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Chapter 1

INTRODUCTION

The last decade witnessed huge advancement and wide applications of Wireless Sensor

Networks (WSNs). WSNs are used in a variety of areas, including but not limited to,

military surveillance [1], battlefield monitoring [2], health care [3], geological survey [4],

criminology [5] and environment monitoring [6]. WSNs are mainly task-oriented networks

with the objective of obtaining and transmitting information of interest. WSNs consist of

ten to thousands of sensor nodes, which are low powered, and have limited processing and

storage capacity. Sensor nodes sense and obtain relevant information (e.g. temperature,

humidity, event occurrence etc.) and then transmit it to the sink of the network via wireless

multi-hop routing. The sink is also known as base station, and it is a high-powered device

linked to databases via satellite links [7].

WSNs can be used either for discrete time, or for continuous time monitoring. For a dis-

crete time WSN, the time points t1, t2, . . . , tk, are integers, and for a continuous time WSN

the time points are real numbers. The quantity being measured is usually continuous, e.g.

room temperature, humidity etc. However, sensor nodes consume more energy for collect-

ing, storing, and relaying continuous measurements over time. Since energy conservation is

always desirable [8], sometimes sensor nodes are configured in such a way that they collect

continuous measurements, and then based on some prefixed threshold value, the nodes store

binary responses only (e.g. normal/abnormal). The nodes transmit these binary outcomes

to the base station dynamically. Sometimes sensor nodes collect measurements at each time
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point, but store and transmit “important” information (e.g. event based, or query based)

only to the base station [9,10]. WSNs that employ such protocols are energy efficient.

Reliable data delivery is the fundamental goal of WSNs [11]. However, reliability of

data delivered can be affected by several factors, for example, node failure, presence of

anomalous node(s), lack of proper communication, defective or disturbed communication

mechanism etc. Such challenges motivated the researchers to explore further works in

the areas of efficient network design, reliability checking, state estimation, and anomaly

detection. The issues and challenges related to network design for WSNs are discussed in

Hac [12], Fischione et al. [13], Lazaropoulos [14], Gupta and Sikka [15] and the references

therein. A number of recent articles proposed reliability analysis of WSNs under different

model settings. Examples include Zhu et al. [16], Mahmood et al. [17], Silva et al. [18],

Damaso et al. [19], Zhu et al. [20], and the references therein. Because of their wide area

of applications, it is extremely important to develop energy efficient and reliable WSNs.

Many real applications of WSNs are based on state estimation. However, most of the

works on state estimation are based on the traditional state-space models [21]. State es-

timation is a statistical problem and has wide applications in a variety of areas (such as

physiological signal processing [22] and target tracking [23] etc.). The need for powerful

statistical models, which can be used for efficient state estimation and for subsequent appli-

cations in WSNs has motivated the author to carry out the work presented in this thesis. In

this thesis work, novel linear statistical models are proposed for state estimation, anomaly

detection, and time synchronization for discrete-time WSNs. The author would like to em-

phasize that the proposed approach of anomaly detection and time synchronization is based

on statistical models and can be used in a variety of other applications of WSNs as well.

Some of the fundamental concepts of state estimation and time synchronization methods

used in WSNs are discussed below.

For any dynamic system, ‘state’ refers to the smallest vector that fully summarizes the

“past” of the system. In the context of WSNs, it may be noted that for a particular sensor

node one may have measurements say, x1, x2, . . . , xt, till time point t. Based on these t
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measurements, the measurement for time point (t+1) is predicted, and the predicted value,

denoted by x̂t+1, will be called ‘state’ of the sensor node at time (t + 1). For estimating

state of a dynamic system, traditionally state-space models are used in the literature. State-

space models assume that ‘true’ state of the system at time t, denoted by xt, is latent (i.e.

unobserved), and can be modelled as the following:

xt = ft(xt−1, vt−1) (1.1)

where vt−1 denotes the random noise and ft is a time-dependent mathematical function

(possibly non-linear) describing the evaluation of states. Since ‘true’ state is latent, a

measurement process is assumed in which ‘true’ state is obtained from noisy measurements

zt as the following:

zt = ht(xt, nt) (1.2)

where the time-dependent function ht defines measurement process and nt denotes random

noise. Under linearity of ft and ht, and under the assumption of Gaussian distribution for

noise terms vt and nt (at each time point t), the estimation method becomes simpler and

is known as Kalman Filter (KF). Thus, the state-space model for KF can be written as the

following [24]:

xt = Ftxt−1 + vt−1; zt = Htxt + nt

Here Ft and Ht are process and measurement matrices, respectively; and the noise terms

vt−1 and nt are assumed to be Gaussian with mean=0, and unknown but fixed variances.

In this thesis work, dynamic linear statistical model for state estimation is proposed,

and efficiency of this model is compared to the traditional KF based state space models. An

alternative Bayesian model is also proposed, which can efficiently estimate the state values

over time. In recent years, Bayesian statistics is playing a key role in various disciplines.

The popularity of Bayesian statistics is due to the specification of “prior” information avail-

able from the previous study or provided by some domain experts. Such prior data are

combined with observed measurements from the designed experiment, and then “posterior”
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inference is made. Posterior inferences are powerful since the prior and the experimental

data are used together for such inferences. Detailed discussion on Bayesian modelling and

estimation method can be found in Robert and Casella [25]. Further, in this thesis, some

in-depth discussion of Bayesian models in the context of state estimation and time synchro-

nization techniques has been provided in subsequent chapters.

The work presented in this thesis is organized in different chapters, and is summarized

as the following:

Chapter 2 presents a novel anomaly detection method based on the estimated state

values of the sensor nodes. The proposed model is fundamentally different from the previous

works and powerful for state estimation. In the proposed method, a novel dynamic regres-

sion model which allows “exchange of the relevant information” among the spatially close

nodes belonging to the same cluster has been used. The author developed an algorithm for

locating the possible anomalous node(s) in the network and thus enhanced the reliability

of the network. Detection of anomalous node is important in many applications of WSNs,

since an anomalous node may destroy the network communication. Because the state esti-

mation and anomaly detection are closely related, a powerful model for state estimation is

arguably very important for intruder detection. A simple algorithm of anomaly detection

through splitting and merging of the clusters is illustrated.

Next, an alternative Bayesian model is proposed for state estimation. Then perfor-

mances of (i) Maximum Likelihood (ML) based regression model (ii) Proposed Bayesian

method and (iii) KF based state-space model are compared. Based on the simulation stud-

ies, it is found that proposed Bayesian method is more appealing since it is computationally

faster (less CPU time for state estimation) and provides the smallest Average Mean Squared

Error (AMSE) compared to the other two methods.

The proposed approach is powerful since it considers the effect of the nearest neighbours

on the current state values and then detects the anomalous nodes based on the estimated
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state values. Additionally, the proposed method is “energy efficient” in the sense that some

sensor nodes can be kept in sleep node for sometime but still one can impute those missing

values quite accurately for effective inference. This process of imputation has been numer-

ically assessed and presented in this chapter.

Chapter 3 presents a non-parametric Bayesian approach for simultaneous state esti-

mation and anomaly detection. Here also, a cluster-based WSN, similar to the setting in

Chapter 2, is used. However, in Chapter 2, it is assumed that the clusters are indepen-

dent and do not share any information among them and the information exchange takes

place only among the sensor nodes within a particular cluster. However, more realistic

and powerful approach is to consider information exchange among the sensor nodes belong-

ing to different clusters as well. Hence, in Chapter 3, a dynamic model is proposed for

simultaneous state estimation of all sensor nodes across different clusters over time.

In non-parametric Bayesian literature, Dirichlet Process (DP) priors are often used for

information sharing [26,27,28]. While DP can allow information exchange among different

clusters effectively, one of the recent developments of DP is Matrix Stick-Breaking Process

(MSBP) proposed by Dunson et al. [29]. MSBP considers all the model parameters from all

clusters, and then ‘group’ them based on their numerical values estimated from the avail-

able data. The author first considered cluster-specific dynamic models for state estimation

across different clusters of the network, and then assumed MSBP prior distribution on the

model parameters. The author also assessed the similarity of different parameters across the

clusters. This approach can locate anomalous node in the network more effectively since all

the clusters are properly linked to each other. Through simulation studies, the usefulness of

the proposed approach has been compared and assessed with the traditional approach i.e.

state-space model via KF [24]. Finally, application of the proposed approach in anomaly

detection is demonstrated through simulation studies.

Chapter 4 presents a powerful statistical model for time synchronization in a discrete-
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time WSN. Time synchronization is extremely important in WSNs for efficient network

communication. There is a rich literature on this, and different protocols (for example,

Receiver-Only Synchronization (ROS) [30], Reference Broadcast Synchronization (RBS)

[31], Flooding Time Synchronization protocol (FTSP) [32] have been proposed in the litera-

ture for efficient time synchronization in WSNs. Most of these protocols are based on linear

statistical model proposed in Noh et al. [30], where Ordinary Least Squares (OLS) esti-

mates are used for estimating the clock-offset, and clock-skew parameters. All the existing

approaches assume that the set of time readings between a pair of nodes are uncorrelated,

which might not be true in real applications. Since the readings are taken from the same

pair of nodes at different time points, it is expected that these time readings will be corre-

lated over time. Hence, the author considered the model proposed in Noh et al. [30], but

additionally considered an auto-regressive model for capturing dependence among the ran-

dom components over different time points. In the proposed approach, model parameters

are estimated iteratively by Generalized Least Squares (GLS) method.

Further, an alternative Bayesian model is proposed for time synchronization of WSNs.

The effective use of the prior distributions makes Bayesian approach powerful and computa-

tionally fast. Through simulation studies, the accuracy of the proposed estimation method

is assessed. Then the three methods: (i) traditional approach of OLS as proposed in Noh

et al. [30], (ii) GLS method, and (iii) Proposed Bayesian method, are compared in terms

of computational time and AMSE through computer simulations. It is inferred that GLS

method works better than OLS method, however Bayesian method outperforms other two

methods since it provides the smallest AMSE, and works much faster.

It may be noted that the works presented in this thesis are carried out with the objective

of anomaly detection through state estimation for discrete-time WSNs. Anomaly detection

can be performed in many different approaches in practice, but the author has proposed a

Statistical method, which detects anomaly through dynamic state estimation. For a cluster-

based network, one has to estimate the state value for each sensor node, and also has to
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estimate the state value for each cluster. Mathematical models have been proposed for such

estimation in this thesis. For the state estimation of the sensor nodes, time-synchronization

is an important aspect. Otherwise, the estimated state values will not provide necessary

information for detecting the anomalous node dynamically. Therefore, a Statistical model

for time-synchronization has also been proposed. Thus, for all practical applications of

anomaly detection, time synchronization, state estimation and anomaly detection happen

in order.

Finally in Chapter 5, the whole work carried out in this thesis is summarized in a

concise manner with some concluding remarks. The citations of the research paper published

in support of various chapter of the thesis are included as a footnote at the relevant chapters.

Finally, the list of publications consulted in carrying out the present research work and also

in preparing the thesis is included in the Bibliography.





Chapter 2

STATE ESTIMATION AND

ANOMALOUS NODE DETECTION IN

WIRELESS SENSOR NETWORKS

2.1 Preamble

Wireless Sensor Networks (WSNs) consist of a mass of sensor nodes distributed over a

physical space for monitoring the environmental conditions, such as, temperature, pressure,

humidity, acoustics, resonance etc. In recent years, researchers are interested in developing

mathematical models for WSNs due to extensive applications of WSNs in various fields in-

cluding but not limited to habitat monitoring [33], object tracking [34], event detection [35],

intruder locating [36] etc. In medical science [37], security surveillance [5], pattern recog-

nition [39] and many other fields, WSNs are used successfully for inference and decisions

making.

Most of the above applications of WSNs mainly depend on the accuracy and precision

related to the estimation of the “state values” of different sensor nodes. It may be noted that

the term “state” in the context of WSNs is quite subjective in the sense that it depends on

the ultimate goal of the study, and the quantity being measured from the sensor nodes over

time. Specifically, the state of a sensor node at time t is estimated based on the available
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measurements till time (t − 1). “State” of a sensor node thus can be continuous (e.g. air

pressure, humidity etc.) as well as binary (e.g. occurrence of an event). However, WSNs

with continuous state values are considered in this study.

In a purely probabilistic framework, Liang et al. [40] proposed models for distributed

state estimation of discrete-time WSNs. Similar models are proposed by Xu and Li [41].

Sun et al. [42] proposed a very powerful model for state estimation of multiple mobile

targets. Quevedo et al. [43] proposed models which can efficiently estimate the states of

WSNs with correlated wireless fading channels. Mo et al. [31] proposed a model which

can handle the false data injection attacks in state estimation of sensor networks. Since

there are several resource constraints in WSNs, anomaly detection using state estimation

becomes very essential for reliable networks.

This chapter focuses on a statistical model based state estimation approach, which can

be used effectively in detecting one or more possible anomalous nodes in WSNs. Anoma-

lous nodes are those nodes, which behave differently from the majority of the sensor nodes

within a cluster. Detection of anomalous node is important because such nodes might have

detrimental effects on the surrounding sensors and thus may affect the performance of the

entire network over time [44,45]. Analysis of sensor measurements is very important for

anomaly detection in WSNs. The presence of anomaly is confirmed when one (or more)

sensor node(s) behaves differently from the majority of the sensor nodes [46]. However, sen-

sor measurements contain spatio-temporal correlations. Since the sensor nodes are densely

deployed, spatial correlation exists among the neighbouring sensor nodes. Temporal corre-

lation occurs due to predictable relationship that exists in sequential measurements of the

sensor nodes.

Detection of anomalous node in wireless body area networks enable real time global

patient and health care monitoring [47]. Sun et al. [48] used Extended Kalman Filter

(EKF) for detecting the false injected data from the anomalous behaviour of the sensor

nodes. Rajasegarar et al. [49] used distributed one-class quarter-sphere support vector

machines to distinguish anomalous measurements from the obtained data.
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There is a rich literature on object tracking usingWSNs, one such example is discussed in

[34]. But relatively few papers are available on anomalous node detection. Almost all these

papers [49-51] detect an anomalous node based on its relative performance compared to

the neighbouring sensor nodes. A novel anomaly detection method based on the estimated

state values of the sensor nodes has been proposed in this chapter. Most of the state

estimation methods rely on state-space models based on Kalman Filter (KF) or stochastic

differential equations [43,52,53]. The proposed model is fundamentally different from the

previous works and powerful for state estimation of discrete-time WSNs. In the proposed

scheme, a novel dynamic regression model has been used which allows the “exchange of

the relevant information” among the spatially close nodes. Since, information exchange is

inevitable in any network, the models for state estimation should consider this appropriately

for reliable state estimation. Maximum Likelihood (ML) estimation method has been used

for estimation and related inferential properties.

In recent years, there is a growing interest in Bayesian models and estimating the model

parameters by Markov Chain Monte Carlo (MCMC). Hence, Bayesian model is also used in

this study for state estimation using MCMC. Based on the simulation studies, it is found

that Bayesian estimation method is more appealing because of its ability to handle complex

models in relatively less time. Further, computations based on MCMC are much faster than

the traditional ML estimation [54]. We also assess the effectiveness of our proposed anomaly

detection technique by computing False Positive Rate (FPR) [55] as shown in section 2.4.3.

The current chapter has two major contributions:

• First, a novel dynamic statistical model has been proposed for state estimation, which

allows appropriate information exchange among spatially close sensors. An algorithm has

been developed for locating the possible anomalous node(s) in the network which enhances

reliability of the WSN.

• Second, in addition to the traditional ML method for state estimation, a Bayesian model

has been proposed as an alternative method for estimating the state values. Then the

performances of (i) regression model based on ML estimation (ii) Bayesian model based
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Figure 2.1: Cluster based distributed wireless sensor network

on MCMC and (iii) state-space model based on KF are compared. It has been found that

MCMC based Bayesian method takes less CPU time for state estimation and provides less

Average Mean Squared Error (AMSE).

The findings of this chapter has been published in a research paper. 1

2.2 Method of Longitudinal State Estimation

Consider a particular WSN consisting of N sensor nodes with one or more anomalous nodes.

For each sensor node, the state values are estimated longitudinally at T different discrete

time points 1, 2, . . . , T . At each time point t, the state value of the i-th sensor is denoted by

Xi(t), which is communicated to the ‘sink’ of the network. Let (θi, δi) be the coordinates

of the i-th sensor node, i = 1, 2, . . . N . The Euclidean distance between the sensor i and

the sensor j is denoted by Dij . Based on the Dij values, the sensor nodes are “grouped”

into several clusters so that the sensors belonging to same cluster are spatially close to each

other. In Figure 2.1, a cluster based distributed WSN is shown.

