.4 (triangular membership) using Approach II with φ(·) = min(·). We
see that for Gaussian membership functions, the solutions are spread over a larger re-
gion and many of them with a low degree of consensus. The reason is that for every
solution, a Gaussian membership function provides a nonzero value. However, a tri-
angular membership function assigns a nonzero value for solutions from a specified
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Figure 4.3: Contour plots of different definitions of consensus and the corresponding
obtained solutions using Approach I with δ = 0 considering φ(·) = min(·), when
Gaussian membership functions are used to denote the DMs’ preferences.

region and zero value for the rest of the solutions. This makes triangular membership
functions more suitable (compared to Gaussian membership functions) when small
deviation in the consensus is more important than obtaining a diverse set of solutions.
On the other hand, one may prefer Gaussian membership functions over triangular
membership functions when the preferences of the DMs are non-overlapping.

From Figs. 4.3 and 4.4, we observe that, due to the addition of consensus as the
third objective, the search process ends up with a set of solutions that are crowded
over the region where the consensus has a higher value. However, this does not affect
the search process to find the Pareto front. Figures 4.7, 4.8, and 4.9 illustrate the same.

Earlier we have discussed that, in some cases Approach I and Approach II may
lead to the same definition. However, in many cases, the produced definitions are
different, and hence, the spread of the obtained solutions using them, may be visually
distinct from each other. Figure 4.5 and the rightmost sub-figure of Fig. 4.3 demon-
strate this with an example. In both cases preferences are modeled using Gaussian
membership functions. The right most sub-figure of Fig. 4.3 shows the contour of
consensus and the obtained solutions using Approach I considering φ(·) = min(·)
and ψ(·) = ψM(·), while Fig. 4.5 depicts the contour of consensus and the obtained
solutions using the same φ(·) and ψ(·) but with Approach II. They clearly reveal the
differences in the contours of the corresponding consensus and the obtained solutions.
Similar observations can also be made from Figs. 4.7, 4.8, and 4.9.

Now we investigate the behaviour of robust consensus with a nonzero δ, for which
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Figure 4.4: Contour plots of different definitions of consensus and the corresponding
obtained solutions using Approach I with δ = 0 considering φ(·) = min(·), when
triangular membership functions are used to denote the DMs’ preferences.

Figure 4.5: Contour plot of consensus and the corresponding obtained solutions using
Approach II with δ = 0 considering φ(·) = min(·) and ψ(·) = ψM(·), when Gaussian
membership functions are used to denote the DMs’ preferences.

we choose δ = δ1. Figs. 4.10 and 4.11 depict the results of this experiment consider-
ing the same weights and the same preferences of the DMs as used to generate Figs.
4.7, 4.8, and 4.9. Specifically, Fig. 4.10 illustrates the contours of consensus, when
Gaussian membership functions are used. Similarly, Fig. 4.11 shows the same when
triangular membership functions are used. Note that, Figs. 4.10 and 4.11 have the
same organization as that of Figs. 4.7, 4.8, and 4.9 with respect to their definitions of
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consensus.

Though Figs. 4.10 and 4.11 show detailed results of robust-consensus, we consider
Figs. 4.5 and 4.6 to discuss some observations regarding robust-consensus. Figs. 4.5
and 4.6 show the results obtained using Approach II, considering φ(·) = min(·) and
ψ(·) = ψM(·), with δ = 0 and δ = δ1, respectively, when the preferences are provided
using Gaussian membership functions. Consequently, together these two figures illus-
trate how a perturbation in the system changes the obtained solutions. As expected,
unlike Fig. 4.5, in Fig. 4.6 there is no solution in the region bounded by the PF and the
robust PF. In addition to this, in Fig. 4.6 there is a crowding of obtained solutions be-
low the region where consensus has a high value. Note that, the contour of consensus
and robust consensus are not the same. All figures show the contours/surfaces of con-
sensus. Therefore, when there is a perturbation in the system, i.e., δ 6= 0, we may not
get the crowding of solutions where consensus has a peak. However, intuitively, the
contours of consensus and robust consensus should be somewhat similar (depending
on the nature of the objective function, they could be significantly different also), and
hence, with a nonzero δ we should expect solutions near the region where consensus
has a peak. Consequently, in Fig. 4.6 the crowding of non-robust solutions below the
peak, where consensus has a peak, is consistent with our intuition. Similar observa-
tions can be made from Figs. 4.10 and 4.11. Another observation from these figures
is that, if we use triangular membership functions, we do not obtain any solution (or
obtain a few solutions) within the region between the PF (robust PF) and the region
where the value of consensus is high. It is noteworthy that each of the formulations
finds solutions throughout the robust PF.

4.4.3 Effect of Specificity on Robust Consensus

We want to examine how the changes in the specificity of the preferences (provided by
the DMs) affect robust consensus. For this purpose, we assume that there are two DMs
with weights w = (0.5, 0.5) and they have provided their preferences in the objective
space using Gaussian membership functions. We consider the following three cases of
preferences:

Case-1: rO11 = (0.8, 0.0167), rO12 = (0.9, 0.0167), rO21 = (0.9, 0.033), rO22 = (0.8, 0.033).

Case-2: rO11 = (0.8, 0.033), rO12 = (0.9, 0.033), rO21 = (0.9, 0.033), rO22 = (0.8, 0.033).

Case-3: rO11 = (0.8, 0.033), rO12 = (0.9, 0.033), rO21 = (0.9, 0.0167), rO22 = (0.8, 0.0167).
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Figure 4.6: Contour plot of consensus and the corresponding obtained solutions using
Approach II with δ = δ1 considering φ(·) = min(·) and ψ(·) = ψM(·), when Gaussian
membership functions are used to denote the DMs’ preferences.

Here, in Case-1, the preferences of the first DM is more specific (higher specificity) than
that of the second DM. In Case-2, both DMs are the same in terms of the specificity
of preference. In Case-3, the preferences of the second DM have more specificity than
that of the first DM. In this experiment, we consider φ(·) = min(·). Figure 4.12 shows
the contours of consensus along with the obtained solutions with δ = 0. Similarly,
Fig. 4.13 shows the same with δ = δ1. Figures 4.12 and 4.13 have two columns each
with three subfigures one for each of these three cases. The left column corresponds
to Approach I and the right column corresponds to Approach II.

The contour plots in Figs. 4.12 and 4.13 reveal that the changes in consensus with
changes in the specificities of the preferences (provided by the DMs) are in accordance
with what they should be intuitively. To be more specific, the peaks (locations where
consensus attains the maximum) in Figs. 4.12 and 4.13 shift from top-left to bottom-
right as the specificities of the preferences provided by the first DM decrease and the
specificities of the preferences provided by the second DM increase. Moreover, in Fig.
4.12, we observe that a cluster of solutions is found where the values of consensus
exhibit a peak. However, from Fig. 4.13, we observe two clusters: one is below the
peak and the other one is above the peak. This is probably caused by the nature of the
test problem and the perturbations during the evaluations of the solutions.
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4.4.4 Effects of Weights on Consensus

To inspect how the changes in the weights of the DMs affect robust consensus, we
consider a scenario with two DMs. We assume that the DMs provide their preferences
in the objective space using Gaussian membership function with parameters rO11 =

(0.8, 0.033), rO12 = (0.9, 0.033), rO21 = (0.9, 0.033), rO22 = (0.8, 0.033). Here, we consider
three cases of weights: (i) w = (0.1, 0.9), (ii) w = (0.5, 0.5), and (iii) w = (0.9, 0.1).
In this experiment, we consider φ(·) = min(·) and δ = δ1. In Fig. 4.14 we display
the results of these experiments using contour plots. Fig. 4.14 has two columns, each
with three subfigures, one for each of these weights. The left column corresponds to
Approach I and the right column corresponds to Approach II.

Figure 4.14 reveals that the changes in consensus with the changes in the weights
of the DMs are in accordance with our intuition. Specifically, for the first approach,
the peaks in Fig. 4.14 shift from bottom-right to top left as the weight of the first
DM increases and the weight of the second DM decreases. Similarly, for the second
approach, the common region of interest of the DMs, in Fig. 4.14, is shifted from
bottom-right to top left with the same changes in weights. We also observe that the
contour plots of these two approaches and the changes in the plots are quite different
from each other.

4.5 Conclusions and Discussions

We have proposed a framework to define consensus to measure the level of mutual
agreement among a set of DMs for a given FGDM-MOP. This framework can be used
to generate many definitions of consensus. Then, we have defined another indicator,
called robust consensus, to measure the robustness of a solution to its degree of con-
sensus. After that, we have proposed two ways to reformulate a given MOP problem
so that solutions of the reformulated problem are robust to their degree of consensus.
Lastly, we have investigated the behaviour of these definitions and reformulations
when the preferences are provided in the objective space. We have also investigated
the changes in the nature of solutions when the specificities of the preferences pro-
vided by the DMs change. The effect of the changes in the weights or the importance
of the DMs has also been studied. We have used contour plots and surface plots to
depict the results of our investigations.

From our limited investigation we found that, though for some choices of aggrega-
tion operators Approach I and Approach II lead to the same definition, in many cases,
the definitions are notably different. Moreover, the choice of membership functions
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also has a significant impact on the degree of consensus and can make the outcomes
differ significantly. The choice of membership functions also depends on the prob-
lems/DMs. If one wants to get a diverse set of solutions sacrificing the degree of
consensus, Gaussian membership functions would be preferred over triangular mem-
bership functions. On the other hand, if we prefer to get a small set of solutions with a
higher degree of consensus, then triangular membership functions may be preferred.
We note here that irrespective of the choices of different components, every formula-
tion ends up finding solutions throughout the (robust) PF. We also have observed that
the effect of specificity on robust consensus and the effect of weights on consensus
are consistent with our intuitions. Lastly, we note here that one may prefer Approach
II over Approach I if she wants the weights to play a stronger role. Further, one can
control the nature of the influence of the weights to some extent by choosing a suit-
able ψ(·). Finally, we mention that we could not compare our work with any existing
work, because, we could not find any work that deals with “robust consensus”
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Figure 4.7: Contour plots of different definitions of consensus and the correspond-
ing obtained solutions with δ = 0 when Gaussian membership functions are used to
denote the DMs’ preferences.
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Figure 4.8: Surface plots of different definitions of consensus and the corresponding
obtained solutions with δ = 0 when Gaussian membership functions are used to de-
note the DMs’ preferences.
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Figure 4.9: Contour plots of different definitions of consensus and the corresponding
obtained solutions with δ = 0 when triangular membership functions are used to
denote the DMs’ preferences.
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Figure 4.10: Contour plots of different definitions of consensus and the corresponding
obtained solutions with δ = δ1 = (0.007, 0.014, 0.014, 0.014, 0.014) when Gaussian
membership functions are used to denote the DMs’ preferences.
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Figure 4.11: Contour plots of different definitions of consensus and the corresponding
obtained solutions with δ = δ1 = (0.007, 0.014, 0.014, 0.014, 0.014) when triangular
membership functions are used to denote the DMs’ preferences.
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Figure 4.12: Contour plots of different definitions of consensus and the obtained so-
lutions considering different specificities of the preferences (provided by the decision
makers) with δ = 0 and φ(·) = min(·). Preferences are provided using Gaussian
membership functions.
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Figure 4.13: Contour plots of different definitions of consensus and the obtained so-
lutions considering different specificities of the preferences (provided by the decision
makers) with δ = δ1 = (0.007, 0.014, 0.014, 0.014, 0.014) and φ(·) = min(·). Prefer-
ences are provided using Gaussian membership functions.
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Figure 4.14: Contour plots of different definitions of consensus and the obtained so-
lutions considering different weights associated with the decision makers. δ = δ1 =
(0.007, 0.014, 0.014, 0.014, 0.014) and φ(·) = min(·) are used. Preferences are provided
using Gaussian membership functions.