1A. Chatterjee, P. Venkateswaran, et.al, “A unified approach of simultaneous state estimation and
anomalous node detection in distributed wireless sensor networks”, International Journal of Communica-
tion Systems, Vol 30, Issue 9, June 2017.
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2.2.1 Linear Statistical Model for State Estimation

Traditionally, state space models are used in the state estimation of WSNs [43,52,53]. In

state-space models, the state values yi’s are modelled as a function of the unknown states

xi’s and then auto-regressive models are used for the unknown states. Mathematically, one

can summarize a state-space model as :

yi|xi = f(xi) + di; xi|xi−1 = g(xi−1) + ei

where di and ei denote the observation error and system error, respectively. The functions

f and g are assumed to be linear and errors are assumed to be Gaussian for estimating the

parameters via KF. However, such models do not consider information exchange among the

sensor nodes which are spatially close to each other. In any network, information exchange

is inevitable and must be taken into account. Considering this, the author proposes the

following linear model for estimating the state values of the sensor nodes at different discrete

time points:

Xi(t) = f(t) + αXi(t− 1) + βZi(t− 1) + ǫi(t) (2.1)

whereXi(t) denotes the state value of the i-th sensor node at time t belonging to a particular

cluster. The smooth function (at least twice differentiable) f measures the general effect

of time on the current state value and Zi(t− 1) is the average state values of all the other

sensors belonging to that cluster at time (t− 1). Also, Xi(t− 1) is the observed state value

of the i-th sensor at time (t − 1). The regression coefficients α and β measure the effect

of the immediate predecessor state value and the effect of the nearest neighbours on the

current state value, respectively. The residual errors ǫi(t)’s are assumed to be independent

and follow a Gaussian distribution with mean=0 and unknown variance=σ2ǫ .

It may be noted that the proposed model in equation (2.1) is fundamentally different

from the commonly used state-space model like KF described earlier in Chapter 1 using

equations (1.1) and (1.2), and also in the previous paragraph [21-24]. In state-space models

there are two errors: observation error and system error. But in the proposed model there is

only one error component, i.e. the residual error, which is basically the measurement error.
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Also in the proposed model the coefficient β measures the effect of the nearest neighbours

on the current state value and the covariate Z allows the information sharing among the

sensor nodes belonging to the same cluster. However, traditional state-space models do not

allow this.

The motivation of the model given in equation (2.1) is as follows: The state value of a

particular sensor is updated over time. The general effect of time, f(t), explains how much

of this change is due to time. It is noted that the state values of a particular sensor node

can possibly be affected by many unobserved time-varying covariates. The effects of those

covariates are captured in the smooth function f . Also the current state value (at time t)

of a sensor node should depend on its state value at time (t− 1), and this makes the model

dynamic in nature. The state value of a particular sensor node at time t is expected to be

affected by the state values of its nearest neighbours at time (t − 1). This effect will be

reflected in the estimate of β. A statistically significant value of β indicates that the sensor

nodes share information at each time point and accordingly update the state values at the

next time point.

The significance for using the above linear regression model is summarized below:

• To capture the neighbourhood effect which allows exchange of relevant information

among the spatially close nodes.

• To incorporate suitable prior structure for the coefficients as discussed in section 2.3.1.

• To estimate the regression coefficients in much shorter time as shown in section 2.4.3.

The proposed model can also estimate the missing observations in WSNs. In WSNs,

sometimes few sensor nodes are reserved in “sleep mode” for a certain period for energy

conservation [38]. This model can be used for estimating the missing state values and

thus effectively estimates the state of the network. This property of the proposed model is

demonstrated in Section 4.
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2.2.2 Joint Likelihood and Parameter Estimation

The smooth function f can be modelled in various parametric or non-parametric approaches

like polynomial functions, wavelets, B-splines, Penalized splines, orthogonal Legendre poly-

nomials etc. [56-57]. Here for the sake of simplicity, the author uses polynomial function

for modelling f . In other words, it is assumed that f(t) = a0 + a1t+ a2t
2 + . . .+ apt

p.

The optimal order (p) of the polynomial function is traditionally obtained from the

information criteria like Akaike Information Criterion (AIC)=−2logL + 2P ∗ and Bayesian

Information Criterion (BIC)=−2logL+ log(n)P ∗, where L denotes the joint likelihood func-

tion discussed later, P ∗ denotes the total number of model parameters that need to be

estimated and n denotes the total number of measurements (in this case n = NT ). The

author fits the model given in equation (2.1) for p = 1, 2, 3, 4, and chooses the optimal order

p for which the smallest AIC and/or BIC values are obtained [56].

Note that because of the Markovian assumption of the model in equation (2.1), the

conditional distribution of Xi(t) given all the previous time points can be expressed as:

l(Xi(t)|t − 1, . . . , 1) = l(Xi(t)|t − 1). Here by ‘given time (t − 1)’ the author essentially

means that ‘given the measurements of all sensors at time (t − 1)’. Thus the conditional

distribution of Xi(t) given all the previous measurements is expressed as:

Xi(t)|t− 1 ∼ Gaussian(f(t) + αXi(t− 1) + βZi(t− 1), σ2ǫ ). Hence,

l(Xi(t)|t− 1) =
1

√

2πσ2ǫ
exp

[

−(Xi(t)− f(t)− αXi(t− 1)− βZi(t− 1))2

2σ2ǫ

]

(2.2)

Note that given all the previous time points, the state values of different sensor nodes

at a fixed time point are independently distributed. The author exploits this conditional

independence property to formulate the joint likelihood function. However, it is noted

that the state values of different sensor nodes at a fixed time point are not marginally

independent.
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The joint likelihood function of all the N sensors for T time points can be expressed as:

L =

N
∏

i=1

[l(Xi(1)l(Xi(2)|1) . . . l(Xi(T )|T − 1)] (2.3)

Hence the joint log-likelihood function is given as:

logL =
N
∑

i=1

[

logl(Xi(1)) +
T
∑

t=2

logl(Xi(t)|t− 1)

]

(2.4)

Model parameters are to be estimated by maximizing the joint log-likelihood function

given in equation (2.4). The author solves the following equations simultaneously to get the

maximum likelihood estimates (MLEs) of the model parameters:

∂logL
∂α = 0, ∂logL

∂β = 0, ∂logL
∂aj

= 0, ∀j = 0, 1, . . . , p

2.2.3 Anomalous Node Detection

Once the model parameters are estimated, one can compute the average state value of each

cluster. Suppose, there are c sensor nodes in a certain cluster, then the average state value of

that cluster at time t will be V (t) = 1
c

c
∑

i=1
X̂i(t), where X̂i(t) = f̂(t)+α̂Xi(t−1)+ β̂Zi(t−1).

Note that “hat” indicates the estimate of the respective parameter or function obtained in

Section 2.2. If the absolute difference between the average state values at two consecutive

time points is consistently below a pre-specified threshold (δ), i.e. if |V (t)− V (t− 1)| < δ,

for all time points, then it is concluded that the cluster under consideration is less dynamic

and hence possibly does not contain the anomalous node. In such situations, one can keep

some of the sensor nodes of this “less dynamic” cluster in sleep mode for a certain period

of time for energy conservation. However, if one observes |V (t) − V (t − 1)| > δ, for few

consecutive time points, it is inferred as a dynamic cluster and possibly contains anomalous

node(s). Note that the choice of the threshold value depends on the desired accuracy level

and application. The author divides a dynamic cluster into two “sub-clusters” and adds

some new sensor nodes to each sub-cluster. These new sensor nodes can be borrowed from

the “less dynamic” clusters or one may redeploy some new sensor nodes. This process is
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Figure 2.2: Locating the anomalous node by repeated splitting and merging of the clusters
and redeployment

continued until one obtains the target node and the state trajectory of this node will be

significantly different from the trajectories of the other nodes. The author detects this node

as an “anomalous node”. Figure 2.2 summarizes this process of anomaly detection and

the same is numerically illustrated in Section 2.4.2. If a network contains more than one

anomalous node, then one simply has to repeat this splitting process for multiple dynamic

sub-clusters and will eventually detect all the anomalous nodes. The author considers this

as a major application of the proposed model.

2.3 Bayesian Approach and MCMC

2.3.1 Model and Priors

Next, the author proposes a Bayesian approach for the state estimation and detection

of the anomalous nodes. The following Bayesian approach is employed and the model

parameters are estimated by MCMC. Consider the linear model for state estimation given

in equation (2.1) where the function f is modelled as a p-th degree polynomial function

of time (f(t) = a0 + a1t + a2t
2 + . . . + apt

p), and the author takes the following prior

Fig_2_6.eps
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distributions for the model parameters:

aj ∼ N(µj, σ
2
j ), j = 0, 1, . . . , p; α ∼ N(µα, σ

2
α), β ∼ N(µβ, σ

2
β) σ

2
ǫ ∼ IG(ν1, ν2) (2.5)

where N stands for normal (Gaussian) and IG stands for inverse gamma distribution. Such

priors will result in conjugacy, i.e. the posterior and prior distribution of each parameter

will belong to the same family.

The joint likelihood function can be written as the following:

L = (2πσ2ǫ )
−NT

2 exp











−

N
∑

i=1
X2

i (1) +E

2σ2ǫ











(2.6)

where E =
N
∑

i=1

T
∑

t=2
[Xi(t)− f(t)− αXi(t− 1)− βZi(t− 1)]2

By using Bayes theorem and assuming the priors for different parameters are indepen-

dent, the joint posterior distribution is given by

π(a, α, β, σ2ǫ |X) ∝ L×
p
∏

j=0

π(aj)× π(α) × π(β)× π(σ2ǫ ) (2.7)

where π(.) denotes the respective prior distribution and a = [a0, a1, . . . , ap]
T .

2.3.2 Full conditionals and Gibbs sampling

For MCMC iterations, the goal is to simulate from the joint posterior distribution and

then estimate the model parameters based on the simulated values. Following Robert and

Casella [18], the author computes the full conditional distribution of the model parameters

and then simulates the parameters from their respective full conditionals.

The full conditional distribution of α is given by:

π(α|a, β, σ2ǫ ,X) = N
(

B−βC−A+D
V1

, V −1
1

)

; where B=

N
∑

i=1

T
∑

t=2
Xi(t)Xi(t−1)

σ2
ǫ

; C=

N
∑

i=1

T
∑

t=2
Xi(t−1)Zi(t−1)

σ2
ǫ

;

A =

p
∑

j=0
aj

(

T
∑

t=2
tjXi(t−1)

)

σ2
ǫ

; D=µα

σ2
α
and V1 =

N
∑

i=1

T
∑

t=2
X2

i (t−1)

σ2
ǫ

+ 1
σ2
α
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values and then using those state values the model parameters are estimated and compared

to the previously estimated parameters with no missing values. In the second study, the

author investigated the effectiveness of the proposed algorithm for detecting anomalous

node in WSNs.

2.4.1 Simulation studies for the estimation of the model parameters and

the missing state values

Consider a distributed WSN consisting of multiple clusters. The number of clusters, how-

ever, depends on the geographical area to be covered and the number of sensor nodes in

each cluster depends on the desired accuracy level and cost. For each cluster, the author

separately fits a model given in equation (2.1) for estimating the state values of the sensor

nodes belonging to that particular cluster. However, for the sake of illustration, the author

considers one cluster containing 10 sensor nodes. For each sensor node, the state values

are measured at 8 discrete time points (t = 1, 2, . . . , 8). Note that the sensor nodes are

densely deployed and thus information exchange happens among these nodes belonging to

a common cluster. In practice, for a more complex network one should ‘group’ the sensor

nodes based on the relative Euclidean distances.

The author uses the following regression model for simulating the state values of the

sensor nodes:

Xi(t) = a0 + a1t+ a2t
2 + αXi(t− 1) + βZi(t− 1) + ǫi(t) (2.8)

The values of (a0, a1, a2), α, and β are chosen as (a0, a1, a2) = (2,−0.6, 1.4), α = 2.5,

β = 1.5. With respect to Table 2.1, these values are considered as true value for the purpose

of simulation. Note that this proposed estimation method does not depend on any specific

set of values for these parameters. For the simulation purpose, the author considers one

set of parameter values and shows the effectiveness of the proposed approach of estimating

the state values corresponding to this particular set of the parameter values. One can

consider a completely different set of parameter values, but still can efficiently estimate



Chapter 2. 22

the corresponding state values. This fact has been verified by the author by choosing

different sets of values for (a0, a1, a2), α, and β. The residual errors ǫi(t)’s are simulated

from Gaussian with mean=0, and variance=1.44; so that the residual error is minimal. Zi

values for each sensor node are obtained by averaging the state values for all the other

nodes at the previous time point. Note that for t=1, there is no Xi and Zi values. For the

simulated data, the author fits the model given in equation (2.1) and selects the optimal

order of the the function f by computing BIC. The smallest BIC is obtained for the second

order polynomial function and then the author estimates the model parameters using the

ML estimation discussed in Section 2.2. The estimated parameters and the corresponding

standard errors are shown in column 3 of Table 2.1.

Table 2.1: Results on the parameter estimation with no missing data and imputed data for
Simulation 1.

Model parameter True value Estimate (no missing data) (SE) Estimate (imputed data) (SE)

a0 2 1.88 (0.98) 1.76(1.12)
a1 -0.6 -0.63 (0.57) -0.54(0.85)
a2 1.4 1.37 (1.06) 1.46(1.33)
α 2.5 2.56 (0.72) 2.1(1.16)
β 1.5 1.48 (0.64) 1.43(1.08)
σ2
ǫ 1.44 1.40 (1.16) 1.32(1.68)

Next, artificial “missingness” is created in the simulated data. At time t = 4, the author

only considers the simulated state values for the first 6 sensor nodes and last 4 nodes are

assumed to give missing values. Also, for the last time point (t = 8), the state values are

simulated for sensors 1,3,6,8 and 10; and for the other nodes the author considers missing

values. For this simulated data, the model parameters are estimated based on the available

data and then the missing values are imputed. After imputation, model (1) is fitted again

and the parameters are re-estimated. The estimated parameters and the corresponding

standard errors are now shown in column 4 of Table 2.1.

It may be noted that the parameter estimates obtained by using the “imputed” missing

values slightly deviate from the true values. In Figure 2.3, the true mean trajectory and the
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Figure 2.3: True mean trajectory, estimated mean trajectory for the complete data and the
imputed data in Simulation 1

estimated mean trajectories from the complete data and the “imputed” data are plotted.

It is noted that for the “imputed” data, the estimated mean trajectory closely follows the

true trajectory. This illustrates the effectiveness of the proposed model and the estimation

method even when some sensor nodes are kept in sleep mode for certain time points.

2.4.2 Simulation study for the detection of anomalous node in WSN

Here the author numerically illustrates the effectiveness of the proposed model for detecting

the anomalous node in WSNs. Similar to the previous simulation study, the author considers

one cluster of a distributed WSN consisting of 4 sensor nodes denoted by node 1, 2, 3 and

4, respectively. Consider node 3 is an anomalous node and simulate the state values for the

other nodes at 5 consecutive time points from the following model:

Xi(t) = a0 + a1t+ αXi(t− 1) + βZi(t− 1) + ǫi(t) (2.9)

where (a0, a1) = (2,−0.6), α = 1.8, β = 2.3. The values chosen for (a0, a1), and (α, β) are as

per the assumptions for simulation using equation (2.8) given in Section 2.4.1. The residual

Fig_2_8.eps
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errors ǫi(t)’s are simulated from Gaussian distribution with mean=0, and variance=1.21, to

ensure that the residual errors close to 0.

However, for node 3, the state values are simulated from the following model:

Xi(t) = αXi(t− 1) + ǫi(t) (2.10)

where α = 0.85, and the residual errors ǫi(t)’s are simulated from Gaussian distribution

with mean=0, and variance=25. Note that this setting ensures that the node 3 is behaving

differently from the rest of the sensor nodes in the cluster with larger residual errors over

time.

For the above simulated dataset, the author first fits the model as proposed in equation

(2.1) and then computes the average state values at each time point. In Table 2.2, absolute

differences |V (t)−V (t−1)| are shown and it is noted that the network is dynamic in nature.

The author has chosen the acceptance limit δ = 4.0 in this model. It may be noted that

the value of δ depends on desired accuracy and the nature of application.

As explained in Section 2.2.3, in order to identify the anomalous node, the author splits

the cluster into two sub-clusters by keeping nodes 1 and 2 in one group and nodes 3 and

4 in the other. In Table 2.2, it is noticed that sub-cluster 2 (consisting of nodes 3,4) is

more dynamic in nature and hence it is decomposed into two finer sub-clusters again, each

containing only one node. Now, it is noticed that node 3 is giving more dynamic state

values than node 4 and hence it is marked as the “anomalous node”. Thus it is seen that

the method “correctly” identifies the anomalous node in the network and hence can be used

in real applications.

Table 2.2: Absolute mean difference |V (t)−V (t−1)| at successive time points for detecting
anomalous node in Simulation 2.

after the first splitting after the second splitting
Time Before splitting cluster 1 (node 1,2) cluster 2 (node 3,4) cluster 1 (node 3) cluster 2 (node 4)

1 - - - - -
2 4.35 0.254 4.72 7.54 0.523
3 4.98 0.326 6.59 8.63 0.761
4 6.72 0.188 7.38 4.99 0.482
5 8.94 0.427 5.92 8.84 0.307
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2.4.3 Simulation Studies for Model Comparisons

Parameter Estimation

Consider a simple WSN with 15 sensor nodes where all these sensors are spatially close to

each other and are kept in a single cluster. The continuous state values for each sensor node

is measured at 10 different discrete time points. The author uses the following expanded

regression model as per equation (2.1) for simulating the state values of the sensor nodes:

Xi(t) = a0 + a1t+ a2t
2 + αXi(t− 1) + βZi(t− 1) + ǫi(t) (2.11)

where (a0, a1, a2) = (1.5,−0.78, 2.18), α = 1.6, β = 2.33. The residual errors ǫi(t)’s are

simulated from Gaussian distribution with mean=0, variance=0.9. Zi values for each sensor

node are obtained just by averaging the state values for all the other nodes at the previous

time point. The values chosen for (a0, a1, a2), and (α, β) are as per the assumptions for

simulation using equation (2.8) as well as (2.9), given in Section 2.4.1 and 2.4.2.

Once the dataset is simulated, the author first employs the proposed approach of esti-

mating the model parameters by maximizing the joint log-likelihood function as discussed

in Section 2.2. Next, the author uses the traditional state-space model and estimates the

model parameters using KF. Specifically, the following KF model is fitted to the simulated

data:

Xi(t) = αt + di(t), αt = αt−1 + e(t)

where the measurement error di(t) and the system error e(t) are independently distributed,

following Gaussian (0, ν2) and Gaussian (0, κ2) respectively.

Finally, the proposed Bayesian method is used for estimating the parameters through

MCMC. For α, β and σ2ǫ , the author considers Normal (1,4), Normal (1.5,3.8), and Inverse

Gamma (2.6,4.2) prior, respectively. The author also considers the standard normal N(0,1)

priors for the coefficients aj , as these prior distributions result in the normal full conditional

posterior distribution for aj . The choice of the prior distributions for aj , α, β and σ2ǫ results

in the minimal effects on the final estimates. Gibbs sampling algorithm is used for simulating
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from the full conditional densities as given in Section 2.3.2. Below, a step-by-step standard

algorithm is [25] used for implementing the Gibbs sampler in this problem:

1. Generate the starting values of the parameters from their respective prior densities. De-

note the starting values by a(0), α(0), β(0) and σ
2(0)
ǫ

2. Generate the first iteration a(1) for given α(0), β(0) and σ
2(0)
ǫ using the full conditional

densities from Section 2.3.2.

3. Generate the first iteration α(1) for given a(1), β(0) and σ
2(0)
ǫ

4. Similarly, generate β(1) for given a(1), α(1) and σ
2(0)
ǫ ; and also generate σ

2(1)
ǫ for given

a(1), α(1) and β(1). This completes the first iteration.

5. Repeat the steps from (2 to 4), 100,000 times which ensures adequate number of itera-

tions. The first 20,000 iterations are discarded to remove the effects of the initial choice of

the parameter values.

6. Thin the chain by keeping every 10-th iteration, this will give 8,000 simulated values for

each parameter.

7. Estimate the parameters by the respective sample means.

In Figures 2.4 and 2.5, the MCMC estimates of different model parameters are shown

for different number of iterations and observed that the estimates converge to certain fixed

value for each parameter.

Once the model parameters are estimated by the all three methods mentioned above, the

performance of different methods are assessed in terms of the Mean Squared Error (MSE)

defined as:

MSE =

T
∑

t=1

N
∑

i=1
(Xi(t)−X̂i(t))

2

NT

where X̂i(t) denotes the estimated state value of the i-th sensor node at time t.

The author considers 50 replicates of the data simulated above and computes the av-

erage MSE (AMSE) for three different methods. Next, 100, 1000 and 10000 replicates are

considered and the average MSE are computed. In Table 2.3, the average MSE values are

shown and it is noted that the state space model based on KF provides the largest average

MSE. The proposed Bayesian model results in the smallest AMSE. This demonstrates the
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Figure 2.4: MCMC estimates for different number of iterations for (i) a0 (ii) a1 and (iii) a2
respectively.
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Figure 2.5: MCMC estimates for different number of iterations for (i) α (ii) β and (iii) σ2ǫ
respectively.
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better predictive power of the MCMC based Bayesian method and the poor performance

of the KF based state-space model in terms of the prediction.

Table 2.3: Average MSE values for different methods in model comparison

Number of Replicates ML based method MCMC based method KF based method

50 5.48 3.81 6.37
100 6.41 4.98 7.13
1000 10.23 7.28 11.84
10000 11.62 9.44 15.79

In Table 2.4, the author shows the CPU time (in seconds) required for state estimation

using three different methods with different number of sensor nodes (N) in the network.

It is noticed that the computational cost for the Bayesian method is much lower than the

other methods. The ML based approach and the KF based approach are comparable in

terms of the computational cost. This illustrates the fastest computational response of the

proposed Bayesian approach. All computations are performed in WINDOWS 8, Intel Core

i7 Processor.

Table 2.4: CPU times (seconds) for the three competing models with different number of
sensor nodes (N)

N ML method MCMC method KF method

5 78 56 75
10 92 67 96
20 104 74 108
30 123 86 118
50 134 95 130
100 156 103 159

Anomaly Detection

The author considers the same WSN but now 15 sensors are grouped into three clusters;

nodes 1 to 5 belong to the first cluster, nodes 6 to 10 belong to the second cluster and

the rest of the nodes are kept in the third cluster. The first node in third cluster (i.e. the

11-th sensor in the previous network) is considered as an anomaly and the author simulates

the state values for this node from the model given in equation (2.10) with α = 0.45 and

the residuals are generated from Gaussian distribution with higher variance, i.e. Gaussian
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distribution with mean=0, and variance=10. For all the other nodes from all the three

clusters, the state values are simulated using the model given in equation (2.11) with the

same values used as before.

The author uses KF, ML method and MCMC for parameter estimation and the anoma-

lous node detection with a threshold δ = 3.5. As mentioned earlier, the value of δ depends

on the desired accuracy and the nature of application. Here 100 datasets are replicated

from the same set of models and note the average time to detect the anomalous node. The

average computational times for KF, ML method and MCMC are 163 seconds, 152 seconds

and 129 seconds, respectively. The computed False Positive Rates (FPR) [55] (defined as

the rate of detecting a normal sensor node as an anomalous node) based on 100 replications

are 0.13, 0.09 and 0.04, respectively. Hence it is observed that MCMC based Bayesian ap-

proach is computationally faster and more reliable (less false positive rate) than the other

two methods. All computations are performed and verified using the software R. This soft-

ware is freely available and there are in-built functions for ML estimation, MCMC, and

state-space models.

2.5 Summary

In this chapter, the author has proposed a powerful linear statistical model for state esti-

mation and anomaly detection.

• The proposed approach is powerful since it considers the effect of the nearest neigh-

bours on the current state values and then detects anomalous nodes based on the estimated

state values. The proposed method can also estimate the missing state values of the sensor

nodes which are kept in sleep mode for energy conservation.

• A Bayesian model has been proposed which is computationally faster for state esti-

mation and anomaly detection.

The effectiveness of the proposed model is investigated through extensive simulation

studies and the performance of the proposed approach is compared to that of the traditional

approaches.
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SIMULTANEOUS STATE ESTIMATION

OF CLUSTER BASED WIRELESS

SENSOR NETWORKS

3.1 Preamble

Many of the practical applications of Wireless Sensor Networks (WSNs) depend on the

accuracy and precision related to the state estimation of the network over different time

points [33-39]. In Chapter 2, the author proposed a statistical model for state estimation

of a single cluster in WSNs, and considered “neighbourhood” effect which estimates the

amount of information exchange among the sensor nodes within a single cluster. In reality,

WSNs consist of multiple clusters, and in this chapter a model has been proposed, which

can simultaneously consider information exchange among the sensor nodes belonging to

different clusters of the same network. Thus, dependence of the sensor nodes within the

same cluster as well as between the clusters of the same network has been considered. For

this, the state values of each sensor node are estimated longitudinally and the state values

of the entire network is estimated by combining the individual state values of the sensor

nodes.

Information exchange among the sensor nodes at different time points is fundamentally
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important in WSNs and hence, statistical models for state estimation must be different from

the traditional regression models where subjects are assumed to be independent [58]. In

dynamic state-space models, the observations yi’s are modelled as a function of unknown

state values xi’s and then Markov (auto-regressive) models are used for the unknown states.

Mathematically one can write,

yi|xi = f(xi) + di; xi|xi−1 = g(xi−1) + ei

where di and ei denote the measurement error and system error, respectively. The functions

f and g are assumed to be linear and the errors are assumed to be Gaussian for estimat-

ing the parameters via Kalman-Filter (KF). Although there is a rich literature on state

estimation using KF, which enable information exchange among the sensor nodes [59,60],

relatively little attention has been given for information exchange among different clusters

of a network. The linear Markov model proposed in Section 3.2 is different from the existing

works as:

(i) the author specifies a single regression model with only one error component and

(ii) the information exchange is allowed among the sensors belonging to the same cluster

by considering the “neighbourhood effect” and among different clusters of the same WSN

by appropriately sharing the model parameters in a non-parametric Bayesian approach.

Dirichlet Process (DP) priors were originally proposed by Blackwell & MacQueen [26],

and Ferguson [27]. This prior have been used in non-parametric Bayesian literature for

classification and information sharing. The popularity of DP prior is mainly due to its

computational ease and powerful inferential properties due to stick breaking formulation

of Dirichlet Process proposed by Sethuraman [28]. More recently, Dunson et al. [29] for-

mulated Matrix Stick Breaking Process (MSBP) priors, which can handle the information

sharing across the model parameters for the datasets coming from different related “groups”.

Gaskins and Daniels [61], Das and Daniels [57] extended the MSBP for sharing the large

covariance parameters for different related groups. Figure 3.1 illustrates the DP and MSBP

in the context of parameter estimation. The proposed work in this chapter is based on

Dunson et al. [29] which used MSBP for sharing the model parameters across different
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groups.

In this chapter, the cluster topology for a general WSN has been considered, as shown

in Figure 2.1. The sensor nodes are “grouped” into “clusters” based on their relative

Euclidean distances. Thus the nodes which are spatially close to each other are kept in the

same cluster.

• The proposed linear model considers the effect of the nearest neighbours on the

current state value for each sensor node and thus allows information exchange within cluster.

• Also, a non-parametric MSBP has been proposed for the cluster specific model pa-

rameters, which takes care of the possible information exchange between the clusters in the

network under consideration.

• An application of the proposed approach in detecting immobile anomalous node has

been illustrated.

An anomalous node may be a foreign object, a selfish node or a malicious node, which

might have detrimental effect on the surrounding sensor nodes in course of time. The

proposed approach can accurately detect such nodes. Removal of such nodes makes the

network more effective.

The findings of this chapter has been published in a research paper.1

3.2 Proposed Model

3.2.1 Linear Markov Model

Consider a WSN with K clusters and the k-th cluster consists of nk sensors with a total

of n =
K
∑

k=1

nk sensors. Note that clusters are formed by considering the Euclidean distance

between the sensors, i.e. for some fixed δ, all the sensors which are in the δ-neighbourhood

of each other are kept in a single cluster. Figure 2.1 demonstrates the process of cluster

formation, as described in Section 2.2. Note that δ should be chosen such that the number

of clusters is neither too small nor too large (typically less than 10 in this setting). However,

1A. Chatterjee, P. Venkateswaran et al., “Simultaneous State Estimation of Cluster-Based Wireless
Sensor Networks”, IEEE Transactions on Wireless Communications, Vol 15, Issue 12, 2016.
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Figure 3.1: DP and MSBP for clustering/grouping the model parameters

in reality, the number of clusters (and hence the value of δ) depends on the coverage area

and the nature of the experiment.

In this chapter, also a discrete-time state estimation procedure has been considered.

For making an energy efficient protocol, it is assumed that all the sensors within a cluster

are not necessarily measured exactly at the same time points. Some sensors might be kept

in the sleep mode for some time as the sensors consume very little battery power in sleep

mode, which makes the network energy efficient [38]. Let us assume that the i-th sensor

belonging to the k-th cluster (k = 1, 2, . . . ,K) is measured at T k
i different time points and

Xik(tij) denotes its state value at time tij (j = 1, 2, . . . , T k
i ). Also assume that at each time

point at least one sensor from each cluster is measured to keep the cluster active. Proposed

linear Markov model for estimating the state value of the i-th sensor at time tij based on

the observed measurements till time ti(j−1) can be expressed as:

Fig_3_1.eps
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Xik(tij) = fk(tij) + θk1Xik(ti(j−1))I(|tij − ti(j−1)| < p)

+θk2Zik(ti(j−1)) + eijk

(3.1)

where fk is the cluster specific general effect of time, which is modelled using Penalized

splines. The effect of time on the state values is possibly different for different clusters, and

hence, the subscript k in the function f(.) is included. Here the indicator function I(|tij −

ti(j−1)| < p) takes value 1, if |tij − ti(j−1)| < p and 0, otherwise. Note that θk1 is the cluster

specific effect of the previous available measurement on the current state value and will be

estimated based on the available data. The previous available measurement will influence

the current state value only when the time difference is below a fixed (known) threshold p,

typically p=3 in this case. This is based on the fact that measurements corresponding to

the closer time points are more related than those from the further time points.

In equation (3.1), Zik(ti(j−1)) denotes the average measurement from all the sensors be-

longing to the k-th cluster (except the i-th sensor) which are measured at time ti(j−1). Since

it is assumed that at each time point, some sensors only are measured from each cluster,

based on the available data for the k-th cluster Zik(ti(j−1)) can be easily obtained. Hence

θk2 basically denotes the “neighbourhood effect” on the state value and needs to be esti-

mated from the available data. Note that by introducing Z variable, the author essentially

incorporates the information sharing among the sensors within a single cluster. The resid-

ual errors eijk’s are assumed to be independently normally distributed with mean=0 and

unknown variance=σ2. For all K clusters, σ2 need to be estimated from the available data.

The above model is Markovian as the current state value depends only on the immediate

(available) predecessor values.

The above model is novel in the context of state estimation problem in WSNs. The model

is dynamic in nature and considers adequately the neighbourhood effect for estimating

sensor-specific state values. It allows information sharing within the same cluster. In

latter sections, the author will allow information sharing (in terms of the parameter values)
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between clusters and thus proposing a simultaneous state estimation of cluster based WSNs.

3.2.2 Penalized Splines for the General Effect of Time

In equation (3.1), fk basically explains how much of the response Xik(tij) is due to time and

the fact that this taken into account is the effect might be different for different clusters.

In other words, state values of the sensors within a certain cluster might vary more than

the sensors in a different cluster. In fact, there might be some unobserved time-varying

factors, which influence the observed state values and all these hidden factors are combined

into this general effect of time. Ideally, the function fk should be smooth (at least twice

differentiable).

There is a rich literature in statistics for efficiently modelling fk. Different smoothing

techniques like smoothing splines, B-splines, Penalized splines, wavelets are typically used

for this purpose. Traditionally, smoothing splines are preferred since they give the smallest

Mean Squared Error (MSE). However fitting of smoothing splines is expensive in terms of

the computational cost. Hence, Penalized splines (P-splines) ([63]) has been preferred to

avoid the so called “curse of dimensionality” (large number of model parameters for high

dimensional data).

With a polynomial spline of degree r with knots (T1, ...,TS), the general effect of time

as described in equation (3.1) can be expressed as the following non-parametric regression

model:

fk(tij) = bk0 + bk1tij + bk2t
2
ij + ...+ bkrt

r
ij +

S
∑

s=1

cks(tij − Ts)
r
+ (3.2)

where (x)r+ = xr, for x > 0, and 0 otherwise; and (T1 < T2 < ... < TS) is a fixed (known)

set of knots. In practice, it is desirable to keep the degree of the spline (r) relatively small,

between 1 and 3, so that one need to estimate only a few parameters for the above functional

relation. Here the parameters bk0, bk1, . . . , bkr; ck1, ck2, . . . , ckS ; r and S are to be estimated

from the data.

Note that the model in equation (3.2) has two components: a polynomial component

and a spline component. Knots are the points where the function changes its form. Knots
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divide the time domain into different pieces. For each piece, a polynomial of order r has been

fitted but these polynomials are changed for different pieces. Observe that the function fk(.)

has continuous derivatives at all the points except the knots. Thus, the coefficients of the

spline part (cks) represent the measure of roughness at the respective knots. Typically the

evenly spaced sample quantiles of time are taken as the knots [62,63]. The optimal number

of knots (S) and the optimal degree (r) are to be obtained from the information criteria

like Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Deviance

Information Criterion (DIC) [61,57] etc.

Define bk = [bk0, bk1, . . . , bkr]
T , ck = [ck1, ck2, . . . , ckS ]

T and ti = [ti1, ti2, . . . , tiT k
i
]T .

Then in matrix notation, equation (3.2) can be expressed as:

fk(ti) = Uk
i bk + V k

i ck (3.3)

where

Uk

i =



















1 ti1 t2i1 ... tri1

1 ti2 t2i2 ... tri2
...

...
...

. . .
...

1 tiT k
i

t2
iT k

i

... tr
iT k

i



















and

Vk

i =



















(ti1 − T1)
r
+ (ti1 − T2)

r
+ ... (ti1 − TS)

r
+

(ti2 − T1)
r
+ (ti2 − T2)

r
+ ... (ti2 − TS)

r
+

...
...

. . .
...

(tiT k
i
− T1)

r
+ (tiT k

i
− T2)

r
+ ... (tiT k

i
− TS)

r
+



















The curve can be made smoother by placing a penalty on the roughness parameters. In

other words, the author would like to minimize the following expression:

E =
∑

i,j,k

(Xik(tij)− fk(tij))
2 + λ∗

S
∑

s=1

K
∑

k=1

|cks|d (3.4)
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where λ∗ is the smoothing parameter having significant control over the smoothing process.