Chapter 5

Robustness in Multiobjective
Evolutionary Optimization [5]

5.1 Introduction

The concept of robustness in multiobjective optimization problems (MOPs) is largely
similar to robustness in single objective optimization problems [60]. Despite that, the
number of attempts made for uncertainty handling in MOPs is notably smaller than
that for uncertainty handling in single objective optimization problems [60]. Most
likely this is because in case of MOPs, sensitivity needs to be accounted with respect
to each of the objectives. In other words, to measure sensitivity, a collective effect of
deviations in each of the objectives need to be used [63]. Consequently, four possible
robust fronts can be found compared to the Pareto front (PF) [63]. First, entire PF is
robust. Second, a part of the PF is robust and there are no other robust solutions.
Third, a part of the PF is robust and there are other robust solutions. Fourth, no part
of the PF is robust, and hence, the entire robust front is composed of a local front or
multiple local fronts.

In this Chapter, first, we have discussed some salient issues related to existing
methodologies [63] that find robust multiobjective solutions. In that regard, we have
demonstrated how these methodologies cannot discriminate the robust solutions in
terms of their robustness/sensitivity. We have then proposed a new measure of sen-
sitivity to assess the robustness of multiobjective solutions. The underlying idea has
been taken from [169, 170], which have used a similar definition of sensitivity in the
context of neural networks and discrete time linear systems. Next, we have shown
how the cost of computing sensitivity can be reduced using an approximation subject
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to the following conditions. First, the objective functions are differentiable. Second,
the input noise is any one of uniform noise, additive white Gaussian noise (AWGN),
and multiplicative noise (MN). We have proposed three approaches to reformulate
MOPs. The reformulated MOP using the first approach yields solutions of the orig-
inal MOP with different degrees of sensitivity/robustness. The other two reformu-
lated MOPs yield solutions with lower degrees of sensitivity than a given limit. Using
extensive experiments on six test problems, we have validated our claims and have
analyzed the behaviours of the reformulation strategies.

5.2 Related Works, Motivation, and Objectives

5.2.1 The Literature

The state-of-the-art on robust optimization in MOPs is sufficiently affluent [57, 60, 62–
72, 171, 172]. There are some other works [173, 174] that have reformulated a given
single objective optimization problem as an MOP to find robust solutions. In [57]
a confidence measure is proposed, which calculates the confidence that we have in
terms of robustness on a particular multiobjective solution. We have discussed some
of the related works in Section 1.1.5, where we have introduced robust optimization.
Here, we discuss some other related works.

In [171, 172] researchers have proposed a way to define the degree of robustness
of a multiobjective solution x ∈ V . Let, BVδ (x) ∈ V be a hypercubic neighbourhood
of x, such that, it is centered at x and 2δ is the length of its edge. Let us also assume
that BOη (f(x)) ∈ O is a hyperspherical neighbourhood of f(x), such that, it is centered
at f(x) and η is its radius. Then, the degree of robustness of x is an integer k, such
that, for a given threshold p, the following two conditions hold. First, the percentage
of solutions in BVkδ(x), whose objective function values belong to BOη (f(x)), is greater
than or equal to p. Second, the percentage of solutions in BV(k+1)δ(x), whose objective
function values belong to BOη (f(x)), is lower than p.

In [173], the authors have proposed two robustness measures in the context of sin-
gle objective optimization problems, which may appear somewhat similar to the mea-
sure proposed in this work but in reality they are significantly different. Let there be
a set of solutions (a population) P = {x1, x2, · · · , xN} ; xi ∈ V ⊆ Rn, i = 1, 2, · · · , N;
with N solutions associated with the objective function f (·). Then, for the jth solution
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xj the first robust measure [173] is defined as follows:

f R1(xj) =
1
n

n

∑
i=1

σ̄f ,j

σxi

, (5.2.1)

where σ̄2
f ,j is an estimation of the variance of f (·) in the neighbourhood of xj and σ2

xi
is

the variance of xi. Here, σ̄2
f ,j is defined as follows:

σ̄2
f ,j =

1
Nj

∑
y∈BVδ (xj)

⋂P
x 6=y

n

∑
i=1

(
f (xj)− f (y)

xji − yi

)2

. (5.2.2)

Here, BVδ (xj) ∈ V is a hyperspherical neighbourhood of xj with radius δ and Nj =

|BVδ (xj)
⋂P|. The second robustness measure [173] is defined as follows:

f R2(xj) =
σf ,j

σ̄x,j
, (5.2.3)

where σ2
f ,j is the local variance of f (·) estimated in the neighborhood of xj and σ̄x,j

is the local standard deviation of xi calculated in the neighbourhood of xj, which are
defined as follows:

σ2
f ,j =

1
Nj − 1 ∑

y∈BVδ (xj)
⋂P( f (y)− µ f ,j)

2, (5.2.4)

σ̄x,j =
1
n

n

∑
i=1

σxi ,j. (5.2.5)

Here, µ f ,j is the local mean of f (·) and σ2
xi ,j

is the local variance of xi, which are esti-
mated in the neighbourhood of xj. They are defined as follows, respectively.

µ f ,j =
1
Nj

∑
y∈BVδ (xj)

⋂P f (y), (5.2.6)

σ2
xi ,j =

1
Nj

∑
y∈BVδ (xj)

⋂P(yi − µxi ,j)
2. (5.2.7)

Here, µxi ,j is the local mean of xi (the ith variable) estimated using only the solutions
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of P that are in the neighbourhood of xj.

µxi ,j =
1
Nj

∑
y∈BVδ (xj)

⋂P yi. (5.2.8)

5.2.2 Issues with Type I and Type II Robust Solutions: Our Motivation

One of the major works regarding robustness in MOPs is by Deb et. al [63]. In that
work, they did not define any measure of robustness/sensitivity of multiobjective so-
lutions. Instead, they defined two types of robust solutions, denoted as type I and
type II robust solutions. They provided two ways to reformulate MOPs to obtain
these two types of robust solutions. They [63] claimed that all solutions of the refor-
mulated MOP are robust solutions. However, they did not provide any measure to
compare these solutions in terms of their robustness/sensitivity. We note here that
these solutions may have different degrees of deviations when the same degrees of
perturbations are applied in the variable space. To establish our claim, at first, we de-
fine a measure, called mean of deviations (MoD[·, ·]). For a solution x ∈ V and a set of
N perturbations ∆X = {∆x1, ∆x2, · · · , ∆xN}, it is defined as follows.

MoD [x, ∆X ] :=
1
N

N

∑
i=1

d[f(x + ∆xi), f(x)], (5.2.9)

where d[·, ·] is a distance measure. In this Chapter, we use d[·, ·] as the Euclidean dis-
tance. Note that, a solution with a low value of MoD[·, ·] has a low degree of sensitivity,
and hence, a high degree of robustness. If there is no discrimination among the type
I robust solutions of a given problem, their MoD[·, ·]s should be close. However, our
claim is that there may be large differences in terms of MoD[·, ·]. To empirically validate
our claim, we perform the following experiment.

At first we consider Test Problem 1 (TP1), which was introduced in [63] (see the
Appendix for a detailed description of TP1). It is a bi-objective test problem (TP). The
set of points with xi = 0, i = 2, 3, · · · , n, and x1 ∈ [0, 1] comprise the Pareto set (PS)
of this problem. Moreover, for each solution x in the PS, f2(x) = 1− f 2

1 (x) hold true.
We use the archive-based steady-state micro-genetic algorithm (ASMiGA) [113, 116]
as the multiobjective optimizer for this experiment. We choose this one because it is a
new algorithm proposed by us and it has been empirically proven to perform better
than several state-of-the-art popular algorithms [113, 116]. We solve the type I robust
version of the above-mentioned TP for ten times using ASMiGA, and then, we choose
the union of the set of obtained solutions. For each run, the operators and parameters
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required for this algorithm are as follows: number of function evaluations = 50000,
maximum archive size (Nmax) = 200, minimum archive size (Nmin) = 100, selection
ratio (Sr) = 0.15, differential evolution-3 crossover (with scaling factor F = 0.5 and
crossover ratio CR = 0.1), and polynomial mutation (with ηm = 50.0). To evaluate the
robust objective functions of each solution, we generate 1000 perturbation (noise) vec-
tors using the Latin hypercube (LH) sampling within the hyper-cubic neighborhood
with vertices at (±δ,±δ, · · · ,±δ)T, where δ = 0.010. For each evaluation, a different
set of perturbations has been used. The obtained solutions and the PF (non-robust) of
this TP have been shown in Fig. 5.1. We note here that in all figures in this Chapter
and in all figures of the Appendix, there may be some solutions (mostly boundary
solutions) outside the plotted area/volume/hypervolume, which we have ignored to
keep the figures comprehensible. Now, we compute the MoD[·, ·]s of these solutions us-
ing the same set of perturbations containing 1000 perturbations (generated using the
same way as earlier). Here, to be fair, we remove the boundary solutions which go be-
yond the lower bound or the upper bound of any of the variables after applying any of
the perturbations. The mean and standard deviation of the MoD[·, ·]s of these solutions
are 0.2206 and 0.0757, respectively. Figure 5.2 shows the histogram of the MoD[·, ·]s of
these solutions. From these statistics and this figure, we observe that these solutions
have notably varying deviations. To investigate further, we select the two solutions
with the minimum and the maximum MoD[·, ·]s. Now, we generate a set of 1000 per-
turbation vectors using the same way as earlier. Next, we perturb both the solutions
using these perturbation vectors and measure the deviations (in terms of Euclidean
distance) from the unperturbed solution in the objective space. Thus, we obtain a set
of 1000 deviations corresponding to each of the solutions. Figure 5.3 illustrates two
histograms corresponding to each of these two set of deviations. From Fig. 5.3, we
observe that there is a noticeable difference between these two set of deviations. The
solution with the minimum MoD[·, ·] indeed is less sensitive, i.e., more robust. Thus,
we empirically validate that there are notable differences among the robust solutions
of type I in terms of sensitivity. Probably, this is because type I solutions take into ac-
count only the central tendency of the perturbed solutions in the objective space and
do not consider the deviation of the same. Type II solutions are also affected by a sim-
ilar issue: for a given solution, the constraint of the problem reformulation takes into
account only the distance between the central tendency (or the worst solution gener-
ated by the set of perturbations) from the unperturbed point in the objective space and
do not consider the deviations of the perturbed points.