Note that if λ∗ → 0, the author simply get the ordinary least squares (OLS) estimates.

Again if λ∗ → ∞, then the author have the polynomial part only (and no spline part)

in equation (3.2). For d=2, the ridge regression is obtained and d=1 gives Least Absolute

Shrinkage and Selection Operator (LASSO), which has a literature of its own [64]. However,

d=2 has been considered in this presentation to get the ridge regression.

In a Bayesian framework, ridge regression estimates can be obtained by considering a

normal prior for ck followed by a gamma prior for λ∗. It is noted that the optimal number of

knots and the locations of the knots can be left as variables and can be estimated from the

data [42] using reversible jump MCMC. This is more flexible but computationally expensive

because the reversible jump MCMC algorithms are complicated in general. The author

avoids such methods for computational ease.

3.3 Prior Structure and Parameter Estimation

3.3.1 Non-parametric Dirichlet Process (DP) Prior

In the non-parametric Bayesian literature, Dirichlet process priors are used quite frequently

for clustering, classification and information sharing [26,27,28,57]. A Dirichlet process is a

distribution over distributions having two parts, the base distribution and the concentration

parameter. Symbolically, the author say G ∼ DP (G0, γ) to denote that G follows a Dirichlet

process distribution with base measure G0 and concentration parameter γ. Below, the

clustering nature of Dirichlet Process has been discussed briefly through finite mixture

model.

Suppose that random variables y1, . . . , yn are drawn independently from some unknown

density. Then one can model the density of y as a mixture of C (finite) distributions where

the density of the c-th (c = 1, 2, . . . , C) distribution is F (φc). Thus the density of y1, . . . , yn
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has been modelled as the following:

P (y) =

C
∑

c=1

pcF (φc) (3.5)

where pc’s are the mixing probabilities and φc’s are the parameters of the respective den-

sity functions. Considering finite C, a symmetric Dirichlet prior has been taken with the

following density function for the mixing probabilities pc:

P (p1, . . . , pC) =
Γ(γ)

Γ(γ/C)C

C
∏

c=1

p(γ/C)−1
c (3.6)

Further, it is assumed φc’s are independently distributed with distribution G0.

Using the mixture identifiers ci, this model can be represented as follows:

yi|(ci, φ) ∼ F (φci), ci|(p1, . . . , pC) ∼ Discrete(p1, . . . , pC), p1, . . . , pC ∼Dirichlet( γ
C , . . . ,

γ
C ),

φci ∼ G0.

By integrating over the Dirichlet prior, the following conditional distribution is obtained:

P (ci = c|c1, . . . , ci−1) =
nic+γ/C
i−1+γ , where nic= Number of data points previously assigned to

component c. Also when C → ∞, P (ci = c|c1, . . . , ci−1) → nic

i−1+γ ; and P (ci 6= cj for all

j < i|c1, . . . , ci−1) → γ
i−1+γ .

Consequently, the conditional probability of θi, where θi = φci , becomes

θi|(θ1, . . . , θi−1) ∼ 1
i−1+γ

∑

j<i
δθj +

γ
i−1+γG0, where δθ is a point mass at θ.

Note that the above formulation gives:

yi|θi ∼ F (θi); θi|G ∼ G; G ∼ DP (G0, γ)

Thus, each data point i has its own parameter θi drawn independently from a distribution

which is again drawn from a DP prior. Because of the clustering property of DP, θi for

different data points might be the same.

Sethuraman [28] provided the well-known stick-breaking formulation of Dirichlet Pro-

cess, which is very useful for simulation and mathematical treatments. In this formulation,
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if G ∼ DP (G0, γ), then

G =

∞
∑

h=1

[

Vh
∏

l<h

V̄l

]

δΘh
, Vh

iid∼ Beta(1, γ), Θh
iid∼ G0, (3.7)

where V = {Vh, h = 1, 2, . . . ,∞} is an infinite sequence of stick-breaking weights with

V̄h = 1 − Vh and Θ = {Θh, h = 1, 2, . . . ,∞} is an infinite sequence of random atoms from

the base distribution G0. In practice, for the ease of computation, typically the infinite

sum in equation (3.7) is truncated upto finite N with VN = 1 by making the expected

approximation error arbitrarily small, in general, smaller than 0.01 [29].

3.3.2 Matrix Stick-breaking Process (MSBP) for related groups

Sometimes in real applications, data are collected from multiple related groups and then

the focus is on borrowing information over the groups. Dunson et al. [29] proposed MSBP

which allows information sharing across groups. It may be noted that by “information

sharing”, the author means similarity of the model parameters for different groups. MSBP

allows the model parameters to be similar (or same) for the related groups by considering

a modified stick-breaking prior on the parameters. The author first give a brief review of

MSBP in the context of proposed linear Markov model given in equation (3.1).

Recall the setting in section 3.2.1, there are total K clusters and the k-th cluster consists

of nk sensors. Assume that the sensors from the k-th cluster are drawn from a parametric

model characterized by the L-dimensional parameter vector Ψk. MSBP considers a random

probability measure Fkl such that ψkl ∼ Fkl; k = 1, 2, . . . ,K; l = 1, 2, . . . , L. The matrix

of random probability measures F = {Fkl; k = 1, 2, . . . ,K; l = 1, 2, . . . , L} will have a

distribution which will induce the correlation among different Fkl’s. The form of each Fkl

is given as the following:

Fkl =
H
∑

h=1

πklhδǫlh , ǫlh
iid∼ F0l

where E = {ǫlh} is L × H matrix and δx is a point mass at x. Note that the rows of E

correspond to each model parameter with base distribution F0l and the columns correspond
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to H clusters.

The stick-breaking weights πklh control the dependence among the different distribution

in the following way:

πklh = Vklh
∏

r<h

(1− Vklr), Vklh = UkhYlh, Ukh
iid∼ Beta(1, α), Ylh

iid∼ Beta(1, β)

Note that here V is expressed as the product of U and Y , where Ukh controls the

likelihood that parameter from k-th group (cluster of sensors, in this case) belongs to the

h-th cluster induced by MSBP and Ylh controls the likelihood that the l-th parameter is

drawn from the h-th cluster. Note that U ’s are shared across the parameters and Y ’s are

shared across the clusters, MSBP allows the possible correlation among the distributions in

F . In order to make Fkl a proper probability distribution, one need to take UkH = 1 and

YlH = 1.

Note that for H → ∞, the above formulation is an actual MSBP and for finite H, it

is called truncated approximation of MSBP. Following Dunson et al. [29], Das and Daniels

[57], the expected truncation error is given as:

E(

∞
∑

h=H

{πklh}) =
[

1− 1

(1 + α)(1 + β)

]H−1

(3.8)

Thus for a prefixed δ∗ (≤ 0.01) one can choose H so that the expression in the equation

(3.8) is below δ∗. Further properties of MSBP and the truncation are given in Das and

Daniels [57], Dunson et al. [29], Gaskins and Daniels [61].

3.3.3 Proposed Prior Structure

The proposed prior structure is based on the MSBP as outlined in the previous section.

Consider the Markovian model as given in equation (3.1). It is noted that the proposed

approach will allow information sharing (i.e. same and/or similar parameter values) across

the clusters of sensors and this is achieved by considering MSBP priors on the model pa-

rameters.

First, the parameters given in the equation (3.2) has been considered. Let bk =
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[bk1, bk2, . . . , bkr]
T , ck = [ck1, ck2, . . . , ckS ]

T and θ = [θk1, θk2]
T .

For the parameters bk, the following prior structure has been proposed:

bkl ∼ F b
kl =

Nb
∑

q=1

πbklqδǫb
lq
(.); k = 1, . . . ,K; l = 0, . . . , r;

ǫblq ∼ (1− pb)δ0(.) + pbN(0, σ2b ); q = 1, ..., Nb; l = 0, . . . , r;

πbklq = U b
kqW

b
lq

∏

h<q

(1− U b
khW

b
lh);

U b
kq

iid∼ Beta(1, αb), W b
lq

iid∼ Beta(1, βb); q = 1, . . . , Nb − 1.

Note that here δ0(.) denotes a point mass at zero. For the atoms ǫblq, a slab and spike

distribution has been considered and this ensures a positive probability at zero. A zero

value basically indicates the absence of the respective coefficient in the polynomial part of

equation (3.2). The above prior structure allows the sharing of the parameter values across

various clusters and thus making the network more informative. For the mixing proportion

pb, a beta prior has been considered following the usual convention [57].

For the parameters ck, proposed prior structure is the following:

cks ∼ F c
ks =

Nc
∑

q=1

πcksqδǫcsq (.); k = 1, . . . ,K; s = 1, . . . , S;

ǫcsq ∼ (1− pc)δ0(.) + pcN(0,
1

λ∗
); q = 1, ..., Nc; s = 1, . . . , S;

λ∗ ∼ Gamma(α, β);

πcksq = U c
kqW

c
sq

∏

h<q

(1− U c
khW

c
sh);

U c
kq

iid∼ Beta(1, αc), W c
sq

iid∼ Beta(1, βc); q = 1, . . . , Nc − 1.

The above prior structure for ck allows information sharing (by MSBP property) across

the clusters and it also employs a Ridge regression technique for minimizing the expression

as given in equation (3.4). Here also, a slab and spike distribution has been taken for the

atoms which includes the possibility of the values to be zero. A zero value indicates the

absence of the respective knot in the spline part of equation (3.2). For the non-null case,
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by taking a normal distribution whose variance follows an inverse gamma distribution, the

author essentially do the standard Ridge regression [63]. A beta prior is taken for the mixing

proportion pc [57].

And for θ, the proposed prior is the following:

θkx ∼ F θ
kx =

Nθ
∑

q=1

πθkxqδǫθxq(.); k = 1, . . . ,K; x = 1, 2;

ǫθxq ∼ (1− pθ)δ0(.) + pθN(0, σ2θ ); q = 1, ..., Nθ ; x = 1, 2;

πθkxq = U θ
kqW

θ
xq

∏

h<q

(1− U θ
khW

θ
xh);

U θ
kq

iid∼ Beta(1, αθ), W θ
xq

iid∼ Beta(1, βθ); q = 1, . . . , Nθ − 1

Here again, a beta prior is considered for pθ. Just like the previous parameters, a slab

and spike distribution is considered for allowing a zero value. Note that a zero value for θk1 in

equation (3.1) reflects that the available state value of the immediate predecessor time point

has no effect on the current state value. Similarly, it is inferred no neighbourhood effect

on the current state value if θk2 is found to be zero. One can perform a formal statistical

hypothesis test for the significance of the neighbourhood effect and the predecessor effect.

The above priors for the model parameters ensure the fundamental goal of this chapter.

By considering MSBP for the model parameters, the parameters are allowed to be same

or similar (in their numerical values) across the clusters. For example, the neighbourhood

effect for two (or more) clusters might be exactly the same. The proposed approach also

provides a numerical measure of similarity for each parameter across the clusters (shown in

Section 4.1). In reality, if the clusters do not have the similar (or same) parameter values

or all the clusters have exactly the same parameter values, the performance of the proposed

model will be close to the truth [27, 61]. However, if some parameters are similar across

the clusters but the other parameters are not so similar (or different), then the proposed

approach provides better estimate of the model parameters with relatively small standard

errors. Such operating characteristics and practical applications of the proposed approach

has been demonstrated through simulation studies in Section 4.
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3.3.4 Posterior Estimation and MCMC

It may be noted that in a Bayesian approach, the parameters are estimated from the joint

posterior distribution which is the product of the likelihood function and the prior distri-

butions of all the model parameters. For the sake of simplicity in posterior inference, it is

assumed that the priors are independent of each other.

Consider the linear model in equation (3.1). It may be noted that, the author assumed

variance(eijk) = σ2, and considered an inverse gamma (κ1, κ2) prior for σ
2.

Note that from equation (3.1) of Section 3.2.1, the residual

eijk = Xik(tij) − fk(tij) − θk1Xik(ti(j−1))I(|tij − ti(j−1)| < p) − θk2Zik(tij − 1). Thus the

joint likelihood of the vector of state values Xik can be expressed as the joint likelihood of

the residuals as the following:

L ∝
K
∏

k=1

nk
∏

i=1

[

σ−T k
i exp

(

− 1

2σ2
(eTikeik)

)]

(3.9)

It has been noted that our proposed prior structure is very similar for bk, ck and θ and

hence the posterior inferences will also be similar. Here the full conditional distributions

of bk obtained from the joint posterior distribution has been provided. One can derive the

full conditional distributions of ck and θ accordingly.

Following Dunson et al. [29], latent variables Rb
lk are introduced from multinomial

distributions with respective probabilities πbklq. Let us consider the following binary dummy

variables for k = 1, . . . ,K; l = 0, . . . , r and q = 1, . . . , Nb

ublkq ∼ Bernouli(U b
kq), $w

b
lkq ∼Bernouli(W b

lq).

Now, let us define Rb
lk = min

(

q : 1 = ublkq = wb
lkq

)

. Note that Rb
lk’s are distributed as

multinomial distributions.

1. The full conditional distribution of ǫblq is given as:

ǫblq|− ∝
nk
∏

i=1

[

σ−Ti exp

(

− 1

2σ2
(eTikeik)

)]

×
(

(1− pb)δ0(.) + pb exp

(

−(ǫblq)
2

2σ2b

))

(3.10)
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2. The full conditional distribution of Rb
lk is given as:

P (Rb
lk = q|−) ∝ πbklq ×

nk
∏

i=1

[

σ−Ti exp

(

− 1

2σ2
(eTikeik)

)]

(3.11)

Rb
lk has been sampled from the multinomial distribution with the above probabilities (nor-

malized to sum to one). Given the values of Rb
lk, one can sample ublkq and wb

lkq accordingly.

3. The full conditional distributions for U b
kq for q < Nb are given as:

U b
kq|− ∼ Beta

(

1 +

r
∑

l=0

ublkq, αb +

r
∑

l=0

(1− ublkq)

)

(3.12)

Similarly for q < Nb,

W b
lq|− ∼ Beta

(

1 +
K
∑

k=1

wb
lkq, βb +

K
∑

k=1

(1− wb
lkq)

)

(3.13)

U b
kNb

and W b
lNb

are drawn from distribution degenerate at 1.

4. By considering Gamma(1,1) priors for αb and βb, the following full conditionals are

obtained:

αb|− ∼ Gamma



K(Nb − 1) + 1, 1−
K
∑

k=1

Nb−1
∑

q=1

log(1 − U b
kq)



 (3.14)

Similarly,

βb|− ∼ Gamma



r(Nb − 1) + 1, 1−
r
∑

l=0

Nb−1
∑

q=1

log(1 −W b
lq)



 (3.15)

Finally, the full conditional distribution of σ2 is given as :

σ2|− ∼
K
∏

k=1

nk
∏

i=1

[

(σ2)−Ti/2 exp

(

− 1

2σ2
(eTikeik)

)]

× π(σ2) (3.16)

where π(σ2) is the prior for σ2. If an Inverse Gamma prior for σ2 is taken, the posterior

will also be an Inverse Gamma distribution (conjugate prior).

A hybrid combination of Gibbs sampler and Metropolis-Hastings (MH) algorithm has

been implemented. The initial values of the model parameters are taken from their re-
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spective prior distributions. Following the tradition, the first few “burn-in” iterations are

discarded to remove the effect of the starting values and also thin the chains by keeping

every 10-th iteration. The convergence of the chains are monitored graphically and also by

computing multivariate potential scale reduction factor as proposed by Brooks and Gelman

[65].

3.4 Simulation Studies

The performance of the proposed modelling approach has been assessed through extensive

simulation studies. Also, the proposed approach has been compared to similar other models

in terms of the parameter estimates and predictability. In the first simulation study, the per-

formance of the model has been investigated while in the second simulation, a comparative

study has been performed.

3.4.1 Simulation I: Performance Evaluation

A network with several clusters has been considered where the clusters do share the model

parameters. The proposed WSN consists of three clusters (k=1,2,3) with 40, 45 and 50

sensors, respectively. For simplicity, it has been assumed that each sensor is measured

exactly at 10 different time points (i.e. consider a case of regular longitudinal measurement).

The state values are simulated from the following model:

Xik(t) = fk(t) + θk1Xik(t− 1) + θk2Zik(t− 1) + eik(t) (3.17)

where the errors eik(t)’s are Gaussian (0, 1.5) and the general effect of time has been taken

as the following quadratic spline function of time, with two evenly spaced knots:

fk(t) = bk0 + bk1t+ bk2t
2 + ck1(t− τ1)

2
+ + ck2(t− τ2)

2
+

Denote bk = [bk0, bk1, bk2], ck = [ck1, ck2] and θk = [θk1, θk2]. For simulation, the

following values has been taken of bk, ck and θk, k=1,2,3;

b1 = (2.3, 1.45, 2.17), b2 = (2.26, 1.48, 2.55), b3 = (3.4, 1.48, 2.23)
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c1 = (1.5, 0.96), c2 = (1.6, 1.12), c3 = (0.49, 1.10)

θ1 = (1.8, 2.5), θ2 = (2.8, 3.6), θ3 = (2.0, 3.9)

Note that the proposed estimation method does not depend on any specific set of values

for these parameters. For the simulation purpose, one set of parameter values has been

considered which shows the effectiveness of the proposed approach of estimating the state

values corresponding to this particular set of the parameter values. One can consider a com-

pletely different set of parameter values, but still can efficiently estimate the corresponding

state values.

At first, the state values for each sensor node belonging to different clusters at 10 different

time points are simulated.

Then the proposed approach has been used and the appropriate MSBP priors are taken

as mentioned in the earlier sections for estimating the model parameters. The author run

100,000 iterations of the Markov Chains and the first 20,000 iterations were discarded as

“burn-in” to remove the effect of the starting values of the parameters. Also to thin the

chains by saving every 10-th iteration to remove the auto-correlation among the estimates

from the successive iterations. Under the squared error loss function, the model parameters

has been estimated by the respective posterior sample means and also the Monte Carlo

Standard Errors (MCSE) is estimated.

Table 3.1, shows the estimated parameters, the true parameter values and 95% Con-

fidence Interval (CI) of the parameters computed as estimate ± 2 × MCSE. It has been

noted that in the Bayesian framework, the true parameter belongs to the corresponding

confidence intervals with probability=0.95. Hence the width of the 95% confidence interval

reflects how precisely one estimates the model parameter. It has been observed that the

estimated parameter values are very close to the true values and the width of the confidence

intervals are small. Thus the proposed approach estimates the parameters accurately and

precisely and hence one can use these parameters to estimate the state values of the nodes

for valid inference.

Next, a sensitivity analysis has been performed to investigate the effect of the priors with
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Table 3.1: Estimates and 95% CI of the model parameters in Simulation 1

Parameter True Value Estimates 95% CI

b10 2.3 2.27 (1.86, 2.73)
b11 1.45 1.46 (1.35,1.58)
b12 2.17 2.15 (2.03,2.39)
b20 2.26 2.24 (2.11,2.45)
b21 1.48 1.50 (1.23,1.88)
b22 2.55 2.53 (2.32,2.96)
b30 3.4 3.36 (3.19,3.78)
b31 1.48 1.52 (1.26,1.80)
b32 2.23 2.20 (2.03,2.49)
c11 1.5 1.38 (1.15, 1.56)
c12 0.96 1.03 (0.73,1.44)
c21 1.6 1.54 (1.28, 1.83)
c22 1.12 1.17 (1.04,1.36)
c31 0.49 0.43 (0.23,0.74)
c32 1.10 1.18 (0.92, 1.33)
θ11 1.8 1.66 (1.45,1.91)
θ12 2.5 2.52 (2.27,2.77)
θ21 2.8 2.76 (2.44,3.12)
θ22 3.6 3.55 (3.36,3.88)
θ31 2.0 1.88 (1.54,2.39)
θ32 3.9 3.84 (3.48,4.36)
σ2 1.5 1.31 (1.11,1.58)

different parameter values on the estimates. This is a routine work in Bayesian analysis.

As one starts with some prior distribution in a Bayesian analysis, it is important to show

that the final estimate of the parameters do not depend much on the choice of such prior

distributions. In this study, for the parameters pb, σ2b , αb and βb, priors have been taken

with three different parameter combinations. Table 3.2, summarizes the results and it has

been observed that the final estimates do not depend on the parameter values of the prior

distributions. Ideally, the inference should not be sensitive to the choice of the parameter

of the priors and this holds in this analysis. Similar results are obtained for the other

parameters as well.

In Figure 3.2, the grouping nature of the proposed priors has been demonstrated for

the parameter b, c and θ. The posterior probabilities shows: Pr(bkl = bk′l); for each

(k = 1, 2, 3; k′ = 1, 2, 3; l = 1, 2, 3), P r(ckl = ck′l); for (k = 1, 2, 3; k′ = 1, 2, 3; l = 1, 2),

and Pr(θkx = θk′x) for (k = 1, 2, 3; k′ = 1, 2, 3;x = 1, 2). Such probabilities are computed

based on MCMC iterations. For example, 8,000 iterations are obtained for bkl and bk′l for

k = 1, 2, 3; k′ = 1, 2, 3 and l = 1, 2, 3. Pr(bkl = bk′l) is computed as the proportion of times
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Figure 3.2: The posterior probabilities of matching for (i)b0 (ii)b1 (iii)b2 (iv)c1 (v)c2 (vi)θ1
and (vii)θ2 respectively for Simulation I
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Table 3.2: Results from the sensitivity analysis in Simulation 1

Parameter Prior Choice Estimate

pb Beta(1,2) 0.43
− Beta(1.5,3.6) 0.44
− Beta(2.5,4) 0.43
σ2
b inverse gamma (2,3) 2.48
− inverse gamma (3,5) 2.46
− inverse gamma (1.8,4.7) 2.47
αb gamma (2,3.5) 1.78
− gamma (3.4,4.9) 1.77
− gamma (1.5,4.5) 1.78
βb gamma (2,3.5) 1.63
− gamma (3.4,4.9) 1.65
− gamma (1.5,4.5) 1.65

bkl = bk′l (upto two decimal places). Larger boxes indicate higher grouping probabilities,

with the largest boxes on the diagonal corresponding to probability=1. It is noted that for

b0, the box corresponding to the cluster 1 and cluster 2 is larger than the boxes corresponding

to cluster 1 and cluster 3; and cluster 2 and cluster 3. This reflects the fact that for this

parameter, cluster 1 and cluster 2 are similar with higher probability. It may be noted that

this is actually the case as per simulation. Similarly for θ2, cluster 2 and cluster 3 are similar

with higher probability. As seen from Figure 3.2 for other parameters also, similar results

are obtained. Thus the proposed approach automatically provides a measure of similarity

for different clusters on each model parameter.

3.4.2 Simulation 2: Model Comparison

The performance of the proposed non-parametric MSBP based approach has been compared

to the other traditionally used methods. First, data (state values) for an artificially created

WSN are simulated with three clusters (k=1,2,3) containing 40, 45 and 50 sensors, respec-

tively; using model given in equation (3.17) with the errors eik(t)’s distributed as Gaussian

(0, 1.5) and fk(t) = bk0 + bk1t + bk2t
2 + ck1(t − τ1)

2
+ + ck2(t − τ2)

2
+. Note that similar to

Section 3.4.1 one can consider different prior distributions for the model parameters, and

errors. But for the purpose of demonstration, one set of distributions has been considered.

The following priors has been considered for the proposed model parameters. For bk,

trivariate normal (0,Σb) prior has been taken where Σb is a diagonal matrix with (2,2.5,3.5)



Chapter 3. 52

as the diagonal elements. For ck, bivariate normal (0, 1
λ∗ I2) prior has been taken and for

λ∗ a gamma (1.5,3) prior is considered. Finally, for θk, a bivariate normal (0,D) prior has

been considered where D is diagonal matrix with diagonal elements 2 and 3.

The parameters are generated from their respective priors and then using the generated

parameter values, the state values are simulated for different sensors from three different

clusters. This process is repeated 100 times and thus 100 different datasets are generated

from the same model.

First, three different models derived from equation (3.17) are considered by changing

the function fk(t) and the error components for different clusters and the model parameters

for each cluster has been estimated separately using the simulated data. This approach is

referred as Method 1. Next a single model has been considered for all the three clusters.

In other words, the model given in equation (3.17) has been fitted without the subscript k

for all 135 sensor nodes and estimated the model parameters using the combined data from

three clusters. This approach is referred as Method II.

Then the proposed approach, referred as Method III is considered. Here also different

model are fitted for different clusters but MSBP priors has been considered on the model

parameters as proposed in Section 3.3. Such priors will allow information exchange on the

model parameters across the clusters.

Finally, the following dynamic state-space model has been considered:

Yik(t) = Xik(t) + dik(t), Xik(t) = aXik(t− 1) + eik(t) (3.18)

where Yik(t) denotes the observed measurement from the i-th sensor of the k-th cluster

at time t and Xik(t) denotes the unobserved state value (which is to be estimated). The

measurement error dik(t) and the system error eik(t) are identically and independently dis-

tributed (iid) as Gaussian (0,ν2) and Gaussian (0,κ2), respectively. In addition, it is assumed

Xik(0) are iid Gaussian (0,τ2). Also, |a| < 1 has been considered for the convergence of the

parameters. The model parameters are estimated by KF [43] using sequential importance

sampling. This approach has been referred as Method IV.
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For each dataset, the model parameters for each method are estimated and then the

mean squared error (MSE) is computed defined as:

MSE = 1
3
∑

k=1

nk

3
∑

k=1

nk
∑

i=1

(

Xik(tij)− X̂ik(tij)
)2

where X̂ik(tij) is the estimated state value from the model under consideration.

For the Method IV,

MSE = 1
3
∑

k=1
nk

3
∑

k=1

nk
∑

i=1

(

Yik(tij)− X̂ik(tij)
)2

The average MSE is then computed by averaging three MSE values for three clusters. This

process has been for all the 100 simulated datasets and finally average the MSE values

across datasets.

Figure 3.3, shows the plot of average MSE for the four competing methods at 10 different

time points as per simulation model. It may be noted that the average MSE for Method

III (the proposed method) is consistently lower than the other methods over time. Method

I gives the worst performance in terms of average MSE and Method II works better than

Method I and Method IV but worse than Method III. Method IV performs better than

Method I but worse than the other two methods. This illustrates better predictive power

of the proposed approach for cluster based WSNs.

3.4.3 Application of the Proposed Method in Detecting Anomalous Node

Here, an application of the proposed approach has been illustrated in detecting an anoma-

lous node in a cluster based WSN. An anomalous node is the node, which functions differ-

ently than the other sensor nodes, and thus can be a selfish and/or a malicious node. A

malicious node is an internal intruder having detrimental effect on the surrounding sensor

nodes. Detection of such nodes has become a major research topic in recent years [48, 51].

The cluster containing an anomalous node can be detected as the “target cluster” and the

anomalous node can be detected by further splitting and merging of the clusters. Below, a

numerical example has been provided for illustrating this application.
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Figure 3.3: Model comparison in terms of average mean squared error (MSE) for Simulation
2. (Method III is the proposed method)
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Figure 3.5: Average state values for different clusters in detecting anomalous node: after
the first splitting

A network has been considered with 4 clusters containing 10 sensors each. Sensors are

measured at 8 different evenly spaced time points. The state values of the i-th sensor

belonging to the k-th cluster are simulated from equation (3.17) with the same specification

of the function fk(t), with k = 1, 2, 3, 4. The residual errors are generated from Gaussian

(0,1.5). Note that a Gaussian (0,1.5) distribution is centred at zero, so this specification

considers errors to be small (close to zero). The following values of bk, ck and θk, k=1,2,3,4

are taken;

b1 = (1.3, 2.15, 1.07), b2 = (1.26, 2.18, 1.35), b3 = (1.31, 2.16, 1.08), b4 = (1.4, 2.11, 1.03).

c1 = (1.5, 0.96), c2 = (1.6, 1.12), c3 = (1.46, 1.01), c4 = (1.8, 1.13).

θ1 = (1.2, 2.4), θ2 = (1.8, 3.0), θ3 = (1.3, 2.3), θ4 = (1.5, 2.9).

As in Section 3.4.1, one can consider a different set of parameters but the inference will

remain unchanged. Here, one set of parameters has been considered for the illustration

purpose. Assume that the third sensor in cluster 4 is an anomalous node, and hence, is

the object of interest which needs to be identified. The state values are generated for this

Fig_3_12.eps
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Figure 3.6: Average state values for different clusters in detecting anomalous node: after
second splitting

particular sensor node from the following model:

Xi(t) = a0 + a1t+ a2t
2 + 1.76Xi(t− 1) + ei(t) (3.19)

where a0 = 2.87, a1 = 2.25, a2 = 3.3 and the residuals are generated from Gaussian (0,10).

Note that this specification is arbitrary and one can consider a different set of parameter

values and a different Gaussian distribution (with mean=0).

Once the dataset is generated, the proposed model has been fitted as given in equation

(3.1) and the proposed prior has been considered in section 3.3. The posterior estimates

of the model parameters are obtained by MCMC and then the average state values are

computed for each cluster at 8 different time points by simply averaging the estimated state

values of all the sensors belonging to a particular cluster at a fixed time point. The author

then plots the estimated average trajectory for each cluster as shown in Figure 3.4. It is

noted that the average curve of cluster 4 is far away from the average curves of three other

clusters. This reflects that cluster 4 contains the possible anomalous node, since the mean

value is highly affected by the outliers.

Fig_3_13.eps
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Figure 3.7: Average state values for different clusters in detecting anomalous node: after
third and final splitting

Then cluster 4 is split into two sub-clusters; the first sub-cluster contains the first 5

nodes and the second one contains the remaining 5 nodes. Clusters 1,2 and 3 are merged

into a single cluster. Thus, now three clusters are left containing 5,5 and 30 sensor nodes,

respectively. The estimated model parameters are used and the average mean curves are

estimated for these 3 clusters, which is shown in Figure 3.5. It is noticed that the estimated

mean curve for cluster 1 (new) behaves differently from the other two mean curves, thus

indicating that cluster 1 as the “target” cluster.

Next, cluster 1 is further split into two sub-clusters, the first one containing first three

nodes and second one containing the remaining two. These are the newly formed clusters

1 and 2; the new cluster 3 is formed by merging clusters 2 and 3 from the previous step

containing 35 nodes in total. Figure 3.6 shows the estimated mean curves and indicates

cluster 1 as the outlier.

Finally, cluster 1 is divided into two sub-clusters, the first one contains nodes 1 and

2; the second one contains node 3. New cluster 3, containing 37 nodes, is again obtained

by merging clusters 2 and 3 from the previous step. Figure 3.7 shows the average curves

and reflects that the cluster 2 is the outlier. Since cluster 2 contains a single node, this

Fig_3_14.eps
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particular node is correctly detected as an anomalous node, which is possibly a malicious

node.

The False Positive Rate (FPR) [55] is computed (defined in Section 2.4.3) for the pro-

posed method of detecting the anomalous node. 100 such datasets are generated from the

above model and the above method is used to detect the anomalous node. The anomalous

node is detected correctly for 96 datasets, thus estimated FPR=0.04. Also the average time

to detect the outlier node is 186 seconds, which is pretty fast. All computations are per-

formed in the software R which is freely available and efficient for statistical computations.

3.5 Summary

There is a rich literature on the state estimation of WSNs. Most of these works are based

on the dynamic state-space model via KF or similar Markov models. In any network,

information exchange is inevitable and in this chapter, a Bayesian non-parametric approach

has been proposed for addressing this issue in the context of state estimation of WSNs.

• A cluster-based WSN has been considered and a discrete-time linear Markov model

is proposed for estimating the state values of the sensor nodes over time. The proposed

linear model considers effect of nearest neighbours on the current state value for each sensor

node and thus allows information exchange within a cluster.

• Non-parametric MSBP priors has been considered for the cluster-specific model pa-

rameters. Such priors allow information exchange among the sensor nodes belonging to

different clusters through the model parameters.

• The usefulness of the proposed model in locating an immobile anomalous node in

the network is demonstrated.

Simulation studies are performed to assess the performance of the proposed model. The

proposed approach will be useful in emergency monitoring, medical genetics, geosciences

and many other disciplines where WSNs are frequently used for state estimation.





Chapter 4

TIME SYNCHRONIZATION IN

WIRELESS SENSOR NETWORKS

4.1 Preamble

Applications of Wireless Sensor Networks (WSNs) are found in various disciplines including

environmental studies, medical genetics, emergency monitoring etc. [66-69]. All these

applications assume that the sensor nodes are synchronized to a common clock. Hence, time

synchronization of the nodes in the network plays a key role for accurate state estimation

and/or predictions of the surrounding environment. If different sensors in the network

run according to their own clocks, then coordination among the sensors are affected and

consequently the inference becomes inconsistent [70]. Time synchronization is also very

important in randomly deployed sensor networks (e.g. hierarchical topology) because data

transmission from leaf nodes to the sink in this type of network takes place in a multihop

manner [71].

In recent years, many useful protocols have been proposed for time synchronization in

WSNs; e.g. Reference-Broadcast Synchronization (RBS), Time-synchronization Protocol

for Sensor Networks (TPSN), Flooding Time Synchronization Protocol (FTSP), Receiver-

only Synchronization (ROS) etc. Consider a pair of sensor nodes within a network, say

node A and node B, let us denote the time of the clocks in the sensor nodes A and B by
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CA(t) and CB(t), respectively as the functions of time (t). Relative clock offset between the

node A and node B at time t is defined as CA(t)−CB(t). The derivative (the rate of varia-

tion) of the relative clock offset gives the relative clock skew. Thus the relative clock skew

between node A and node B is given by C
′

A(t)−C
′

B(t). A pair of nodes are synchronized by

estimating the relative clock-offset and relative skew between the nodes. Statistical models

have been developed where the offset and skew parameters are estimated by Least Squares

(LS) method using a regression model as proposed in [30,31]. When a pair of sensor nodes

exchange timing message, a group of neighbouring sensors overhear those messages and

synchronize themselves accordingly [40]. Methods have been proposed for recursive clock

skew estimation for WSNs using reference broadcasts [72], time synchronization in WSNs

using max and average consensus protocol [73]. A Bayesian approach of time synchroniza-

tion for a complex network model has been proposed in [74]. Protocols have been proposed

for synchronization in more complex network structures [32,75]. Some recent approaches

for time synchronization under different protocols are reviewed in [76,77]. Recent advance-

ments in time synchronization protocol lead to design of different mechanisms to overcome

the security issues in FTSP [32] .