Another issue with type I and type II robust solutions is that they do not incor-
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Figure 5.1: Pareto front (non-robust) of TP1 and obtained type I robust solutions on
TP1.

Figure 5.2: Histogram of MoD[·, ·]s for obtained type I robust solutions.

porate any attribute of the input noise, e.g., the variance of the perturbations vectors.
However, a good measure should take into account some properties of the input noise
while finding robust solutions or measuring the robustness of a solution.

5.2.3 The Objectives and the Contributions of This Chapter

Here our objectives and contributions in contrast with the issues of the existing meth-
ods are as follows.

1. We have demonstrated that type I robust solutions cannot identify the solutions
which are more sensitive with respect to their variables. Moreover, in the litera-
ture there is a lack of measures that quantify the sensitivity/robustness of a solu-
tion with respect to perturbations in the variable space. To fill this research gap,
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Figure 5.3: Histograms of the distances from the unaltered solutions for the solutions
with the minimum and the maximum MoD[·, ·] values.

we propose to use a measure of sensitivity. We also present three approaches
to reformulate MOPs. When the first approach is used, the reformulated MOP
yields solutions of the original MOP with different degrees of sensitivity. For the
other two approaches, the reformulated MOPs yield solutions with sensitivity
less than a given threshold.

2. Most methods in the literature assume that the solutions are perturbed inside a
hypercube around the solutions with a uniform distribution. However, AWGN
or MN in many cases can be a better model of noise for representing real-world
perturbations. Our proposed measure and the reformulation methods have been
applied to uniform noise as well as to AWGN and MN.

3. Explicit robustness handling in MOPs usually involves generation and evalu-
ation of a large number of solutions in the neighbourhood of a given solution.
This demands a huge computational effort, especially when each function evalu-
ation is costly. However, if we consider uniform noise, AWGN, or MN, then for
an MOP with differentiable objective functions, when the input perturbations
are very small, the proposed measure can be approximated without evaluating
a large number of solutions. This may significantly reduce the cost of handling
robustness in MOPs.
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5.3 Proposed Work

5.3.1 Sensitivity

Let us assume that a solution x∗ ∈ V is perturbed by a small input perturbation vector
∆x = (∆x1, ∆x2, · · · , ∆xn)T ∈ Rn, such that, var[∆xi] = σ2, i = 1, 2, · · · , n. Here,
var[·] denotes the variance of [·]. Due to this perturbation, the deviation in the jth

objective can be written as

∆ f j(x∗) = f j(x∗ + ∆x)− f j(x∗). (5.3.1)

Now, following [169,170], we define the sensitivity of the jth objective function
(
Sj(·)

)
at x∗ as follows.

Sj(x∗) :=

√
var

[
∆ f j(x∗)

]
σ

. (5.3.2)

This definition is slightly different from the definitions used in [169,170]. Also note its
differences from definitions (5.2.1) and (5.2.3) [173]. Next, following [170], we define
the sensitivity (S(·)) at x∗ as follows.

S(x∗) := φ (S1(x),S2(x), · · · ,Sm(x)) , (5.3.3)

where φ(·) is any suitable aggregation operator. In this Chapter, we consider φ(·) =

mean(·). In some cases, however, max(·) or some other aggregation operators may be
more suitable than mean(·). Any weighted aggregation operator, e.g., weighted mean
operator, can also be used here. Note that, a solution with a high value of S(·) has a
high degree of sensitivity and a low degree of robustness.

Let us assume that the changes in the variables are very small. Now, if f j(x), j =
1, 2, · · · , m, is differentiable, then using Taylor series expansion of f j(x∗ + ∆x), we get

f j(x∗ + ∆x) = f j(x∗) +∇ f j(x)|x=x∗ · ∆x + · · ·
≈ f j(x∗) +∇ f j(x)|x=x∗ · ∆x. (5.3.4)

Here we ignore the higher order terms on the right-hand side of (5.3.4) for very small
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changes in variables and ∇ f j(x) is denoted as

∇ f j(x) =
(

∂ f j(x)
∂x1

,
∂ f j(x)

∂x2
, · · · ,

∂ f j(x)
∂xn

)T

. (5.3.5)

We use (·) to denote the dot product of two vectors. Next, from (5.3.1) and (5.3.4) we
get

∆ f j(x∗) ≈ f j(x∗) +∇ f j(x)|x=x∗ · ∆x− f j(x∗)

= ∇ f j(x)|x=x∗ · ∆x. (5.3.6)

5.3.2 Sensitivity to Additive White Gaussian Noise

If we assume that the noise is an AWGN, i.e., ∆xi ∼ N (0, σ2); i = 1, 2, · · · , n; then the
following holds.

E[∆x2
i ] = σ2; i = 1, 2, · · · , n; (5.3.7)

E[∆xi∆xk] = 0; i = 1, 2, · · · , n; k 6= i; (5.3.8)

E[∆ f j(x∗)] ≈ E[∇ f j(x)|x=x∗ · ∆x]

=
n

∑
i=1

∂ f j(x)
∂xi

∣∣∣∣
x=x∗

E [∆xi]

= 0; j = 1, 2, · · · , m; (5.3.9)

where E[·] denotes the expectation of [·]. Next, we express var[∆ f j(x∗)] as

var[∆ f j(x∗)] = E
[(
∇ f j(x)|x=x∗ · ∆x

)2
]

= σ2
n

∑
i=1

(
∂ f j(x)

∂xi

∣∣∣∣
x=x∗

)2

. (5.3.10)

From (5.3.1) and (5.3.10) we express sensitivity of the jth objective function to AWGN
at x∗ as follows.

Sj(x∗)|AWGN :=

√√√√ n

∑
i=1

(
∂ f j(x)

∂xi

∣∣∣∣
x=x∗

)2

. (5.3.11)

Thus for AWGN, we do not need to draw random samples in the neighbourhood of a
solution to compute sensitivity subject to the following. First, the objective functions
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are differentiable. Seconds, the perturbations in the variables are very small. Third,
we use an approximation with Taylor series expansion considering only the first order
terms.

Let us consider sensitivity to uniform noise. For this purpose, let us assume that
∆xi ∼ U (−δ, δ); i = 1, 2, · · · , n, where δ is a very small positive value. In this case,
E[∆xi] = 0, i = 1, 2, · · · , n and var[∆xi] = σ2 = δ2/3 hold. Also, it is easy to see that
(5.3.7); (5.3.8); and (5.3.9) hold. Therefore, (5.3.11) can be used for computing Sj(·)
with an approximation subject to the above three conditions. As the expressions of
S(·) with AWGN and with uniform noise are the same, in this Chapter, we do not
experiment with uniform noise considering an approximation using the first-order
Taylor series expansion.

5.3.3 Sensitivity to Multiplicative Noise

To model perturbations of variables with an MN, we assume that ∆xi = x∗i ν(i), i =

1, 2, · · · , n, such that, ν(i) ∼ N (0, σ), i = 1, 2, · · · , n. Then, E[∆xi] = 0, i = 1, 2, · · · , n,
and var[∆ f j(x∗)], j = 1, 2, · · · , m, can be expressed as

var[∆ f j(x∗)] = E
[(
∇ f j(x)|x=x∗ · ∆x

)2
]

= σ2
n

∑
i=1

(
∂ f j(x)

∂xi

∣∣∣∣
x=x∗

)2

(x∗i )
2 . (5.3.12)

From (5.3.1) and (5.3.12) we express sensitivity of the jth objective function to MN at
x∗ as follows.

Sj(x)|MN :=

√√√√ n

∑
i=1

(
∂ f j(x)

∂xi

∣∣∣∣
x=x∗

)2 (
x∗i
)2. (5.3.13)

In this fashion, similar to AWGN, for MN also we do not need to draw random sam-
ples in the neighbourhood of a given multiobjective solution provided that the Taylor
series expansion using only the first-order term makes a good approximation.

5.3.4 A Generalized Definition of Sensitivity

When the noise added to the ith variable has the standard deviation σi, i.e., var[∆xi] =

σ2
i , i = 1, 2, · · · , n, we define generalized sensitivity of the jth objective function

(
SGj (·)

)
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at x∗ as follows.

SGj (x
∗) :=

1
n

n

∑
i=1

√
var

[
∆ f j(x∗)

]
σi

. (5.3.14)

When σi = σ, i = 1, 2, · · · , n, SGj (·) reduces to Sj(·). Next, we define generalized
sensitivity of an MOP at x∗ as follows.

SG(x∗) := φ(SG1 (x
∗),SG2 (x

∗), · · · ,SGm(x∗)). (5.3.15)

Here, φ(·) is as defined earlier. Note that, there could be other ways to define a gener-
alized version of sensitivity.

5.3.5 Using Sensitivity in Optimization

Next, we reformulate the MOP described in (1.1.1) using the following three approaches
to incorporate sensitivity in the search process.

5.3.5.1 Approach I

In this approach, we incorporate sensitivity as an additional objective function in the
multiobjective search process. As solving an MOP yields a set of nondominated so-
lutions, this reformulated MOP provides solutions of the original MOP with different
degrees of robustness. Approach I reformulates (1.1.1) as follows.

minimize
x∈V

f(x) = ( f1(x), f2(x), · · · , fm(x),SG(x));

subject to

gj(x) ≤ 0, j = 1, 2, · · · , n 6=;

hk(x) = 0, k = 1, 2, · · · , n=; (5.3.16)

5.3.5.2 Approach II

Here, we take into account sensitivity as an additional constraint in the multiobjective
search process. Solving the reformulated MOP, we get a set of solutions of the original
MOP with an upper limit on the degree of sensitivity. Approach II reformulates (1.1.1)
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as follows.

minimize
x∈V

f(x) = ( f1(x), f2(x), · · · , fm(x));

subject to

gj(x) ≤ 0, j = 1, 2, · · · , n 6=;

hk(x) = 0, k = 1, 2, · · · , n=;

SG(x) < ηS (5.3.17)

5.3.5.3 Approach III

Finally in this approach, we add sensitivity of each objective function as an indepen-
dent constraint to the multiobjective search process. Therefore, for an MOP with m
objectives, m constraints are added in the reformulated MOP. Approach III reformu-
lates (1.1.1) as follows.

minimize
x∈V

f(x) = ( f1(x), f2(x), · · · , fm(x));

subject to

gj(x) ≤ 0, j = 1, 2, · · · , n 6=;

hk(x) = 0, k = 1, 2, · · · , n=;

SG l(x) < ηSl , l = 1, 2, · · · , m. (5.3.18)

5.4 Experiments and Results

5.4.1 Common Experimental Setting

5.4.1.1 Test Problems

In this Chapter, we use six TPs introduced in [63]. We denote these TPs as TP1, TP2,
TP3, TP4, TP5, and TP6, respectively. The Appendix contains the details of these TPs
and the partial derivatives of their objective functions. These derivatives are required
for an approximation using Taylor series expansion of S(·) when either AWGN or
MN model of perturbation is considered. The first four TPs have two objectives and
the last two TPs have three objectives. For all the TPs, throughout this work, we
have considered the number of variables (n) = 5. Note that, some of the TPs are not
differentiable at some boundary points, and hence, we have made minor changes in
the TPs by reducing the range of the corresponding variables by a very small amount,
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such that, this alteration preserves the nature of the TPs. A detailed description of
these changes is provided in the Appendix.