All the above approaches assume that the set of time readings between a pair of nodes

are uncorrelated, which might not be true in real applications. Since the readings are

taken from the same pair of nodes at different time points, it is expected that these time

readings will be correlated over time. In this chapter, the author considers an auto-regressive

dependence among the time readings and synchronize the pair of nodes by estimating their

relative clock offset and relative clock skew using Generalized Least Squares (GLS) method.

The advantage of the proposed approach is not only in its accuracy and precision but also

in its robustness in estimating the model parameters for correlated time readings.

When the successive time readings are correlated, GLS approach is an iterative method

of parameter estimation, which is computationally expensive. The authors proposes an

alternative Bayesian approach where some prior distributions are assumed for the model

parameters and then the joint posterior distribution is computed. From this joint posterior,
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the author derives the full conditional density for each of the model parameters and use

Markov Chain Monte Carlo (MCMC) to estimate the model parameters. Posterior estimates

are indeed the weighted average of prior mean and the Maximum Likelihood Estimates

(MLE) based on the data. Also, MCMC is a much faster algorithm than GLS and the

author compares two methods in terms of their respective CPU times.

This chapter has two main contributions:

• The author proposes a new approach of estimating model parameters using GLS method

for time synchronization in WSNs when the successive time readings are correlated.

• Further, a Bayesian model is developed where the parameters are estimated by MCMC.

This approach is computationally fast and provides efficient estimates.

1 The findings of this chapter has been published in a research paper.

4.2 Receiver-Only Synchronization (ROS) Method

The proposed approach is discussed in the context of Receiver-Only Synchronization [30].

However, it may be noted that this approach can also be implemented in the context of

other synchronization approaches e.g. TPSN, RBS, FTSP etc.

P

A B Area of Pairwise

Synchronization

Parent Node

Figure 4.1: A pictorial representation of Receiver-Only Synchronization

In Figure 4.1, we consider two nodes P and A, where node P is the parent node.

1A. Chatterjee, and P. Venkateswaran, “An efficient statistical approach for time synchronization in
wireless sensor networks”, International Journal of Communication Systems, Vol 29, Issue 4, March 2016.

Fig_4_1.eps
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Communication range of each node is limited to a pre-specified area (represented by solid

and dotted area respectively) and if a node belongs to the checked area, it can receive

message from both A and P . A pairwise synchronization is performed between node P and

node A and all other nodes belonging to the checked area receive a series of synchronization

messages. Since all the neighbouring sensors are synchronized by simply overhearing the

timing messages, ROS becomes an energy efficient synchronization protocol.

Figure 4.2: Model for timing message exchange in ROS

As shown in Figure 4.2 [30], node B which belongs to the checked area, receives a set

of N time readings

(

{

T
(B)
2,i

}N

i=1

)

from node A and additionally receives another set of N

readings

(

{

T
(P )
2,i

}N

i=1

)

from node P . Considering the relative clock offset and relative clock

skew between A and P , T
(P )
2,i can expressed as the following:

T
(P )
2,i = T

(A)
1,i + θ

(AP )
offset + θ

(AP )
skew (T

(A)
1,i − T

(A)
1,1 ) + d(AP ) +X

(AP )
i (4.1)

where θ
(AP )
offset and θ

(AP )
skew denote the relative clock offset and relative clock skew, respectively

between A and P . The fixed and random delays in the readings are denoted by d(AP ) and

X
(AP )
i . Similarly,

T
(B)
2,i = T

(A)
1,i + θ

(AB)
offset + θ

(AB)
skew (T

(A)
1,i − T

(A)
1,1 ) + d(AB) +X

(AB)
i (4.2)

Fig_4_2.eps
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Using the above two equations, one can write,

T
(P )
2,i − T

(B)
2,i = θ

(BP )
offset + θ

(BP )
skew (T

(A)
1,i − T

(A)
1,1 ) + d(AP ) − d(AB) +X

(AP )
i −X

(AB)
i (4.3)

It is assumed that the random error component in equation (4.3), X
(AP )
i −X(AB)

i follows

Gaussian distribution with mean=0 and variance=σ2. Note that in this assumption, the

author consider the possible correlation between X
(AP )
i and X

(AB)
i .

Let wi = X
(AP )
i −X

(AB)
i , µ = d(AP ) − d(AB), xi = T

(P )
2,i − T

(B)
2,i − µ.

Then equation (4.3) can be expressed as:

xi = θ
(BP )
offset + θ

(BP )
skew (T

(A)
1,i − T

(A)
1,1 ) + wi (4.4)

Noh et al. [30] used equation (4.4) to estimate θ
(BP )
offset and θ

(BP )
skew using least squares

method in a classical regression framework. This approach assumes that wi’s are identically

and independently distributed random variables distributed as Gaussian (0, σ2) and conse-

quently xi’s are uncorrelated. In reality, for WSNs one gets different state values with time

stamps, which are not uncorrelated. Thus xi’s are correlated over different time points and

this correlation needs to be modelled for an efficient and consistent estimation of the clock

offset and clock skew. The author models this correlation by considering autoregressive

model for wi’s as proposed:

wi = ρwi−1 + νi (4.5)

where νi’s are Gaussian (0, τ2).

Thus, from equation (4.4),

xi− ρxi−1 = θ
(BP )
offset(1− ρ)+ θ

(BP )
skew

[

(T
(A)
1,i − T

(A)
1,1 )− ρ(T

(A)
1,i−1 − T

(A)
1,1 )

]

+(wi− ρwi−1) (4.6)

Substituting equation (4.5) in equation (4.4),

x∗i = θ∗offset + θ
(BP )
skew (T

(A∗)
1,i − T

(A∗)
1,1 ) + νi (4.7)
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where x∗i = xi − ρxi−1, θ
∗
offset = θ

(BP )
offset(1 − ρ), T

(A∗)
1,i = T

(A)
1,i − ρT

(A)
1,i−1, and

T
(A∗)
1,1 = T

(A)
1,1 (1− ρ).

It is noted that equation (4.7) is a standard regression model where the residuals νi’s are

Gaussian (0, τ2). Hence, the ordinary least squares method can be applied for estimating

θ∗offset and θ
(BP )
skew . One needs to know ρ to carry out the analysis, but typically ρ is unknown.

Hence one has to get the initial estimate of ρ from the OLS and use an iterative approach to

estimate it. Here, the algorithm suggested by Cochrane-Orcutt [78] is followed for estimating

ρ as outlined below:

1. Estimate the parameters in equation (4.4) by OLS and get the residual estimates ŵi.

2. Regress the residual ŵi on the lagged residual ŵi−1 using equation (4.5) and get the

estimate of ρ as ρ̂.

3. Use ρ̂ to get x∗i , T
(A∗)
1,i and T

(A∗)
1,1 .

4. Regress x∗i on T
(A∗)
1,i − T

(A∗)
1,1 using equation (4.7) and generate new residuals from here.

5. Use equation (4.5) again to get new estimate of ρ, say, ρ̂new.

6. Go to step 3 and repeat until the difference between the estimates from two consecutive

iterations is arbitrarily small.

4.3 Simulation Results

4.3.1 Performance of the proposed Approach for Correlated Data

The performance of the proposed approach of estimating the relative clock-skew and clock-

offset is compared to the one proposed in [30] through simulation studies. It is noted that

one can consider any set of fixed parameter values for the simulation study and can illustrate

the usefulness of the proposed model and estimation method. However, the author only

shows the results from one set of prefixed parameter values. The author simulates wi’s

from equation (4.5) with ρ=0.65 and τ2=0.2. Then using equation (4.4), xi’s are simulated

with θ
(BP )
offset=1.45, θ

(BP )
skew=0.98 and σ2=0.1. Simulations are performed for many different

values of time readings N . For each fixed N , 100 such datasets are replicated. For each

simulated dataset, the model parameters are estimated by the proposed approach (using
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equation (4.7)).

For performance comparison, the model parameters are estimated using equation (4.4)

as proposed by Noh et al. [30]. For both the approaches, the author calculates the Mean

Squared Error (MSE) using the following formula:

MSE= 1
N

N
∑

i=1
(xi − x̂i)

2

where x̂i denotes the estimated value of xi. Then the average MSE is calculated by

averaging the MSE values for 100 replicated datasets for each N .
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Figure 4.3: Performance of the proposed approach compared to Noh et al. [30] in terms of
Average MSE for correlated data

In Figure 4.3, the author shows the simulation results for different values of N . It is

noted that the proposed approach provides uniformly lower average MSE than the approach

proposed by Noh et al. [30]. Thus the effectiveness of the proposed approach is assessed

and verified for the case when the random components in equation (4.3) are correlated over

different time points. The estimated value of ρ is 0.631 with Standard Error (SE)=0.24.

In Table 4.1, the author shows the model parameter estimates with the SE for both

the approaches. Note that the proposed approach provides the estimates closer to the true

parameter values with smaller SE than the other approach. Thus, accuracy (less bias)

and precision (less variation) are gained in parameter estimates by the proposed algorithm

compared to the one proposed in [30] for the correlated measurements.

Fig_4_3.eps
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Table 4.1: Parameter estimates and Standard Errors (SE) for the proposed approach and
Noh et al. [30] for correlated data

Proposed approach Noh et al. [30]
Parameter True value Estimates (SE) Estimates (SE)

θ
(BP )
offset 1.45 1.43(0.89) 1.26(1.17)

θ
(BP )
skew 0.98 0.94(1.02) 1.13(1.25)
σ2 0.1 0.13(0.27) 0.18(0.43)

4.3.2 Performance of the Proposed Approach for Uncorrelated Data

The author performs another simulation study for investigating the effectiveness of the

proposed approach compared to the other approach [30] when the random components in

equation (4.3) are not correlated over time. Again, the results are shown only for one

set of fixed parameter values, but the result can be demonstrated with any fixed set of

model parameter values. The author simulates wi’s which are identically and indepen-

dently distributed as Gaussian (0,0.25) and then using equation (4.4), simulates the xi’s

for θ
(BP )
offset=1.28, θ

(BP )
skew=0.85. Similar to the earlier simulation study, here also the author

simulates data for many different values of N time readings. Here 100 datasets are repli-

cated for each N and for each dataset the model parameters are estimated by the proposed

approach using equation (4.7) and also for the approach suggested in [30]. For each N ,

average MSE is calculated by averaging over 100 replicated datasets.
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Figure 4.4: Performance of the proposed approach compared to Noh et al. [30] in terms of
Average MSE for the uncorrelated data
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In Figure 4.4, the author shows the results of the simulation study. Note that solid

curve indicates the average MSE as per the proposed approach and the other one as per

the approach proposed in [30]. It is observed that the average MSE from the proposed

approach for almost all values of time reading N closely follows the average MSE from the

approach proposed in [30]. Thus this simulation study demonstrates the effectiveness of the

proposed estimation approach for uncorrelated data as well. From the simulation study, the

estimated value of ρ is 0.0021 with SE 0.17, thus indicating the successive measurements

are almost uncorrelated.

Table 4.2: Parameter estimates and standard errors for the proposed approach and the
approach by Noh et al. [30] for uncorrelated data

Proposed approach Noh et al.
Parameter True value Estimates (SE) Estimates (SE)

θ
(BP )
offset 1.28 1.32(1.19) 1.31(1.15)

θ
(BP )
skew 0.85 0.84(1.08) 0.83(1.03)
σ2 0.25 0.28(0.48) 0.23(0.43)

In Table 4.2, the author shows the estimated model parameters and the corresponding

SE for both the approaches. Here both the approaches are quite comparable although

the approach by Noh et al. [30] provides slight improvement in estimation. However, the

improvement in estimation as per the approach in Noh et al. [30] is not much significant as

noted in Table 4.2. Thus, even for the uncorrelated data, proposed algorithm works quite

well.

The results from the first simulation study shows that for the correlated time readings,

the proposed approach performs extremely well in comparison to the approach proposed

by Noh et al. [30]. The results from the second simulation study shows that for the

uncorrelated time readings the proposed approach performs almost similar to the approach

proposed by Noh et al. [30]. Thus, the robustness of the proposed approach is assessed

through simulation studies and hence in practice, the proposed approach would be a better

method for the parameter estimation.
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4.4 Parameter Estimation using Bayesian Approach andMCMC

4.4.1 Model and Priors

Now an alternative Bayesian approach is proposed to estimate the parameters in equation

(4.7) using MCMC. The proposed approach is quite similar to the one in [79], and [80] who

proposed Bayesian inference in standard regression models.

Note that the author rewrites equation (4.4) as the following:

xi = Ziβ + wi (4.8)

where Zi =
[

1, T
(A)
1,i − T

(A)
1,1

]

and β =
[

θ
(BP )
offset, θ

(BP )
skew

]T
.

Note that wi’s follow equation (4.5) and νi’s are Gaussian (0, τ2).

The unconditional density of xi corresponding to the very first time reading (i=1) can

be written as:

f(xi|β, ρ, τ2) =
√

1− ρ2√
2πτ2

exp

[

−(1− ρ2)

2τ2
(xi − Ziβ)

2

]

(4.9)

Also one can write the conditional density of xi given all the past reading x1, . . . , xi−1

as

f(xi|x1, x2, . . . , xi−1,β, ρ, τ
2) =

1√
2πτ2

exp

[

− 1

2τ2
{(xi − ρxi−1)− (Zi − ρZi−1)β}2

]

(4.10)

Thus, the joint likelihood function of x1, . . . , xN can be expressed as the following:

f(x1, x2, . . . , xN |β, ρ, τ2) = (2πτ2)−
N
2 (1− ρ2)

1
2 exp

[

− 1

2τ2

N
∑

i=1

(x∗i − Z∗
i β)

2

]

(4.11)

where x∗i and Z∗
i are defined as the following:

x∗i =















√

1− ρ2xi, i = 1

xi − ρxi−1, i = 2, . . . , N
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and

Z∗
i =















√

1− ρ2Zi, i = 1

Zi − ρZi−1, i = 2, . . . , N

Note that here one has to estimate β, ρ and τ2 for which one needs to assume some prior

densities. The author considers a non-informative prior for β, Uniform[-1,1] prior for ρ and

Inverse Gamma (a, b) prior for τ2. One can also assume an informative prior (for example,

normal prior) for β when such prior knowledge is available.

Here the prior structure is as the following:

π(β) ∝ constant,

π(ρ) =Uniform(−1, 1),

π(τ2) ∝ (τ2)−a−1 exp
(

− b
τ2

)

4.4.2 Posterior and Full Conditionals

Combining the above priors and the joint likelihood function given in equation (4.11), one

gets the following joint posterior density:

π(β, ρ, τ2|X) ∝ (τ2)−
N
2
−a−1(1− ρ2)

1
2 exp

[

− 1

2τ2

N
∑

i=1

(x∗i − Z∗
i β)

2

]

exp

(

− b

τ2

)

I[−1,1](ρ)

(4.12)

where X = (x1, x2, . . . , xN ).

From the above joint posterior distribution, the author derives the full conditional dis-

tribution for each of the model parameters following Robert and Casella [25], Carlin and

Louis [81], Das et al. [56]. The full conditional densities are given as follows:

π(β|ρ, τ2) ∼ N

(

β∗,

(

1
τ2

N
∑

i=1
Z∗T
i Z∗

i

)−1
)

; where β∗ =

(

N
∑

i=1
Z∗T
i Z∗

i

)−1( N
∑

i=1
Z∗T
i x∗i

)

π(ρ|β, τ2) ∝ (1− ρ2)
1
2 exp

[

− 1
2τ2

N
∑

i=1
(x∗i − Z∗

i β)
2

]

I[−1,1](ρ)

π(τ2|β, ρ) ∼ IG

(

N
2 + a, b+ 1

2

N
∑

i=1
(x∗i − Z∗

i β)
2

)
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It is noted that for β and τ2, the full conditionals are known densities and hence Gibbs

sampler can be used for posterior sampling. However for ρ, one has to use Metropolis-

Hastings algorithm for sampling [80].

4.4.3 Performance Evaluation

In this section, the author evaluates the performance of the proposed approach using

Bayesian method through simulation studies for the correlated data. Simulation has been

carried out using equation (4.4) with ρ=0.65, τ2=0.2, θ
(BP )
offset = 1.45 and θ

(BP )
skew = 0.98. Note

that any fixed set of model parameters will provide the results, but the author considers only

one set of parameters for the current presentation. The author considers N=20 and uses

the simulated data to fit into the proposed Bayesian model as given in equation (4.8). Then,

the model parameters ρ, τ2, and θ
(BP )
offset are estimated by a hybrid combination of Gibbs

sampler and Metropolis-Hastings (MH) algorithm [80] as outlined below to run MCMC.

(1) Start with some initial values of the model parameters, β0, ρo and τ20 .

(2) At the j-th iteration, (i.e. for j=1,2,3,...) simulate the parameters from their respective

posterior densities as follows:

(a) Simulate βj from π(βj |ρj−1, τ
2
j−1) which is the full conditional distribution of βj given

all the other parameters.

(b) Simulate ρj from π(ρj |βj, τ
2
j−1). MH algorithm is used for this simulation. Generate ρ∗

from Uniform[-1,1].

Let us define ‘acceptance probability’=ω(ρj−1, ρ
∗) as the following:

ω(ρj−1, ρ
∗) = min

[

1,
π(ρ∗|βj ,τ

2
j−1,X)

π(ρj−1|βj ,τ
2
j−1,X)

]

.

Set

ρj =















ρ∗, with probability= ω(ρj−1, ρ
∗)

ρj−1, otherwise.

(c) Next, simulate τ2j from π(τ2j |βj, ρj). The full conditional distribution of τ2j is an Inverse
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Gamma distribution.

(3) Discard the first 2,000 ‘burn-in’ iterations to remove the effect of the initial values of

the parameters.

(4) Assess the convergence of the chains graphically as suggested by Brooks and Gelman

[36].

(5) Use posterior means as the respective parameter estimates.
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Figure 4.5: MCMC estimates of the offset parameter for different number of iterations (n)
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Figure 4.6: MCMC estimates of the skew parameter for different number of iterations (n)
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Figure 4.7: MCMC estimates of rho for different number of iterations (n)

20,000 chains are run after removing the ‘burn-in’ iterations. The estimates of the

parameters for different number of the iteration (n) are shown in Figures 4.5 to 4.8, and it

is noticed that for n=10,000 onward, the estimates are quite stable. In Table 4.3, the author

shows the parameter estimates with SEs for the correlated data obtained from Simulation

1 as described in Section 4.3.1, for Bayesian and GLS approach. It can be observed that

in terms of the accuracy and precision of the estimates, both the approaches are equally

effective. Thus the Bayesian approach provides very similar estimates to those obtained

from GLS technique.

Table 4.3: Parameter estimates and standard errors for the Bayesian approach and GLS
approach for Simulation 1

GLS approach Bayesian approach
Parameter True value Estimates (SE) Estimates (MCSE)

θ
(BP )
offset 1.45 1.43(0.89) 1.42(0.77)

θ
(BP )
skew 0.98 0.94(1.02) 0.96(1.14)
τ 2 0.2 0.24(0.78) 0.17(0.86)
ρ 0.65 0.631(0.24) 0.628(0.29)

In Table 4.4, the author compares the performance of both the proposed Bayesian ap-

proach and the GLS approach for correlated data in terms of their respective CPU times.

For different values of N , it is observed that the CPU times for the Bayesian approach

Fig_4_7.eps
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Figure 4.8: MCMC estimates of tau-square for different number of iterations (n)

Table 4.4: Comparison of the Bayesian approach and GLS approach in terms of CPU times

CPU times (seconds)
N Bayesian approach GLS

5 53 72
10 54 78
20 62 103
25 62 108
30 65 118
40 68 125

is much lower than the GLS approach. Although both the approaches are comparable in

terms of accuracy and precision of the estimates, Bayesian approach is much faster than

GLS method. Note that in Bayesian approach, all the parameters are updated simultane-

ously in a single chain, but the other approach is a two-step method in which ρ has to be

updated before updating all other parameters. All computations are performed using R (in

WINDOWS 8 Intel Core i7 Processor), because it is free software, and there are in-built

functions for OLS, GLS, and MCMC.

4.4.4 Model Comparison

Finally, the author compares the performance of the proposed MCMC based Bayesian

approach with the one proposed in Noh et al. [30] through simulation study. Similar to

Fig_4_8.eps
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the Simulation 1 in Section 4.3, the author first simulates wi’s using equation (4.5) with

ρ=0.45 and τ2=0.34. It is again note that the choice of the parameter values does not

matter for the final results, and the author only considers one set of model parameters for

the illustration purpose. Using equation (4.4) with θ
(BP )
offset=1.70, θ

(BP )
skew=1.04 and σ2=0.40,

the author simulates xi’s. Consider N=30 for this simulation study.

First, the parameters are estimated using the simple linear regression as suggested in Noh

et al. [30]. OLS method is used for such estimation. Once the parameters are estimated,

the author calculates the estimated bias as the difference between the actual and estimated

parameter value, i.e. bias = (Estimated value - Actual value). Then the proposed MCMC

based approach is used for parameter estimation and calculate the estimated bias.

100 replicated datasets are considered, each with N=30, and calculate the bias for each

dataset. Finally, the author calculates the Average Bias for the parameters in all 100

replications and also computes the SE of the parameter estimates. In Table 4.5, the author

shows the average bias and the estimated SE for the model parameters. It can be observed

that the proposed approach provides estimates with lower average bias and smaller SE in

comparison to the method given in Noh et al. [30]. Thus even for moderately correlated

time readings (ρ <0.5), this approach is much better than the other method. Hence for

highly correlated time readings, proposed method will perform better than the one proposed

in Noh et al. [30].

Table 4.5: Average Bias and Standard Error for the model parameters from MCMC and
the method by Noh et al.[30]

MCMC Noh et al.[30]
Parameter Average Bias Standard Error Average Bias Standard Error

θ
(BP )
offset 0.23 1.05 0.67 1.39

θ
(BP )
skew 0.17 0.97 0.58 1.26
σ2 0.24 1.12 0.72 1.54



Chapter 4. 76

4.5 Summary

In this chapter, the author has proposed a powerful method for estimating the model pa-

rameters for time synchronization in WSNs. Joint estimation of clock-offset and clock-skew

has been proposed in the literature using the simple regression framework. Here it has

been shown that simple regression poorly estimates the parameters due to the inherent

correlation among successive time readings between two sensor nodes.

• An alternative autoregressive model is proposed and GLS method is used for esti-

mating the relative offset and skew parameters.

• An alternative Bayesian approach is also proposed for the parameter estimation

considering correlated readings between two sensors. The effectiveness of the proposed

approach in comparison to the existing approach has been investigated.
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CONCLUSION

Nowadays Wireless Sensor Networks (WSNs) are used in a variety of applications. For a

long time, WSNs have been used for intrusion detection in military surveillance application

[82-86], for parameter monitoring and information gathering in health care applications

[87-93] and agricultural studies [94-100]. In military applications, sensor nodes sense the

environment and alert the forces accordingly. In SensorScope Project reported in [99],

WSNs are used for gathering massive data from environment monitoring. The sensor nodes

measure air temperature, wind speed, humidity, wind direction, soil water content etc. over

time and send it to the base station where the collected raw data are processed and used for

future prediction of environment. In health care system [93], sensor nodes collect data on

different parameters e.g. heart rate, blood pressure etc. and send to the base station. At

the base station, statistical models are used for data analysis and prediction of the future

condition of the patient. In agricultural studies [100], WSNs are used for monitoring soil

conditions including water content, mineral content, salinity, soil temperature etc. over

time.

In all the applications mentioned above, the general principle is to use appropriate sta-

tistical or mathematical models for data analysis and prediction of the future ‘states’. In

this thesis work, the author has addressed this generic problem, where data are collected

from a cluster-based WSN and state estimation is performed using powerful statistical mod-

els. Since the sensor nodes collect data dynamically, dynamic statistical models for state
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estimation has been used. Traditionally, Kalman-Filter (KF) based state-space models are

used for such estimation. However, in this thesis, the author has proposed a linear statis-

tical model and estimated the model parameters by Maximum Likelihood (ML) estimation

method. Additionally, a Bayesian model where Markov Chain Monte Carlo (MCMC) iter-

ations are used for parameter estimation, has been proposed. Although the application of

the proposed approach is demonstrated only in anomaly detection, it may be noted that

the proposed method can be effectively used in many other applications as well.

The entire research work carried out in this thesis and presented in different chapters

has been summarized below:

In Chapter 1, the issues associated with state estimation in a cluster-based discrete-

time WSN has been introduced. The basic structure of WSNs, and the state estimation

problems are presented through appropriate literature review. KF based state-space mod-

els, which are traditionally used for state estimation, are presented, and the limitations of

such models are also presented. Further, the basic principles of Bayesian approach which

is being followed and developed for different applications has been introduced in this chapter.

In Chapter 2, a powerful linear statistical model has been proposed for estimating the

state values of the sensor nodes longitudinally and the estimated state values are used for

detecting the anomalous nodes in WSNs. Detection of anomalous node in distributed WSNs

is extremely important for powerful inference and network reliability.

• The proposed approach is powerful since it considers the effect of the nearest neigh-

bours on the current state values and then detects the anomalous nodes based on the

estimated state values.

• Proposed method is energy efficient, since it can also estimate the missing state values

of the sensor nodes within the cluster, which are kept in sleep mode for energy conservation.

• Alternative Bayesian model is also proposed which is computationally faster for state
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estimation and anomaly detection.

• Performance of all the three models (i) Proposed ML based regression model (ii)

Proposed MCMC based Bayesian model and (iii) Traditional KF based state-space model

are compared.

• It is found that the proposed MCMC based Bayesian method is more appealing since

it is computationally faster and provides the smallest Average Mean Squared Error (AMSE)

compared to the other two methods.

Besides anomalous node detection, the proposed model can be effectively used in other

applications as well such as security surveillance, pattern recognition, habitat monitoring,

etc.

In Chapter 3, a Bayesian non-parametric approach for simultaneous state estimation

and anomaly detection in WSNs has been proposed. Although, there is a rich literature on

the state estimation of WSNs but most of these works are based on the dynamic state-space

model via KF or similar Markov models.

• A cluster-based WSN and a discrete-time linear Markov model is considered for

estimating the state values simultaneously of all the sensor nodes across the clusters over

time. The proposed linear model considers the effect of the nearest neighbours on the

current state value for each sensor node and allows information exchange among different

sensor nodes within a cluster.

• For allowing the information exchange (through the model parameters) across differ-

ent clusters in the network, non-parametric Matrix Stick-Breaking Process (MSBP) priors

are considered for the cluster-specific model parameters. Further, the similarity of different

parameters across the clusters is assessed through simulation studies.

• The author demonstrated the usefulness of the proposed model in locating an immo-

bile anomalous node in the network and computed the time to locate the anomalous object.

The False Positive Rate (FPR) of the proposed approach is computed and presented.

• Through simulation studies, the usefulness of the proposed approach has been com-
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pared and assessed with the traditional approach i.e. state-space model via KF.

The proposed approach will be useful in emergency monitoring, medical genetics, geo-

sciences and many other disciplines where WSNs are frequently used for decision making

based on the estimated state.

In Chapter 4, a powerful method for estimating the model parameters for time syn-

chronization in WSNs has been proposed. Joint estimation of clock-offset and clock-skew

has been proposed in the literature using the standard regression framework. Here, the au-

thor has shown that simple regression using Ordinary Least Square (OLS) poorly estimates

the parameters due to the inherent correlation among successive time readings between two

sensor nodes.

• An alternative autoregressive model has been proposed where the relative offset and

skew parameters are estimated by Generalized Least Squares (GLS) method.

• A computationally efficient Bayesian approach is also proposed for parameter esti-

mation considering correlated readings between two sensors.

• The effectiveness of the proposed approach in comparison to the existing approach is

investigated in terms of Standard Error (SE) and CPU times through extensive simulation

studies.

• Three methods of estimation: (i) exiting OLS method in Noh et al. [30], (ii) GLS

method, and (iii) Proposed Bayesian method, are compared in terms of computational time

(CPU time) and AMSE through computer simulations.

• It is observed that Bayesian method outperforms the other two methods since it

provides the smallest AMSE, and works much faster.

The advantage of the proposed approach is not only in its accuracy and precision but

also in its robustness in estimating the model parameters for correlated time readings.

In view of the current research trends in the state estimation and time synchronization

of discrete-time WSNs, the author believes that this thesis is a collection of original re-
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search papers that are well documented and finally published in the Engineering journals

of international repute.
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SUMMARY
Detection of anomalous node in distributed wireless sensor networks is extremely

important for powerful inference and network reliability. In this paper, we propose a

powerful linear statistical model for estimating the state values of the sensor nodes

longitudinally, and the estimated state values are used for detecting the anomalous

nodes. Our proposed approach is powerful because it considers the effect of the

nearest neighbors on the current state values and then detects the anomalous nodes

based on the estimated state values. Our method can estimate the missing state val-

ues of the sensor nodes, which are kept in sleep mode for energy conservation. We

also propose an alternative Bayesian model that is computationally faster for state

estimation and anomaly detection. The effectiveness of the proposed model is inves-

tigated through extensive simulation studies, and the usefulness of our algorithm

is numerically assessed. The performance of the proposed approach is compared

to that of the traditional approaches through simulation studies. The proposed

model can be effectively used in security surveillance, pattern recognition, habitat

monitoring, etc.

KEYWORDS

anomalous nodes, Gibbs sampling, information exchange, linear regression model,

wireless sensor networks.

1 INTRODUCTION

Wireless sensor networks (WSNs) consist of a mass of sen-

sor nodes distributed over a physical space for monitoring

the environmental conditions such as temperature, pressure,

humidity, acoustics, and resonance. Recent advancements

in the state estimation of WSNs have drawn attention of

researchers mainly because of the extensive applications

of WSNs in habitat monitoring,1 object tracking,2 event

detection,3 intruder locating4 etc. Thus WSNs find appli-

cations in medical science,5 security surveillance,6 pattern

recognition,7 and many other disciplines. Models and meth-

ods have been proposed for the state estimation of both dis-

crete and continuous-time sensor networks. Note that the term

“state” in the context of WSNs is quite subjective in the sense

that it depends on the objective of the study and the quantity

being measured from the sensor nodes over time. Specifically,

the state of a sensor node at time t is estimated based on the

available measurements till time t − 1. State of a sensor node

thus can be continuous (e.g., air pressure and humidity) as

well as binary (e.g., occurrence of an event). However, we

consider WSNs with continuous state values in this paper.

In a purely probabilistic framework Liang et al.8 pro-

posed models for distributed state estimation of discrete-time

WSNs. Similar models have been proposed by Xu and Li.9

Sun et al.10 proposed a very powerful model for state esti-

mation of multiple mobile targets. Quevedo et al.11 proposed

models that can efficiently estimate the states of WSNs with

correlated wireless fading channels. Mo et al.12 proposed

model that can handle the false data injection attacks in

state estimation of sensor networks. Because there are several

resource constraints in WSNs, anomaly detection using state

estimation becomes very essential for reliable networks.

In this paper, we propose a new approach of estimating

the state values of the sensor nodes and then detecting the

possible anomalous node(s) in the network based on the

Int. J. Commun. Syst. 2016; 1–10 wileyonlinelibrary.com/journal/dac Copyright © 2016 John Wiley & Sons, Ltd. 1
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estimated state values. Detection of anomalous node is impor-

tant because such nodes might have detrimental effects on

the surrounding sensors and thus may affect the performance

of the entire network over time.13,14 Analysis of sensor mea-

surements is very important for anomaly detection in WSNs.

However, sensor measurements contain spatio-temporal cor-

relations. Because the sensor nodes are densely deployed,

spatial correlation exists among the neighboring sensor

nodes. Temporal correlation occurs because of the predictable

relationship that exists in sequential measurements of the

sensor nodes. Presence of anomaly is affirmed when one

(or more) sensor node behaves differently from most the

sensor nodes.15

Detection of anomalous node is widely applied in a vari-

ety of fields. Sensor nodes in wireless body area networks

enable real-time global patient and health care monitoring.16

Sun et al.17 used extended Kalman filter for detecting the

false injected data from the anomalous behavior of the sen-

sor nodes. Rajasegarar et al.18 used distributed one-class

quarter-sphere support vector machines to distinguish anoma-

lous measurements from the obtained data.

There is a rich literature on object tracking using

WSNs2,19 but relatively few papers on anomalous node

detection.18–20 Almost all these papers detect an anomalous

node based on its relative performance compared to the neigh-

boring sensor nodes. We propose a novel anomaly detection

method based on the estimated state values of the sensor

nodes. While the state estimation issue has been addressed

from various perspectives, mostly the suggested methods

rely on state-space models based on Kalman filter (KF)

and stochastic differential equations. Examples include Wu

et al.,21 Quevedo et al.,11 and Di et al.22 Our proposed model

is fundamentally different from the previous works and sta-

tistically powerful for the state estimation of discrete-time

WSNs. We propose a dynamic regression model that allows

the “exchange of the relevant information” among the spa-

tially close nodes. We note that information exchange is

inevitable in any network and hence the models for state esti-

mation should consider this appropriately for reliable state

estimation. Our approach is based on the maximum likelihood

(ML) estimation and related inferential properties. In recent

years there is a growing interest in Bayesian models and esti-

mating the model parameters by Monte Carlo Markov chain

(MCMC). Bayesian models can combine the prior informa-

tion on the network (specifically the parameter values) with

the observed likelihood and compute the posterior distribu-

tion for inference. For complex models, implementation of

the traditional methods like ML, KF is really challenging

and computationally expensive. However, MCMC can easily

handle complex models and estimate the model parameters

iteratively in a relatively less time.23 Hence we also pro-

pose an alternative Bayesian model for state estimation and

anomaly detection.