5.4.1.2 Multiobjective Optimizer

We have used ASMiGA as a multiobjective optimizer throughout the following ex-
periments. To obtain the solutions of an MOP, we solve it ten times using ASMiGA,
and then, we choose the union of the obtained solutions. For each run, the opera-
tors and parameters used are as follows: number of function evaluations = 50000,
maximum archive size (Nmax) = 200, minimum archive size (Nmin) = 100, selection
ratio (Sr) = 0.15, differential evolution-3 crossover (with scaling factor F = 0.5 and
crossover ratio CR = 0.1), and polynomial mutation (with ηm = 50.0).

5.4.1.3 Perturbation Strategy

We consider that a noise is either uniform, AWGN, or MN. When we employ an ap-
proximation using (5.3.11) or (5.3.13), respectively, considering AWGN or MN, we do
not need to draw samples to compute S(·). In the remaining part of this Chapter,
when we mention that we have computed S(·) with an “approximation”, we mean
that either (5.3.11) or (5.3.13) has been used depending upon the context. Below, we
discuss the perturbation strategy that we employ when we do not use an approxima-
tion.

When an approximation is not used, irrespective of the type of noise, we gener-
ate 1000 n-dimensional (n = 5) noise vectors. In every case, we use a parameter δ

to denote the degree of perturbations. When uniform noises are considered, noise
vectors are drawn using LH sampling inside the n-dimensional hypercube with ver-
tices (±δ,±δ, · · · ,±δ)T ∈ Rn. Note that, the uniform distribution has zero mean
and a standard deviation of 2δ/

√
12. Similarly, when AWGN is considered, each di-

mension of n-dimensional noise vectors has zero mean and standard deviation σ =

2δ/
√

12. In the same fashion, when MN is considered, to perturb a solution x =

(x1, x2, · · · , xn)T ∈ V ⊆ Rn, we generate 1000 perturbation vectors ∆xk = (x1νk1(·),
x2νk2(·), · · · , xnνkn(·))T ∈ Rn, k = 1, 2, · · · , 1000, such that, νki(·), i = 1, 2, · · · , n is
a white Gaussian noise with zero mean and standard deviation σ = 2δ/

√
12. In our

experiments, irrespective of the type of noise, we choose δ in such a manner that the
standard deviations (σs) of the perturbations remain the same. If after applying a noise
vector the perturbed solution goes beyond the lower limit or the upper limit of any
variable, that particular noise vector is ignored. Finally S(·) is calculated using the
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remaining perturbed points. When, S(·) is computed, we assume that the standard
deviation of the perturbations is known. We also note here that, all primary choices
of δ in this Chapter are the same as in [63]. However, unlike [63], for simplicity here
we consider σi = σ, i = 1, 2, · · · , n, i.e., the same variance of perturbations in all the
variables. When investigating on Approach I, for different TPs, the choices of δ are
as follows: δ1, δ2, δ3, and δ4 for TP1; δ5, δ6, δ7, and δ1 for TP2; δ8 for TP3, TP4, and
TP6; and δ4 for TP5; where δ1 = 0.007, δ2 = 0.008, δ3 = 0.009, δ4 = 0.010, δ5 = 0.004,
δ6 = 0.005, δ7 = 0.006, and δ8 = 0.030. Note that, corresponding each δi, there is a dis-
tinct σi = 2δi/

√
12 that is used for AWGN and MN. When investigating on Approach

II, we use only TP1 with δ4. Moreover, to investigate deeper, we also use some other
values of δ for some cases. Throughout this work, we use LH sampling to generate
uniform noises, because it is a frequently used strategy for generating uniform noises
and in [63], Deb et al. also used LH sampling for this purpose.

5.4.2 Sensitivity: a Measure of Deviation and Robustness

At first, we want to examine if S(·) works as a measure of deviation. To inspect this,
we generate three sets of noises, each containing 1000 n-dimensional (n = 5) pertur-
bation vectors, considering uniform noise (δ = 0.010), AWGN (σ = 5.7735× 10−03),
and MN (σ = 5.7735× 10−03). Note that, σ is chosen as 2× δ/

√
12. Now, we consider

the type I robust solutions obtained in our previous experiment discussed in Section
5.2.2. For each of these solutions, using each of these three sets of perturbation vectors,
we compute the corresponding S(·)s and MoD[·, ·]s. In Fig. 5.4 we plot S(·) and MoD[·]
for uniform distribution. From Fig. 5.4, we observe that S(·) changes almost linearly
with MoD[·, ·]. This is also true for AWGN and MN (see Fig. A-1; a figure number with
a suffix A- indicates that the figure is included in the Appendix). S(·), consequently,
can be used as a measure of deviation. Next, we show the solutions with uniform
noise in a three-dimensional stem plot in Fig. 5.5. The third dimension of Fig. 5.5 is
the S(·)s of the solutions considering uniform noise with δ = 0.010. Figure 5.5 shows
that with a decrease in f1(·) and an increase in f2(·), S(·) increases for this set of solu-
tions. This result is consistent with the results provided in [63], because in [63] Deb et.
al has observed that on TP1 with a decrease in f1(·) and an increase in f2(·) the robust
PF goes further away from the original PF (See Fig. 8 and Fig. 9 of [63]). Note that, this
observation can also be made from Fig. 5.1. From this experiment we validate that,
given a set of solutions (may be a set of robust solutions of type I), S(·) can be used to
quantify their robustness and to distinguish the solutions in terms of robustness.

Now, we answer an important question. Instead of S(·), why cannot we use
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Figure 5.4: MoD[·, ·]-versus-S(·) plots of the obtained type I robust solutions for uni-
form noise with δ = 0.010.

Figure 5.5: Three-dimensional stem plot of the obtained type I robust solutions for
uniform noise with δ = 0.010.

MoD[·, ·] itself as a measure? There are two reasons. First, if we use S(·) with an ap-
proximation, it would cause a huge reduction in the computational cost of explicit
robustness handling, especially when each function evaluation is costly. However, if
we use MoD[·, ·], we cannot do that. Second, MoD[·, ·] does not take into account any
statistical characteristic of the noise, whereas, S(·) considers that. S(·), consequently,
is a better measure in terms of our intuition. However, we agree that MoD[·, ·] can also
be used as a measure of robustness/sensitivity.
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Figure 5.6: Scatter plots of the obtained solutions on TP1 using Approach I for uniform
noise with δ1.

5.4.3 Investigations on Approach I

To investigate the behaviour of Approach I, we reformulate six TPs described in Sec-
tion 5.4.1.1 using the optimization strategy discussed in Section 5.4.1.2 with the pertur-
bation strategies provided in Section 5.4.1.3. Then, we examine the obtained solutions
as discussed next.

5.4.3.1 Experiments on Test Problem 1 (TP1)

At first, we consider Approach I on TP1 with uniform noise. Figures 5.6 and 5.7, re-
spectively, present a two dimensional scatter plot (in short 2D) and a three-dimensional
stem plot (in short 3D) of the obtained solutions on TP1 using Approach I with per-
turbation δ1. In each of Fig. A-2 (2D) and Fig. A-3 (3D), we illustrate the solutions
obtained with δ2, δ3, and δ4. These 2D plots illustrate that, irrespective of the choices
of δ, the proposed method could find the same local fronts along with the original PF
(to see the original PF of TP1, see Fig. 5.1). With an increase in δ, however, the local
fronts grow, especially in the top-left region of the 2D plots. From the 3D plots, we ob-
serve that solutions away from the original PF have lower values of S(·). Moreover,
for a local front, the S(·)s of its solutions increase with a decrease in f1(·). With an
increase in δ, the values of S(·) increase for the solutions of the same local front. Both
of these observations are intuitive considering similar arguments provided in Section
5.4.2.

When we consider AWGN on TP1, the obtained solutions for different values of
δs (σs) have been shown in Fig. A-4 using 2D plots and in Fig. A-5 using 3D plots.
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Figure 5.7: Three-dimensional stem plot of the obtained solutions on TP1 using Ap-
proach I for uniform noise with δ1 .

The results obtained with AWGN is quite similar to the results obtained with uniform
noise. However, for each value of δ, compared to Fig. A-2, we observe that, in Fig. A-
4 more solutions are obtained in the top-left regions of the corresponding subfigures.
From these two figures, we also observe that for the same value of δ, the lengths of
the local fronts are larger with AWGN compared to the case with uniform noise. As
mentioned earlier, in both the cases we use the same values of standard deviations.
This limited experiment, therefore, indicates that for a given standard deviation, a
search considering AWGN is likely to find larger local fronts compared to a search
considering uniform noise. Comparing Fig. A-3 with Fig. A-5, we observe that, for
each value of δ, for the solutions of the same local front usually S(·) is higher with
AWGN compared to the case with uniform noise. When we compute S(·) with an
approximation considering AWGN, the obtained solutions are shown in Fig. A-6.
Here, we make following two important observations:

1. The search mechanism could find solutions throughout the original PF, but could
not find any solution form any local front.

2. In Fig. A-6b, for the solutions corresponding to the original PF, with an increase
in f1(·) and a decrease in f2(·), the values of S(·) increase. On the contrary, in
the subfigures of Fig. A-5, with an increase in f1(·) and a decrease in f2(·), the
values of S(·) decrease for the solutions corresponding to the original PF.

A probable reason behind the first observation could be as follows. From Fig. A-5
we found that with a decrease in δ, the lengths of the local fronts reduce, and hence,
when the perturbation is very small, the search process may find no solution from any
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of the local fronts. This incident, however, may be problem dependent. The second
observation, at the first glance, is sufficiently counterintuitive. To investigate deeper
about these observations, at first, we find solutions on TP1 considering AWGN with
δ = 1.0 × 10−06. Note that, the other choices of δ are inspired by the work in [63]
that are much larger than this choice. Therefore, in this case, we expect the obtained
solutions to be like the solutions in Fig. A-6. This is because our approximation con-
siders a very small change in the variable and in our opinion δ = 1.0× 10−06 is small
enough to realize that. We illustrate the obtained solutions in Fig. A-7. The nature
of the solutions in Fig. A-7 is quite similar to the solutions in Fig. A-6. Therefore,
our reasoning regarding the first observation seems true. The second observation still
remains somewhat counterintuitive. Therefore, to look into this issue, we perform the
following experiment. For TP1, the set {x|x1 ∈ [0, 1]; xi = 0, i = 2, 3, · · · , n} consti-
tutes the PS. We consider 1000 uniformly distributed solutions along x1, such that, the
set covers the entire PS. Now, we compute S(·)s for all of these solutions considering
AWGN with (i) Taylor approximation, (ii) δ = 1.0× 10−05, (iii) δ = 1.0× 10−04, (iv)
δ = 2.0× 10−04, (v) δ = 5.0× 10−04, and (vi) δ = 1.0× 10−03. In Figs. A-8a to A-8f, we
plot the objective values of these solutions along with S(·) for these six cases, respec-
tively. From these figures, we observe that with an increase in δ, the nature of S(·) of
the solutions in the PS changes gradually, and the direction of change in S(·) when
traversing along the same front reverses, at least for a part of the front. In Fig. A-9,
we plot MoD[·, ·]-versus-S(·) of the obtained solutions for AWGN with σ = 0.010. This
plot confirms that MoD[·, ·] changes linearly with S(·) (they have a Pearson’s correla-
tion coefficient of 0.9995). Thus, when AWGN is considered, for a problem δ needs to
be chosen based on the characteristics of the problems.

Now, We consider MN. Figures A-10 and A-11 show the 2D and 3D plots of the
obtained solutions for the four different choices of δ, respectively. In all of these sub-
figures, we observe a triangular cluster of solutions near f1(·) = 1. Figure A-11 re-
veals that the solutions in this cluster have a varying degree of S(·). The remaining
solutions visually recline on the original PF, and for them, with an increase in f1(·)
and a decrease in f2(·), S(·) increases. Here, we notice that visually the nature of
the obtained solutions with different values of δ is quite similar. In Figs. A-12a and
A-12b, respectively, we show the 2D and 3D plots of the obtained solutions with the
Taylor approximation for MN. In this case also solutions are found throughout the
original PF. However, in this case, the search did not find any cluster of solutions near
f1(·) = 1. Is this because the chosen δs are high? To check this we experimented with
δ = 1.0× 10−06 and found that it is indeed the case.
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5.4.3.2 Experiments on Test Problem 2 (TP2)

To examine Approach I on TP2 we use eight figures. Figures A-13 and A-14 corre-
spond to uniform noise, Figs. A-15 and A-16 correspond to AWGN, Fig. A-17 cor-
responds to AWGN with the Taylor approximation of S(·), Figs. A-18 and A-19 cor-
respond to MN, and Fig. A-20 corresponds to MN with the Taylor approximation of
S(·). Each of Figs. A-13 to A-16, A-18 and A-19 has four subfigures, corresponding to
δ5, δ6, δ7, and δ1, respectively.

From Figs. A-13, A-14, A-18 and A-19, we make the following observations when
uniform noise and AWGN are considered. First, irrespective of the choice of δ, the
evolutionary search could find solutions corresponding to the same set of local fronts
along with the entire global front. Second, with an increase in δ, the lengths of the
local fronts increase. Third, with an increase in δ, S(·)s of the solutions belonging
to the same front increase. Fourth, with an increase in the distances between a local
front and the original front, the S(·)s of its solutions decrease. Figure A-17 illustrates
that when we compute S(·) with an approximation considering AWGN, solutions are
obtained throughout the original PF and no solution is found from any local front. The
variations of S(·) with variations of f1(·) and f2(·) are similar to that of TP1. This is
intuitive because the natures of these two TPs are somewhat similar.

5.4.3.3 Experiments on Test Problem 3 (TP3)

Here, we consider five cases: (i) uniform noise with δ8, (ii) AWGN with δ8, (iii) Taylor
approximation for AWGN, (iv) MN with δ8, and (v) Taylor approximation for MN.
The obtained solutions for these five cases are illustrated in Figs. A-21 to A-25, respec-
tively. From these figures, we observe that, for every case except the case when an
approximation with MN is used, the search process could find solutions from a local
front and from the global front. From the corresponding 3D plots of these figures, we
observe that the solutions belonging to the local front have a smaller degree of S(·)
compared to that of the global front.

5.4.3.4 Experiments on Test Problem 4 (TP4)

Here also we consider the same five cases examined on TP3. We illustrate the obtained
solutions on TP4 in Figs. A-26 to A-30, respectively. The organization of these figures
are the same as of the figures that correspond to TP3. From these five figures, we
observe that, for each of the cases, the evolutionary search scheme found solutions
throughout the original PF. Additionally, a cluster of solutions is found near f1(·) = 1.
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Figure 5.8: Four-dimensional scatter plots of the obtained solutions on TP5 using Ap-
proach I for uniform noise with δ4.

5.4.3.5 Experiments on Test Problem 5 (TP5)

For TP5, we consider five cases: (i) uniform noise with δ4, (ii) AWGN with δ4, (iii)
Taylor approximation for AWGN, (iv) MN with δ4, and (v) Taylor approximation for
MN. The obtained solutions for the first case has been illustrated in Fig. 5.8 and the
obtained solutions for the other four cases have been illustrated in Fig. A-31. Figure
5.8 and each of the subfigures of Fig. A-31 are four-dimensional scatter plots. Here, the
fourth dimension is S(·) in the corresponding scenario, which has been represented
using colours. From Fig. A-31, we observe that when uniform noise or AWGN is con-
sidered, the search process could find solutions from several local fronts along with the
entire original PF. When (i) Taylor approximation is used for AWGN, (ii) MN with δ4 is
used, and (ii) Taylor approximation is used for MN, S(·) decreases with an increase in
f3(·). When an approximation considering AWGN is used, a very small number of so-
lutions are found from any local front and all the obtained solutions correspond to the
original PF. When MN is considered both with and without approximation, solutions
are found from a local PF as well as from the original PF.

5.4.3.6 Experiments on Test Problem 6 (TP6)

For TP6, we consider the same five cases that we have used for TP3. The obtained so-
lutions for these five cases are depicted in Fig. A-32. From Fig. A-32, we observe that
in every case the search scheme could find solutions from the original PF as well as
from several local fronts. When AWGN, MN, and Taylor approximation considering
MN are used, there are notable differences in terms of S(·) for the solutions that cor-
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respond to different fronts. With AWGN, the solutions corresponding to the original
PF have a higher degree of S(·) compared to the solutions of the other three fronts.
When Taylor approximation considering AWGN is used, solutions associated with all
three fronts have a similar degree of S(·).

5.4.4 Investigations on Approach II

To examine Approach II on TP1, we consider five cases: (i) uniform noise with δ4, (ii)
AWGN with δ4, (iii) Taylor approximation for AWGN, (iv) MN with δ4, and (v) Taylor
approximation for MN. For each of these five cases, we select the mean values of the
S(·)s of the obtained solutions using Approach I in the corresponding scenario. The
obtained mean values are 8.3375, 13.7470, 1.3135, 0.9117, and 0.7175, respectively. We
use these values as the limiting parameter ηS in (5.3.17) and in a similar way as in
Approach I we find solutions. Note that, for a real life problem usually our tolerance
to sensitivity (ηS ) will be dictated by the problem.

In Fig. A-33, we depict the obtained solutions for uniform noise with δ4. From Fig.
A-33, we observe that when uniform noise is considered, primarily there are solutions
from three fronts, including one corresponding to the (partial) original PF. However,
the search process rejected solutions with higher values of S(·) than the given value of
ηS in the left parts of these fronts. This is what we wanted. Next we show the obtained
solutions for AWGN with δ4 in Fig. 5.9 (see Fig. A-34 for the corresponding 3D plot).
Figure 5.9 shows that the evolutionary search process found solutions from the right
side of the original front approximately in the region f1(·) > 0.2. However, when
Taylor approximation for AWGN is used, the search process found three local fronts
(see Fig. A-35). Figure A-35b depicts that when traversed along these local fronts, the
rates of change (in a loose sense the gradient) of S(·) are notably different.

Now, we illustrate the solutions for MN with δ4 in Fig. 5.10 using a 2D plot (see Fig.
A-36 for the corresponding 3D plot). Figures 5.10 and A-36 reveal the following: (i) so-
lutions corresponding to a part of the original PF are found, (ii) the solutions from the
right side of the front are removed due to high sensitivity, and (iii) the values of S(·) in-
crease with an increase in f1(·). The solutions obtained with the Taylor approximation
for MN shows a similar behavior (see Fig. A-37b). It is noteworthy that when uniform
noise with δ = 0.010 and AWGN with δ = 0.010 are considered, the left part of the
original PF is removed. This observation is consistent with our observation made for
Approach I. Therefore, when traversing along a local front, S(·) corresponding to uni-
form noise and AWGN may increase but the S(·) corresponding to MN may decrease.
A plausible explanation of this observation is as follows. For the PF of TP1 x1 ∈ [0, 1]



114 5.4. Experiments and Results

Figure 5.9: Scatter plot of the obtained solutions on TP1 using Approach II for AWGN
with δ4.

Figure 5.10: Scatter plots of the obtained solutions on TP1 using Approach II for MN
with δ4.

and xi = 0, i = 2, 3, · · · , n. Even with a large value of σ, for x1 ∈ [0, 1], the perturba-
tions in the variable space for MN are small. This can be viewed as somewhat similar
to the perturbations for AWGN with a small value of σ, because a multiplication by
x1 ∈ [0, 1] reduces the magnitude of the perturbations. The minimum, the maximum,
the mean, and the standard deviation of the MoD[·, ·]s of the solutions obtained for MN
with σ = 0.010 are 9.6777× 10−09, 1.0388× 10−02, 5.7982× 10−03, and 2.7859× 10−03,
respectively. The same four statistics of the solutions obtained for AWGN with the
same σ are 1.7139× 10−01, 4.8568× 10−01, 2.6215× 10−01, and 9.4096× 10−02, respec-
tively. As a smaller value of MoD[·, ·] is caused by a smaller degree of perturbations,
these statistics validate our argument.
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5.5 Conclusions and Discussions

In this Chapter, we have proposed a new measure of sensitivity (S(·)) in the context of
MOPs. With an increase in this measure, the sensitivity of the multiobjective solutions
increases and their robustness decreases. We have provided two ways to approximate
S(·) subject to three conditions. We have also proposed three approaches to refor-
mulate MOPs to take into account S(·) in the evolutionary search process. The first
reformulation provides solutions with varying sensitivity/robustness. The other two
reformulated MOPs produce solutions with S(·) less than a predefined threshold.

We have extensively investigated the behaviour of the first approach on six TPs
and have made several observations. Some of them are as follows. First, for TP1 and
TP2, with an increase in the standard deviation of the input perturbations, more solu-
tions are found on the local fronts. Second, for TP1 and TP2, when the standard devia-
tion of the input noise increases, the values of S(·) for the solutions from the same local
fronts increase. Third, when the standard deviation is very small, as expected the ob-
tained solutions are similar to the solutions obtained with an approximation. Fourth,
for a given standard deviation, usually, the values of S(·) is higher when AWGN is
considered compared to that of considering uniform noise. We have also inspected
the behaviour of the second approach on TP1. We found that for TP1 while traversing
along a front the values of S(·) increase for both uniform noise and AWGN, but for
MN under the same condition S(·) decrease. Therefore, for TP1, different sides of the
fronts are removed by the constraint for different types of noises.

Unless the problem characterizes the nature of the noise, the type of noise should
be chosen judiciously. This is because, the solutions obtained considering uniform
noise or AWGN maybe notably different from the solutions obtained considering MN.
Moreover, for a chosen type of noise, the value of the parameter that characterizes the
perturbations (δ or σ) should be chosen wisely. This is because, for a chosen type of
noise, two sets of solutions obtained for two different choices of δ (or σ) may differ
significantly. Furthermore, an approximation using the first-order Taylor series ex-
pansion should be used only when the weight perturbations are small.