The current paper has two major contributions. First we

propose a dynamic statistical model for state estimation,

which allows the appropriate information exchange among

the spatially close sensors. Such models have not been used

yet in WSNs literature for state estimation. We develop an

algorithm for locating the possible anomalous node(s) in the

network. Second, we propose an alternative Bayesian model

and estimate the state values using MCMC in a shorter time.

We compare the performance of all the three methods and

conclude that state-space model based on KF should not be

considered as the “best alternative” in the context of state

estimation of WSNs.

The rest of the paper is organized as follows. In Section 2,

we explain the proposed model and parameter estimation

using ML method. In Section 3, we propose an alternative

Bayesian model and MCMC algorithm. Simulation results

for assessing the performance of our model are discussed in

Section 4. Finally, Section 5 concludes.

2 METHOD OF LONGITUDINAL STATE
ESTIMATION

Throughout this paper, we use the following notations. Con-

sider a particular WSN consisting of N sensor nodes with one

or more anomalous nodes. For each sensor node, the state val-

ues are estimated at T different discrete time points 1, 2,… ,T .

At each time point t, the state value of the i-th sensor is

denoted by Xi(t), which is communicated to the “sink” of the

network. Let (𝜃i,𝛿i) be the coordinates of the i-th sensor node,

i= 1, 2,…N. The Euclidean distance between the sensor i and

the sensor j is denoted by Dij. Based on the Dij values, we first

“group” the sensor nodes into several clusters so that the sen-

sors belonging to a common cluster are spatially close to each

other. In Figure 1, we show a cluster-based distributed WSN.

2.1 Linear statistical model for state estimation

Traditionally in the state estimation of WSNs, state-space

models are used.11,21,22 In state-space models, the state values

yi’s are modeled as a function of the unknown states xi’s and

then auto-regressive models are used for the unknown states.

Mathematically one can summarize a state-space model as

the following: yi|xi = f (xi) + di; xi|xi − 1 = g(xi − 1) + ei, where

di and ei respectively denote the observation error and sys-

tem error. The functions f and g are assumed to be linear,

and the errors are assumed to be Gaussian for estimating the

parameters via KF. However, such models do not consider

the information exchange among the sensor nodes, which

are spatially close to each other. In any network, informa-

tion exchange is inevitable and must be taken into account.

Considering this, we propose the following linear model for

estimating the state values of the sensor nodes at different

discrete time points:

Xi(t) = f (t) + 𝛼Xi(t − 1) + 𝛽Zi(t − 1) + 𝜖i(t), (1)

where Xi(t) denotes the state value of the i-th sensor node at

time t belonging to a particular cluster. The smooth function
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Abstract— There is rich literature on the state estimation
of wireless sensor networks (WSNs). Most of these works
are based on the dynamic state-space model via Kalman fil-
ter or similar Markov models. In any network, information
exchange is inevitable, and in this paper, we propose a Bayesian
non-parametric approach for addressing this issue in the context
of state estimation of WSNs. We consider a cluster-based WSN
and consider a discrete-time linear Markov model for estimating
the state values of the sensor nodes over time. For measuring
the amount of information shared by the model parameters
across different clusters, we consider non-parametric matrix
stick-breaking priors for the cluster-specific model parameters.
We demonstrate the usefulness of our proposed model in locating
an immobile anomalous node in the network. We compute the
time to locate the anomalous object and the false positive rate
of our proposed approach. Simulation studies are performed
to assess the operating characteristics of the proposed model.
The proposed approach will be useful in emergency monitoring,
medical genetics, geosciences, and many other disciplines where
WSNs are frequently used for decision making.

Index Terms— Cluster, Dirichlet process, linear Markov
models, matrix stick-breaking process, wireless sensor networks.

I. INTRODUCTION

IN RECENT years we have witnessed a revolution in the sci-
entific research related to wireless sensor networks (WSNs)

and their applications in various disciplines. Sensor nodes are
battery-powered tiny devices which are able to sense, process,
store and exchange information. WSNs typically consist of ten
to thousands of sensor nodes which are deployed (randomly
or systematically) over certain physical places of interest.
In recent times, WSNs are used for monitoring environ-
ment [1], tracking object of interest [2], detecting events [3],
locating intruders [4] etc. Thus WSNs find applications in
medical science [5], security surveillance [6], pattern recogni-
tion [7] and many other disciplines.

Most of the real applications of WSNs typically depend
on the accuracy and precision related to the state estimation
of the network over different time points. In reality, the state
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values of each sensor node are estimated longitudinally and
thus the state values of the entire network is estimated by
combining the individual state values of the sensors. Efficient
state estimation of the sensor nodes belonging to a network
depends on two things: (1) time synchronization among the
sensor nodes and (2) statistical models for estimating the
sensor specific state values. There is a rich literature on
time synchronization of the sensor nodes, examples include
Noh et al. ([8], [9]), Kaur and Kaur [10], Chatterjee and
Venkateswaran [11] and many more. These authors mainly
used linear models to estimate the relative clock-offset and
clock-skew for the network synchronization. There is indeed
a richer literature on state estimation and most of these works
are based on state-space models via Kalman-Filter ([12], [13]).
Liang et al. [14] proposed probabilistic models for distributed
state estimation of a discrete-time WSN. Models proposed by
Sun et al. [15] can estimate the state values of multiple mobile
targets. Mo et al. [16] proposed models for state estimation
when false data are injected in the network. Under various
complex scenarios, the state estimation of the sensor nodes has
become the most important task in our time. Thus, powerful
statistical models have arguably become more important in the
recent research works related to WSNs.

Information exchange among the sensor nodes at different
time points is fundamentally important in WSNs and hence the
statistical models for state estimation must be different from
the traditional regression models where subjects are assumed
to be independent [17]. In the dynamic state-space models,
the observations yi ’s are modeled as a function of the unknown
state values xi ’s and then Markov (auto-regressive) models are
used for the unknown states. Mathematically we can write,
yi |xi = f (xi )+ di ; xi |xi−1 = g(xi−1)+ ei , where di and ei

respectively denote the measurement error and system error.
The functions f and g are assumed to be linear and the errors
are assumed to be Gaussian for estimating the parameters via
Kalman-Filter (K-F). Although there is a rich literature on
state estimation using Kalman-Filter which enable information
exchange among the sensor nodes [18], [19], relatively little
attention has been given for information exchange among
different clusters of a network. Our proposed linear Markov
model (in Section 2.1) is different from the existing works
since (i) we specify a single regression model with only
one error component and (ii) we allow the information
exchange among the sensors belonging to the same cluster by
considering the “neighbourhood effect” in the model and also
among different clusters by appropriately sharing the model
parameters in a non-parametric Bayesian approach.

1536-1276 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Dirichlet Process (DP) priors, originally proposed by
Blackwell and MacQueen [20], Ferguson [21], have been used
in non-parametric Bayesian literature for classification and
information sharing. The popularity of DP prior is mainly
due to its computational ease and powerful inferential prop-
erties which come as the consequence of the stick breaking
formulation of Dirichlet Process due to Sethuraman [22].
More recently Dunson et al. [23] formulated matrix stick
breaking priors which can handle the information shar-
ing across the model parameters for the datasets coming
from different related “groups”. Gaskins and Daniels [24],
Das and Daniels [25] extended the matrix stick breaking
priors for sharing the large covariance parameters for different
related groups. We build our work on the seminal paper by
Dunson et al. [23] and use the matrix stick breaking priors for
sharing the model parameters across different groups.

In this paper, we consider the cluster topology for a general
WSN. The sensor nodes are “grouped” into “clusters” based
on their relative Euclidean distances. Thus the nodes which
are spatially close to each other are kept in the same cluster.
The linear model we propose considers the effect of the
nearest neighbours on the current state value for each sensor
node and thus allows within cluster information exchange.
We also propose non-parametric matrix stick breaking priors
for the cluster specific model parameters and thus consider
the possibility of information exchange between the clusters
in the network under consideration.

We illustrate an application of the proposed approach in
detecting immobile anomalous node. An anomalous node may
be a foreign object, a selfish node or a malicious node which
might have detrimental effect on the surrounding sensor nodes
over time. Our approach can accurately detect such nodes.
Removal of such nodes makes the network more effective.

The rest of the article is organized as follows. In section 2,
we discuss the proposed linear Markov model and penalized
splines for estimating the general effect of time. The proposed
prior structure and parameter estimation are discussed in
section 3. Results from the simulation studies are discussed in
section 4. We also numerically illustrate a practical application
of our proposed approach in this section. Finally section 5
concludes.

II. PROPOSED MODEL

A. Linear Markov Model

Consider a sensor network with K clusters and the k-th

cluster consists of nk sensors with a total of n =
K∑

k=1
nk

sensors. Note that clusters are formed by considering the
Euclidean distance between the sensors, i.e. for some fixed δ,
all the sensors which are in the δ-neighborhood of each other
are kept in a single cluster. Figure 1 demonstrates the cluster
formation. Note that δ should be chosen such that the number
of clusters is neither too small nor too large (typically less than
10 in our setting). However, in reality, the number of clusters
(and hence the value of δ) depends on the coverage area and
the nature of the experiment.

We consider a discrete-time state estimation procedure
in this article. For making an energy efficient protocol,

Fig. 1. Cluster-based wireless sensor network.

we assume that all the sensors within a cluster are not
necessarily measured exactly at the same time points. Some
sensors might be kept in the sleep mode for some time and
since in the sleep mode the sensors consume very little battery
power, the network becomes energy efficient. We assume that
the i -th sensor belonging to the k-th cluster (k = 1, 2, . . . , K )
is measured at T k

i different time points and Xik (ti j ) denotes
its state value at time ti j ( j = 1, 2, . . . , T k

i ). However, we also
assume that at each time point at least one (if not all) sensor
from each cluster is measured to keep the cluster active.
Our linear Markov model for estimating the state value of the
i -th sensor at time ti j based on the observed measurements
till time ti( j−1) can be expressed as the following:

Xik(ti j ) = fk(ti j )+ θk1 Xik(ti( j−1))I (|ti j − ti( j−1)| < p)

+ θk2 Zik(ti( j−1))+ ei jk, (1)

where fk is the cluster specific general effect of time which
we model using Penalized splines. The effect of time on the
state values is possibly different for different clusters and
hence we include the subscript k in the function f (.). Here
the indicator function I (|ti j − ti( j−1)| < p) takes value 1,
if |ti j − ti( j−1)| < p and 0, otherwise. Note that θk1 is the
cluster specific effect of the previous available measurement
on the current state value and will be estimated based on
the available data. The previous available measurement will
influence the current state value only when the time difference
is below a fixed (known) threshold p (typically p=3). This
is based on the assumption that measurements corresponding
to the closer time points are more related than those for the
further time points. Such assumptions are quite natural for any
longitudinal study.

In equation (1), Zik(ti( j−1)) denotes the average measure-
ment from all the sensors belonging to the k-th cluster (except
the i -th sensor) which are measured at time ti( j−1). Since we
assumed that at each time point, some sensors are measured
from each cluster, we can easily get Zik(ti( j−1)) based on the
available data for the k-th cluster. Hence θk2 basically denotes
the “neighbourhood effect” on the state value and needs to
be estimated from the available data. Note that by introducing
Z variable, we essentially incorporate the information sharing
among the sensors within a single cluster. The residual errors
ei jk ’s are assumed to be independently normally distributed
with mean=0 and unknown variance=σ 2. We have to estimate
σ 2 from the data. The above model is Markovian as the
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SUMMARY

In this paper, we propose a powerful method of estimating the model parameters for time synchronization in
wireless sensor networks (WSNs). Joint estimation of clock offset and clock skew has been proposed in the
literature using the standard regression framework. Here, we claim that simple regression poorly estimates
the parameters because of the inherent correlation among successive time readings between two sensors.
We propose an alternative autoregressive model and use generalized least squares for estimating the relative
offset and skew parameters. A computationally efficient Bayesian approach is also proposed for the param-
eter estimation considering correlated readings between two sensors. The effectiveness of the proposed
approach compared with the earlier approach has been investigated through extensive simulation studies.
Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of ten to thousands of sensor nodes, which are
multifunctional tiny devices with low power and bandwidth. Sensor nodes are used to sense the
environment, process the crude data and communicate over a local area. WSNs have been a very
promising research area in the last 10 years, and consequently there is a rich literature on state
estimation, lifetime maximization, wireless communications, channel fadding, and so forth. Appli-
cations of WSNs can be found in various disciplines including but not limited to environmental
studies, medical genetics, emergency monitoring, and so forth [1–4]. WSNs find applications in a
variety of phenomena in the real world. Most of these applications assume that the sensor nodes
are synchronized to a common clock. Thus, the time synchronization of the nodes in the network
plays a key role for accurate state estimations and/or predictions of the surrounding environment. If
different sensors in the network run according to their own clocks, then coordination among the sen-
sors are affected and consequently the inference becomes inconsistent and hence less powerful [5].
Time synchronization is also very important in randomly deployed sensor networks because data
transmission from leaf nodes to the sink in this type of network takes place in multihop manner [6].

In recent years, many useful protocols have been proposed for time synchronization in WSNs,
for example, reference-broadcast synchronization (RBS), Time synchronization Protocol for Sensor
Networks (TPSN), Flooding Time Synchronization Protocol (FTSP), and Receiver-only Synchro-
nization (ROS). If we have a pair of sensor nodes, say node A and node B, let us denote the time of
the clocks in the sensor nodes A and B by CA.t/ and CB.t/, respectively, as the functions of time (t ).

*Correspondence to: Aditi Chatterjee, Dr. B.C. Roy Engineering College, Durgapur, India.
†E-mail: eice.aditi@gmail.com

Copyright © 2015 John Wiley & Sons, Ltd.
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Relative clock offset between the node A and node B at time t is defined as CA.t/ � CB.t/. The
derivative (the rate of variation) of the relative clock offset gives the relative clock skew. Thus, the
relative clock skew between node A and node B is given by C

0

A.t/ � C
0

B.t/. Practically speaking,
a pair of nodes are synchronized by estimating the relative clock offset and relative clock skew
between the nodes. Statistical models have been developed where the offset and skew parameters
are estimated by least squares method using a regression model in [7, 8]. When a pair of sensor
nodes exchange the timing message, a group of neighboring sensors overhear those messages and
synchronize themselves accordingly [8]. Methods have been proposed for recursive clock skew esti-
mation for WSNs using reference broadcasts [9], time synchronization in WSNs using max and
average consensus protocol [10]. A Bayesian approach of time synchronization for a complex net-
work model has been proposed in [11]. Protocols have been proposed for synchronization in more
complex network structures [12, 13]. Nice reviews of the recent approaches for time synchroniza-
tion under different protocols are given in [14, 15]. Recent advancements in time synchronization
protocol lead to design of different mechanisms to overcome the security issues in FTSP [16].

All the above approaches assume that the set of time readings between a pair of nodes are uncor-
related, which is typically not the case in practice. Because the readings are taken from the same pair
of nodes at different time points, there are some kind of dependence among these time readings. In
this paper, we address this issue by considering autoregressive dependence among the time readings
and synchronize the pair of node by estimating their relative offset and relative skew using general-
ized least squares method. The advantage of the proposed approach is not only in its accuracy and
precision but also in its robustness in estimating the model parameters for correlated time readings.

When the successive time readings are correlated, the generalized least squares approach becomes
an iterative method of parameter estimation, which is computationally expensive. We propose an
alternative Bayesian approach where prior distributions are assumed for the model parameters and
then the joint posterior distribution is computed. From this joint posterior, we derive the full condi-
tional density for each of the model parameters and then use Markov chain Monte Carlo (MCMC)
to estimate the parameters. The advantage of Bayesian approach is, one can incorporate a prior
knowledge about the model parameters to get the updated posterior estimates. Posterior estimates
are indeed the weighted average of prior mean and the maximum likelihood estimates based on the
data. Also MCMC is a much faster algorithm than the generalized least squares, and we compare
two methods in terms of their respective CPU times.

The current paper has two main contributions. First, we propose an alternative approach of esti-
mating model parameters for time synchronization in WSNs when the successive time readings
are correlated. Second, we propose an alternative Bayesian model where the parameters can be
estimated by MCMC. The Bayesian approach is economical in terms of the computational cost.

The rest of the paper is organized as follows. In Section 2, we review the estimation approach
proposed in [7] and propose our generalized least squares approach for efficient estimation. The
higher accuracy of the proposed method is shown in Section 3 by simulation studies. We propose
an alternative Bayesian approach of estimating the model parameters by MCMC in Section 4 and
compare its performance to the generalized least squares approach. Some concluding remarks are
given in Section 5.

2. RECEIVER-ONLY SYNCHRONIZATION

Here we discuss our proposed approach in the context of ROS [8]. However, note that for other syn-
chronization approaches, for example, TPSN, RBS, and FTSP, we can use the proposed estimation
approach for consistent and powerful estimation.

In Figure 1 [8], consider two nodes P and A, where node P is the parent node. Communication
range of each node is limited to a circle of prefixed radius, and if any node belongs to the checked
area, it can receive message from both A and P . A pairwise synchronization is performed between
node P and node A and all other nodes belonging to the checked area, receive a series of synchro-
nization messages. As all the neighboring sensors are getting synchronized by simply overhearing
the timing messages, ROS becomes an energy efficient synchronization protocol.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2016; 29:722–733
DOI: 10.1002/dac
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