We could not compare the proposed measure with any existing measure primarily
because of two reasons. First, to the best of our knowledge, there is no work in the
literature that defines/uses a similar measure in the context of MOPs. The closest
work to this work probably is in [173], which has defined a measure for the same
purpose in the context of single objective optimization, whereas, our work focuses on
MOPs. Second, there is a lack of straightforward way for comparison.





Chapter 6

Conclusions and Future Scopes

6.1 Conclusions

In this thesis, we address four research problems related to decision making using
multiobjective evolutionary approaches. In Chapter 2, we propose a method for simul-
taneous feature selection (FS) and classification. In Chapter 3, we propose a method of
feature extraction and selection for designing parsimonious classifiers; while in Chap-
ter 4 work, in the context of fuzzy group decision making for a multiobjective op-
timization problem (FGDM-MOP), we propose a new measure, called robust consen-
sus, and incorporate it in the search process. In Chapter 5, a new measure of sensitivity
is proposed that can assess the sensitivity, and hence, robustness of a multiobjective
solution. We propose three approaches which take into account this measure of sensi-
tivity in the search process.

In Chapter 2, we have proposed a multiobjective genetic programming (MOGP),
called archive based steady state micro genetic programming (ASMiGP), to evolve di-
verse sets of binary classifiers to solve multi-class classification problems. We have
also performed simultaneous FS and rule extraction during the genetic evolution.
Here, we have created c sets of diverse ensembles, where each ensemble represents
diverse classifiers for one class. In the proposed strategy, we have evolved c distinct
species in parallel, which try to learn distinct patterns and we have not allowed any
inter-species gene exchange. This attribute makes each species different from the other
species. We have compared our method with four classification methods in conjunc-
tion with seven FS methods including use of the all-feature set on nineteen (eight mi-
croarray and eleven text) data sets. We have found that for 80.17% cases the proposed
method outperformed others, and the improvement in performance was statistically
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significant compared to all but one comparing methods. The overall performance of
the proposed method has been found to be better on text data sets compared to that on
microarray data sets. Our experiments have shown that when there are enough points
in each class so that each species can successfully learn its target pattern, the proposed
method works better. For text data sets, our method performs noticeably better than
the other methods, particularly when number of classes is high (ten or more than that).

In the next Chapter, we have investigated the capability of genetic programming
(GP) to extract useful features that can make the data linearly separable. We have
called such features as linearly separable features. Here, we have also proposed a
MOGP called archive based micro genetic programming-2 (ASMiGP-2). Based on the
ASMiGP-2, we have developed an embedded FS and feature extraction (FE) strategy
for generating an ensemble of parsimonious classifiers that use only linearly separable
features. For a c class problem, the classifier is an ensemble of c archives, where each
archive is an ensemble of binary classifiers. Each binary classifier is composed of a
binary tree (genetic program) and a support vector machine (SVM) with a linear ker-
nel. In each binary classifier, the genetic program selects and extracts a set of features
and the corresponding SVM operates in the modified feature space. In this regard,
we have proposed useful strategies for FS, archive initialization, crossover, and muta-
tion. We have tested the proposed method on three artificial data sets to examine its
capability to extract linearly separable features. Experimental results have shown that
our method can successfully extract linearly separable features both with and without
data normalization. We have compared our method with 34 algorithms on 18 data
sets and have found that our method outperforms the comparing method for 75.79%
comparing cases. Using appropriate statistical tests, we have found that the perfor-
mance of our method is significantly better than 58.82% of the comparing methods.
We have observed that there is no significant difference in the performance between
the proposed method and the remaining 41.18% comparing methods. Lastly, we have
found that our method can find rules with higher parsimony compared to the two
GP-based methods discussed in Chapter 2.

In a multiobjective decision making problem when different experts provide their
preferences, finding of optimal solutions satisfying all experts becomes challenging.
We have deal with this problem in Chapter 4. We have proposed a framework to
define consensus to measure the level of mutual agreement among a set of decision
makers (DMs) for a given fuzzy group decision making for multiobjective optimiza-
tion problem (FGDM-MOP). This framework can be used to define consensus in many
ways. We have also defined an indicator, called robust consensus, to measure the ro-
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bustness of a solution to its degree of consensus. In this context, we have proposed
two different ways (Approach I and Approach II) to reformulate a given multiobjec-
tive optimization problem (MOP) so that solutions of the reformulated problem are
also robust to their degree of consensus. We have studied the behaviour of these def-
initions and reformulations when the preferences are provided in the objective space.
We have also investigated the changes in the nature of solutions when the specifici-
ties of the preferences provided by the DMs change. The effect of the changes in the
weights or the importance of the DMs is also studied. From our limited investigation
we have found that, the choice of membership functions has a significant impact on
the degree of consensus and can make the outcomes differ significantly. If one wants to
get a diverse set of solutions compromising the degree of consensus, Gaussian mem-
bership functions would be preferred over triangular membership functions. On the
other hand, if we prefer to get a small set of solutions with a higher degree of consen-
sus, then triangular membership functions may be preferred. We also have observed
that the effect of specificity on robust consensus and the effect of weights on consen-
sus are in accordance with our intuitions. We note here that one may prefer Approach
II over Approach I if she wants the weights to play a stronger role. Further, one can
control the nature of the influence of the weights to some extent by choosing a suitable
weighted aggregation operator (ψ(·)).

In Chapter 5, we have proposed a new measure of sensitivity in the context of
MOPs. With an increase in this measure, the sensitivity of multiobjective solutions in-
creases and their robustness decreases. We have provided three ways to approximate
the proposed sensitivity measure considering either uniform noise, additive white
Gaussian noise (AWGN), or multiplicative noise (MN) using Taylor series expansion.
We have given three different reformulations of the MOPs taking into account this
measure in the evolutionary search process. In the first approach, the reformulated
MOP provides solutions with varying sensitivity/robustness. For the other two ap-
proaches, the reformulated MOP produces solutions that have a maximum degree of
sensitivity, and hence, a minimum degree of robustness. We have investigated the be-
haviour of the first approach on six test problems (TPs) and have made several obser-
vations. Some of them are as follows. First, for test problem 1 (TP1) and test problem
(TP2), more solutions appear on the local front with an increase in the standard de-
viation of the input perturbations. Second, for the same two TPs, the values of S(·)
for the solutions from the same local fronts increase with an increase in the standard
deviation of the input noise. Third, the obtained solutions are similar to the solutions
obtained with an approximation when the standard deviation is very small. Fourth,
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usually the values of S(·) is higher when AWGN is considered compared to that of
considering uniform noise for a given standard deviation. We have also inspected the
behaviour of the second approach on TP1. We found that, for this test problem, while
traversing along a front the values of S(·) increase for both uniform noise and AWGN,
but for MN under the same condition S(·) decrease. Therefore, for this TP, different
types of noises remove different sides of the fronts.

6.2 Limitations and Future Scopes

Similar to most of the works, the works presented in this thesis have some limitations.
Below, we discuss them along with possible future scopes to address them.

In all the data sets used for the experiments in Chapter 2, the number of samples
were not very big. The proposed method may require a significant amount of time
on a data set with a really large number samples. When the number of classes is
high, and we have a limited parallel processing capability, the method may also take a
substantial amount of time. With today’s high performance computing technologies,
however, these may not be considered really crucial shortcomings. However, to ad-
dress this issue, the method can be modified to a stepwise learning, so that, it can be
applied to big data. In a stepwise learning, the entire evolution can be divided into
a number of steps. In the first step of the evolution, we can use a small subset of the
training data. As the evolution moves to higher and higher steps, we can use more
and more data and in the last step we can use the entire data. Our method can be ex-
tended to multi-label classification problems, where each sample may belong to more
than one class. This may require defining new fitness and unfitness values.

The work presented in Chapter 3 requires training an SVM for each function eval-
uation and that makes the process computationally expensive, especially when the
number of samples is large. However, this may possibly be addressed by softwares
like TensorFlow. The proposed method requires several parameters to be chosen,
which we have done based on a limited set of ad-hoc experiments. The use of a cross-
validation type framework would be useful here. But, we could not investigate these
issues due to a high computational requirement. Instead of using three objectives, it
might be possible to have a method with a single objective. These issues need further
investigations.

In our work on robust consensus, we have not investigated the scalability of the
proposed methods in terms of the number of DMs and the number of objectives / vari-
ables. Although, we can assess an individual solution, it would be useful to define an
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indicator to measure the quality of the obtained set of solutions. This is important, be-
cause, when we deal with a higher dimensional objective/variable space, it becomes
difficult to assess the solutions visually. In future we like to make a detailed inves-
tigation on the performance of the variance based formulation as well as when the
preferences are in the variable space. We also plan to use the FGDM-MOP consid-
ered in Chapter 4 in some real-world problems. For example, in a reactive dispatch
problem operators (DMs) want to minimize two objectives: power loss and voltage
deviation. For this problem, different operators may (usually will) have different pref-
erences. Such a problem can be dealt with FGDM-MOP.

In Chapter 5, we have primarily experimented with Approach I and tested Ap-
proach II on one test problem. We intend to make an exhaustive investigation on
Approach II and Approach III. Although the formulation is quite general, here we
have considered the same standard deviation of noise for each variable. Further in-
vestigations on these issues may lead to interesting findings. In future, we plan to
use our sensitivity based robust multiobjective optimization method for the reactive
power dispatch problem.
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A Test Problems

A.1 Test Problem 1 (TP1)

This is the first bi-objective test problem introduced in [63].

minimize f1(x) = x1;

minimize f2(x) = H (x1) + G (x) · S (x1) ;

subject to 0 ≤ x1 ≤ 1; −1 ≤ xj ≤ 1, j = 2, 3, · · · , n;

where

H (x1) = 1− x2
1;

G (x) =
n

∑
j=2

(
10 + x2

j − 10 cos
(
4πxj

))
;

S (x1) =
1

0.2 + x1
+ x2

1. (A-1)

Both the objective functions of this test problem are differentiable. For this test prob-
lem, following holds true.

∂ f1(x)
∂x1

= 1;

∂ f1(x)
∂xj

= 0, j = 2, 3, · · · , n;

∂ f2(x)
∂xj

=
∂H(x1)

∂xj
+

∂G(x)
∂xj

· S(x1) + G(x) · ∂S(x1)

∂xj
, j = 1, 2, · · · , n;



124 A. Test Problems

∂H(x1)

∂x1
= −2x1;

∂H(x1)

∂xj
= 0, j = 2, 3, · · · , n;

∂G(x)
∂x1

= 0;

∂G(x)
∂xj

= 2xj + 40π sin(4πxj), j = 2, 3, · · · , n;

∂S(x1)

∂x1
= − 1

(0.2 + x1)
2 + 2x1;

∂S(x1)

∂xj
= 0, j = 2, 3, · · · , n. (A-2)

A.2 Test Problem 2 (TP2)

This is the second bi-objective test problem introduced in [63].

minimize f1(x) = x1;

minimize f2(x) = H (x1) + G (x) · S (x1) ;

subject to 0 ≤ x1 ≤ 1; −1 ≤ xj ≤ 1, j = 2, 3, · · · , n;

where

H (x1) = 1− x2
1;

G (x) =
n

∑
j=2

(
10 + x2

j − 10 cos
(
4πxj

))
;

S (x1) =
1

0.2 + x1
+ 10x2

1. (A-3)

Both the objective functions of this test problem are differentiable. For this test prob-
lem, following holds true.

∂ f1(x)
∂x1

= 1;

∂ f1(x)
∂xj

= 0, j = 2, 3, · · · , n;

∂ f2(x)
∂xj

=
∂H(x1)

∂xj
+

∂G(x)
∂xj

· S(x1) + G(x) · ∂S(x1)

∂xj
, j = 1, 2, · · · , n;
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∂H(x1)

∂x1
= −2x1;

∂H(x1)

∂xj
= 0, j = 2, 3, · · · , n;

∂G(x)
∂x1

= 0;

∂G(x)
∂xj

= 2xj + 40π sin(4πxj), j = 2, 3, · · · , n;

∂S(x1)

∂x1
= − 1

(0.2 + x1)
2 + 20x1;

∂S(x1)

∂xj
= 0, j = 2, 3, · · · , n. (A-4)

A.3 Test Problem 3 (TP3)

This is the third bi-objective test problem introduced in [63].

minimize f1(x) = x1;

minimize f2(x) = H (x2) · (G (x) + S (x1)) ;

subject to 0 ≤ x1, x2 ≤ 1; −1 ≤ xj ≤ 1, j = 3, 4, · · · , n;

where

H (x2) = 2− 0.8 exp

(
−
(

x2 − 0.35
0.25

)2
)
− exp

(
−
(

x2 − 0.85
0.03

)2
)

;

G (x) =
n

∑
j=3

50x2
j ;

S (x1) = 1−
√

x1. (A-5)

The second objective function of this test problem is not differentiable at x1 = 0. We,
therefore, consider ε ≤ x1 ≤ 1, where ε is a very small positive value. Throughout
this work, we consider ε = 1.0× 10−06. For this test problem, following holds true.

∂ f1(x)
∂x1

= 1;

∂ f1(x)
∂xj

= 0, j = 2, 3, · · · , n;
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∂ f2(x)
∂xj

=
∂H(x2)

∂xj
· (G(x) + S(x1)) + H(x2) ·

(
∂G(x)

∂xj
+

∂S(x1)

∂xj

)
, j = 1, 2, · · · , n;

∂H(x2)

∂x2
=

128
5

(x2 − 0.35) exp

(
−
(

x2 − 0.35
0.25

)2
)

+
20000

9
(x2 − 0.85) exp

(
−
(

x2 − 0.85
0.03

)2
)

;

∂H(x2)

∂xj
= 0, j = 1, 3, 4, · · · , n;

∂G(x)
∂xj

= 0, j = 1, 2;

∂G(x)
∂xj

= 100xj, j = 3, 4, · · · , n;

∂S(x1)

∂x1
= − 1

2
√

x1
;

∂S(x1)

∂xj
= 0, j = 2, 3, · · · , n. (A-6)

A.4 Test Problem 4 (TP4)

This is the forth bi-objective test problem introduced in [63].

minimize f1(x) = x1;

minimize f2(x) = H (x1, x2) · (G (x) + S (x1)) ;

subject to 0 ≤ x1 ≤ 1; −0.15 ≤ x2 ≤ 1; −1 ≤ xj ≤ 1, j = 3, 4, · · · , n;

where

H (x1, x2) = 2− x1 − 0.8 exp

(
−
(

x1 + x2 − 0.35
0.25

)2
)

− exp

(
−
(

x1 + x2 − 0.85
0.03

)2
)

;

G (x) =
n

∑
j=3

50x2
j ;

S (x1) = 1−
√

x1. (A-7)

The second objective function of this test problem is not differentiable at x1 = 0. We,
therefore, consider ε ≤ x1 ≤ 1, where ε is a very small positive value. Throughout
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this work, we consider ε = 1.0× 10−06. For this test problem, following holds true.

∂ f1(x)
∂x1

= 1;

∂ f1(x)
∂xj

= 0, j = 2, 3, · · · , n;

∂ f2(x)
∂xj

=
∂H(x1, x2)

∂xj
· (G(x) + S(x1))

+ H(x1, x2) ·
(

∂G(x)
∂xj

+
∂S(x1)

∂xj

)
, j = 1, 2, · · · , n;

∂H(x1, x2)

∂x1
= −1 +

128
5

(x1 + x2 − 0.35) exp

(
−
(

x1 + x2 − 0.35
0.25

)2
)

+
20000

9
(x1 + x2 − 0.85) exp

(
−
(

x1 + x2 − 0.85
0.03

)2
)

∂H(x1, x2)

∂x2
=

128
5

(x1 + x2 − 0.35) exp

(
−
(

x1 + x2 − 0.35
0.25

)2
)

+
20000

9
(x1 + x2 − 0.85) exp

(
−
(

x1 + x2 − 0.85
0.03

)2
)

∂H(x1, x2)

∂xj
= 0, j = 3, 4, · · · , n;

∂G(x)
∂xj

= 0, j = 1, 2;

∂G(x)
∂xj

= 100xj, j = 3, 4, · · · , n;

∂S(x1)

∂x1
= − 1

2
√

x1
;

∂S(x1)

∂xj
= 0, j = 2, 3, · · · , n. (A-8)

A.5 Test Problem 5 (TP5)

This is the first tri-objective test problem introduced in [63].

minimize f1(x) = x1;

minimize f2(x) = x2;

minimize f3(x) = H(x1, x2) + G(x) · S(x1, x2);
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subject to 0 ≤ x1, x2 ≤ 1; −1 ≤ xj ≤ 1, j = 3, 4, · · · , n;

where

H (x1, x2) = 2− x2
1 − x2

2;

G (x) =
n

∑
j=3

(
10 + x2

j − 10 cos
(
4πxj

))
;

S (x1, x2) =
0.75

0.2 + x1
+ 10x8

1 +
0.75

0.2 + x2
+ 10x8

2. (A-9)

Each of the objective functions of this test problem is differentiable. For this test prob-
lem, following holds true.

∂ f1(x)
∂x1

= 1;

∂ f1(x)
∂xj

= 0, j = 2, 3, · · · , n;

∂ f2(x)
∂x2

= 1;

∂ f2(x)
∂xj

= 0, j = 1, 3, 4, · · · , n;

∂ f3(x)
∂xj

=
∂H(x1, x2)

∂xj
+

∂G(x)
∂xj

· S(x1, x2) + G(x) · ∂S(x1, x2)

∂xj
, j = 1, 2, · · · , n;

∂H(x1, x2)

∂xj
= −2xj, j = 1, 2;

∂H(x1, x2)

∂xj
= 0, j = 3, 4, · · · , n;

∂G(x)
∂xj

= 0, j = 1, 2;

∂G(x)
∂xj

= 2xj + 40π sin(4πxj), j = 3, 4, · · · , n;

∂S(x1, x2)

∂xj
= − 0.75(

0.2 + xj
)2 + 80x7

j , j = 1, 2;

∂S(x1, x2)

∂xj
= 0, j = 3, 4, · · · , n. (A-10)
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A.6 Test Problem 6 (TP6)

This is the first tri-objective test problem introduced in [63].

minimize f1(x) = x1;

minimize f2(x) = x2;

minimize f3(x) = H (x3) · (G (x) + S (x1, x2)) ;

subject to 0 ≤ x1, x2, x3 ≤ 1; −1 ≤ xj ≤ 1, j = 4, 5, · · · , n;

where

H (x3) = 2− 0.8 exp

(
−
(

x3 − 0.35
0.25

)2
)
− exp

(
−
(

x3 − 0.85
0.03

)2
)

;

G (x) =
n

∑
j=4

(
10 + x2

j − 10 cos
(
4πxj

))
;

S (x1, x2) = 10−
√

x1 −
√

x2. (A-11)

The third objective function of this test problem is not differentiable at x1 = 0 and at
x2 = 0. We, therefore, consider ε ≤ x1, x2 ≤ 1, where ε is a very small positive value.
Throughout this work, we consider ε = 1.0× 10−06. For this test problem, following
holds true.

∂ f1(x)
∂x1

= 1;

∂ f1(x)
∂xj

= 0, j = 2, 3, · · · , n;

∂ f2(x)
∂x2

= 1;

∂ f2(x)
∂xj

= 0, j = 1, 3, 4, · · · , n;

∂ f3(x)
∂xj

=
∂H(x3)

∂xj
· (G(x) + S(x1, x2))+

+ H(x3) ·
(

∂G(x)
∂xj

+
∂S(x1, x2)

∂xj

)
, j = 1, 2, · · · , n;

∂H(x3)

∂xj
= 0, j = 1, 2, 4, 5, · · · , n;

∂H(x3)

∂x3
=

128
5

(x3 − 0.35) exp

(
−
(

x3 − 0.35
0.25

)2
)
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+
20000

9
(x3 − 0.85) exp

(
−
(

x3 − 0.85
0.03

)2
)

;

∂G(x)
∂xj

= 0, j = 1, 2, 3;

∂G(x)
∂xj

= 2xj + 40π sin(4πxj), j = 4, 5, · · · , n;

∂S(x1, x2)

∂xj
= − 1

2√xj
, j = 1, 2;

∂S(x1, x2)

∂xj
= 0, j = 3, 4, · · · , n. (A-12)

B Supplementary Figures

(a) AWGN (b) MN

Figure A-1: MoD[·, ·]-versus-S(·) plots of the obtained type I robust solutions with δ =
0.010 (σ = 5.7735× 10−03) for (a) AWGN and (b) MN. The search process considered
uniform noise.
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(a) δ = δ2 = 0.008

(b) δ = δ3 = 0.009 (c) δ = δ4 = 0.010

Figure A-2: Scatter plots of the obtained solutions on TP1 using Approach I for uni-
form noise with (a) δ = δ2 = 0.008, (b) δ = δ3 = 0.009, and (c) δ = δ4 = 0.010.
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(a) δ = δ2 = 0.008

(b) δ = δ3 = 0.009 (c) δ = δ4 = 0.010

Figure A-3: Three-dimensional stem plots of the obtained solutions on TP1 using Ap-
proach I for uniform noise with (a) δ = δ2 = 0.008, (b) δ = δ3 = 0.009, and (c)
δ = δ4 = 0.010.
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(a) δ = δ1 = 0.007 (σ = 4.0415× 10−03) (b) δ = δ2 = 0.008 (σ = 4.6188× 10−03)

(c) δ = δ3 = 0.009 (σ = 5.1962× 10−03) (d) δ = δ4 = 0.010 (σ = 5.7735× 10−03)

Figure A-4: Scatter plots of the obtained solutions on TP1 using Approach I for AWGN
with (a) δ = δ1 = 0.007 (σ = 4.0415× 10−03), (b) δ = δ2 = 0.008 (σ = 4.6188× 10−03),
(c) δ = δ3 = 0.009 (σ = 5.1962× 10−03), and (d) δ = δ4 = 0.010 (σ = 5.7735× 10−03).



134 B. Supplementary Figures

(a) δ = δ1 = 0.007 (σ = 4.0415× 10−03) (b) δ = δ2 = 0.008 (σ = 4.6188× 10−03)

(c) δ = δ3 = 0.009 (σ = 5.1962× 10−03) (d) δ = δ4 = 0.010 (σ = 5.7735× 10−03)

Figure A-5: Three-dimensional stem plots of the obtained solutions on TP1 using Ap-
proach I for AWGN with (a) δ = δ1 = 0.007 (σ = 4.0415× 10−03), (b) δ = δ2 = 0.008
(σ = 4.6188× 10−03), (c) δ = δ3 = 0.009 (σ = 5.1962× 10−03), and (d) δ = δ4 = 0.010
(σ = 5.7735× 10−03).
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-6: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP1 using Approach I with Taylor approximation for AWGN.

(a) Scatter plot (b) Three-dimensional stem plot

Figure A-7: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP1 using Approach I for AWGN with δ = 1.0× 10−06 (σ = 5.7735× 10−07).
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(a) Taylor Approximation (b) δ = 1.0× 10−05 (σ = 5.7735× 10−06)

(c) δ = 1.0× 10−04 (σ = 5.7735× 10−05) (d) δ = 2.0× 10−04 (σ = 1.1547× 10−04)

(e) δ = 5.0× 10−04 (σ = 2.8868× 10−04) (f) δ = 1.0× 10−03 (σ = 5.7735× 10−04)

Figure A-8: Three-dimensional stem plots of the solutions corresponding to the PF
of TP1 for AWGN with (a) Taylor approximation, (b) δ = 1.0× 10−05 (σ = 5.7735×
10−06), (c) δ = 1.0× 10−04 (σ = 5.7735× 10−05), (d) δ = 2.0× 10−04 (σ = 1.1547×
10−04), (e) δ = 5.0× 10−04 (σ = 2.8868× 10−04), and (f) δ = 1.0× 10−03 (σ = 5.7735×
10−04).
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Figure A-9: MoD[·, ·]-versus-S(·) plot of the obtained solutions for AWGN on TP1 with
δ = δ4 = 0.010.

(a) δ = δ1 = 0.007 (σ = 4.0415× 10−03) (b) δ = δ2 = 0.008 (σ = 4.6188× 10−03)

(c) δ = δ3 = 0.009 (σ = 5.1962× 10−03) (d) δ = δ4 = 0.010 (σ = 5.7735× 10−03)

Figure A-10: Scatter plots of the obtained solutions on TP1 using Approach I for MN
with (a) δ = δ1 = 0.007 (σ = 4.0415× 10−03), (b) δ = δ2 = 0.008 (σ = 4.6188× 10−03),
(c) δ = δ3 = 0.009 (σ = 5.1962× 10−03), and (d) δ = δ4 = 0.010 (σ = 5.7735× 10−03).
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(a) δ = δ1 = 0.007 (σ = 4.0415× 10−03) (b) δ = δ2 = 0.008 (σ = 4.6188× 10−03)

(c) δ = δ3 = 0.009 (σ = 5.1962× 10−03) (d) δ = δ4 = 0.010 (σ = 5.7735× 10−03)

Figure A-11: Three-dimensional stem plots of the obtained solutions on TP1 using
Approach I for MN with (a) δ = δ1 = 0.007 (σ = 4.0415× 10−03), (b) δ = δ2 = 0.008
(σ = 4.6188× 10−03), (c) δ = δ3 = 0.009 (σ = 5.1962× 10−03), and (d) δ = δ4 = 0.010
(σ = 5.7735× 10−03).
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-12: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP1 using Approach I with Taylor approximation for MN.
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(a) δ = δ5 = 0.004 (b) δ = δ6 = 0.005

(c) δ = δ7 = 0.006 (d) δ = δ1 = 0.007

Figure A-13: Scatter plots of the obtained solutions on TP2 using Approach I for uni-
form noise with (a) δ = δ5 = 0.004, (b) δ = δ6 = 0.005, (c) δ = δ7 = 0.006, and (d)
δ = δ1 = 0.007.
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(a) δ = δ5 = 0.004 (b) δ = δ6 = 0.005

(c) δ = δ7 = 0.006 (d) δ = δ1 = 0.007

Figure A-14: Three-dimensional stem plots of the obtained solutions on TP2 using
Approach I for uniform noise with (a) δ = δ5 = 0.004, (b) δ = δ6 = 0.005, (c) δ = δ7 =
0.006, and (d) δ = δ1 = 0.007.
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(a) δ = δ5 = 0.004 (σ = 2.3094× 10−03) (b) δ = δ6 = 0.005 (σ = 2.8868× 10−03)

(c) δ = δ7 = 0.006 (σ = 3.4641× 10−03) (d) δ = δ1 = 0.007 (σ = 4.0415× 10−03)

Figure A-15: Scatter plots of the obtained solutions on TP2 using Approach I for
AWGN with (a) δ = δ5 = 0.004 (σ = 2.3094 × 10−03), (b) δ = δ6 = 0.005
(σ = 2.8868× 10−03), (c) δ = δ7 = 0.006 (σ = 3.4641× 10−03), and (d) δ = δ1 = 0.007
(σ = 4.0415× 10−03).
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(a) δ = δ5 = 0.004 (σ = 2.3094× 10−03) (b) δ = δ6 = 0.005 (σ = 2.8868× 10−03)

(c) δ = δ7 = 0.006 (σ = 3.4641× 10−03) (d) δ = δ1 = 0.007 (σ = 4.0415× 10−03)

Figure A-16: Three-dimensional stem plots of the obtained solutions on TP2 using
Approach I for AWGN with (a) δ = δ5 = 0.004 (σ = 2.3094× 10−03), (b) δ = δ6 = 0.005
(σ = 2.8868× 10−03), (c) δ = δ7 = 0.006 (σ = 3.4641× 10−03), and (d) δ = δ1 = 0.007
(σ = 4.0415× 10−03).
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-17: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP2 using Approach I with Taylor approximation for AWGN.
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(a) δ = δ5 = 0.004 (σ = 2.3094× 10−03) (b) δ = δ6 = 0.005 (σ = 2.8868× 10−03)

(c) δ = δ7 = 0.006 (σ = 3.4641× 10−03) (d) δ = δ1 = 0.007 (σ = 4.0415× 10−03)

Figure A-18: Scatter plots of the obtained solutions on TP2 using Approach I for MN
with (a) δ = δ5 = 0.004 (σ = 2.3094× 10−03), (b) δ = δ6 = 0.005 (σ = 2.8868× 10−03),
(c) δ = δ7 = 0.006 (σ = 3.4641× 10−03), and (d) δ = δ1 = 0.007 (σ = 4.0415× 10−03).
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(a) δ = δ5 = 0.004 (σ = 2.3094× 10−03) (b) δ = δ6 = 0.005 (σ = 2.8868× 10−03)

(c) δ = δ7 = 0.006 (σ = 3.4641× 10−03) (d) δ = δ1 = 0.007 (σ = 4.0415× 10−03)

Figure A-19: Three-dimensional stem plots of the obtained solutions on TP2 using
Approach I for MN with (a) δ = δ5 = 0.004 (σ = 2.3094× 10−03), (b) δ = δ6 = 0.005
(σ = 2.8868× 10−03), (c) δ = δ7 = 0.006 (σ = 3.4641× 10−03), and (d) δ = δ1 = 0.007
(σ = 4.0415× 10−03).
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-20: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP2 using Approach I with Taylor approximation for MN.

(a) Scatter plot (b) Three-dimensional stem plot

Figure A-21: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP3 using Approach I for uniform noise with δ = δ8 = 0.030.
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-22: (a) Scatter plots and (b) three-dimensional stem plots of the obtained
solutions on TP3 using Approach I for AWGN with δ = δ8 = 0.030 (σ = 1.7321×
10−02).

(a) Scatter plot (b) Three-dimensional stem plot

Figure A-23: (a) Scatter plot and (a) three-dimensional stem plot of the obtained solu-
tions on TP3 using Approach I with Taylor approximation for AWGN.
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-24: (a) Scatter plot and (b) three-dimensional stem plots of the obtained so-
lutions on TP3 using Approach I for MN with δ = δ8 = 0.030 (σ = 1.7321× 10−02).

(a) Scatter plot (b) Three-dimensional stem plot

Figure A-25: Scatter plots and three-dimensional stem plots of the obtained solutions
on TP3 using Approach I with Taylor approximation for MN.
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-26: (a) Scatter plot and (b) three-dimensional stem plots of the obtained so-
lutions on TP4 using Approach I for uniform noise with δ = δ8 = 0.030.

(a) Scatter plot (b) Three-dimensional stem plot

Figure A-27: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP4 using Approach I for AWGN with δ = δ8 = 0.030 (σ = 1.7321× 10−02).
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-28: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP4 using Approach I with Taylor approximation for AWGN.

(a) Scatter plot (b) Three-dimensional stem plot

Figure A-29: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP4 using Approach I for MN with δ = δ8 = 0.030 (σ = 1.7321× 10−02).
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-30: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP4 using Approach I with Taylor approximation for MN.
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(a) AWGN with δ = δ4 = 0.010 (σ = 5.7735×
10−03) (b) With approximation for AWGN

(c) MN with δ = δ4 = 0.010 (σ = 5.7735 ×
10−03) (d) With approximation for MN

Figure A-31: Four dimensional scatter plots of the obtained solutions on TP5 using
Approach I, when (a) AWGN with δ = δ4 = 0.010 (σ = 5.7735× 10−03), (b) Taylor
approximation for AWGN, (c) MN with δ = δ4 = 0.010 (σ = 5.7735× 10−03), and (d)
Taylor approximation for MN are investigated. The fourth dimension is represented
using colors.



154 B. Supplementary Figures

(a) Uniform noise with δ = δ8 = 0.030
(b) AWGN with δ = δ8 = 0.030 (σ = 1.7321×
10−02)

(c) With approximation for AWGN
(d) MN with δ = δ8 = 0.030 (σ = 1.7321 ×
10−02)

(e) With approximation for MN

Figure A-32: Four dimensional scatter plots of the obtained solutions on TP6 us-
ing Approach I, when (a) uniform noise with δ = δ8 = 0.030, (b) AWGN with
δ = δ8 = 0.030 (σ = 1.7321× 10−02), (c) Taylor approximation for AWGN, (d) MN
with δ = δ8 = 0.030 (σ = 1.7321× 10−02), and (e) Taylor approximation for MN are
investigated. The fourth dimension is represented using colors.
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-33: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP1 using Approach II for uniform noise with δ = δ4 = 0.010.

Figure A-34: Three-dimensional stem plot of the obtained solutions on TP1 using Ap-
proach II for AWGN with δ = δ4 = 0.010 (σ = 5.7735× 10−03).
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-35: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP1 using Approach II with Taylor approximation for AWGN.

Figure A-36: Three-dimensional stem plot of the obtained solutions on TP1 using Ap-
proach II for MN with δ = δ4 = 0.010 (σ = 5.7735× 10−03).
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(a) Scatter plot (b) Three-dimensional stem plot

Figure A-37: (a) Scatter plot and (b) three-dimensional stem plot of the obtained solu-
tions on TP1 using Approach II with Taylor approximation for MN.
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